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Real-world problems...
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...benefit from relational models
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Knowledge Graph Identification
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...benefit from relational models




Real-world problems are big!

Millions of users, Millions of users,
thousands movies thousands of genes

Millions of facts,
thousands of Millions of users
ontological constraints




What happens when?




What happens when?

- Repeat Inference!




Why can’t we repeat inference?

We want rich, collective models!

But, 10M-1B factors = 1-100s hours”

ldeal: Inference time balances update cycle

Insanity is doing the same thing over and over...




Online Collective Inference

PROBLEM SETTING




Key Problem

* Real-world problems -> large graphical models

* Changing evidence -> repeat inference




Key Problem

Real-world problems -> large graphical models

Changing evidence -> repeatinference

What happens when partially updating inference?

Can we scalably approximate the MAP state
without recomputing inference?




Generic Answer: NO!

* Nodescanbe® or ©
* Model has prob. mass only when nodes same
* Fix some nodes to @ then observe evidence for @
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Previous Work

Belief Revision
— e.g. Gardenfors, 1992

Bayesian Network Updates
— e.g. Buntine, 1991; Friedman & Goldszmidt, 1997

Dynamic / Sequential Models
— e.g. Murphy, 2002 / Fine et al., 1998

Adaptive Inference
— e.g. Acar et al., 2008

BP Message Passing
— e.g. Nath & Domingos, 2010

Collective Stability
— e.g. London et al., 2013




Problem Setting

Fixed model: dependencies & weights known
Online: changing evidence or observations
Closed world: all variables identified

Budget: infer only m variables in each epoch
Strongly-convex inference objective (e.g. PSL)

Questions:
 What guarantees can we offer?
e Which m variables should we infer?




Approach

* Define “regret” for online collective inference

* Introduce regret bounds for strongly convex
inference objectives (like PSL!)

* Develop algorithms to activate a subset of the
variables during inference, given budget




Online Collective Inference

REGRET BOUNDS




Inference Regret

General inference problem: estimate P (Y| X))
In online collective inference: fix Yg, infer Yg
Regret (learning): captures distance to optimal

Regret (inference): the distance between the
full inference result and the partial inference
update (when conditioning on YY)




Defining Regret

* Regret: distance between & approximate
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Regret Bound
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Validating Regret Bounds
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Online Collective Inference

ACTIVATION ALGORITHMS




Which variables to fix?

Knapsack: combinatorial, regrets/costs, budget

Theory: fix variables that won’t change
Practice: how can we know what will change?

ldea: Can we use features of past inferences?

Explore optimization (case study ADMM & PSL)




ADMM Inference in PSL
(Boyd et al., 2011; Bach et al. 2012)
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ADMM Inference in PSL
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ADMM Features

. ) ) 1,
win w, 9% ¥g)+5 || ¥g =¥y + P

Weight: how important is the potential?
Potential: what loss do we incur?
* Consensus: what is the variable’s value?
* Lagrange Multiplier: how much
disagreement is there across potentials?




Two heuristics for activation

 Truth-Value: Variable value near 0.5

Weighted rule weight x Lagrange
multipliers high




Using Model Structure

* Variable dependencies matter!
* Perform BFS, starting with new evidence
e Use heuristics + decay to prioritize exploration
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EXPERIMENTAL EVALUATION




Two Online Inference Tasks

e Collective Classification (Synthetic)

— Infer attributes of users in a social network as
progressively more information is shared

* Collaborative Filtering (Jester; Goldberg et al. 2001)

— Infer user ratings of jokes as users provide ratings
for an increasing number of jokes




Two Online Inference Tasks

e Collective Classification (Synthetic)
100 total trials (10 networks x 10 series)
Network evolves from 10% to 60% observed
* Fix 50% of variables at each epoch
e Collaborative Filtering (Jester)
e 10 trials, 100 users, 100 jokes
e Evolve from 25% to 75% revealed ratings
* Fix {25,50,75}% of variables at each epoch




Collective Classification:
Approximate Inference

regret vs. epochs error vs. epochs

* Regret diminishes over time
* Error decreases, approaching full inference
* 69% reduction in inference time




inference regret

Collaborative Filtering
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Collaborative Filtering

* Value: high regret, but lower
error than full inference
* Preserves polarized ratings
* 66% reduction in time for
approximate inference
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Online Collective Inference

CONCLUSION




Summary

Extremely relevant to modern problems
Necessity: approximate MAP state in PGMs
Inference regret: bound approximation error
Approx. algos: use optimization features
Results: low regret, low error, faster

New possibilities: rich models, fast inference




Future Work

Better bounds for approximate inference?
Dealing with changing models/weights
Explicitly modeling change in models

Applications:
— Drug targeting
— Knowledge Graph construction

— Context-aware mobile devices




