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A B S T R A C T

Despite numerous studies on age-related changes in static functional connections (FCs), the available literature on
the changes in dynamic FCs with aging is lacking. This study investigated the changes in dynamic FCs with aging
based on resting state fMRI data of 61 healthy adults aged 30–85 years. The time-resolved FCs among 160 pre-
defined regions of interest (ROIs) were first estimated using sliding-window correlation. Based on the dynamic FC
matrices, we then analyzed the dynamic switches between different FC states using k-means clustering, and
correlated age with the dwell time of each FC state across subjects. The elderly were observed to spend more time
in an FC state characterized by weak interactions throughout the brain and less time in an FC state characterized
by strong interactions within the sensory-motor network and the cognitive control network. These results may
reflect an overall weakening of connections in the elderly, which support less efficient information transfer in
them. Based on the dynamic FC matrices, we also evaluated the variability and amplitude of FC time-series, which
measure the relative (to mean) and absolute strength of FC fluctuations, respectively, and correlated age with the
two measures across subjects. Relatively weak age-vs-variability correlations were observed, but we did observe
significant negative age-vs-amplitude correlations at both the global and regional level. These results indicate that
amplitude may be another effective metric for assessing FC fluctuations, in addition to the widely-used variability
metric. Moreover, the observed declines in the amplitude of FC fluctuations in the elderly may support the
assumption that it should be the weakening of absolute interactions between brain regions, rather than toggling
between positive and negative correlations, that causes the repeatedly reported widespread (static) FC decreases
with aging. Overall, the present results not only reflect an overall weakening of connections in the elderly, but
indicate the potential of dynamic FC analyses in studies of age-related psychiatric and neurological disorders.
Introduction

Numerous resting state fMRI (RS-fMRI) studies have been performed
on aging of the human brain (Ferreira and Busatto, 2013; Sala-Llonch et
al., 2015). The majority of these studies analyzed age-related changes in
functional connections (FCs), which are expected to reflect functional
interactions between brain regions. According to these studies, the net-
works associated with primary functions (e.g., the somatosensory
network and the motor network) are largely intact, while higher-level
processing networks (e.g., the default mode network [DMN] and the
fronto-parietal network [FPN]) often degenerate in the elderly (Naik et
al., 2017). In these studies, FCs were evaluated in a time-averaged sense,
based on the assumption that FCs are temporally stationary in the resting
brain. The assumption of temporal stationarity provided a convenient
framework with which to examine the average interactions among brain
regions.
bjtu.edu.cn (J. Yu).
Recent investigations provided compelling evidence challenging the
“stationary” assumption of resting state FCs (Deco et al., 2015; Ekman et
al., 2012; Vanrullen et al., 2011). In light of this, an increasing number of
recent studies analyzed the complex dynamic characteristics of FCs,
rather than static FCs, based on resting state fMRI (Allen et al., 2014;
Chang and Glover, 2010; Gonzalez-Castillo et al., 2015; Hutchison and
Morton, 2015; Hutchison et al., 2013; Ma et al., 2014; Marusak et al.,
2017; Shen et al., 2016; Shine et al., 2016; Suk et al., 2016; Yu et al.,
2015; Zalesky and Breakspear, 2015; Zalesky et al., 2014). According to
these studies, dynamic FCs are reproducible across time and subjects
(Allen et al., 2014; Gonzalez-Castillo et al., 2015), and alter with matu-
ration (Hutchison and Morton, 2015; Marusak et al., 2017), long-term
training (Shen et al., 2016) and disease (Ma et al., 2014; Suk et al.,
2016; Yu et al., 2015). In a recent review by Naik et al. (2017), it was
pointed out that “the dynamic nature of FC is often not acknowledged by
the current theories of aging.” Naik et al. suggest that “age-related
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dynamic changes need to be quantified in terms of FC dynamics … to
understand the dynamics of the aging brain better”. Consistent with this
suggestion, the purpose of this study was to investigate the changes in
dynamic FCs with aging.

Dynamic FCs have traditionally been analyzed from two perspectives,
namely, dynamic switches between FC states, and temporal fluctuations
in FC time-series. Specifically, once the time-resolved FCs were mapped
based on resting state fMRI (e.g., using a sliding-window approach), a
time-series of FC matrices (time� regions� regions) could be obtained.
FC states could then be obtained by clustering the FC matrices (re-
gions� regions) into several network patterns that repeatedly occur
across time and subjects. Considering the close link to EEG microstates,
FC states have been suggested to reflect the coordination of large-scale
neural assemblies supporting various cognitive processes (Allen et al.,
2014). Individuals' dwell time in FC states has been reported to vary with
maturation (Hutchison and Morton, 2015; Marusak et al., 2017),
long-term training (Shen et al., 2016) and disease (Ma et al., 2014; Suk et
al., 2016; Yu et al., 2015). Based on their “metastability” hypothesis,
Naik et al. (2017) expected “slow switching between network states”
and/or “higher dwell-time in a particular network state” in the elderly,
while “the literature on aging lacks characterization of such ‘switching
dynamics’”. To enrich our knowledge regarding changes in dynamic
switches between FC states with healthy aging, we associated age with
the dwell time of FC states in this study.

Despite the heavy dependence on factors such as size of window and
extent of overlap (Betzel et al., 2016; Thompson and Fransson, 2015),
there has been a surge of interest in analyzing the temporal fluctuations
in FC time-series in recent years. Many studies have analyzed the vari-
ability of temporal fluctuations in FC time-series (Kucyi et al., 2013; Kucyi
and Davis, 2014; Laufs et al., 2014), and the measure was reported to be
sensitive to maturation (Hutchison and Morton, 2015; Marusak et al.,
2017) and disease (Ma et al., 2014; Suk et al., 2016; Yu et al., 2015). The
measure “variability” in these studies was used to evaluate the relative
strength (relative to the mean) of FC fluctuations. Shen et al. (2016)
recently introduced a measure named “amplitude of the low-frequency
fluctuation of FC (ALFF-FC)” to assess the absolute strength (relative to
zeros) of FC fluctuations. According to Shen et al. (2016), ALFF-FC was
not only sensitive to long-term training, but also specific enough to
decode individuals' experience in long-term training. We expect that
“amplitude” may be an effective measure for connections that toggle
between positive and negative correlations, which would reduce to zero
in static FC analyses (Zalesky et al., 2014). To deepen our understanding
of the changes in brain function with aging, age was also associated with
the variability and amplitude of FC fluctuations in this study.

This study was performed on the RS-fMRI data of 61 healthy adults
aged 30–85 years extracted from a publicly released dataset. The study
was carried out by first evaluating the time-resolved FCs between each
pair of 160 regions of interest (ROIs) for each subject using sliding-
window correlation. To investigate the changes in dynamic switches
between FC states with healthy aging, k-means clustering was then used
to capture the FC states, and age was finally correlated with the dwell
time of each FC state across subjects. To investigate the changes in
temporal fluctuations in FC time-series with aging, age was also corre-
lated with the variability and amplitude of FC fluctuations.

Materials and methods

Dataset

The data used in this study were selected from the publicly released
dataset “the Nathan Kline Institute/Rockland Sample (NKI–RS)” (http://
fcon_1000.projects.nitrc.org/indi/pro/nki.html) (Nooner et al., 2012),
which has been used in several recent studies on age-related changes in
brain function (Betzel et al., 2014; Cao et al., 2014; Tian et al., 2016;
Yang et al., 2014). The data acquisition was approved by the institutional
review board of the Nathan Kline Institute. The initial release of the
32
NKI-RS dataset included 207 participants, each of whom underwent
multimodal brain scans and a battery of psychiatric assessments. Subjects
that satisfied the following criteria were included in the present study: 1)
RS-fMRI data were available; 2) �30 years old; 3) with no mental dis-
order; 4) with no excessive head motions. That is, head motions were
�2.0mm displacement in any of the x, y, or z directions and�2.0� of any
angular motion throughout the scan, and time points with framewise
displacement >0.5mm were less than 20% (Shine et al., 2016). Ac-
cording to the criteria, 61 subjects were included in the study (34 males,
aged 30–85 years [mean� standard deviation¼ 50.10� 14.59]). The ID
list of subjects included in this study can be found in Table S1, and a bar
plot of the distribution of subjects' ages can be found in Fig. S1.

The MRI data were acquired on a 3.0 T SIEMENS Trio scanner. RS-
fMRI images were collected axially using an echo-planar imaging
sequence sensitive to blood oxygen level dependent (BOLD) contrast with
the following parameters: TR/TE¼ 2500/30ms, FA¼ 80�,
FOV¼ 216mm, matrix¼ 64� 64, slices¼ 38, thickness¼ 3.0mm, 260
volumes. A total of 260 vol of RS-fMRI images were obtained. High-
resolution T1-weighted images were acquired using the magnetization-
prepared rapid gradient echo (MPRAGE) sequence with the following
parameters: TR/TE¼ 2500/3.5ms, FA¼ 8�, thickness¼ 1.0mm, sli-
ces¼ 192, matrix¼ 256� 256, FOV¼ 256mm. Other images not used in
the present study will not be described here.

Data preprocessing

RS-fMRI data preprocessing was performed by use of FSL (Jenkinson
et al., 2012; Smith et al., 2004) (http://www.fmrib.ox.ac.uk/fsl). The
following processing steps were applied to the RS-fMRI data of each
subject: 1) removing the first 5 vol; 2) correcting for head motion with
MCFLIRT; 3) removing the non-brain tissues with BET; 4) spatial
smoothing using a Gaussian kernel of full width at half maximum 5mm;
5) high-pass temporal filtering to remove slow drift (cut-off fre-
quency¼ 0.01 Hz); 6) registering the subject's RS-fMRI data to his/her
high-resolution structural image, then to Montreal Neurological Institute
152 standard space using FLIRT and FNIRT tools, and resampling the
subject's registered RS-fMRI data to 2� 2� 2mm resolution; 7)
regressing out nuisance including white matter, cerebrospinal fluid, and
global signals and their derivatives, in addition to 24 movement re-
gressors derived by Volterra expansion (Power et al., 2014; Shine et al.,
2016); 8) band-pass filtering (0.01< f< 0.1 Hz) of the time-series of each
voxel.

Analysis of dynamic FCs

We defined the 160 ROIs by setting ten-mm-diameter spheres
centered at the meta-analysis-based activity peaks reported in the study
by Dosenbach et al. (2010). The mean time-series of each ROI was ob-
tained by averaging the signals of all voxels within the ROI. For display
convenience, the ROIs were divided into four networks following the
same strategy as that in the study by Dosenbach et al. (2010). The four
networks are the cognitive control network (CCN), the DMN, the
sensori-motor network (SMN) and the occipital-cerebellum network
(OCN).

The time-resolved FCs were mapped based on the mean time-series of
160 ROIs using a sliding window approach. Specifically, we calculated
the Pearson's correlation between each pair of ROI time-series using a
sliding temporal window of 45 s (18-point Tukey window, with the ratio
of the length of taper section to the total length of the window set to 0.5,
slid in steps of 1 TR [2.5 s]) (Rashid et al., 2016). According to Zalesky
and Breakspear (2015), this window length ensures the detection of
non-stationary fluctuations in FC while controlling false positives. The
correlation coefficients were finally transformed into z-scores using
Fisher's r-to-z transformation to improve normality. These analyses pro-
duced a time-series of FC matrices (238 windows� 160� 160) for each
subject, and later analyses were based on these matrices.
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Relating age to functional connectivity states

K-means clustering was used in this study to capture the FC states
(Allen et al., 2014; Shen et al., 2016). For this purpose, each of the
61� 238 (samples�windows) windowed FC matrices was regarded as
one observation, and each element of a 160� 160 windowed FC matrix
was regarded as one variable. The cityblock distance was used as the
distance measure in this study (Allen et al., 2014; Shen et al., 2016). Two
critical but challenging problems for k-means clustering are determining
the k-value (number of clusters) and setting the initial cluster centroids.
In this study, k-means clustering with varying k-values (3–10) was per-
formed to avoid possible bias caused from the use of an inappropriate
k-value. The initial cluster centroids were set by performing preliminary
clustering based on 10% of observations (1464, out of 61� 238) at
random, and the preliminary phase itself was initialized using k obser-
vations at random. Considering randomness may occur in the pre-
liminary phase, the k-means clustering was repeated ten times based on
each k-value.

Three cluster centroids, which are referred to as FC states below, were
observed to repeatedly occur in all 80 clustering analyses (8 k-
values� 10 rounds) by visual inspection. In the following analyses, the
three FC states were the primary focus, and are referred to as State 1,
State 2 and State 3, respectively, in this section. To evaluate the consis-
tencies of the results based on the 80 clustering analyses, the three FC
states obtained in the first round of clustering based on k¼ 3 (shown in
Fig. 1 [A-C]) were set as reference states. States 1, 2 and 3 in each of the
other 79 cases were designated as the one whose centroid exhibited the
strongest correlation with that of reference states 1, 2 and 3, respectively.
The reoccurring frequency of each FC state was evaluated by its dwell
time, which was calculated as the number of temporal windows
belonging to the FC state.
Fig. 1. Representative results regarding functional connectivity states. The
centroid of States 1 (the loose interaction state), 2 (the DMN interaction state) and
with the connectivity matrices arranged based on functional networks. On the top
the dwell time vs age are shown in (D), (E) and (F). CCN - cognitive control network
cerebellum network.
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To investigate whether there were significant changes in switching
dynamics with healthy aging, age was correlated with the dwell time of
each FC state across subjects. The individuals' gender, brain volume,
mean framewise displacement and the number of time points whose
framewise displacement was >0.5mm were used as covariates. The
statistical significance of the correlation between age and the dwell time
of each FC state was evaluated using permutation analysis. Unlike
parametric tests, which rely on certain assumptions of data distribution
(e.g., normal or uniform distribution), permutation analysis is a non-
parametric method and requires only exchangeability of the data (Win-
kler et al., 2014). With the use of permutation analysis, possible biases
that may occur in parametric tests (i.e., because of the non-uniformity of
the subjects' ages) can largely be avoided (Winkler et al., 2014). Using 10,
000 permutations, we estimated how likely we were to observe the same
correlation by chance. The permutation analyses were performed by
randomly permuting the ages of the subjects 10,000 times (randomly
assigning the age of one subject to another), and the dwell time of the FC
state was correlated with the permuted ages. The p-values representing
the probability of observing the reported correlation by chance were
defined as:

P ¼ 1þ NStronger Correlations

1þ N

where N is the number of permutations, and here N ¼ 10;000;
NStronger Correlations is the number of stronger correlations (as compared to
that based on non-permuted ages).
Relating age to temporal fluctuations in FC time-series

This study also investigated whether there were general or regional
results were based on the first round of k-means clustering with k¼ 3. The
3 (the SMN-CCN interaction state) are shown in (A), (B) and (C), respectively,
of each cluster centroid, the total number of occurrences is listed. The plots of
; DMN - default mode network; SMN - sensori-motor network; OCN - occipital-
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changes in temporal fluctuations in FC time-series with aging. The FC
fluctuations were evaluated by their variability and amplitude. The
variability of a connection was defined as the standard deviation of the
FC time-series across the 238 windows, and the amplitude of a connec-
tion was defined as the average absolute value of the FC time-series
across the 238 windows. FC fluctuations at the global level were evalu-
ated by averaging the variability/amplitude over all 12,720 (C2

160) con-
nections, and FC fluctuations at the regional level were evaluated by
averaging the variability/amplitude over the 159 connections associated
with each ROI. Age was finally correlated with global and regional
measures of FC fluctuations, again with individuals' gender, brain vol-
ume, mean framewise displacement, and the number of time points
whose framewise displacement was >0.5mm used as covariates. A total
of 10,000 permutations were performed to estimate how likely we were
to observe the correlations by chance, and regional-level correlations
were thresholded at p� .05 (FDR corrected).

Results

K-means clustering was used in this study to capture the FC states that
reoccur over time and present in multiple subjects. For the consideration
of reliability, 80 clustering analyses (8 k-values� 10 rounds) were per-
formed. The centroids obtained in the first round of clustering based on
k¼ 3 are displayed in Fig. 1 (A, B, C). State 1 was characterized by weak
interactions throughout the brain, referred to as a “loose interaction
state” below; State 2 was characterized by strong interactions within the
DMN, referred to as a “DMN interaction state” below; State 3 was char-
acterized by strong interactions within the SMN and the CCN, referred to
as a “SMN-CCN interaction state” below. Despite the fact that there were
often states being unique to individual participants when k� 4 (Fig. S2),
the three states were repeated not only across different rounds of clus-
tering analyses, but also across different k-values (Figs. 1, S3–S10, Tables
1, 2). Specifically, the correlations between the reference centroids (as
displayed in Fig. 1[A, B, C]) and those obtained in the other 79 cases (as
displayed in Figs. S3–S10) for the loose interaction state (State 1), the
DMN interaction state (State 2) and the SMN-CCN interaction state (State
3) were 0.99� 0.0075 (0.97–1.00), 0.95� 0.033 (0.87–1.00) and
0.96� 0.027 (0.88–1.00), respectively. In addition, the loose interaction
state occurred much more frequently than other FC states. For instance,
the loose interaction state occurred 9282 times in the first round of
clustering based on k¼ 3, compared with 3241 and 1995 times for the
DMN interaction state and the SMN-CCN interaction state, respectively
(Fig. 1 [A, B, C]).

The dwell time of the loose interaction state was uniformly positively
correlated with age in all 80 cases (8 k-values� 10 rounds), indicating
that the elderly spend more time in the loose interaction state. The cor-
relations were significant in 76 cases (p� .05), andmarginally significant
in 3 case (p� .1) (Fig. 1 [D], Tables 1, 2, S2). The dwell time of the SMN-
CCN interaction state was uniformly negatively correlated with age. The
correlations were significant in 57 cases (p� .05), and marginally sig-
nificant in 16 cases (p� .1) (Fig. 1 [F], Tables 1, 2, S2). Although the
Table 1
Repeatability of the results regarding the three FC states across ten rounds of clustering with k

Round No 1 2 3 4 5

State 1 R0 1.00 1.00 0.99 0.99 1
R 0.36 0.30 0.31 0.31 0
P 0.0036 0.020 0.017 0.014 0

State 2 R0 1.00 0.98 0.98 0.98 1
R �0.14 �0.12 �0.14 �0.15 �
P 0.28 0.34 0.27 0.27 0

State 3 R0 1.00 0.96 0.96 0.96 1
R �0.29 �0.24 �0.24 �0.24 �
P 0.024 0.057 0.059 0.061 0

R0 indicates the correlation with the corresponding reference centroid as was displayed in Fig
corresponding p-value (uncorrected).
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dwell time of the DMN interaction state was negatively correlated with
age in all 80 cases, none of the correlations were significant (Fig. 1 [E],
Tables 1, 2, S2). Notably, as the results were repeatable when the k-value
was relatively large (e.g., k¼ 8, 9, 10), the observed correlations are less
likely to stem from the see-saw effects (more time points assigned to one
FC state, fewer time points assigned to another FC state).

To investigate whether there were global or regional changes in
temporal fluctuations in FC time-series with aging, age was also associ-
ated with the variability and amplitude of FC fluctuations. At the global
level, age significantly correlated with the amplitude of FC fluctuations
(R¼�0.39, p¼ .0018) (Fig. 2 [B]), but the correlation with the vari-
ability of FC fluctuations was less significant (R¼�0.26, p¼ .044) (Fig.
2 [A]). At the regional level, age was significantly negatively correlated
with the amplitude of fluctuations in FCs associated with eight ROIs
(p� .05, FDR corrected) (Fig. 3). Two of these ROIs were critical com-
ponents of the salience network (SN) (Fig. 3 [B, H]), five were compo-
nents of the FPN (Fig. 3 [A, D-G]) and one was in the cerebellum (Fig. 3
[C]). No significant age-vs-variability correlation was observed at the
regional level.

Discussion

In this study, we investigated the changes in dynamic FCs with aging
based on resting state fMRI data of 61 healthy adults aged 30–85 years.
We found that the elderly spent more time in an FC state characterized by
weak interactions throughout the brain (the loose interaction state), and
less time in an FC state characterized by strong interactions within the
SMN and the CCN (the SMN-CCN interaction state). Global and regional
declines in the amplitude of FC fluctuations were also observed. The
current results demonstrate how the “switching dynamics” changed with
aging, and indicate that the repeatedly reported widespread (static) FC
decreases in the elderly may largely be caused by the weakening of ab-
solute interactions between brain regions, rather than toggling between
positive and negative correlations.

Changes in the dwell time of FC states with aging

The loose interaction state, which was characterized by weak FCs
throughout the brain, occurredmore frequently than other FC states in all
80 cases in this study (Figs. 1, S2–S10). This finding is consistent with
those previously reported by Allen et al. (2014) and Marusak et al.
(2017). In the study by Allen et al. (2014), the state characterized by
weak interactions occurred in 33% of all windows (in contrast to �15%
for the other six FC states). In the study byMarusak et al. (2017), the state
occurred in 34% of all windows (in contrast to �18% for other five FC
states). Resting state FCs have been suggested to support efficient in-
formation transfer between brain regions (Fox and Raichle, 2007;
Petersen and Sporns, 2015). According to this suggestion, weak FCs
throughout the brain may indicate relatively less efficient information
transfer. Correspondingly, greater occurrence of the loose interaction
state in these studies may indicate that the human brain switches to a
state supporting less efficient information transfer more frequently than
¼ 3.

6 7 8 9 10

.00 1.00 1.00 1.00 1.00 1.00

.36 0.35 0.35 0.35 0.31 0.29

.0046 0.0063 0.0050 0.0054 0.014 0.017

.00 1.00 1.00 1.00 0.99 0.98
0.15 �0.15 �0.15 �0.15 �0.13 �0.13
.24 0.26 0.25 0.25 0.30 0.33
.00 1.00 1.00 1.00 0.97 0.96
0.29 �0.29 �0.29 �0.29 �0.26 �0.24
.021 0.022 0.022 0.022 0.045 0.057

. 1; R indicates Pearson's correlation between its dwell time and age, and P indicates the



Table 2
Repeatability of the results regarding the three FC states with k-values ranging from 4 to 10.

k-value 4 5 6 7 8 9 10

State 1 R0 1.00 0.99 0.99 1.00 0.99 0.99 0.98
R 0.31 0.38 0.38 0.38 0.35 0.38 0.40
P 0.013 0.0029 0.0028 0.0026 0.0070 0.0017 0.0011

State 2 R0 1.00 0.98 0.97 1.00 0.98 0.95 0.93
R �0.11 �0.10 �0.13 �0.14 �0.10 �0.090 �0.090
P 0.37 0.47 0.30 0.28 0.44 0.48 0.47

State 3 R0 0.99 0.99 0.99 1.00 0.99 0.99 0.97
R �0.28 �0.28 �0.29 �0.27 �0.31 �0.29 �0.26
P 0.028 0.034 0.026 0.033 0.013 0.021 0.040

For each k-value, results based on the first round of clustering were listed here. R0 indicates the correlation with the corresponding reference centroid as was displayed in Fig. 1; R indicates
Pearson's correlation between its dwell time and age, and P indicates the corresponding p-value (uncorrected).

Fig. 2. The plots of the variability (A) and amplitude (B) of FC fluctuations vs
age at the global level.
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other states.
In this study, the dwell time of the loose interaction state was

observed to be positively correlated with age (Fig. 1 [D]). This finding
agrees well with the expectations of “higher dwell-time in a particular
network state” by Naik et al. (2017). Naik et al. predicted that the
working point in the brain of the elderly would shift from the optimal
value derived from the young. They suggest that “shifts in the dynamical
working point” in the brain of the elderly may “be reflected as slow
switching between network states, in other words lower transition
probability and/or higher dwell-time in a particular network state.” Ac-
cording to the suggestion by Naik et al. (2017), our finding of significant
positive correlation between age and the dwell time of the loose inter-
action state may reflect shifts in the dynamical working point in the brain
of the elderly.
35
Closely related to the above finding, Marusak et al. (2017) reported a
significant negative correlation between age and the dwell time of “a
state of weak FC” across subjects aged 7–16 years. Based on these two
findings, we suggest that the dwell time of the loose interaction state
might follow a U-shaped developmental curve throughout life, with
children and the elderly spending more time in this state, and the young
adults spending less time. Further studies are needed to evaluate this
hypothesis.

In addition to positive correlations observed on the loose interaction
state, significant (or marginally significant) negative age-vs-dwell-time
correlations were observed on the SMN-CCN interaction state (Fig. 1
[F]), which was characterized by strong interactions within the SMN and
the CCN (Fig. 1 [C]). In contrast to the loose interaction state, the SMN-
CCN interaction state may signify time windows supporting efficient
cognitive control and sensory-motor information processing. Taken
together, we suggest that the present findings of the elderly spending
more time in the loose interaction state, and less time in the SMN-CCN
interaction state, may reflect an overall weakening of connections in
the elderly, and correspondingly, a less efficient information transfer in
them.

Declines in the amplitude of FC fluctuations

In this study, the temporal fluctuations in FC time-series were
assessed by their variability and amplitude, which reflect the strength of
FC fluctuations relative to the mean and zero, respectively. Changes in
the variability of FC fluctuations have been reported in a variety of sit-
uations such as maturation (Hutchison andMorton, 2015; Marusak et al.,
2017) and disease (Ma et al., 2014; Suk et al., 2016; Yu et al., 2015).
However, this study observed only a marginally significant
age-vs-variability correlation at the global level (Fig. 2[A]) and no sig-
nificant age-vs-variability correlation at the regional level. In contrast,
the amplitude of FC fluctuations was observed to be significantly corre-
lated with age at both the global (Fig. 2[B]) and regional level (Fig. 3).
These results indicate that amplitude may be another effective metric
with which to assess FC fluctuations, in addition to variability, which is
prevalent in the region.

Many RS-fMRI studies on aging have reported widespread (static) FC
decreases in the elderly (Ferreira and Busatto, 2013; Sala-Llonch et al.,
2015). Theoretically, decreases in static FCs may be caused either by
declines in the absolute strength of interactions between brain regions, or
by toggling between positive and negative correlations (which were
reduced to zero by temporal averaging in static FC analyses). The present
finding of general declines in the amplitude of FC fluctuations (Fig. 2
[B]) supports the assumption that it may be the decreases in the absolute
strength of interactions between brain regions that drive the repeatedly
reported widespread (static) FC decreases in the elderly, as toggling be-
tween positive and negative correlations still requires the strong in-
teractions between brain regions. This suggestion is in line with the
findings that the elderly exhibit a certain degree of decline in white
matter integrity (Sullivan and Pfefferbaum, 2006), which has been re-
ported to shape the resting state FCs (Grandjean et al., 2017). That is,



Fig. 3. The plots of the amplitude of FC fluctuations vs age at the regional level. Age was significantly negatively correlated with the amplitude of fluc-
tuations in FCs associated with the ROIs (p� .05, FDR corrected). R – Right; L – Left; B – Bilateral.
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deficits in white matter integrity in the elderly may be the structural basis
of declines in the amplitude of FC fluctuations.

At the regional level, age was significantly negatively correlated with
the amplitude of FC fluctuations associated with two components of the
SN (Fig. 3 (B, H)), five components of the FPN (Fig. 3 (A, D~G)) and one
cerebellum region (Fig. 3 (C)). Each of the networks has been reported to
show structural/functional degenerations in former studies on healthy
aging. Specifically, the fronto-parietal areas are known to be involved in
a variety of high-level cognitive control processes, such as working
memory, task switching, problem solving, decision making, and visual-
spatial processing, which are often impaired in the elderly. Indeed,
impaired cognitive functions in the elderly have been much associated
with structural/functional degeneration of the FPN (Alichniewicz et al.,
2012; Drag et al., 2016; Gold et al., 2010; Luft et al., 1999; Madden et al.,
2010). The SN plays a crucial role in rapid detection of goal-relevant
events and efficient utilization of appropriate cognitive resources,
which are impaired in the elderly (Fabiani and Friedman, 1995; Walhovd
and Fjell, 2001). Many studies have reported grey matter volume and FC
decreases in the SN in the elderly (He et al., 2014; Onoda et al., 2012;
Siman-Tov et al., 2016), and the functional/structural degenerations of
the SN has been linked to cognitive decline (He et al., 2014; Onoda et al.,
2012). Moreover, reduced FCs within the SN have been reported to be an
important feature for distinguishing the elderly from the young (Meier et
al., 2012). Taken together, the present findings provide a novel
perspective with regard to functional degeneration of the SN and the FPN
in the elderly. That is, in addition to static FCs, dynamic FCs associated
with the two networks also changed in the elderly.

Methodological issues

One limitation of this study is the relatively small sample size. In fact,
there were only 18 subjects aged 55–85 years (Fig. S1). Insufficient
sampling of the elderly may limit the generalizability of the results, as
possible heterogeneities in the dynamic FCs in the elderly (which may be
closely related to heterogeneities in cognitive and psychological perfor-
mance in them) may not be fully characterized. Further studies including
sufficient samples of old age are expected to capture such heterogene-
ities. The Enhanced NKI Sample (http://fcon_1000.projects.nitrc.org/
indi/enhanced/), which included nearly 1000 subjects aged 6–85
years, may be applicable for the purpose.

Like many other fMRI studies of aging and psychiatric diseases, we
excluded subjects with high motion in this study, and the practice may
not withstand close scrutiny. In general, the elderly and patients with
psychiatric diseases tend to move more (e.g., due to physical discomfort).
Once the subjects with high motion were excluded, the remaining
elderly/patients may not be representative, and bias will consequently
occur. Although we did not observe a significant age-vs-head-motion
correlation (R¼ 0.10, p¼ .38) based on the NKI-RS dataset (78 sam-
ples, including those with high motion) (Fig. S11), we cannot rule out the
possibility that the elderly included in the NKI-RS dataset happened to
have good control of head motion. Therefore, conclusions drawn in the
current study (as well as many other fMRI studies on aging and psychi-
atric diseases) may be applicable only for the samples that have good
control of head motion.

Determining the k-value and setting the initial cluster centroids are
two critical and challenging problems for k-means clustering analyses.
Indeed, there is not yet a widely accepted method for determining the k-
value for k-means clustering, and the same is true for initializing the
cluster centroids. In this study, we performed k-means clustering with
eight k-values (3–10), and performed ten rounds of clustering based on
each k-value. The results indicate that the three FC states demonstrated
in Fig. 1 (A, B, C) were highly repeatable, in their spatial patterns (Figs.
S3–S10, Tables 1, 2, S2), and in their age-vs-dwell-time correlations
(Tables 1, 2, S2). Therefore, we suggest that the present results are robust
to inappropriate settings of k-values and initial centroids.

The choice of distance measure is an additional critical problem for k-
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means clustering. We used the cityblock distance as the distance measure
in this study, and results regarding FC states were based on the cityblock
distance. According to Allen et al. (2014), extremely similar results could
be obtained based on different distance measures including cityblock,
correlation, Euclidean, and cosine. However, when we performed the
same analyses using correlation, cosine, and squared Euclidean as dis-
tance measures, it was found that only the results based on the squared
Euclidean distance were highly similar to those based on the cityblock
distance (Fig. S12, Table S3). This may be result from the fact that the
cityblock and squared Euclidean distances measure the “absolute dis-
tances” between two variables, while correlation and cosine measure the
“similarity” between two variables. Consequently, two variables that are
near to each other based on the cityblock/squared Euclidean distance
(e.g., [1.0, 1.1, 1.0, 1.1, 1.0] and [1.1, 1.0, 1.1, 1.0, 1.1]) may be quite
distant from each other based on correlation/cosine. Similarly, two
variables that are distant from each other based on the cityblock/squared
Euclidean distance (e.g., [1.0, 1.1, 1.0, 1.1, 1.0] and [5.0, 5.1, 5.0, 5.1,
5.0]) may be near to each other based on correlation/cosine. In the
current study, FC matrices with relatively weak interactions throughout
the brain may be deemed to be near to each other and clustered into one
FC state (the loose interaction state) based on the cityblock and squared
Euclidean distances, while they may not be clustered into one FC state
based on correlation/cosine, as the correlation/cosine between them are
not necessarily high.

Controversy remains in the debate of whether to remove the global
signal from the RS-fMRI time-series (Liu, 2016; Liu et al., 2017). In this
study, all results were based on data with the global signal regressed out.
When we performed the same analyses based on data without regressing
out the global signal, similar results were obtained (Figs. S13–S15, Table
S4). Specifically, when performing FC state analyses, we observed three
FC states with similar patterns to those based on data with the global
signal regressed out. The dwell time of the loose interaction state (State
1)/the SMN-CCN interaction state (State 3) was also significantly pos-
itively/negatively correlated with age (Fig. S13). Furthermore, the re-
sults regarding the three FC states were repeatable across different
k-values (Table S4). With regard to analyzing the temporal fluctuations in
FC time-series, significant age-vs-amplitude correlations were observed
at both the global (R¼�0.44, p¼ .00040) (Fig. S14) and regional level
(p� .05, FDR corrected) (Fig. S15). Moreover, all eight regions exhibiting
significant age-vs-amplitude correlations based on RS-fMRI data with the
global signal regressed out (Fig. 3) were included in the 21 regions
exhibiting significant age-vs-amplitude correlations (Fig. S15). These
results indicate that the practice of regressing out the global signal from
RS-fMRI data had limited influence on the present results and conclu-
sions drawn.

We also evaluated whether the results are dependent on ROI defini-
tion by performing the same analyses (as have been performed on the set
of 160 ROIs) based on two other sets of ROIs. One set was defined ac-
cording to the study by Power et al. (2011), which included 264 ROIs and
will be referred to as “Power [264]”. Another set was defined according
to the study by Monge et al. (2017), which included 397 ROIs and will be
referred to as “Monge [397]”. Based on each of the two sets of ROIs, one
loose interaction state and one SMN-CCN interaction state were obtained
by k-means clustering, and the loose interaction state occurred more
frequently than other FC states (Fig. S16). The dwell time of the loose
interaction state (State 1)/the SMN-CCN interaction state (State 3) was
significantly positively/negatively correlated with age (Fig. S16). In
addition, the results were repeatable across k-values (Table S5). Consis-
tent with the results based on the set of 160 ROIs, the age-vs-amplitude
correlation based on each set of ROIs was stronger than the
age-vs-variability correlation (Fig. S17). As there were more comparisons
here (264 for Power [264], and 397 for Monge [397]), no significant
regional age-vs-amplitude correlation was observed at a threshold of
p� .05 (FDR corrected), though the age-vs-amplitude correlation of 5/6
ROIs based on Power [264]/Monge [397] were comparable to those
shown in Fig. 3 (R��0.4). Therefore, the present results are

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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independent of ROI definition.

Conclusion

In this study, we investigated the changes in dynamic FCs with aging
based on RS-fMRI. We observed that the elderly spent more time in an FC
state characterized by weak interactions throughout the brain and less
time in an FC state characterized by strong interactions within the SMN
and the CCN. These results may reflect an overall weakening of con-
nections in the elderly, which support less efficient information transfer
in them. The results indicate that amplitude may be another effective
metric for assessing FC fluctuations in addition to the widely-used vari-
ability metric. Moreover, the observed declines in the amplitude of FC
fluctuations in the elderly may support the assumption that it should be
the weakening of absolute interactions between brain regions, rather
than toggling between positive and negative correlations, that causes the
repeatedly reported widespread (static) FC decreases with aging. Despite
these findings, it should be noted that the measures used in this study
were relatively simple and straightforward, and further studies utilizing
more sophisticated measures of the dynamic FCs, such as the flexibility of
brain regions (Shine et al., 2016) and time-resolved network efficiency
(Zalesky et al., 2014), are expected to provide a better understanding of
the changes in dynamic FCs with aging.
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