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Recently, functional network connectivity (FNC, defined as the temporal correlation among spatially distant brain
networks) has been used to examine the functional organization of brain networks in various psychiatric
illnesses. Dynamic FNC is a recent extension of the conventional FNC analysis that takes into account FNC changes
over short periods of time. While such dynamic FNC measures may be more informative about various aspects of
connectivity, there has been no detailed head-to-head comparison of the ability of static and dynamic FNC to
perform classification in complex mental illnesses. This paper proposes a framework for automatic classification
of schizophrenia, bipolar and healthy subjects based on their static and dynamic FNC features. Also, we compare
cross-validated classification performance between static and dynamic FNC. Results show that the dynamic FNC
significantly outperforms the static FNC in terms of predictive accuracy, indicating that features from dynamic
FNC have distinct advantages over static FNC for classification purposes. Moreover, combining static and dynamic
FNC features does not significantly improve the classification performance over the dynamic FNC features alone,
suggesting that static FNC does not add any significant information when combined with dynamic FNC for
classification purposes. A three-way classification methodology based on static and dynamic FNC features
discriminates individual subjects into appropriate diagnostic groups with high accuracy. Our proposed classifica-

tion framework is potentially applicable to additional mental disorders.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Functional connectivity (FC) can be quantified using a variety of
different neuroimaging techniques. A commonly used measure is
functional magnetic resonance imaging (fMRI), which measures
synchronized brain activity via blood oxygenation and infers functional
interactions among different brain regions (Craddock et al., 2013). FC,
defined as temporal correlation (or other types of statistical dependen-
cy) among spatially distant brain regions (Friston, 2002a), has recently
been used to examine the functional organization and temporal depen-
dencies among these remote brain regions. Different analytic tools have
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been applied to resting-state fMRI data to describe brain functional
connectivity. Two widely used FC approaches are (i) seed-based analysis
(Biswal et al., 1995; Greicius et al., 2003) and (ii) purely data-driven
methods, such as ICA (Calhoun and Adali, 2012; Calhoun et al.,, 2001a;
Calhoun et al., 2009; Damoiseaux et al., 2006; Fox and Raichle, 2007;
Hyvdrinen and Oja, 2000). FC can also be investigated at the network
level using spatial independent component analysis (ICA), and connec-
tivity among spatial components is referred to as functional network
connectivity (FNC) (Jafri et al., 2008).

The majority of FNC studies are primarily based on the assumption
that FNC is stationary throughout the entire scan session (or at least
stationary during a given task or resting-state condition) (Camchong
et al,, 2011; Greicius, 2008; Meda et al.,, 2012; Sorg et al., 2013). Static
FNC analysis overlooks the fact that individual subjects are likely to en-
gage in slightly different mental activities at different instances in time
(Arieli et al., 1996; Makeig et al., 2004; Onton and Makeig, 2006). Also
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evidence of dynamic fluctuation in FC from several studies supports the
idea of dynamic changes in FC during the experimental period. More re-
cently, studies have started utilizing the powerful information contained
within the temporal features of spontaneous FC of BOLD signals. Connec-
tivity dynamics capture uncontrolled but reoccurring patterns of interac-
tions among intrinsic networks during task engagement or at rest (Allen
et al,, 2012; Calhoun et al., 2014; Hutchison et al., 2013; Rashid et al.,
2014; Sakoglu et al., 2010). These studies provide results that cannot
be detected with static functional connectivity analyses.

There is an increasing interest in designing robust and accurate tech-
niques to classify subjects into groups using functional imaging data. For
example, previous studies showed the use of functional connectivity-
based features for classification of schizophrenia and bipolar patients
at the individual level (Arbabshirani et al., 2013b; Shen et al., 2010; Su
et al,, 2013). Shen et al. (2010) used an atlas-based method to extract
mean time-courses of 116 brain regions in the resting-state for both
healthy controls and schizophrenia subjects. The correlation between
these time-courses made the feature vector for each subject. By apply-
ing feature selection and dimensionality reduction methods, they
reduced the dimensionality down to three where they classified
patients from controls with a high accuracy. Shinkareva et al. (2006)
proposed a classification approach for schizophrenia patients based on
fMRI time-series from the voxels showing between-group temporal dis-
similarity using leave-one-out cross-validation method. Another study
combined both structural and functional MRI data for classification of
schizophrenia patients and created a training set by projecting the
high dimensional data onto a lower dimensional space using the princi-
ple component analysis (PCA), achieving a high classification accuracy
(Ford et al., 2002a). A recent study performed automatic classification
of schizophrenia using both structural and functional MRI features,
and showed that better classification accuracy could be achieved by
using both MRI features, compared to using only a single feature (Silva
et al,, 2014). However, only a few studies have focused on classification
analyses of both schizophrenia and bipolar disorder patients (Arribas
et al., 2010; Calhoun et al., 2008b; Costafreda et al., 2011). In Calhoun
et al. (2008c)) temporal lobe and default mode networks were used
as features using a leave-one-out cross-validation framework, and
classified schizophrenia and bipolar patients at individual level. In
another classification study (Costafreda et al., 2011), a support vector
machine (SVM) was applied on the verbal fluency task-based patterns
of regional brain responses to identify schizophrenia and bipolar
patients at the individual level. To our best knowledge, no such study
has provided a detailed comparison of both static and dynamic FNC
features in a cross-validated classification analysis.

In this work, we conducted a classification study of schizophrenia,
bipolar and healthy subjects using static and dynamic FNC features, as
well as combined FNC features from both FNC analyses. Several previous
studies have shown that schizophrenia and bipolar patients can be
discriminated at group-level by using the information on dysfunctional
integration of the brain (Allen et al., 2012; Arbabshirani et al., 2013a;
Damaraju et al,, 2014; Friston, 2002b; Rashid et al., 2014).We hypothe-
sized that disrupted functional integration in schizophrenia and bipolar
patients as captured by FNC analysis reveals powerful information
for automatic discriminative analysis at subject-level. We expected
some connectivity measures to be better captured in a static model and
others in a dynamic model (Damaraju et al., 2014). Static FNC provides
information about the overall mean connectivity and may be more
optimal for connectivity that is persistent across the entire experiment
than a dynamic FNC approach. On the other hand, information on local
connectivity changes at different time windows will be better captured
by dynamic FNC. Thus, we hypothesize that both static and dynamic
FNC methods capture complementary aspects of connectivity, and com-
bining static and dynamic FNC features will improve classification per-
formance beyond the achievable performance from each type of these
features individually. We present machine learning techniques to effec-
tively combine these two types of features for accurate classification of

schizophrenia, bipolar and healthy controls. However, our results indi-
cated that static FNC features didn’t contribute additional information
when combined with dynamic FNC features for classification purposes.

2. Materials and methods
2.1. Participants

Before preprocessing, we had raw resting-state fMRI data from 273
subjects (HC = 135, SZ = 87 and BP = 51). After matching for age,
and based on our exclusion criterion (see Section 2.3 for details), we
eliminated 114 subjects from the final analysis and had 159 subjects
in total. We assessed these 159 subjects comprising 61 screened healthy
controls [HC, age 35.44 4+ 11.57 (range), 28 females], 60 patients diag-
nosed with schizophrenia or schizoaffective disorder (SZ, age 35.85 +
12.01, 13 females) and 38 bipolar subjects (BP, age 38.96 + 10.90, 20
females), matched for age with no significant differences among three
groups (age: p = 0.303, F = 1.2031, DF = (2,156)). Significant differ-
ences in sex among three groups were found (p = 0.002, »* = 11.81,
DF = (2,156)). Diagnoses were based on detailed medical and psychiat-
ric history, chart reviews, and the Structured Clinical Interview for DSM
IV-TR Disorders (First et al., 1997). None were acutely ill at the time of
scanning. The bipolar patients group consisted of a mixture of individ-
uals experiencing psychotic and non-psychotic symptoms by history.

2.2. Data acquisition

Resting-state fMRI scans were acquired at the Institute of Living,
Hartford, CT, USA on a 3T Siemens Allegra head-only scanner with
40 mT/m gradients and a quadrature head coil. T2 -weighted functional
images were acquired using gradient echo planar imaging (EPI) method
with repetition time (TR) = 1.5 s, echo time (TE) = 27 ms, field of
view = 24 cm, acquisition matrix 64 x 64, flip angle = 70°, voxel
size = 3.75 mm x 3.75 mm x 4 mm, slice thickness = 4 mm, gap =
1 mm, number of slices = 29, 210 frames and ascending acquisition.
Subjects were instructed to keep their eyes open, look at a fixation
cross on a monitor display and to rest quietly during the scan session.

2.3. Data pre-processing

Functional images were pre-processed using an automated pipeline
based around SPM 5 (http://www fil.ion.ucl.ac.uk/spm/software/spm5).
Pre-processing included the removal of the first four image volumes
to avoid T1 equilibration effects, realignment using INRIalign (http://
www-sop.inria.fr/epidaure/Collaborations/IRMf/INRIAlign.html), slice-
timing correction using the middle slice as the reference frame, spatial
normalization into Montreal Neurological Institute (MNI) space (http://
www.mni.mcgill.ca/), reslicing to 3 mm x 3 mm x 3 mm voxels, and
smoothing with a Gaussian kernel (FWHM = 5 mm). Voxel time series
were z-scored to normalize variance across space, minimizing possible
bias in subsequent variance-based data reduction steps (Allen et al.,
2012).

In order to limit the impact of motion we excluded from analysis
subject data with a maximum translation of >2 mm or with signal-to-
fluctuation-noise ratio (SFNR) <275. The final 159 subjects comprised
of patient and control groups were age matched (matched age ranging
from 17 years to 65 years).

Also, to analyze if there is any systematic difference in motion across
the three groups, we have computed the mean framewise displacement
(FD) (calculated as the total absolute displacement in all dimensions)
for 159 subjects. Results from one-way ANOVA showed significant
group differences in mean FD groups (P-value = 0.0369). However,
three outliers were identified from the healthy group (subjects with
high mean FD values (mean FD >1 mm.) After removing these three
outliers, we checked for mean FD group differences, and found no signif-
icant group difference (p-value = 0.3172). Additional post-processing
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steps were taken to mitigate against residual motion effects as described
in Section 2.4.

2.4. Group ICA and post-processing

Imaging data were decomposed into functional networks using a
group-level spatial independent component analysis (ICA) (Calhoun
and Adali, 2012; Calhoun et al., 2001a). Group ICA was performed using
the GIFT toolbox (http://mialab.mrn.org/software/gift/). In order to
obtain functional parcellation, we used a high model order ICA (number
of components, C = 100) to decompose the functionally homogeneous
cortical and subcortical regions exhibiting temporally coherent activity
(Abou-Elseoud et al., 2010; Kiviniemi et al., 2009; Smith et al., 2009). In
the subject-specific data reduction principle component analysis (PCA)
step, 120 principal components were retained (retaining >99% of the
variance of the data). Group data reduction retained C = 100 PCs using
the expectation-maximization (EM) algorithm as implemented in the
GIFT toolbox (Calhoun et al., in press). The Infomax ICA algorithm was re-
peated 20 times in ICASSO and the resulting components were clustered
to estimate the reliability of the decomposition (Himberg et al., 2004).
Subject-specific spatial maps (SMs) and time-courses (TCs) were
estimated using the GICA1 back-reconstruction method based on PCA
compression and projection (Calhoun et al.,, 2001b; Erhardt et al., 2011).

Additional post-processing steps including linear, quadratic and
cubic detrending, multiple regression of the six realignment parameters
and their temporal derivatives, interpolation of detected outliers, and
low-pass filtering with a high frequency cutoff of 0.15 Hz were applied
to the component TCs in order to remove trends associated with scan-
ner drift and movement-related artifacts. We detected outliers based
on the median absolute deviation, as implemented in 3D DESPIKE
(http://afni.nimh.nih.gov/afni). Outliers were replaced with the best
estimate using a third-order spline fit to the clean portions of the TCs.
As a final step in post-processing, we normalized the variance of each
TC, thus covariance matrices (below) correspond to correlation matrices.

2.5. ENC estimation

2.5.1. Static FNC estimation

The static FNC (SFNC) for each subject was estimated from the TC
matrix, as the C x C sample covariance matrix (C: independent
component).

2.5.2. Dynamic FNC estimation

In addition to the standard FNC analyses, we computed correlations
between ICN time-courses using a sliding temporal window (Tukey win-
dow) having a width of 33 s (22 times of TR); sliding in steps of 1 TR),
resulting in W = 180 windows to capture the variability in connectivity.
To characterize the full covariance matrix, we estimated covariance from
the regularized precision matrix or the inverse covariance matrix (Smith
et al,, 2011). Following the graphical LASSO method of (Friedman et al.,
2008), we placed a penalty on the L1 norm of the precision matrix to
promote sparsity. The regularization parameter lambda was optimized
separately for each subject by evaluating the log-likelihood of unseen
data (windowed covariance matrices from the same subject) in a
cross-validation framework. Final dynamic FNC (DFNC) estimates for
each window were concatenated to form a C x C x W array representing
the changes in covariance (correlation) between components as a
function of time.

2.6. Classification framework

We evaluated the classification performance for static FNC, dynamic
FNC and a combination of both static and dynamic FNC (see Fig.2 for
illustration of the proposed approaches). For all of the FNC-based classi-
fication approaches, we used a linear support vector machine (SVM)
classifier to evaluate the classification performance. Also, to obtain the

10 groups in 10-fold cross-validation, one split was performed and
those same folds were used for static, dynamic and combined classifica-
tion approaches

2.6.1. Static FNC approach

In order to reduce the dimensionality and extract reliable features
from this high-dimensional feature vector, we used the double input
symmetric relevance (DISR) method (Meyer and Bontempi, 2006)
during the cross-validation step. DISR is a mutual information based
method which is designed to extract features by finding a combination
of variables that can return more information on the output class than
the sum of the information returned by each of the variables taken indi-
vidually. For classification using SFNC features, the DISR method was run
once per cross-validation fold. We used a 10-fold cross-validation strate-
gy for estimating the generalization error of the proposed classifier. The
details on the feature selection process using DISR are given in the
supplementary Figure S1 and supplementary section S1. In each cross-
validation run, 100 features were selected using the DISR method from
the training samples. A linear SVM classifier was then trained using the
features from training data and then tested on held out testing samples
(the same 100 features were selected from the testing data).

Algorithm 1. classification based on static FNC features

1. Estimate static FNC matrices for all the subjects using corresponding
ICA time-courses.

2. Define the 10-fold cross validation groups as Gy, Gsz and Ggp by first
performing a single split of the data into 10 folds, where each fold
comprises 6 subjects from the healthy control group, 6 subjects from
the schizophrenia group and 4 subjects from the bipolar group.
These subjects form the testing set (16 testing subjects at each
iteration). The remaining subjects comprised the training set for each
iteration. Note that, this step is same for all classification algorithms.

3. For dimensionality reduction and feature selection, apply double
input symmetric relevance (DISR) method and select the top 100
static FNC features (FDISR)-

4, Using the selected Fpsi features, train a linear SVM classifier.

5. With the left out testing subjects in step 2, build the testing set and
select those identified Fp;sg features using the DISR method.

6. Classify the subjects in the testing set using the trained classifiers and
record the classification performance.

1. Return to step 3 and repeat step 3 through step 6 in order to iterate
over all cross-validation folds.

2.6.2. Dynamic FNC approach

For classification using the dynamic FNC matrix, we also used a 10-
fold cross-validation for estimating the generalization error. In each
cross-validation run, we performed group-wise k-means clustering on
dynamic FNC matrix from the training samples. For each of the three
groups, we obtained 5 cluster centroids or states. We then grouped
these states together and formed a regression matrix with 15 states in
total. We call these 15 states the feature states. Note that at each time
point the FNC matrix is assumed to be a linear combination of these
states. Then for each FNC time point, we regressed out the dynamic FNC
matrix against these 15 feature states and obtained the corresponding re-
gression coefficients. We used the mean of these regression coefficients
and finalized 15 features for each subject for classification. Details on dy-
namic feature selection method are provided in the supplementary sec-
tion S2 and supplementary Figure S2. A linear SVM was then trained
using the training features and then tested on held out testing samples.

Algorithm 2. Classification based on dynamic FNC features
1. Estimate dynamic FNC matrices for all the subjects using a

windowed FNC approach (Allen et al., 2012; Calhoun et al., 2014;
Rashid et al., 2014).
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2. Define the 10-fold cross validation groups as Gy, Gszand Ggp by first
performing a single split of the data into 10 folds, where each fold
comprises 6 subjects from the healthy control group, 6 subjects
from the schizophrenia group and 4 subjects from the bipolar
group. These subjects form the testing set (16 testing subjects at
each iteration). The remaining subjects comprised the training set
for each iteration. Note that, this step is same for all classification
algorithms.

3. Apply group-wise k-means clustering to the windowed FNC matri-
ces of the training groups. Based on the elbow criterion, select the
optimum number of cluster centroids per group (dynamic connec-
tivity states). In our dynamic FNC analysis the optimum number of
cluster centroids was 5 per group.

4. Form a regression matrix, Rgroups x centroias With these group-specific
cluster centroids.

5. Regress out the windowed FNC matrices at each time points using
the regression matrix. Record the beta coefficients, B at each time
window. In our analysis, we estimated and saved 15 B coefficients
for each time window.

6. Compute the mean B coefficients for all the time windows for each
subject. In our analysis, we have 15 mean B coefficients for each
subject. These mean B coefficients are the dynamic FNC features,
Featqenc, for the classification analysis.

7. Using these Featypnc features, train a linear support vector machine
(SVM) classifier.

8. With the left out subjects in step 2, build the testing set and select
the testing features by computing mean B coefficients using the
same approach as training data.

9. Classify the testing subjects using the trained classifiers and record
the classification performance.

10. Return to step 3 and repeat step 3 through step 9 to iterate over all
of the cross-validation folds.

2.6.3. Combined static and dynamic FNC approach:

For the combined static and dynamic FNC approach, 100 features from
static FNC feature vector after dimensionality reduction (as mentioned
above in static FNC approach section), and 15 beta coefficient features
from the dynamic FNC after regression against the states (obtained
similar way as mentioned in dynamic FNC approach section) were
used for classification purpose. Also SVM classifiers and a 10-fold
cross-validation strategy were applied in a similar way as mentioned
above for other two classification approaches.

Algorithm 3. Classification based on both static and dynamic FNC
features.

—_—

. Estimate both static and dynamic FNC matrices for all the subjects as
mentioned in Algorithm 1 and Algorithm 2.

2. Define the 10-fold cross validation groups as Gyc, Gsz and Ggp by first
performing a single split of the data into 10 folds, where each fold
comprises 6 subjects from the healthy control group, 6 subjects
from the schizophrenia group and 4 subjects from the bipolar
group. These subjects form the testing set (16 testing subjects at
each iteration). The remaining subjects comprised the training set
for each iteration. Note that, this step is same for all classification
algorithms.

3. To select static FNC features for the training set, follow these steps:

i) For dimensionality reduction and feature selection, apply double
input symmetric relevance (DISR) method on the static FNC of
the training set and select top 100 static FNC features, Featsgyc.
To select dynamic FNC features for the training set, follow these
steps:

i) Apply group-wise k-means clustering to the windowed FNC
matrices of the training groups. Based on elbow criterion, select
the optimum number of cluster centroids per group (dynamic

connectivity states). In our dynamic FNC analysis the optimum
number of cluster centroids was 5 per group.

ii) Form a regression matriX, Rgroups x centroias With these group-
specific cluster centroids.

iii) Regress out the windowed FNC matrices at each time points
using the regression matrix. Record the beta coefficients, B3, at
each time window. In our analysis, we have recorded 15 B
coefficients for each time window.

iv) Compute the mean B coefficients for all the time windows for
each subject. In our analysis, we have 15 mean B coefficients
for each subject. These mean B coefficients are the dynamic
FNC features, Featapyc for the classification analysis.

4. Combine both Featryc and Featygnc features for the training set,
Featgnc - arnc.
5. Using these Featsgnc+ arne features, train a linear support vector
machine (SVM) classifier.
6. With the left out subjects in step 2, build the testing set and select
the testing features as follows:
a) Select same Fsy features using DISR method as mentioned for the
training data.
b) Select Fyenc features by computing mean B coefficients using the
same approach as training data.
¢) Combine these Fspyc and Faenc features for the testing set.

7. Classify the testing subjects using the trained classifiers and record
the classification performance.

8. Return to step 3 and repeat step 3 through step 7 to iterate over all of
the cross-validation folds.

3. Results
3.1. Intrinsic connectivity networks

ICA was successfully used to decompose the functionally homoge-
neous cortical and subcortical regions with temporally coherent activity.
Out of the 100 components obtained, we characterized 49 components
as intrinsic connectivity networks (ICNs) that depicted peak cluster loca-
tions in gray matter with minimal overlap with white matter, ventricles
and edges of the brain and also exhibit higher low frequency temporal
activity. We used the time-courses of these 49 ICNs to compute static
and dynamic FNC matrices. The spatial maps of 49 ICNs identified with
group ICA are shown in Fig. 1. Intrinsic connectivity networks are
grouped by their anatomical and functional properties, which include
the following: sub-cortical (SC), auditory (AUD), visual (VIS), sensorimo-
tor (SM), cognitive control (CC), default mode (DM) and cerebellar (CB)
components. The observed ICN networks are very similar to those found
in previous studies with low model order ICA (Calhoun et al,, 2008a) as
well as high model order ICA (Allen et al., 2011; Kiviniemi et al., 2009;
Smith et al., 2009).

3.2. Static ENC features estimation

For the static FNC classification algorithm, first we computed the
pair-wise correlation (covariance) between the time-courses of 49
ICNs for each subject. Thus, for static FNC, each subject has a feature vec-
tor containing #°C, = 1176 elements, resulting in a high-dimensional
FNC matrix for all the subjects (subject x FNC = 159 x 1176). Out of
these 1176 static FNC features, we then extracted top 100 contributing
pair-wise correlations or static FNC features between ICNs using DISR.
Fig. 3 highlights the top 15 contributing features used from HC, SZ and
BP groups for classification analysis using static FNC as well as the
group differences among these features across three groups (for sim-
plicity we are only showing top 15 static FNC features). Both positive
and negative connectivity between these top components were found.
This figure summarizes the connectivity strengths between the top
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X=6mm =-33 mm

Default-mode (DMN)

Y =-73 mm

X =55 mm Z=6mm

Cerebellar (CB)

Fig. 1. Thresholded group mean spatial maps of 49 ICNs. Thresholded spatial maps showing 49 independent components that were characterized as intrinsic connectivity networks (ICNs)
that depicted peak cluster locations in gray matter with minimal overlap with white matter, ventricles and edges of the brain and also exhibit higher low frequency temporal activity.

component pairs, by dividing them into brain networks as mentioned in
Section 3.1. Here, static FNC component pairs that showed connectivity
differences across groups (Fig. 3(b)) include connectivity between
putamen and inferior occipital gyrus (I0G), inferior temporal gyrus
(ITG) and supramarginal gyrus, (SmG)), inferior frontal gyrus (IFG)
and superior parietal lobule (SPL), interior parietal lobule (IPL) and
middle cingulate cortex (MCC), lingual gyrus (LG) and supplementary
motor area (SMA), insula and calcarine, and I0OG and postcentral
gyrus. Also, detailed information for each spatial map such as regions
of activation, Brodmann area, volume and peak activation t-value and
coordinates for top 15 components are provided in Table 3.

3.3. Dynamic FNC feature estimation
For dynamic FNC analysis, we first applied the sliding-window

approach (Allen et al., 2012; Rashid et al., 2014) and computed the
pair-wise correlation between the time-courses of 49 ICNs at each

dynamic window (see Section 2.5), resulting into a dynamic FNC matrix,
(subject x time x FNC = 159 x 180 x 1176). As mentioned in
Section 2.6.2, we then obtained the dynamic FNC features by regressing
out the dynamic FNC matrix against the feature states (formed by the
regression matrix) at each FNC time point, and computing the mean
beta coefficients for each subject. For more details on dynamic FNC
feature selection method, see supplementary section S2 and Figure S2.

The k-means clustering was applied and 5 centroids were obtained
for each of the HC, SZ and BP groups at each CV run. For each of the
groups and for each of the 5 dynamic states, we computed the correla-
tion between dynamic states. These group-wise centroids almost always
showed very high correlations across all the CV runs. Supplementary
Table S1 provides the mean correlation for each of the dynamic states
computed across 10 CV runs.

Fig. 4 displays the training and testing dynamic FNC features. In
Fig. 4A (top), the group-wise mean training beta coefficients and
Fig. 4A (right) the bar plot showing group-wise mean training features
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Fig. 2. An overview of proposed classification approach. Group independent component analysis (ICA) is used to decompose resting-state data from 159 subjects into 100 components, 49
of which are identified as intrinsic connectivity networks (ICNs). GICA1 back-reconstruction method is used to estimate the subject specific spatial maps (SMs) and time courses (TCs).
Static FC between components is estimated as the covariance of TCs, and used as features for classification. For classification using dynamic FNC features, dynamic FC is estimated as
the series of regularized covariance matrices from windowed portions of each subject's component TCs and then the matrices are aggregated across subjects. For combined approach,
features from both static and dynamic FNC were used. Here, T: time, V: voxel, Yi = raw resting fMRI data, C = ICA components, i: subject index, S;: spatial maps, R;: time-courses.

(summary of the information provided in Fig. 4A (bottom)) for 15
feature states have been presented. While the plot on the top of Fig. 4
is showing the actual values, the bar plots are showing these informa-
tion in an average sense. Recall that, we combined the 5 dynamic states
for each group and formed a regression matrix with a total of 15 states
(feature states) for all three groups. Based on the formation of our
regression matrix, HC group is expected to dominate between state 1
and state 5 in terms of dFNC feature values. Similarly we expect the SZ
and BP groups to show dominating dFNC feature values between state
6 and state 10, and between state 11 and state 15, respectively. We
will also refer to the states ranging from 1 to 5 as HC feature states, 6
to 10 as SZ feature states, and 11 to 15 as BP feature states.

From Fig. 4A (top), we can see that the HC group shows dominating
mean beta values (i.e. more dynamic FNC feature values) for the HC fea-
ture states, and nearly zero for all other feature states. The bar plot in
Fig. 4A (bottom) also confirms this trend where the mean beta value
of the HC group for the HC feature states is 1.26 and nearly zero for
the SZ and BP feature states. It was expected that the SZ group would
show dominating feature values in SZ feature states, and nearly zero
values for other feature states. However, the SZ group shows a mean
of 0.39 in HC feature states, 1.12 in SZ feature states, and — 0.56 in BP
feature states. Also in the bar plot, BP group shows a mean beta value
of 1.16 in BP feature states.

Similar trends for mean dFNC features in the testing set were found,
and shown in Fig. 4(B). Here, from the bar plots, HC group shows a mean

beta value of 1.26 in HC feature states and nearly zero value otherwise.
Similarly, the SZ group showed a mean feature value of 0.18 for the HC
feature states, 1.2 for the SZ feature states, and — 0.24 for the BP feature
states. Also, the BP group shows a mean beta value of 0.05 for the HC
feature states, —0.02 for the SZ feature states, and 1.15 for the BP
feature states.

3.4. Classification framework

To determine the chance levels (supplementary Figure S3 and sup-
plementary section S3) for individual classifier accuracy, we performed
300-run permutation tests. Our results show that, for classifiers using
SFNC, DFNC and combined FNC features, the average accuracy expected
due to chance is around 35% (SFNC = 34.88%, DFNC = 34.56% and
Combined = 34.82%). Thus, the performance of all three observed
classifiers is statistically significant at p <0.005 relative to these
chance levels.

Table.1 shows the confusion matrices for proposed classification ap-
proaches using static, dynamic and combined FNC features. Also, using
the confusion matrices we computed: overall classification accuracy,
group-wise sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV) with Wilson's binomial 95% confidence
interval (Wilson, 1927) (Table.2 and Fig. 5). The p-values obtained using
the proportion tests (see supplementary section S4 for details) among
all classifiers and all statistical measures are reported in Table S2.
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Fig. 3. Connectograms showing the top 15 static FNC features. (a) Group-wise Top 15 static FNC features obtained using DISR method for healthy control (HC), schizophrenia (SZ) and
bipolar (BP) groups. (b) Difference in 15 static FNC features among the three groups using two-sample t-tests (not corrected for multiple comparisons). All of the component labels
indicate the brain region with peak amplitude and should be considered as bilateral activation unless mentioned as left (L) or right (R). CB: cerebellum, SMA: supplementary motor
area, SmFG: superior middle frontal gyrus, IFG: inferior frontal gyrus, R-MCC: right middle cingulate cortex, SmG: supramarginal gyrus, IPL: inferior parietal lobule, SPL: superior
parietal lobule, LG: lingual gyrus, 10G: inferior occipital gyrus, MOG: middle occipital gyrus, STG: superior temporal gyrus, ITG: inferior temporal gyrus, MTG: middle temporal gyrus.

See Table 3 for more detailed information on each intrinsic connectivity network (ICN).

The static FNC approach shows an overall classification accuracy of
59.12% and confidence interval of [51.05, 66.84]. The dynamic FNC
approach showed an overall classification accuracy of 84.28% and
confidence interval of [77.67, 89.56]. The combined static and dynamic
FNC approach showed an overall accuracy of 88.68% and confidence
interval of [82.7, 93.15]. The results from the proportion tests for
comparing different classifiers showed significant difference be-
tween static FNC and dynamic FNC (p-value = 3.229 x 10~°), and
static FNC and combined FNC (p-value = 8.653 x 10~8) in terms of
overall accuracy. However, no significant difference was found be-
tween dynamic FNC and combined FNC approaches ((p-value =
0.541), suggesting that that static FNC does not add any additional
information when combined with dynamic FNC for classification
purposes. The results from statistical significance levels among
three classifiers for these statistical measures are provided in Fig. 5
and supplementary Table S2.

Also, to analyze if the systematic difference in motion (as mentioned
in Section 2.3) across the three groups (total 159 subjects) has signifi-
cant contribution to the classification performance, we removed the
three outliers (mean FD >1 mm), and performed the classification
analyses (static FNC, dynamic FNC and combined static and dynamic
FNC approaches). The new classification results with 156 subjects
(Table S3) were very similar to the original classification results. Our
follow-up analyses show that the contributions of motion to the
classification accuracy are 0.15% for SFNC, 0.31% for DFNC and 1.51%
for combined FNC approaches.

4. Discussion

Our results suggest that, classification using dynamic FNC and
static + dynamic FNC features significantly outperforms classification
using static FNC features (p = 3.229 x 10~ % and p = 8.653 x 1078,
respectively, for overall accuracy). This is also supported by non-
overlapping confidence intervals (static FNC: ([51 67]; dynamic FNC:
[78 90]; combined FNC: [83 93]). Several group-wise statistical
measures (sensitivity, specificity, PPV and NPV) also showed that
both dynamic FNC and static + dynamic FNC statistically outperformed
static FNC measures. However, classification using dynamic FNC and
static + dynamic FNC features didn't show significant statistical differ-
ences in classification performance (p = 0.541 for overall accuracy).
Also, none of the group-wise measures showed statistical significance
between dynamic FNC and static + dynamic FNC.

This study shows that using static and dynamic connectivity features
we can reliably discriminate HC, SZ and BP at the individual subject-level.
Previous studies showed group-level discrimination of schizophrenia
and bipolar disorder from healthy control subjects by using disconnected
FNC properties in these patient groups. Using FNC approaches, these
studies have identified disrupted connectivity patterns in schizophrenia
and bipolar patients during rest and task in several brain regions
(Arbabshirani et al., 2013a; Calhoun et al., 2014; Hutchison et al., 2013;
Rashid et al., 2014) Also our previous work reported disrupted connec-
tivity in several dynamic states for schizophrenia and bipolar patients
(Rashid et al., 2014).
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across all connectivity states in an average sense.

Dynamic FNC provides the information about how the connectivity
changes over time, rather than representing the mean functional
connectivity (Calhoun et al., 2014). It provides the local functional
connectivity at each time window. This is likely capturing important
information that is missed in static FNC approach and indeed, the
dynamic FNC approach provides the higher overall accuracy rate
compared to the static FNC approach. Moreover, when both static and
dynamic FNC features were combined, the classification approach
achieved slight but not statistically significant improvement on overall
accuracy rate, suggesting that static FNC features don't add any signifi-
cant information when combined with the dynamic FNC features for
classification purposes.

In our classification approach using static FNC, top static FNC
features show group differences in both connectivity strength
(greater or weaker connectivity) and directionality of connectivity
(positively or negatively connected). Note that, in this study we did
not perform any univariate test between component pairs to investi-
gate significant group differences. Our static classifier differentiates
the subjects at a multivariate level by considering the whole pattern
from static features.

From Fig. 3, the component pairs that show differences in the
directionality of connectivity between control and patient groups in-
clude inferior frontal gyrus (IFG: frontal component) and right superior
parietal lobule (SPL; parietal component) (controls showing positive
connectivity and both patient groups showing negative connectivity),
left inferior parietal lobule (IPL; parietal component) and right middle

cingulate cortex (R-MCC, default-mode component) (controls showing
positive connectivity and both patient groups showing negative
connectivity), lingual gyrus (LG; occipital component) and right
supplementary motor area (SMA, frontal component) (controls showing
positive connectivity and both patient groups showing negative connec-
tivity), and left inferior temporal gyrus (ITG; temporal component)
and left supramarginal gyrus (SmG; parietal component) (controls
showing negative connectivity and both patient groups showing positive
connectivity).

Another top component in Fig. 3 that differentiated BP from HC and
SZ groups is putamen tail and left inferior occipital gyrus (I0G; occipital
component) (HC and SZ showing positive connectivity and BP showing
negative connectivity ). Other component pairs that showed differences in
connectivity strength across groups include insula (temporal component)
and right calcarine gyrus (HC showing greater connectivity, SZ showing
weaker connectivity, and BP showing the weakest connectivity), and
MOG and right calcarine gyrus (both patient groups showing greater
connectivity than control group).

Note that, the temporal lobe has consistently been shown to play an
important role in discriminating between healthy control subjects and
patients with schizophrenia and bipolar disorder (Altshuler et al.,
2000; Calhoun et al., 2008c; Johnstone et al., 1989). Previous functional
connectivity studies also showed abnormal fronto-temporal functional
connectivity in schizophrenia (Ford et al., 2002b; Spoletini et al., 2009;
Wolf et al., 2007). However, to further link the findings to prior litera-
ture and speculate about how connectivity in these top features relates
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to SZ symptoms, information on such symptom profiles for SZ patients
are required.

Interestingly, in the dynamic FNC classification approach, SZ shows
dominating feature values for the non-SZ feature states (Fig. 4). This
supports the overlapping findings of the SZ group with both HC and
BP groups. Our dynamic FNC approach was able to utilize this character-
istic of the SZ group to reliably differentiate them from the HC and BP
groups.

Fig. 6 shows the 15 dynamic states averaged across 10-fold runs.
These dynamic states show distinct patterns such as default mode net-
work showing strong positive within-network correlation and negative

between-network correlation with auditory, sensorimotor and cogni-
tive control (states 1 and 5), negative correlation between sub-cortical
and auditory, visual and sensorimotor networks (state 3). Among
these dynamic states, several similar states were found in the previous
studies. For example, similar dynamic states as states 1, 3 and 5 were
found in (Allen et al., 2012; Damaraju et al., 2014).

Note that, the 15 dynamic states in Fig. 6, which had played a signif-
icant role while obtaining dynamic features, were not the features
that were used by the classifier (that is, the differences in pairwise
correlation across different states and different groups were not used
as dynamic features, rather the states were used as regression matrix
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Fig. 6. Dynamic states for three groups. Centroids or the dynamic states obtained from k-means clustering for three groups, averaged across all 10 cross-validation folds. Here, intrinsic
connectivity networks are grouped as: sub-cortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), cognitive control (CC), default mode (DM) and cerebellar (CB) components.
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Table 1
Confusion matrices using different FNC classification approaches.

Static FNC approach Dynamic FNC approach Combined static and dynamic FNC
(predicted class) (predicted class) approach (predicted class)
HC SZ BP HC SZ BP HC Sz BP
True class HC 40 18 3 55 3 3 54 5 2
Sz 9 39 12 5 50 5 5 51 4
BP 7 16 15 4 5 29 1 1 36

while obtaining dynamic features or beta coefficients). In the higher
dimensional space, our classifier separated the patterns from these 15
states, and computed the fitness score or beta coefficients.

5. Limitations and future directions

There are several methodological and experimental limitations asso-
ciated with sliding-window analysis method and result interpretations.
One issue for sliding-window analysis is the choice of appropriate
window size. Is has been reported in (Sakoglu et al., 2010) that the
ideal window size should be able to estimate FC variability, capture
lowest frequencies of interest in the signal, and detect interesting
short-term effects. Our dynamic FNC approach was based on an
empirically validated fixed sliding-window of 22TRs (33 s) similar to
that used in Allen et al. (2012).Evaluation of changes across variety of
window lengths performed using separate windows (Cribben et al.,
2012) and comparisons with time-frequency approaches which do
not require windowing at all (Yaesoubi et al,, 2015) will be interesting
to examine in future work.

It is very difficult to make comparisons between different automatic
classification approaches of mental disorders, as there are several
limitations and considerations associated with these studies. Factors
such as study size, MRI scanner parameters, nature of extracted features,
type of classifier, medication and disease severity in the patient group
effects the classification frameworks. Also, without standard training
and testing datasets, comparison of different approaches based only
on the classification accuracy rate becomes highly ambiguous. It
would be interesting to compare classification performance for diagno-
sis using the DSM criteria versus a Biotype-style approach as promoted

in the BSNIP study (Clementz et al., 2015; Keshavan et al., 2013), where
biological features are used as the initial classifier to derive new
diagnostic entities not based on traditional clinical classifications of
mental illness.

Also, potential factors such as awareness or subject's anxiety level at
the scanner were not available for our subjects. These factors could
potentially contribute to effectively differential groups given that both
awareness and anxiety are known to affect patterns of the brain. Thus,
the factors may be important and should be investigated in future
studies, in order to fully interpret the results.

In this study we showed that both resting state static and dynamic
FNC features could be successfully used for automatic discrimination
between three groups including healthy controls, schizophrenia pa-
tients and bipolar patients. To the best of our knowledge this is the
first study using resting-state dynamic FNC features as well as combined
static and dynamic FNC features to classify schizophrenia and bipolar
patients. Here we separated the data into training and testing datasets
during the cross-validation folds. Our approach has some bias as the
whole dataset was first processed together, group ICA was performed
together, and the FNCs were computed together. To resolve this issue,
separate training and testing preprocessing, group ICA analysis and
FNC computation is recommended. In an ideal case, the test data should
be locked in during the whole training process. However, ICA is un-
aware of the class labels, and we are not using test class labels anywhere
in the pipeline. Thus, performing a single ICA on the whole dataset
doesn't potentially bias the classification results. Also, given that we
were interested primarily in a comparison of static, dynamic, and
combined connectivity features, and all used the same input, this should
have little to no impact on our results.

Table 2
Performance evaluation of classifier using different FNC classification approaches.
Static FNC approach Dynamic FNC approach
Overall accuracy (%) CI (%) 59 84
[51,67] [78,90]
Statistics by class (%) HC SZ BP HC SZ BP
Sensitivity 66 65 39 90 83 76
[cn [5277] [5277] [2457] [80 96] [7192] [60 89]
Specificity 84 66 88 91 92 93
(@] [75 90] [55 75] [80 93] (83 96] [85 96] [8797]
PPV 71 53 50 86 86 78
[c1 [58 83] [41 65] [3169] [7593] [7594] [6290]
NPV 80 76 82 94 90 93
(@] [7187] [65 84] [74 88] [87 98] [8395] (86 97]
Combined static and dynamic FNC approach
Overall accuracy (%) CI (%) 89 [83,93]
Statistics by class (%) HC SZ BP
Sensitivity 89 85 95
[c1 [78 95] [73 93] [8299]
Specificity 94 94 95
[c1 [87 98] [87 98] [90 98]
PPV 90 89 86
(@] [79 96] [78 96] [7195]
NPV 93 91 98
[c1 [86 97] [84 96] [94,100]
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Table 3
Regions of activation, Brodmann area (BA), peak activation t-value and coordinates for top 15 static FNC feature components.
ICN regions BA tmax Peak (mm)
X Y Z

Subcortical networks
Putamen (78)

R putamen 63.69 30 0 3

L putamen 58.30 —27 —6 9
Putamen (91)

L putamen 34 73.94 —24 9 —6
Auditory Networks
STG (36)

L superior temporal gyrus 41 50.57 —48 —30 12

R superior temporal gyrus 13 39.86 45 -15 3
Visual networks
Lingual Gyrus (10)

L lingual gyrus 18 58.58 —12 —84 —12
Inferior Occipital Gyrus (11)

R inferior occipital gyrus 18 54.54 —27 —99 -3

L middle occipital gyrus 18 54.21 27 -99 —6
Cuneus (16)

L cuneus 18 64.24 0 -81 24
Calcarine (29)

R calcarine 30 62.36 12 -69 9
Inferior Occipital Gyrus (32)

L inferior occipital gyrus 19 44.72 —36 —-75 -3

R fusiform gyrus 18 17.32 30 -78 0
Lingual Gyrus (33)

R lingual gyrus 19 51.03 21 -54 -9
Middle Occipital Gyrus (54)

L middle occipital gyrus 19 47.16 —33 —90 12

R middle occipital gyrus 19 4735 30 -93 12
Sensorimotor Networks
Postcentral (14)

L postcentral gyrus 4 51.81 —36 —24 51
Superior Medial Gyrus (27)

L superior medial gyrus 8 43.82 3 30 54
SMA (35)

R supplementary motor area 24 43.01 12 —6 51
SupraMarginal (38)

L supramarginal gyrus 3 45.53 —60 —21 36

R postcentral gyrus 3 40.27 57 -18 33

L inferior frontal gyrus 44 2143 —54 9 24

R inferior frontal gyrus 9 15.86 60 12 27
Cognitive control
Inferior temporal gyrus (64)

L inferior temporal gyrus 37 47.57 —45 —54 -9

R inferior temporal gyrus 37 20.76 54 -48 -9
Middle temporal gyrus (92)

R middle temporal gyrus 21 51.20 57 -21 -9

L middle temporal gyrus 21 41.31 —60 —30 -3
Superior parietal lobule (60)

R superior parietal lobule 7 48.93 15 -51 63
Inferior parietal lobule (63)

L inferior parietal lobule 40 47.00 —57 —42 36

R supramarginal gyrus 40 47.42 57 -45 33

R inferior frontal gyrus 47 16.04 51 18 —6
Inferior frontal gyrus (57)
R inferior frontal gyrus 9 50.30 45 12 30
L inferior frontal gyrus 46 30.38 —45 18 27
Right inferior parietal lobule 40 16.96 36 -51 51
Insula lobe (98)
R insula lobe 47 58.98 42 12 -3
L insula lobe 47 48.66 -39 18 -3
Default mode networks
Middle cingulate cortex (75)
R middle cingulate cortex 31 59.83 6 -33 33
Cerebellar Networks
Cerebellum (3)
L cerebellum (VIII) 56.24 —36 —54 —45
R cerebellum (Crus 2) 2193 42 -54 -39
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