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Chapter 9

Diffusion Equations and
Parabolic Problems

We now begin to study finite difference methods for time-dependent partial differential
equations (PDEs), where variations in space are related to variations in time. We begin
with the heat equation (or diffusion equation) introduced in Appendix E,

ut D �uxx : (9.1)

This is the classical example of a parabolic equation, and many of the general properties
seen here carry over to the design of numerical methods for other parabolic equations. We
will assume � D 1 for simplicity, but some comments will be made about how the results
scale to other values of � > 0. (If � < 0, then (9.1) would be a “backward heat equation,”
which is an ill-posed problem.)

Along with this equation we need initial conditions at some time t0, which we typi-
cally take to be t0 D 0,

u.x; 0/ D �.x/; (9.2)

and also boundary conditions if we are working on a bounded domain, e.g., the Dirichlet
conditions

u.0; t/ D g0.t/ for t > 0;

u.1; t/ D g1.t/ for t > 0
(9.3)

if 0 � x � 1.
We have already studied the steady-state version of this equation and spatial dis-

cretizations of uxx in Chapter 2. We have also studied discretizations of the time deriva-
tives and some of the stability issues that arise with these discretizations in Chapters 5
through 8. Next we will put these two types of discretizations together.

In practice we generally apply a set of finite difference equations on a discrete grid
with grid points .xi ; tn/, where

xi D ih; tn D nk:

Here h D �x is the mesh spacing on the x-axis and k D �t is the time step. Let
U n

i � u.xi ; tn/ represent the numerical approximation at grid point .xi ; tn/.
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182 Chapter 9. Diffusion Equations and Parabolic Problems

xj�1 xj xjC1

tn

tnC1

(a) (b)

Figure 9.1. Stencils for the methods (9.5) and (9.7).

Since the heat equation is an evolution equation that can be solved forward in time,
we set up our difference equations in a form where we can march forward in time, deter-
mining the values U nC1

i for all i from the values U n
i at the previous time level, or perhaps

using also values at earlier time levels with a multistep formula.
As an example, one natural discretization of (9.1) would be

U nC1
i � U n

i

k
D

1

h2
.U n

i�1 � 2U n
i C U n

iC1/: (9.4)

This uses our standard centered difference in space and a forward difference in time. This
is an explicit method since we can compute each U nC1

i explicitly in terms of the previous
data:

U nC1
i D U n

i C
k

h2
.U n

i�1 � 2U n
i C U n

iC1/: (9.5)

Figure 9.1(a) shows the stencil of this method. This is a one-step method in time, which is
also called a two-level method in the context of PDEs since it involves the solution at two
different time levels.

Another one-step method, which is much more useful in practice, as we will see
below, is the Crank–Nicolson method,

U nC1
i � U n

i

k
D

1

2
.D2U n

i C D2U nC1
i / (9.6)

D
1

2h2
.U n

i�1 � 2U n
i C U n

iC1 C U nC1
i�1

� 2U nC1
i C U nC1

iC1
/;

which can be rewritten as

U nC1
i D U n

i C
k

2h2
.U n

i�1 � 2U n
i C U n

iC1 C U nC1
i�1

� 2U nC1
i C U nC1

iC1
/ (9.7)

or

�rU nC1
i�1 C .1 C 2r /U nC1

i � rU nC1
iC1 D rU n

i�1 C .1 � 2r /U n
i C rU n

iC1; (9.8)

where r D k=2h2. This is an implicit method and gives a tridiagonal system of equations
to solve for all the values U nC1

i simultaneously. In matrix form this isD
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9.1. Local truncation errors and order of accuracy 183

2
66666664

.1 C 2r / �r

�r .1 C 2r / �r

�r .1 C 2r / �r
: : :

: : :
: : :

�r .1 C 2r / �r

�r .1 C 2r /

3
77777775

2
66666664

U nC1
1

U nC1
2

U nC1
3
:::

U nC1
m�1

U nC1
m

3
77777775

D

2
66666664

r .g0.tn/C g0.tnC1//C .1 � 2r /U n
1

C rU n
2

rU n
1

C .1 � 2r /U n
2

C rU n
3

rU n
2

C .1 � 2r /U n
3

C rU n
4

:::

rU n
m�2

C .1 � 2r /U n
m�1

C rU n
m

rU n
m�1

C .1 � 2r /U n
m C r .g1.tn/C g1.tnC1//

3
77777775
:

(9.9)

Note how the boundary conditions u.0; t/ D g0.t/ and u.1; t/ D g1.t/ come into these
equations.

Since a tridiagonal system of m equations can be solved with O.m/ work, this
method is essentially as efficient per time step as an explicit method. We will see in Sec-
tion 9.4 that the heat equation is “stiff,” and hence this implicit method, which allows much
larger time steps to be taken than an explicit method, is a very efficient method for the heat
equation.

Solving a parabolic equation with an implicit method requires solving a system of
equations with the same structure as the two-point boundary value problem we studied
in Chapter 2. Similarly, a multidimensional parabolic equation requires solving a problem
with the structure of a multidimensional elliptic equation in each time step; see Section 9.7.

9.1 Local truncation errors and order of accuracy
We can define the local truncation error as usual—we insert the exact solution u.x; t/ of
the PDE into the finite difference equation and determine by how much it fails to satisfy
the discrete equation.

Example 9.1. The local truncation error of the method (9.5) is based on the form
(9.4): �n

i D �.xi ; tn/, where

�.x; t/ D
u.x; t C k/ � u.x; t/

k
�

1

h2
.u.x � h; t/ � 2u.x; t/C u.x C h; t//:

Again we should be careful to use the form that directly models the differential equation
in order to get powers of k and h that agree with what we hope to see in the global error.
Although we don’t know u.x; t/ in general, if we assume it is smooth and use Taylor series
expansions about u.x; t/, we find that

�.x; t/ D
�

ut C
1

2
kutt C

1

6
k2utt t C � � �

�
�
�

uxx C
1

12
h2uxxxx C � � �

�
:D
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184 Chapter 9. Diffusion Equations and Parabolic Problems

Since ut D uxx , the O.1/ terms drop out. By differentiating ut D uxx we find that
utt D utxx D uxxxx and so

�.x; t/ D
�

1

2
k �

1

12
h2

�
uxxxx C O.k2 C h4/:

This method is said to be second order accurate in space and first order accurate in time
since the truncation error is O.h2 C k/.

The Crank–Nicolson method is centered in both space and time, and an analysis of
its local truncation error shows that it is second order accurate in both space and time,

�.x; t/ D O.k2 C h2/:

A method is said to be consistent if �.x; t/ ! 0 as k; h ! 0. Just as in the other
cases we have studied (boundary value problems and initial value problems for ordinary
differential equations (ODEs)), we expect that consistency, plus some form of stability, will
be enough to prove that the method converges at each fixed point .X;T / as we refine the
grid in both space and time. Moreover, we expect that for a stable method the global order
of accuracy will agree with the order of the local truncation error, e.g., for Crank–Nicolson
we expect that

U n
i � u.X;T / D O.k2 C h2/

as k; h ! 0 when ih � X and nk � T are fixed.
For linear PDEs, the fact that consistency plus stability is equivalent to convergence is

known as the Lax equivalence theorem and is discussed in Section 9.5 after an introduction
of the proper concept of stability. As usual, it is the definition and study of stability that is
the hard (and interesting) part of this theory.

9.2 Method of lines discretizations
To understand how stability theory for time-dependent PDEs relates to the stability theory
we have already developed for time-dependent ODEs, it is easiest to first consider the so-
called method of lines (MOL) discretization of the PDE. In this approach we first discretize
in space alone, which gives a large system of ODEs with each component of the system
corresponding to the solution at some grid point, as a function of time. The system of ODEs
can then be solved using one of the methods for ODEs that we have previously studied.

This system of ODEs is also often called a semidiscrete method, since we have dis-
cretized in space but not yet in time.

For example, we might discretize the heat equation (9.1) in space at grid point xi by

U 0
i .t/ D

1

h2
.Ui�1.t/ � 2Ui.t/C UiC1.t// for i D 1; 2; : : : ; m; (9.10)

where prime now means differentiation with respect to time. We can view this as a coupled
system of m ODEs for the variables Ui .t/, which vary continuously in time along the lines
shown in Figure 9.2. This system can be written as

U 0.t/ D AU.t/ C g.t/; (9.11)D
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9.2. Method of lines discretizations 185

x0 x1 x2 xm�1 xm xmC1

U0.t/ U1.t/ U2.t/ Um�1.t/ UmC1.t/

t

Figure 9.2. Method of lines interpretation. Ui .t/ is the solution along the line
forward in time at the grid point xi .

where the tridiagonal matrix A is exactly as in (2.9) and g.t/ includes the terms needed for
the boundary conditions, U0.t/ � g0.t/ and UmC1.t/ � g1.t/,

A D
1

h2

2
66666664

�2 1

1 �2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

3
77777775
; g.t/ D

1

h2

2
66666664

g0.t/

0

0
:::

0

g1.t/

3
77777775
: (9.12)

This MOL approach is sometimes used in practice by first discretizing in space and
then applying a software package for systems of ODEs. There are also packages that are
specially designed to apply MOL. This approach has the advantage of being relatively easy
to apply to a fairly general set of time-dependent PDEs, but the resulting method is often
not as efficient as specially designed methods for the PDE. See Section 11.2 for more
discussion of this.

As a tool in understanding stability theory, however, the MOL discretization is ex-
tremely valuable, and this is the main use we will make of it. We know how to analyze
the stability of ODE methods applied to a linear system of the form (9.11) based on the
eigenvalues of the matrix A, which now depend on the spatial discretization.

If we apply an ODE method to discretize the system (9.11), we will obtain a fully
discrete method which produces approximations U n

i � Ui.tn/ at discrete points in time
which are exactly the points .xi ; tn/ of the grid that we introduced at the beginning of this
chapter.

For example, applying Euler’s method U nC1 D U n C kf .U n/ to this linear system
results in the fully discrete method (9.5). Applying instead the trapezoidal method (5.22)
results in the Crank–Nicolson method (9.7). Applying a higher order linear multistep or
Runge–Kutta method would give a different method, although with the spatial discretiza-
tion (9.10) the overall method would be only second order accurate in space. ReplacingD
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186 Chapter 9. Diffusion Equations and Parabolic Problems

the right-hand side of (9.10) with a higher order approximation to uxx.xi/ and then using
a higher order time discretization would give a more accurate method.

9.3 Stability theory
We can now investigate the stability of schemes like (9.5) or (9.7) since these can be inter-
preted as standard ODE methods applied to the linear system (9.11). We expect the method
to be stable if k� 2 S , i.e., if the time step k multiplied by any eigenvalue � of A lies in the
stability region of the ODE method, as discussed in Chapter 7. (Note that A is symmetric
and hence normal, so eigenvalues are the right thing to look at.)

We have determined the eigenvalues of A in (2.23),

�p D
2

h2
.cos.p�h/ � 1/ for p D 1; 2; : : : ; m; (9.13)

where again m and h are related by h D 1=.m C 1/. Note that there is a new wrinkle here
relative to the ODEs we considered in Chapter 7: the eigenvalues �p depend on the mesh
width h. As we refine the grid and h ! 0, the dimension of A increases, the number of
eigenvalues we must consider increases, and the values of the eigenvalues change.

This is something we must bear in mind when we attempt to prove convergence as
k; h ! 0. To begin, however, let’s consider the simpler question of how the method
behaves for some fixed k and h, i.e., the question of absolute stability in the ODE sense.
Then it is clear that the method is absolutely stable (i.e., the effect of past errors will not
grow exponentially in future time steps) provided that k�p 2 S for each p, where S is the
stability region of the ODE method, as discussed in Chapter 7.

For the matrix (9.12) coming from the heat equation, the eigenvalues lie on the neg-
ative real axis and the one farthest from the origin is �m � �4=h2. Hence we require that
�4k=h2 2 S (assuming the stability region is connected along the negative real axis up to
the origin, as is generally the case).

Example 9.2. If we use Euler’s method to obtain the discretization (9.5), then we
must require j1 C k�j � 1 for each eigenvalue (see Chapter 7) and hence we require
�2 � �4k=h2 � 0. This limits the time step allowed to

k

h2
�

1

2
: (9.14)

This is a severe restriction: the time step must decrease at the rate of h2 as we refine the
grid, which is much smaller than the spatial width h when h is small.

Example 9.3. If we use the trapezoidal method, we obtain the Crank–Nicolson dis-
cretization (9.6). The trapezoidal method for the ODE is absolutely stable in the whole
left half-plane and the eigenvalues (9.13) are always negative. Hence the Crank–Nicolson
method is stable for any time step k > 0. Of course it may not be accurate if k is too large.
Generally we must take k D O.h/ to obtain a reasonable solution, and the unconditional
stability allows this.

9.4 Stiffness of the heat equation
Note that the system of ODEs we are solving is quite stiff, particularly for small h. The
eigenvalues of A lie on the negative real axis with one fairly close to the origin, �1 � ��2D
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9.4. Stiffness of the heat equation 187

for all h, while the largest in magnitude is �m � �4=h2. The “stiffness ratio” of the system
is 4=�2h2, which grows rapidly as h ! 0. As a result the explicit Euler method is stable
only for very small time steps k � 1

2
h2. This is typically much smaller than what we would

like to use over physically meaningful times, and a method designed for stiff problems will
be more efficient.

The stiffness is a reflection of the very different time scales present in solutions to
the physical problem modeled by the heat equation. High frequency spatial oscillations
in the initial data will decay very rapidly due to rapid diffusion over very short distances,
while smooth data decay much more slowly since diffusion over long distances takes much
longer. This is apparent from the Fourier analysis of Section E.3.3 or is easily seen by
writing down the exact solution to the heat equation on 0 � x � 1 with g0.t/ D g1.t/ � 0

as a Fourier sine series:

u.x; t/ D
1X

jD1

Ouj .t/ sin.j�x/:

Inserting this in the heat equation gives the ODEs

Ou0
j .t/ D �j 2�2 Ouj .t/ for j D 1; 2; ; : : : (9.15)

and so
Ouj .t/ D e�j2�2t Ouj .0/

with the Ouj .0/ determined as the Fourier coefficients of the initial data �.x/.
We can view (9.15) as an infinite system of ODEs, but which are decoupled so that

the coefficient matrix is diagonal, with eigenvalues �j 2�2 for j D 1; 2; : : :. By choosing
data with sufficiently rapid oscillation (large j ), we can obtain arbitrarily rapid decay. For
general initial data there may be some transient period when any high wave numbers are
rapidly damped, but then the long-time behavior is dominated by the slower decay rates.
See Figure 9.3 for some examples of the time evolution with different sets of data.

If we are solving the problem over the long periods needed to track this slow dif-
fusion, then we would ultimately (after any physical transients have decayed) like to use
rather large time steps, since typically the variation in time is then on roughly the same scale
as variations in space. We would generally like to have k � h so that we have roughly the
same resolution in time as we do in space. A method that requires k � h2 forces us to take
a much finer temporal discretization than we should need to represent smooth solutions. If
h D 0:001, for example, then if we must take k D h2 rather than k D h we would need
to take 1000 time steps to cover each time interval that should be well modeled by a single
time step. This is the same difficulty we encountered with stiff ODEs in Chapter 8.

Note: The remark above that we want k � h is reasonable assuming the method we
are using has the same order of accuracy in both space and time. The method (9.5) does not
have this property. Since the error is O.k C h2/ we might want to take k D O.h2/ just to
get the same level of accuracy in both space and time. In this sense the stability restriction
k D O.h2/ may not seem unreasonable, but this is simply another reason for not wanting
to use this particular method in practice.

Note: The general diffusion equation is ut D �uxx and in practice the diffusion
coefficient � may be different from 1 by many orders of magnitude. How does this affect
our conclusions above? We would expect by scaling considerations that we should takeD
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Figure 9.3. Solutions to the heat equation at three different times (columns) shown
for three different sets of initial conditions (rows). In the top row u1.x; t0/ consists of only
a low wave number, which decays slowly. The middle row shows data consisting of a
higher wave number, which decays more quickly. The bottom row shows data u3.x; t0/ that
contains a mixture of wave numbers. The high wave numbers are most rapidly damped (an
initial rapid transient), while at later times only the lower wave numbers are still visible
and decaying slowly.

k � h=� in order to achieve comparable resolution in space and time, i.e., we would like
to take �k=h � 1. (Note that Ouj .t/ D exp.�j 2�2�t/ Ouj .0/ in this case.) With the MOL
discretization we obtain the system (9.11) but A now has a factor � in front. For stability we
thus require �4�k=h2 2 S , which requires �k=h2 to be order 1 for any explicit method.
This is smaller than what we wish to use by a factor of h, regardless of the magnitude of �.
So our conclusions on stiffness are unchanged by �. In particular, even when the diffusion
coefficient is very small it is best to use an implicit method because we then want to take
very long time steps k � h=�.

These comments apply to the case of pure diffusion. If we are solving an advection-
diffusion or reaction-diffusion equation where there are other time scales determined by
other phenomena, then if the diffusive term has a very small coefficient we may be able to
use an explicit method efficiently because of other restrictions on the time step.

Note: The physical problem of diffusion is “infinitely stiff” in the sense that (9.15)
has eigenvalues �j 2�2 with arbitrarily large magnitude, since j can be any integer. Luck-
ily the discrete problem is not this stiff. It is not stiff because, once we discretize in space,
only a finite number of spatial wave numbers can be represented and we obtain the finiteD
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9.5. Convergence 189

set of eigenvalues (9.13). As we refine the grid we can represent higher and higher wave
numbers, leading to the increasing stiffness ratio as h ! 0.

9.5 Convergence
So far we have only discussed absolute stability and determined the relation between k

and h that must be satisfied to ensure that errors do not grow exponentially as we march
forward in time on this fixed grid. We now address the question of convergence at a fixed
point .X;T / as the grid is refined. It turns out that in general exactly the same relation
between k and h must now be required to hold as we vary k and h, letting both go to zero.

In other words, we cannot let k and h go to zero at arbitrary independent rates and
necessarily expect the resulting approximations to converge to the solution of the PDE.
For a particular sequence of grids .k1; h1/, .k2; h2/; : : :, with kj ! 0 and hj ! 0, we
will expect convergence only if the proper relation ultimately holds for each pair. For the
method (9.5), for example, the sequence of approximations will converge only if kj=h2

j �
1=2 for all j sufficiently large.

It is sometimes easiest to think of k and h as being related by some fixed rule (e.g.,
we might choose k D 0:4h2 for the method (9.5)), so that we can speak of convergence as
k ! 0 with the understanding that this relation holds on each grid.

The methods we have studied so far can be written in the form

U nC1 D B.k/U n C bn.k/ (9.16)

for some matrix B.k/ 2 Rm�m on a grid with h D 1=.m C 1/ and bn.k/ 2 Rm. In general
these depend on both k and h, but we will assume some fixed rule is specified relating h to
k as k ! 0.

For example, applying forward Euler to the MOL system (9.11) gives

B.k/ D I C kA; (9.17)

where A is the tridiagonal matrix in (9.12). The Crank–Nicolson method results from
applying the trapezoidal method to (9.11), which gives

B.k/ D
�

I �
k

2
A

��1 �
I C

k

2
A

�
: (9.18)

To prove convergence we need consistency and a suitable form of stability. As usual,
consistency requires that the local truncation error vanishes as k ! 0. The form of stability
that we need is often called Lax–Richtmyer stability.

Definition 9.1. A linear method of the form (9.16) is Lax–Richtmyer stable if, for each time
T , there is a constant CT > 0 such that

kB.k/nk � CT (9.19)

for all k > 0 and integers n for which kn � T .

Theorem 9.2 (Lax Equivalence Theorem). A consistent linear method of the form (9.16)
is convergent if and only if it is Lax–Richtmyer stable.D
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190 Chapter 9. Diffusion Equations and Parabolic Problems

For more discussion and a proof see [75]. The main idea is the same as our proof in
Section 6.3.1 that Euler’s method converges on a linear problem. If we apply the numerical
method to the exact solution u.x; t/, we obtain

unC1 D Bun C bn C k�n; (9.20)

where we suppress the dependence on k for clarity and where

un D

2
6664

u.x1; tn/

u.x2; tn/
:::

u.xm; tn/

3
7775 ; �n D

2
6664

�.x1; tn/

�.x2; tn/
:::

�.xm; tn/

3
7775 :

Subtracting (9.20) from (9.16) gives the difference equation for the global error En D
U n � un:

EnC1 D BEn � k�n;

and hence, after N time steps,

EN D BN E0 � k

NX

nD1

BN �n�n�1;

from which we obtain

kEN k � kBN kkE0k C k

NX

nD1

kBN �nk k�n�1k: (9.21)

If the method is Lax–Richtmyer stable, then for N k � T ,

kEN k � CT kE0k C T CT max
1�n�N

k�n�1k

! 0 as k ! 0 for N k � T;

provided the method is consistent (k�k ! 0) and we use appropriate initial data (kE0k !
0 as k ! 0).

Example 9.4. For the heat equation the matrix A from (9.12) is symmetric, and
hence the 2-norm is equal to the spectral radius, and the same is true of the matrix B from
(9.17). From (9.13) we see that kB.k/k2 � 1, provided (9.14) is satisfied, and so the
method is Lax–Richtmyer stable and hence convergent under this restriction on the time
step. Similarly, the matrix B of (9.18) is symmetric and has eigenvalues .1 C k�p=2/=.1 �
k�p=2/, and so the Crank–Nicolson method is stable in the 2-norm for any k > 0.

For the methods considered so far we have obtained kBk � 1. This is called strong
stability. But note that this is not necessary for Lax–Richtmyer stability. If there is a
constant ˛ so that a bound of the form

kB.k/k � 1 C ˛k (9.22)D
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9.5. Convergence 191

holds in some norm (at least for all k sufficiently small), then we will have Lax–Richtmyer
stability in this norm, since

kB.k/nk � .1 C ˛k/n � e˛T

for nk � T . Note that the matrix B.k/ depends on k, and its dimension m D O.1=h/

grows as k; h ! 0. The general theory of stability in the sense of uniform power bounded-
ness of such families of matrices is often nontrivial.

9.5.1 PDE versus ODE stability theory

It may bother you that the stability we need for convergence now seems to depend on
absolute stability, and on the shape of the stability region for the time-discretization, which
determines the required relationship between k and h. Recall that in the case of ODEs all
we needed for convergence was “zero-stability,” which does not depend on the shape of the
stability region except for the requirement that the point z D 0 must lie in this region.

Here is the difference: with ODEs we were studying a fixed system of ODEs of fixed
dimension, and the fixed set of eigenvalues � was independent of k. For convergence we
needed k� in the stability region as k ! 0, but since these values all converge to 0 it is
only the origin that is important, at least to prove convergence as k ! 0. Hence the need
for zero-stability. With PDEs, on the other hand, in our MOL discretization the system of
ODEs grows as we refine the grid, and the eigenvalues � grow in magnitude as k and h go
to zero. So it is not clear that k� will go to zero, and zero-stability is not sufficient. For the
heat equation with k=h2 fixed, these values do not go to zero as k ! 0. For convergence
we must now require that these values at least lie in the region of absolute stability as
k ! 0, and this gives the stability restriction relating k and h. If we keep k=h fixed as
k; h ! 0, then k� ! �1 for the eigenvalues of the matrix A from (9.12). We must use
an implicit method that includes the entire negative real axis in its stability region.

We also notice another difference between stability theory for ODEs and PDEs that
for the ODE u0.t/ D f .u.t// we could prove convergence of standard methods for any Lip-
schitz continuous function f .u/. For example, the proof of convergence of Euler’s method
for the linear case, found in Section 6.3.1, was easily extended to nonlinear functions in
Section 6.3.3. In the PDE case, the Lax equivalence theorem is much more limited: it ap-
plies only to linear methods (9.16), and such methods typically only arise when discretizing
linear PDEs such as the heat equation. It is possible to prove stability of many methods for
nonlinear PDEs by showing that a suitable form of stability holds, but a variety of different
techniques must be used, depending on the character of the differential equation, and there
is no general theory of the sort obtained for ODEs.

The essential difficulty is that even a linear PDE such as the heat equation ut D @2
xu

involves an operator on the right-hand side that is not Lipschitz continuous in a function
space norm of the sort introduced in Section A.4. Discretizing on a grid replaces @2

xu by
f .U / D AU , which is Lipschitz continuous, but the Lipschitz constant kAk grows at the
rate of 1=h2 as the grid is refined. In the nonlinear case it is often difficult to obtain the sort
of bounds needed to prove convergence. See [40], [68], [75], or [84] for further discussions
of stability.D

ow
nl

oa
de

d 
06

/0
9/

16
 to

 2
05

.1
55

.6
5.

22
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



“rjlfdm”
2007/6/1
page 192i

i
i

i

i
i

i
i

192 Chapter 9. Diffusion Equations and Parabolic Problems

9.6 Von Neumann analysis
Although it is useful to go through the MOL formulation to understand how stability theory
for PDEs is related to the theory for ODEs, in practice there is another approach that will
sometimes give the proper stability restrictions more easily.

The von Neumann approach to stability analysis is based on Fourier analysis and
hence is generally limited to constant coefficient linear PDEs. For simplicity it is usually
applied to the Cauchy problem, which is the PDE on all space with no boundaries, �1 <

x < 1 in the one-dimensional case. Von Neumann analysis can also be used to study
the stability of problems with periodic boundary conditions, e.g., in 0 � x � 1 with
u.0; t/ D u.1; t/ imposed. This is generally equivalent to a Cauchy problem with periodic
initial data.

Stability theory for PDEs with more general boundary conditions can often be quite
difficult, as the coupling between the discretization of the boundary conditions and the
discretization of the PDE can be very subtle. Von Neumann analysis addresses the issue
of stability of the PDE discretization alone. Some discussion of stability theory for initial
boundary value problems can be found in [84], [75]. See also Section 10.12.

The Cauchy problem for linear PDEs can be solved using Fourier transforms—see
Section E.3 for a review. The basic reason this works is that the functions ei�x with wave
number � D constant are eigenfunctions of the differential operator @x,

@xei�x D i�ei�x;

and hence of any constant coefficient linear differential operator. Von Neumann analysis
is based on the fact that the related grid function Wj D eijh� is an eigenfunction of any
translation-invariant finite difference operator.1 For example, if we approximate v0.xj / by
D0Vj D 1

2h
.VjC1 � Vj�1/, then in general the grid function D0V is not a scalar multiple

of V . But for the special case of W , we obtain

D0Wj D
1

2h

�
ei.jC1/h� � ei.j�1/h�

�

D
1

2h

�
eih� � e�ih�

�
eijh�

D
i

h
sin.h�/eijh�

D
i

h
sin.h�/Wj :

(9.23)

So W is an “eigengridfunction” of the operator D0, with eigenvalue i
h

sin.h�/.
Note the relation between these and the eigenfunctions and eigenvalues of the opera-

tor @x found earlier: Wj is simply the eigenfunctionw.x/ of @x evaluated at the point xj ,
and for small h� we can approximate the eigenvalue of D0 by

1In this section i D
p

�1 and the index j is used on the grid functions.D
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9.6. Von Neumann analysis 193

i

h
sin.h�/ D

i

h

�
h� �

1

6
h3�3 C O.h5�5/

�

D i� �
i

6
h2�3 C � � � :

This agrees with the eigenvalue i� of @x to O.h2�3/.
Suppose we have a grid function Vj defined at grid points xj D j h for j D 0; ˙

1; ˙ 2; : : : , which is an l2 function in the sense that the 2-norm

kU k2 D

0
@h

1X

jD�1
jUj j2

1
A

1=2

is finite. Then we can express Vj as a linear combination of the grid functions eijh� for all
� in the range ��=h � � � �=h. Functions with larger wave number � cannot be resolved
on this grid. We can write

Vj D
1

p
2�

Z �=h

��=h

OV .�/eijh� d�;

where

OV .�/ D
h

p
2�

1X

jD�1
Vj e�ijh� :

These are direct analogue of the formulas for a function v.x/ in the discrete case.
Again we have Parseval’s relation, k OV k2 D kV k2, although the 2-norms used for

the grid function Vj and the function OV .�/ defined on Œ��=h; �=h� are different:

kV k2 D

0
@h

1X

jD�1
jVj j2

1
A

1=2

; k OV k2 D

 Z �=h

��=h

j OV .�/j2 d�

!1=2

:

To show that a finite difference method is stable in the 2-norm by the techniques
discussed earlier in this chapter, we would have to show that kBk2 � 1 C ˛k in the
notation of (9.22). This amounts to showing that there is a constant ˛ such that

kU nC1k2 � .1 C ˛k/kU nk2

for all U n. This can be difficult to attack directly because of the fact that computing kU k2

requires summing over all grid points, and each U nC1
j depends on values of U n at neigh-

boring grid points so that all grid points are coupled together. In some cases one can work
with these infinite sums directly, but it is rare that this can be done. Alternatively one can
work with the matrix B itself, as we did above in Section 9.5, but this matrix is growing as
we refine the grid.

Using Parseval’s relation, we see that it is sufficient to instead show that

k OU nC1k2 � .1 C ˛k/k OU nk2;D
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194 Chapter 9. Diffusion Equations and Parabolic Problems

where OU n is the Fourier transform of the grid function U n. The utility of Fourier analysis
now stems from the fact that after Fourier transforming the finite difference method, we
obtain a recurrence relation for each OU n.�/ that is decoupled from all other wave numbers.
For a two-level method this has the form

OU nC1.�/ D g.�/ OU n.�/: (9.24)

The factor g.�/, which depends on the method, is called the amplification factor for the
method at wave number �. If we can show that

jg.�/j � 1 C ˛k;

where ˛ is independent of �, then it follows that the method is stable, since then

j OU nC1.�/j � .1 C ˛k/j OU n.�/j for all �

and so
k OU nC1k2 � .1 C ˛k/k OU nk2:

Fourier analysis allows us to obtain simple scalar recursions of the form (9.24) for
each wave number separately, rather than dealing with a system of equations for U n

j that
couples together all values of j .

Note: Here we are assuming that u.x; t/ is a scalar, so that g.�/ is a scalar. For a
system of s equations we would find that g.�/ is an s�s matrix for each value of �, so some
analysis of matrix eigenvalues is still required to investigate stability. But the dimension
of the matrices is s, independent of the grid spacing, unlike the MOL analysis, where the
matrix dimension increases as k ! 0.

Example 9.5. Consider the method (9.5). To apply von Neumann analysis we con-
sider how this method works on a single wave number �, i.e., we set

U n
j D eijh� : (9.25)

Then we expect that
U nC1

j D g.�/eijh� ; (9.26)

where g.�/ is the amplification factor for this wave number. Inserting these expressions
into (9.5) gives

g.�/eijh� D eijh� C
k

h2

�
ei�.j�1/h � 2eijh� C ei�.jC1/h

�

D
�

1 C
k

h2

�
e�i�h � 2 C ei�h

��
eijh� ;

and hence

g.�/ D 1 C 2
k

h2
.cos.�h/ � 1/:

Since �1 � cos.�h/ � 1 for any value of �, we see that

1 � 4
k

h2
� g.�/ � 1

for all �. We can guarantee that jg.�/j � 1 for all � if we requireD
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9.7. Multidimensional problems 195

4
k

h2
� 2:

This is exactly the stability restriction (9.14) we found earlier for this method. If this
restriction is violated, then the Fourier components with some wave number � will be
amplified (and, as expected, it is the largest wave numbers that become unstable first as k

is increased).
Example 9.6. The fact that the Crank–Nicolson method is stable for all k and h

can also be shown using von Neumann analysis. Substituting (9.25) and (9.26) into the
difference equations (9.7) and canceling the common factor of eijh� gives the following
relation for g � g.�/:

g D 1 C
k

2h2

�
e�i�h � 2 C ei�h

�
.1 C g/;

and hence

g D
1 C 1

2
z

1 � 1
2
z
; (9.27)

where

z D
k

h2
.e�i�h � 2 C ei�h/

D
2k

h2
.cos.�h/ � 1/: (9.28)

Since z � 0 for all �, we see that jgj � 1 and the method is stable for any choice of k

and h.
Note that (9.27) agrees with the root �1 found for the trapezoidal method in Exam-

ple 7.6, while the z determined in (9.28), for certain values of �, is simply k times an
eigenvalue �p from (9.13), the eigenvalues of the MOL matrix (9.11). In general there is a
close connection between the von Neumann approach and the MOL reduction of a periodic
problem to a system of ODEs.

9.7 Multidimensional problems
In two space dimensions the heat equation takes the form

ut D uxx C uyy (9.29)

with initial conditions u.x; y; 0/ D �.x; y/ and boundary conditions all along the boundary
of our spatial domain �. We can discretize in space using a discrete Laplacian of the form
considered in Chapter 3, say, the 5-point Laplacian from Section 3.2:

r2
hUij D

1

h2
.Ui�1;j C UiC1;j C Ui;j�1 C Ui;jC1 � 4Uij /: (9.30)

If we then discretize in time using the trapezoidal method, we will obtain the two-dimensional
version of the Crank–Nicolson method,

U nC1
ij D U n

ij C
k

2

h
r2

hU n
ij C r2

h U nC1
ij

i
: (9.31)D
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196 Chapter 9. Diffusion Equations and Parabolic Problems

Since this method is implicit, we must solve a system of equations for all the Uij where the
matrix has the same nonzero structure as for the elliptic systems considered in Chapters 3
and 4. This matrix is large and sparse, and we generally do not want to solve the system by
a direct method such as Gaussian elimination. This is even more true for the systems we
are now considering than for the elliptic equation, because of the slightly different nature of
this system, which makes other approaches even more efficient relative to direct methods.
It is also extremely important now that we use the most efficient method possible, because
we must now solve a linear system of this form in every time step, and we may need to take
thousands of time steps to solve the time-dependent problem.

We can rewrite the equations (9.31) as

�
I �

k

2
r2

h

�
U nC1

ij D
�

I C
k

2
r2

h

�
U n

ij : (9.32)

The matrix for this linear system has the same pattern of nonzeros as the matrix for r2
h

(see
Chapter 3), but the values are scaled by k=2 and then subtracted from the identity matrix,
so that the diagonal elements are fundamentally different. If we call this matrix A,

A D I �
k

2
r2

h ;

then we find that the eigenvalues of A are

�p;q D 1 �
k

h2

�
.cos.p�h/ � 1/C .cos.q�h/ � 1/

�

for p; q D 1; 2; : : : ; m, where we have used the expression for the eigenvalues of r2
h

from Section 3.4. Now the largest eigenvalue of the matrix A thus has magnitude O.k=h2/

while the ones closest to the origin are at 1CO.k/. As a result the condition number of A is
O.k=h2/. By contrast, the discrete Laplacian r2

h
alone has condition number O.1=h2/ as

we found in Section 3.4. The smaller condition number in the present case can be expected
to lead to faster convergence of iterative methods.

Moreover, we have an excellent starting guess for the solution U nC1 to (9.31), a fact
that we can use to good advantage with iterative methods but not with direct methods. Since
U nC1

ij D U n
ij C O.k/, we can use U n

ij , the values from the previous time step, as initial

values U
Œ0�
ij for an iterative method. We might do even better by extrapolating forward in

time, using, say, U
Œ0�
ij D 2U n

ij � U n�1
ij , or by using an explicit method, say,

U
Œ0�
ij D .I C kr2

h/U
n
ij :

This explicit method (forward Euler) would probably be unstable as a time-marching pro-
cedure if we used only this with the value of k we have in mind, but it can sometimes be
used successfully as a way to generate initial data for an iterative procedure.

Because of the combination of a reasonably well-conditioned system and very good
initial guess, we can often get away with taking only one or two iterations in each time
step, and still get global second order accuracy.D
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9.8. The locally one-dimensional method 197

9.8 The locally one-dimensional method
Rather than solving the coupled sparse matrix equation for all the unknowns on the grid
simultaneously as in (9.32), an alternative approach is to replace this fully coupled single
time step with a sequence of steps, each of which is coupled in only one space direction, re-
sulting in a set of tridiagonal systems which can be solved much more easily. One example
is the locally one-dimensional (LOD) method:

U �
ij D U n

ij C
k

2
.D2

x U n
ij C D2

xU �
ij /; (9.33)

U nC1
ij D U �

ij C
k

2
.D2

y U �
ij C D2

yU nC1
ij /; (9.34)

or, in matrix form,
�

I �
k

2
D2

x

�
U � D

�
I C

k

2
D2

x

�
U n; (9.35)

�
I �

k

2
D2

y

�
U nC1 D

�
I C

k

2
D2

y

�
U �: (9.36)

In (9.33) we apply Crank–Nicolson in the x-direction only, solving ut D uxx alone over
time k, and we call the result U �. Then in (9.34) we take this result and apply Crank–
Nicolson in the y-direction to it, solving ut D uyy alone, again over time k. Physically this
corresponds to modeling diffusion in the x- and y-directions over time k as a decoupled
process in which we first allow u to diffuse only in the x-direction and then only in the
y-direction. If the time steps are very short, then this might be expected to give similar
physical behavior and hence convergence to the correct behavior as k ! 0. In fact, for
the constant coefficient diffusion problem, it can even be shown that (in the absence of
boundaries at least) this alternating diffusion approach gives exactly the same behavior as
the original two-dimensional diffusion. Diffusing first in x alone over time k and then in
y alone over time k gives the same result as if the diffusion occurs simultaneously in both
directions. (This is because the differential operators @2

x and @2
y commute, as discussed

further in Example 11.1.)
Numerically there is a great advantage in using (9.35) and (9.36) rather than the fully

coupled (9.32). In (9.35) the unknowns U �
ij are coupled together only across each row of

the grid. For any fixed value of j we have a tridiagonal system of equations to solve for
U �

ij .i D 1; 2; : : : ; m/. The system obtained for each value of j is completely decoupled
from the system obtained for other values of j . Hence we have a set of m C 2 tridiagonal
systems to solve (for j D 0; 1; : : : ; m C 1), each of dimension m, rather than a single
coupled system with m2 unknowns as in (9.32). Since each of these systems is tridiagonal,
it is easily solved in O.m/ operations by Gaussian elimination and there is no need for
iterative methods. (In the next section we will see why we need to solve these for j D 0

and j D m C 1 as well as at the interior grid points.)
Similarly, (9.34) decouples into a set of m tridiagonal systems in the y-direction for

i D 1; 2; : : : ; m. Hence taking a single time step requires solving 2m C 2 tridiagonal
systems of size m, and thus O.m2/ work. Since there are m2 grid points, this is the optimal
order and no worse than an explicit method, except for a constant factor.D
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198 Chapter 9. Diffusion Equations and Parabolic Problems

9.8.1 Boundary conditions

In solving the second set of systems (9.34), we need boundary values U �
i0

and U nC1
i0

along
the bottom boundary and U �

i;mC1
and U nC1

i;mC1
along the top boundary, for terms that go on

the right-hand side of each tridiagonal system. The values at level n C 1 are available from
the given boundary data for the heat equation, by evaluating the boundary conditions at
time tnC1 (assuming Dirichlet boundary conditions are given). To obtain the values U �

i0
we

solve (9.33) for j D 0 and j D m C 1 (along the boundaries) in addition to the systems
along each row interior to the grid.

To solve the first set of systems (9.33), we need boundary values U n
0j

and U �
0j

along
the left boundary and values U n

mC1;j
and U �

mC1;j
along the right boundary. The values at

level n come from the given boundary conditions, but we must determine the intermediate
boundary conditions at level � along these boundaries. It is not immediately clear what
values should be used. One might be tempted to think of level � as being halfway between
tn and tnC1, since U � is generated in the middle of the two-step procedure used to obtain
U nC1 from U n. If this were valid, then evaluating the given boundary data at time tnC1=2 D
tn C k=2 might provide values for U � on the boundary. This is not a good idea, however,
and would lead to a degradation of accuracy. The problem is that in the first step, (9.33)
does not model the full heat equation over time k=2 but rather models part of the equation
(diffusion in x alone) over the full time step k. The values along the boundary will in
general evolve quite differently in the two different cases.

To determine proper values for U �
0j

and U �
mC1;j

, we can use (9.34) along the left and
right boundaries. At i D 0, for example, this equation gives a system of equations along
the left boundary that can be viewed as a tridiagonal linear system or the unknowns U �

0j
in

terms of the values U nC1
0j

, which are already known from the boundary conditions at time
tnC1. Note that we are solving this equation backward from the way it will be used in the
second step of the LOD process on the interior of the grid, and this works only because we
already know U nC1

0j
from boundary data.

Since we are solving this equation backward, we can view this as solving the dif-
fusion equation ut D uyy over a time step of length �k, backward in time. This makes
sense physically—the intermediate solution U � represents what is obtained from U n by
doing diffusion in x alone, with no diffusion yet in y. There are in principle two ways to
get this, either by starting with U n and diffusing in x or by starting with U nC1 and
“undiffusing” in y. We are using the latter approach along the boundaries to generate data
for U �.

Equivalently we can view this as solving the backward heat equation ut D �uyy

over time k. This may be cause for concern, since the backward heat equation is ill posed
(see Section E.3.4). However, since we are doing this only over one time step starting with
given values U nC1

0j
in each time step, this turns out to be a stable procedure.

There is still a difficulty at the corners. To solve (9.34) for U �
0j

, j D 1; 2; : : : ; m,
we need to know the values of U �

00
and U �

0;mC1
that are the boundary values for this system.

These can be approximated using some sort of explicit and uncentered approximation to
either ut D uxx starting with U n, or to ut D �uyy starting with U nC1. For example, we
might use
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9.8. The locally one-dimensional method 199

U �
00 D U nC1

00
�

k

h2
.U nC1

00
� 2U nC1

01
C U nC1

02
/;

which uses the approximation to uyy centered at .x0; y1/.
Alternatively, rather than solving the tridiagonal systems obtained from (9.34) for

U �
0j

, we could simply use an explicit approximation to the backward heat equation along
this boundary,

U �
0j D U nC1

0j
�

k

h2
.U nC1

0;j�1
� 2U nC1

0j
C U nC1

0;jC1
/ (9.37)

for j D 1; 2; : : : ; m. This eliminates the need for values of U � in the corners. Again,
since this is not iterated but done only starting with given (and presumably smooth) bound-
ary data U nC1 in each time step, this yields a stable procedure.

With proper treatment of the boundary conditions, it can be shown that the LOD
method is second order accurate (see Example 11.1). It can also be shown that this method,
like full Crank–Nicolson, is unconditionally stable for any time step.

9.8.2 The alternating direction implicit method

A modification of the LOD method is also often used, in which the two steps each involve
discretization in only one spatial direction at the advanced time level (giving decoupled
tridiagonal systems again) but coupled with discretization in the opposite direction at the
old time level. The classical method of this form is

U �
ij D U n

ij C
k

2
.D2

y U n
ij C D2

xU �
ij /; (9.38)

U nC1
ij D U �

ij C
k

2
.D2

xU �
ij C D2

yU nC1
ij /: (9.39)

This is called the alternating direction implicit (ADI) method and was first introduced by
Douglas and Rachford [26]. This again gives decoupled tridiagonal systems to solve in
each step:

�
I �

k

2
D2

x

�
U � D

�
I C

k

2
D2

y

�
U n; (9.40)

�
I �

k

2
D2

y

�
U nC1 D

�
I C

k

2
D2

x

�
U �: (9.41)

With this method, each of the two steps involves diffusion in both the x- and the
y-direction. In the first step the diffusion in x is modeled implicitly, while diffusion in y is
modeled explicitly, with the roles reversed in the second step. In this case each of the two
steps can be shown to give a first order accurate approximation to the full heat equation
over time k=2, so that U � represents a first order accurate approximation to the solution at
time tnC1=2. Because of the symmetry of the two steps, however, the local error introduced
in the second step almost exactly cancels the local error introduced in the first step, so that
the combined method is in fact second order accurate over the full time step.

Because U � does approximate the solution at time tnC1=2 in this case, it is possible
to simply evaluate the given boundary conditions at time tnC1=2 to generate the necessary
boundary values for U �. This will maintain second order accuracy. A better error constantD
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200 Chapter 9. Diffusion Equations and Parabolic Problems

can be achieved by using slightly modified boundary data which introduces the expected
error in U � into the boundary data that should be canceled out by the second step.

9.9 Other discretizations
For illustration purposes we have considered only the classic Crank–Nicolson method con-
sisting of second order centered approximation to uxx coupled with the trapezoidal method
for time stepping. However, an infinite array of other combinations of spatial approxima-
tion and time stepping methods could be considered, some of which may be preferable.
The following are a few possibilities:

� The second order accurate spatial difference operator could be replaced by a higher
order method, such as the fourth order accurate approximations of Section 2.20.1 in
one dimension of Section 3.5 in more dimensions.

� A spectral method could be used in the spatial dimension(s), as discussed in Sec-
tion 2.21. Note that in this case the linear system that must be solved in each time
step will be dense. On the other hand, for many problems it is possible to use a much
coarser grid for spectral methods, leading to relatively small linear algebra problems.

� The time-stepping procedure could be replaced by a different implicit method suit-
able for stiff equations, of the sort discussed in Chapter 8. In particular, for some
problems it is desirable to use an L-stable method. While the trapezoidal method
is stable, it does not handle underresolved transients well (recall Figure 8.4). For
some problems where diffusion is coupled with other processes there are constantly
high-frequency oscillations or discontinuities introduced that should be smoothed by
diffusion, and Crank–Nicolson can suffer from oscillations in time.

� The time stepping could be done by using a method such as the Runge–Kutta–
Chebyshev method described in Section 8.6. This is an explicit method that works
for mildly stiff problems with real eigenvalues, such as the heat equation.

� The time stepping could be done using the exponential time differencing (ETD)
methods described in Section 11.6. The heat equation with constant coefficients and
time-varying boundary conditions leads to a MOL discretization of the form (9.11),
where A is a constant matrix. If the centered difference approximation is used in one
dimension, then (9.12) holds, but even with other discretizations, or in more dimen-
sions, the semidiscrete system still has the form U 0.t/ D AU.t/ C g.t/. The exact
solution can be written in terms of the matrix exponential eAt and this form is used
in the ETD methods. The manner in which this is computed depends on whether A is
large and sparse (the typical case with a finite difference discretization) or small and
dense (as it might be if a spectral discretization is used in space). See Section 11.6.1
for more discussion of this.
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