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Chapter 6

Zero-Stability and
Convergence for Initial
Value Problems

6.1 Convergence
To discuss the convergence of a numerical method for the initial value problem, we focus
on a fixed (but arbitrary) time T > 0 and consider the error in our approximation to u.T /

computed with the method using time step k. The method converges on this problem if
this error goes to zero as k ! 0. Note that the number of time steps that we need to take
to reach time T increases as k ! 0. If we use N to denote this value (N D T=k), then
convergence means that

lim
k!0

N kDT

U N D u.T /: (6.1)

In principle a method might converge on one problem but not on another, or converge
with one set of starting values but not with another set. To speak of a method being
convergent in general, we require that it converges on all problems in a reasonably large
class with all reasonable starting values. For an r -step method we need r starting values.
These values will typically depend on k, and to make this clear we will write them as
U 0.k/; U 1.k/; : : : ; U r�1.k/. While these will generally approximate u.t/ at the times
t0 D 0; t1 D k, : : : ; tr�1 D .r � 1/k , respectively, as k ! 0, each of these times ap-
proaches t0 D 0. So the weakest condition we might put on our starting values is that they
converge to the correct initial value � as k ! 0:

lim
k!0

U �.k/ D � for � D 0; 1; : : : ; r � 1: (6.2)

We can now state the definition of convergence.

Definition 6.1. An r -step method is said to be convergent if applying the method to any
ODE (5.1) with f .u; t/ Lipschitz continuous in u, and with any set of starting values satis-
fying (6.2), we obtain convergence in the sense of (6.1) for every fixed time T > 0 at which
the ODE has a unique solution.

To be convergent, a method must be consistent, meaning as before that the local
truncation error (LTE) is o.1/ as k ! 0, and also zero-stable, as described later in this
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138 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

chapter. We will begin to investigate these issues by first proving the convergence of one-
step methods, which turn out to be zero-stable automatically. We start with Euler’s method
on linear problems, then consider Euler’s method on general nonlinear problems and finally
extend this to a wide class of one-step methods.

6.2 The test problem
Much of the theory presented below is based on examining what happens when a method
is applied to a simple scalar linear equation of the form

u0.t/ D �u.t/C g.t/ (6.3)

with initial data
u.t0/ D �:

The solution is then given by Duhamel’s principle (5.8),

u.t/ D e�.t�t0/�C
Z t

t0

e�.t��/g.�/ d�: (6.4)

6.3 One-step methods
6.3.1 Euler’s method on linear problems

If we apply Euler’s method to (6.3), we obtain

U nC1 D U n C k.�U n C g.tn//

D .1 C k�/U n C kg.tn/:
(6.5)

The LTE for Euler’s method is given by

�n D
�

u.tnC1/ � u.tn/

k

�
� .�u.tn/C g.tn//

D
�

u0.tn/C
1

2
ku00.tn/C O.k2/

�
� u0.tn/ (6.6)

D
1

2
ku00.tn/C O.k2/:

Rewriting this equation as

u.tnC1/ D .1 C k�/u.tn/C kg.tn/C k�n

and subtracting this from (6.5) gives a difference equation for the global error En:

EnC1 D .1 C k�/En � k�n: (6.7)

Note that this has exactly the same form as (6.5) but with a different nonhomogeneous term:
��n in place of g.tn/. This is analogous to equation (2.15) in the boundary value theoryD
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6.3. One-step methods 139

and again gives the relation we need between the local truncation error �n (which is easy
to compute) and the global error En (which we wish to bound). Note again that linearity
plays a critical role in making this connection. We will consider nonlinear problems below.

Because the equation and method we are now considering are both so simple, we
obtain an equation (6.7) that we can explicitly solve for the global error En. Applying the
recursion (6.7) repeatedly we see what form the solution should take:

En D .1 C k�/En�1 � k�n�1

D .1 C k�/Œ.1 C k�/En�2 � k�n�2� � k�n�1

D � � � :

By induction we can easily confirm that in general

En D .1 C k�/nE0 � k

nX

mD1

.1 C k�/n�m�m�1: (6.8)

(Note that some of the superscripts are powers while others are indices!) This has a form
that is very analogous to the solution (6.4) of the corresponding ordinary differential equa-
tion (ODE), where now .1 C k�/n�m plays the role of the solution operator of the homo-
geneous problem—it transforms data at time tm to the solution at time tn. The expression
(6.8) is sometimes called the discrete form of Duhamel’s principle.

We are now ready to prove that Euler’s method converges on (6.3). We need only
observe that

j1 C k�j � ekj�j (6.9)

and so
.1 C k�/n�m � e.n�m/kj�j � enkj�j � ej�jT ; (6.10)

provided that we restrict our attention to the finite time interval 0 � t � T , so that tn D
nk � T . It then follows from (6.8) that

jEnj � ej�jT
 

jE0j C k

nX

mD1

j�m�1j

!
(6.11)

� ej�jT
�

jE0j C nk max
1�m�n

j�m�1j
�
:

Let N D T=k be the number of time steps needed to reach time T and set

k�k1 D max
0�n�N �1

j�nj:

From (6.6) we expect

k�k1 �
1

2
kku00k1 D O.k/;

where ku00k1 is the maximum value of the function u00 over the interval Œ0;T �. Then for
t D nk � T , we have from (6.11) that

jEnj � ej�jT .jE0j C T k�k1/:D
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140 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

If (6.2) is satisfied then E0 ! 0 as k ! 0. In fact for this one-step method we would
generally take U 0 D u.0/ D �, in which case E0 drops out and we are left with

jEnj � ej�jT T k�k1 D O.k/ as k ! 0 (6.12)

and hence the method converges and is in fact first order accurate.
Note where stability comes into the picture. The one-step error Lm�1 D k�m�1

introduced in the mth step contributes the term .1 C k�/n�mLm�1 to the global error. The
fact that j.1 C k�/n�mj < ej�jT is uniformly bounded as k ! 0 allows us to conclude that
each contribution to the final error can be bounded in terms of its original size as a one-step
error. Hence the “naive analysis” of Section 5.5 is valid, and the global error has the same
order of magnitude as the local truncation error.

6.3.2 Relation to stability for boundary value problems

To see how this ties in with the definition of stability used in Chapter 2 for the BVP, it
may be useful to view Euler’s method as giving a linear system in matrix form, although
this is not the way it is used computationally. If we view the equations (6.5) for n D 0;

1; : : : ; N � 1 as a linear system AU D F for U D ŒU 1; U 2; : : : ; U N �T , then

A D
1

k

2
66666664

1

�.1 C k�/ 1

�.1 C k�/ 1
: : :

�.1 C k�/ 1

�.1 C k�/ 1

3
77777775

and

U D

2
66666664

U 1

U 2

U 3

:::

U N �1

U N

3
77777775
; F D

2
66666664

.1=k C �/U 0 C g.t0/

g.t1/

g.t2/
:::

g.tN �2/

g.tN �1/

3
77777775
:

We have divided both sides of (6.5) by k to conform to the notation of Chapter 2. Since
the matrix A is lower triangular, this system is easily solved by forward substitution, which
results in the iterative equation (6.5).

If we now let OU be the vector obtained from the true solution as in Chapter 2, then
subtracting A OU D F C � from AU D F , we obtain (2.15) (the matrix form of (6.7)) with
solution (6.8). We are then in exactly the same framework as in Chapter 2. So we have
convergence and a global error with the same magnitude as the local error provided that
the method is stable in the sense of Definition 2.1, i.e., that the inverse of the matrix A is
bounded independent of k for all k sufficiently small.

The inverse of this matrix is easy to compute. In fact we can see from the solution
(6.8) thatD
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6.3. One-step methods 141

A�1 D k

2
66666664

1

.1 C k�/ 1

.1 C k�/2 .1 C k�/ 1

.1 C k�/3 .1 C k�/2 .1 C k�/ 1
:::

: : :

.1 C k�/N �1 .1 C k�/N �2 .1 C k�/N �3 � � � .1 C k�/ 1

3
77777775
:

We easily compute using (A.10a) that

kA�1k1 D k

NX

mD1

j.1 C k�/N �mj

and so
kA�1k1 � kNej�jT D Tej�jT :

This is uniformly bounded as k ! 0 for fixed T . Hence the method is stable and kEk1 �
kA�1k1 k�k1 � Tej�jT k�k1, which agrees with the bound (6.12).

6.3.3 Euler’s method on nonlinear problems

So far we have focused entirely on linear equations. Practical problems are almost always
nonlinear, but for the initial value problem it turns out that it is not significantly more diffi-
cult to handle this case if we assume that f .u/ is Lipschitz continuous, which is reasonable
in light of the discussion in Section 5.2.

Euler’s method on u0 D f .u/ takes the form

U nC1 D U n C kf .U n/ (6.13)

and the truncation error is defined by

�n D
1

k
.u.tnC1/ � u.tn// � f .u.tn//

D
1

2
ku00.tn/C O.k2/;

just as in the linear case. So the true solution satisfies

u.tnC1/ D u.tn/C kf .u.tn// C k�n

and subtracting this from (6.13) gives

EnC1 D En C k.f .U n/ � f .u.tn/// � k�n: (6.14)

In the linear case f .U n/ � f .u.tn// D �En and we get the relation (6.7) for En. In the
nonlinear case we cannot express f .U n/ � f .u.tn// directly in terms of the error En in
general. However, using the Lipschitz continuity of f we can get a bound on this in terms
of En:

jf .U n/ � f .u.tn//j � LjU n � u.tn/j D LjEnj:D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 142i

i
i

i

i
i

i
i

142 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

Using this in (6.14) gives

jEnC1j � jEnj C kLjEnj C kj�nj D .1 C kL/jEnj C kj�nj: (6.15)

From this inequality we can show by induction that

jEnj � .1 C kL/njE0j C k

nX

mD1

.1 C kL/n�mj�m�1j

and so, using the same steps as in obtaining (6.12) (and again assuming E0 D 0), we obtain

jEnj � eLT T k�k1 D O.k/ as k ! 0 (6.16)

for all n with nk � T , proving that the method converges. In the linear case L D j�j and
this reduces to exactly (6.12).

6.3.4 General one-step methods

A general explicit one-step method takes the form

U nC1 D U n C k‰.U n; tn; k/ (6.17)

for some function ‰, which depends on f of course. We will assume that ‰.u; t; k/ is
continuous in t and k and Lipschitz continuous in u, with Lipschitz constant L0 that is
generally related to the Lipschitz constant of f .

Example 6.1. For the two-stage Runge–Kutta method of Example 5.11, we have

‰.u; t; k/ D f

�
u C

1

2
kf .u/

�
: (6.18)

If f is Lipschitz continuous with Lipschitz constant L, then ‰ has Lipschitz constant
L0 D L C 1

2
kL2.

The one-step method (6.17) is consistent if

‰.u; t; 0/ D f .u; t/

for all u; t , and ‰ is continuous in k. The local truncation error is

�n D
�

u.tnC1/ � u.tn/

k

�
�‰.u.tn/; tn; k/:

We can show that any one-step method satisfying these conditions is convergent. We
have

u.tnC1/ D u.tn/C k‰.u.tn/; tn; k/C k�n

and subtracting this from (6.17) gives

EnC1 D En C k .‰.U n; tn; k/ �‰.u.tn/; tn; k// � k�n:

Using the Lipschitz condition we obtain

jEnC1j � jEnj C kL0jEnj C kj�nj:

This has exactly the same form as (6.15) and the proof of convergence proceeds exactly as
from there.D
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6.4. Zero-stability of linear multistep methods 143

6.4 Zero-stability of linear multistep methods
The convergence proof of the previous section shows that for one-step methods, each one-
step error k�m�1 has an effect on the global error that is bounded by eL0T jk�m�1j. Al-
though the error is possibly amplified by a factor eL0T , this factor is bounded independent
of k as k ! 0. Consequently the method is stable: the global error can be bounded in
terms of the sum of all the one-step errors and hence has the same asymptotic behavior as
the LTE as k ! 0. This form of stability is often called zero-stability in ODE theory, to
distinguish it from other forms of stability that are of equal importance in practice. The
fact that a method is zero-stable (and converges as k ! 0) is no guarantee that it will give
reasonable results on the particular grid with k > 0 that we want to use in practice. Other
“stability” issues of a different nature will be taken up in the next chapter.

But first we will investigate the issue of zero-stability for general LMMs, where the
theory of the previous section does not apply directly. We begin with an example showing
a consistent LMM that is not convergent. Examining what goes wrong will motivate our
definition of zero-stability for LMMs.

Example 6.2. The LMM

U nC2 � 3U nC1 C 2U n D �kf .U n/ (6.19)

has an LTE given by

�n D
1

k
Œu.tnC2/ � 3u.tnC1/C 2u.tn/C ku0.tn/� D

5

2
ku00.tn/C O.k2/;

so the method is consistent and “first order accurate.” But in fact the global error will not
exhibit first order accuracy, or even convergence, in general. This can be seen even on the
trivial initial-value problem

u0.t/ D 0; u.0/ D 0 (6.20)

with solution u.t/ � 0. In this problem, equation (6.19) takes the form

U nC2 � 3U nC1 C 2U n D 0: (6.21)

We need two starting values U 0 and U 1. If we take U 0 D U 1 D 0, then (6.21) generates
U n D 0 for all n and in this case we certainly converge to correct solution, and in fact we
get the exact solution for any k.

But in general we will not have the exact value U 1 available and will have to approx-
imate this, introducing some error into the computation. Table 6.1 shows results obtained
by applying this method with starting data U 0 D 0, U 1 D k. Since U 1.k/ ! 0 as k ! 0,
this is valid starting data in the context of Definition 6.1 of convergence. If the method is
convergent, we should see that U N , the computed solution at time T D 1, converges to
zero as k ! 0. Instead it blows up quite dramatically. Similar results would be seen if we
applied this method to an arbitrary equation u0 D f .u/ and used any one-step method to
compute U 1 from U 0.

The homogeneous linear difference equation (6.21) can be solved explicitly for U n

in terms of the starting values U 0 and U 1. We obtain

U n D 2U 0 � U 1 C 2n.U 1 � U 0/: (6.22)D
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144 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

Table 6.1. Solution U N to (6.21) with U 0 D 0, U 1 D k and various values of k D 1=N .

N U N

5 6.2
10 1023
20 5:4 � 104

It is easy to verify that this satisfies (6.21) and also the starting values. (We’ll see how to
solve general linear difference equations in the next section.)

Since u.t/ D 0, the error is En D U n and we see that any initial errors in U 1 or
U 0 are magnified by a factor 2n in the global error (except in the special case U 1 D U 0).
This exponential growth of the error is the instability that leads to nonconvergence. To rule
out this sort of growth of errors, we need to be able to solve a general linear difference
equation.

6.4.1 Solving linear difference equations

We briefly review one solution technique for linear difference equations; see Section D.2.1
for a different approach. Consider the general homogeneous linear difference equation

rX

jD0

˛j U nCj D 0: (6.23)

Eventually we will look for a particular solution satisfying given initial conditions

U 0;U 1; : : : ;U r�1;

but to begin with we will find the general solution of the difference equation in terms of r

free parameters. We will hypothesize that this equation has a solution of the form

U n D �n (6.24)

for some value of � (here �n is the nth power!). Plugging this into (6.23) gives

rX

jD0

˛j�
nCj D 0

and dividing by �n yields
rX

jD0

˛j�
j D 0: (6.25)

We see that (6.24) is a solution of the difference equation if � satisfies (6.25), i.e., if � is a
root of the polynomial

�.�/ D
rX

jD0

˛j�
j :

D
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6.4. Zero-stability of linear multistep methods 145

Note that this is just the first characteristic polynomial of the LMM introduced in (5.49). In
general �.�/ has r roots �1; �2; : : : ; �r and can be factored as

�.�/ D ˛r.� � �1/.� � �2/ � � � .� � �r /:

Since the difference equation is linear, any linear combination of solutions is again a
solution. If �1; �2; : : : ; �r are distinct (�i ¤ �j for i ¤ j ), then the r distinct solutions �n

i

are linearly independent and the general solution of (6.23) has the form

U n D c1�
n
1 C c2�

n
2 C � � � C cr�

n
r ; (6.26)

where c1; : : : ; cr are arbitrary constants. In this case, every solution of the difference
equation (6.23) has this form. If initial conditions U 0; U 1; : : : ; U r�1 are specified, then
the constants c1; : : : ; cr can be uniquely determined by solving the r � r linear system

c1 C c2 C � � � C cr D U 0;

c1�1 C c2�2 C � � � C cr�r D U 1; (6.27)
:::

:::

c1�
r�1
1 C c2�

r�1
2 C � � � C cr�

r�1
r D U r�1:

Example 6.3. The characteristic polynomial for the difference equation (6.21) is

�.�/ D 2 � 3� C �2 D .� � 1/.� � 2/ (6.28)

with roots �1 D 1; �2 D 2. The general solution has the form

U n D c1 C c2 � 2n

and solving for c1 and c2 from U 0 and U 1 gives the solution (6.22).
This example indicates that if �.�/ has any roots that are greater than one in modu-

lus, the method will not be convergent. It turns out that the converse is nearly true: if all
the roots have modulus no greater than one, then the method is convergent, with one pro-
viso. There must be no repeated roots with modulus equal to one. The next two examples
illustrate this.

If the roots are not distinct, say, �1 D �2 for simplicity, then �n
1 and �n

2 are not
linearly independent and the U n given by (6.26), while still a solution, is not the most
general solution. The system (6.27) would be singular in this case. In addition to �n

1
there

is also a solution of the form n�n
1

and the general solution has the form

U n D c1�
n
1 C c2n�n

1 C c3�
n
3 C � � � C cr�

n
r :

If in addition �3 D �1, then the third term would be replaced by c3n2�n
1

. Similar modifica-
tions are made for any other repeated roots. Note how similar this theory is to the standard
solution technique for an r th order linear ODE.

Example 6.4. Applying the consistent LMM

U nC2 � 2U nC1 C U n D
1

2
k.f .U nC2/ � f .U n// (6.29)D
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146 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

to the differential equation u0.t/ D 0 gives the difference equation

U nC2 � 2U nC1 C U n D 0:

The characteristic polynomial is

�.�/ D �2 � 2� C 1 D .� � 1/2 (6.30)

so �1 D �2 D 1. The general solution is

U n D c1 C c2n:

For particular starting values U 0 and U 1 the solution is

U n D U 0 C .U 1 � U 0/n:

Again we see that the solution grows with n, although not as dramatically as in Example 6.2
(the growth is linear rather than exponential). But this growth is still enough to destroy
convergence. If we take the same starting values as before, U 0 D 0 and U 1 D k, then
U n D kn and so

lim
k!0

N kDT

U N D kN D T:

The method converges to the function v.t/ D t rather than to u.t/ D 0, and hence the
LMM (6.29) is not convergent.

This example shows that if �.�/ has a repeated root of modulus 1, then the method
cannot be convergent.

Example 6.5. Now consider the consistent LMM

U nC3 � 2U nC2 C
5

4
U nC1 �

1

4
U n D

1

4
hf .U n/: (6.31)

Applying this to (6.20) gives

U nC3 � 2U nC2 C
5

4
U nC1 �

1

4
U n D 0

and the characteristic polynomial is

�.�/ D �3 � 2�2 C
5

4
� �

1

4
D .� � 1/.� � 0:5/2: (6.32)

So �1 D 1; �2 D �3 D 1=2 and the general solution is

U n D c1 C c2

�
1

2

�n

C c3n

�
1

2

�n

:

Here there is a repeated root but with modulus less than 1. The linear growth of n is then
overwhelmed by the decay of .1=2/n.

For this three-step method we need three starting values U 0; U 1, U 2 and we can
find c1; c2; c3 in terms of them by solving a linear system similar to (6.27). Each ci willD
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6.4. Zero-stability of linear multistep methods 147

be a linear combination of U 0; U 1; U 2 and so if U �.k/ ! 0 as k ! 0, then ci.k/ ! 0

as k ! 0 also. The value U N computed at time T with step size k (where kN D T ) has
the form

U N D c1.k/C c2.k/

�
1

2

�N

C c3.k/N

�
1

2

�N

: (6.33)

Now we see that
lim
k!0

N kDT

U N D 0

and so the method (6.31) converges on u0 D 0 with arbitrary starting values U �.k/ satisfy-
ing U �.k/ ! 0 as k ! 0. (In fact, this LMM is convergent in general.)

More generally, if �.�/ has a root �j that is repeated m times, then U N will involve
terms of the form N s�N

j for s D 0; 1; : : : ; m � 1. This converges to zero as N ! 1
provided j�j j < 1. The algebraic growth of N s is overwhelmed by the exponential decay
of �N

j . This shows that repeated roots are not a problem as long as they have magnitude
strictly less than 1.

With the above examples as motivation, we are ready to state the definition of zero-
stability.

Definition 6.2. An r-step LMM is said to be zero-stable if the roots of the characteristic
polynomial �.�/ defined by (5.49) satisfy the following conditions:

j�j j � 1 for j D 1; 2; ; : : : ; r:

If �j is a repeated root, then j�j j < 1:
(6.34)

If the conditions (6.34) are satisfied for all roots of �, then the polynomial is said to
satisfy the root condition.

Example 6.6. The Adams methods have the form

U nCr D U nCr�1 C k

rX

jD1

ˇjf .U
nCj /

and hence
�.�/ D �r � �r�1 D .� � 1/�r�1:

The roots are �1 D 1 and �2 D � � � D �r D 0. The root condition is clearly satisfied and all
the Adams–Bashforth and Adams–Moulton methods are zero-stable.

The given examples certainly do not prove that zero-stability as defined above is a
sufficient condition for convergence. We looked at only the simplest possible ODE u0.t/ D
0 and saw that things could go wrong if the root condition is not satisfied. It turns out,
however, that the root condition is all that is needed to prove convergence on the general
initial value problem (in the sense of Definition 6.1).

Theorem 6.3 (Dahlquist [22]). For LMMs applied to the initial value problem for u0.t/ D
f .u.t/; t/,

consistency C zero-stability () convergence: (6.35)D
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148 Chapter 6. Zero-Stability and Convergence for Initial Value Problems

This is the analogue of the statement (2.21) for the BVP. A proof of this result can be
found in [43].

Note: A consistent LMM always has one root equal to 1, say, �1 D 1, called the
principal root. This follows from (5.50). Hence a consistent one-step LMM (such as
Euler, backward Euler, trapezoidal) is certainly zero-stable. More generally we have proved
in Section 6.3.4 that any consistent one-step method (that is a Lipschitz continuous) is
convergent. Such methods are automatically “zero-stable” and behave well as k ! 0. We
can think of zero-stability as meaning “stable in the limit as k ! 0.”

Although a consistent zero-stable method is convergent, it may have other stability
problems that show up if the time step k is chosen too large in an actual computation.
Additional stability considerations are the subject of the next chapter.
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