Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Chapter 4

Iterative Methods for
Sparse Linear Systems

This chapter contains an overview of several iterative methods for solving the large sparse
linear systems that arise from discretizing elliptic equations. Large sparse linear systems
arise from many other practical problems, too, of course, and the methods discussed here
are useful in other contexts as well. Except when the matrix has very special structure and
fast direct methods of the type discussed in Section 3.7 apply, iterative methods are usually
the method of choice for large sparse linear systems.

The classical Jacobi, Gauss—Seidel, and successive overrelaxation (SOR) methods
are introduced and briefly discussed. The bulk of the chapter, however, concerns more
modern methods for solving linear systems that are typically much more effective for large-
scale problems: preconditioned conjugate-gradient (CG) methods, Krylov space methods
such as generalized minimum residual (GMRES), and multigrid methods.

4.1 Jacobi and Gauss—Seidel

In this section two classical iterative methods, Jacobi and Gauss—Seidel, are introduced to
illustrate the main issues. It should be stressed at the beginning that these are poor methods
in general which converge very slowly when used as standalone methods, but they have
the virtue of being simple to explain. Moreover, these methods are sometimes used as
building blocks in more sophisticated methods, e.g., Jacobi may be used as a smoother for
the multigrid method, as discussed in Section 4.6.

We again consider the Poisson problem where we have the system of equations
(3.10). We can rewrite this equation as

1 h?
ujj = Z(”i—l,j + i1, Ui+ Uijy1) — Tfij- 4.1

In particular, note that for Laplace’s equation (where f;; = 0), this simply states that the
value of u at each grid point should be the average of its four neighbors. This is the discrete
analogue of the well-known fact that a harmonic function has the following property: the
value at any point (x, y) is equal to the average value around a closed curve containing the
point, in the limit as the curve shrinks to the point. Physically this also makes sense if we

69

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

70 Chapter 4. lterative Methods for Sparse Linear Systems

think of the heat equation. Unless the temperature at this point is equal to the average of
the temperature at neighboring points, there will be a net flow of heat toward or away from
this point.

The equation (4.1) suggests the following iterative method to produce a new estimate
ut*+11 from a current guess ulkl:

2
k+1] _ 1 (1 (k] (k] (K] h
“ij =3 (”i—l,j tuify T+ ”i,j+1) - Tfif‘ (4.2)
This is the Jacobi iteration for the Poisson problem, and it can be shown that for this
particular problem it converges from any initial guess [(although very slowly).

Here is a short section of MATLAB code that implements the main part of this itera-
tion:

for iter=0:maxiter
for j=2: (m+1)
for i=2: (m+1)
unew(i,j) = 0.25*(u(i-1,3) + u(i+1,j) +
u(i,j-1) + u(i,j+1) - h~2 * £(i,3));
end
end
U = unew;
end

Here it is assumed that u initially contains the guess «[%! and that boundary data are stored
inu(l,:), u(m+2,:), u(:,1), and u(:,m+2). The indexingis off by 1 from
what might be expected since MATLAB begins arrays with index 1, not 0.

Note that one might be tempted to dispense with the variable unew and replace the
above code with

for iter=0:maxiter
for j=2: (m+1)
for i=2: (m+1)
u(i,j) = 0.25*(u(i-1,3) + u(i+1,3j) +
u(i,j-1) + u(i,j+1) - h~ 2 * £(4i,3));
end
end
end

This would not give the same results, however. In the correct code for Jacobi we
compute new values of u based entirely on old data from the previous iteration, as required
from (4.2). In the second code we have already updated u(i-1,j) and u(i,j-1)
before updating u (1, j), and these new values will be used instead of the old ones. The
latter code thus corresponds to the method

1 h?
k+1] _ k1] | K] k1] | K]
wy =g (u,._l,j tuiy Uyt ”i,j+1) - Tfij- (4.3)

This is what is known as the Gauss—Seidel method, and it would be a lucky coding er-
ror since this method generally converges about twice as fast as Jacobi does. The Jacobi

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.2. Analysis of matrix splitting methods 71

method is sometimes called the method of simultaneous displacements, while Gauss—Seidel
is known as the method of successive displacements. Later we’ll see that Gauss—Seidel can
be improved by using SOR.

Note that if one actually wants to implement Jacobi in MATLAB, looping over i and
J 1is quite slow and it is much better to write the code in vectorized form, e.g.,

I =2:(m+l);
J = 2:(m+l);
for iter=0:maxiter
u(I,J) = 0.25*(u(1-1,J) + u(I+1,J) + u(r,J-1)
+ u(I,JdJ+1) - h"2 * £(1,J));
end

It is somewhat harder to implement Gauss—Seidel in vectorized form.
Convergence of these methods will be discussed in Section 4.2. First we note some
important features of these iterative methods:

o The matrix A is never stored. In fact, for this simple constant coefficient problem, we
don’t even store all the 5m? nonzeros which all have the value 1/ 4% or —4/ h?. The
values 0.25 and /? in the code are the only values that are “stored.” (For a variable
coefficient problem where the coefficients are different at each point, we would in
general have to store all the nonzeros.)

e Hence the storage is optimal—essentially only the 72 solution values are stored in
the Gauss—Seidel method. The above code for Jacobi uses 2m? since unew is stored
as well as u, but one could eliminate most of this with more careful coding.

e Each iteration requires O(m?) work. The total work required will depend on how
many iterations are required to reach the desired level of accuracy. We will see that
with these particular methods we require O(m? logm) iterations to reach a level of
accuracy consistent with the expected global error in the solution (as 47 — 0 we
should require more accuracy in the solution to the linear system). Combining this
with the work per iteration gives a total operation count of O(m* logm). This looks
worse than Gaussian elimination with a banded solver, although since logm grows
so slowly with m it is not clear which is really more expensive for a realistic-size
matrix. (And the iterative method definitely saves on storage.)

Other iterative methods also typically require O(m?) work per iteration but may
converge much faster and hence result in less overall work. The ideal would be to converge
in a number of iterations that is independent of / so that the total work is simply O(m?).
Multigrid methods (see Section 4.6) can achieve this, not only for Poisson’s problem but
also for many other elliptic equations.

4.2 Analysis of matrix splitting methods

In this section we study the convergence of the Jacobi and Gauss—Seidel methods. As a
simple example we will consider the one-dimensional analogue of the Poisson problem,
u”(x) = f(x) as discussed in Chapter 2. Then we have a tridiagonal system of equations

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

72 Chapter 4. lterative Methods for Sparse Linear Systems

(2.9) to solve. In practice we would never use an iterative method for this system, since
it can be solved directly by Gaussian elimination in O(m) operations, but it is easier to
illustrate the iterative methods in the one-dimensional case, and all the analysis done here
carries over almost unchanged to the two-dimensional and three-dimensional cases.

The Jacobi and Gauss—Seidel methods for this problem take the form

. k Lk k
Jacobi uE +_ 3 (uE_]l + ”54]1 - hzfi) , 4.4
1
Gauss—Seidel uEkH] =3 (ugk:l] + uyﬂl — hzf,-) . 4.5)
Both methods can be analyzed by viewing them as based on a splitting of the matrix A into
A=M—N, (4.6)

where M and N are two m x m matrices. Then the system Au = f can be written as
Mu—Nu=f =— Mu=Nu+ f,
which suggests the iterative method
Muk 1 = N[k 4 7, (4.7)

In each iteration we assume u!%] is known and we obtain u!¥+1] by solving a linear system
with the matrix M. The basic idea is to define the splitting so that M contains as much
of A as possible (in some sense) while keeping its structure sufficiently simple that the
system (4.7) is much easier to solve than the original system with the full A. Since systems
involving diagonal, lower, or upper triangular matrices are relatively simple to solve, there
are some obvious choices for the matrix M . To discuss these in a unified framework, write

A=D—-L-U 4.8)

in general, where D is the diagonal of A, —L is the strictly lower triangular part, and —U
is the strictly upper triangular part. For example, the tridiagonal matrix (2.10) would give

-2 0 0 0
0o -2 0 1 0 0
1 0 -2 0 1 10 0
P=i Lo TR

with —U = —LT being the remainder of A4.
In the Jacobi method, we simply take M to be the diagonal part of A, M = D, so
that

—_ O
—_—O =
—

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.2. Analysis of matrix splitting methods 73

The system (4.7) is then diagonal and extremely easy to solve:

0 1
10 1
1 10 1 n2
u[k+11:E o u[k]—y, (4.9)

which agrees with (4.4).

In Gauss—Seidel, we take M to be the full lower triangular portion of 4, so M =
D — L and N = U. The system (4.7) is then solved using forward substitution, which
results in (4.5).

To analyze these methods, we derive from (4.7) the update formula

w1 = M NR ot

(4.10)
= GulM + ¢,
where G = M~ N is the iteration matrixand ¢ = M~ f.
Let u* represent the true solution to the system Au = f. Then
u* =Gu* +c. (4.11)

This shows that the true solution is a fixed point, or equilibrium, of the iteration (4.10),
i.e., if ulkl = u*, then ulk 11 = 3 ag well. However, it is not clear that this is a stable
equilibrium, i.e., that we would converge toward u™ if we start from some incorrect initial
guess.

If elk] = 4Lkl _ 4> represents the error, then subtracting (4.11) from (4.10) gives

ekt — Gelkl,
and so after k steps we have
ekl = gk elol, (4.12)

From this we can see that the method will converge from any initial guess #[%, provided
Gk — 0 (an m x m matrix of zeros) as k — co. When is this true?
For simplicity, assume that G is a diagonalizable matrix, so that we can write

G = RTR7!,

where R is the matrix of right eigenvectors of G and I" is a diagonal matrix of eigenvalues
Y1s Y2, ---» Ym. Then

G* = RT*R71, (4.13)
where f
Y1
vy

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

74 Chapter 4. lterative Methods for Sparse Linear Systems

Clearly the method converges if |y,| < 1 forall p =1, 2,..., m,ie.,if p(G) < 1, where
p is the spectral radius. See Appendix D for a more general discussion of the asymptotic
properties of matrix powers.

4.2.1 Rate of convergence

From (4.12) we can also determine how rapidly the method can be expected to converge in
cases where it is convergent. Using (4.13) in (4.12) and using the 2-norm, we obtain

™o < IT¥[| RILNR™ 2112 = pFie2 (R) e, (4.14)

where p = p(G), and k2(R) = || R||2||R™!||2 is the condition number of the eigenvector
matrix.

If the matrix G is a normal matrix (see Section C.4), then the eigenvectors are or-
thogonal and k,(R) = 1. In this case we have

le™5 < p* el (4.15)

If G is nonnormal, then the spectral radius of G gives information about the asymp-
totic rate of convergence as k — oo but may not give a good indication of the behavior
of the error for small k. See Section D.4 for more discussion of powers of nonnormal ma-
trices and see Chapters 24-27 of [92] for some discussion of iterative methods on highly
nonnormal problems.

Note: These methods are linearly convergent, in the sense that |[e/*T1]| < p| et]|
and it is the first power of ||e/¥]|| that appears on the right. Recall that Newton’s method is
typically quadratically convergent, and it is the square of the previous error that appears on
the right-hand side. But Newton’s method is for a nonlinear problem and requires solving
a linear system in each iteration. Here we are looking at solving such a linear system.

Example 4.1. For the Jacobi method we have

G=D'YD-A)=I-D"4.
If we apply this method to the boundary value problem " = f, then
G=1+ —A.
2

The eigenvectors of this matrix are the same as the eigenvectors of A, and the eigenvalues
are hence

where A, is given by (2.23). So
yp =cos(pmh), p=12, ..., m,

where i = 1/(m + 1). The spectral radius is

1
p(G) = |y1| = cos(mh) ~ 1 — Enzhz + 0(h*). (4.16)

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.2. Analysis of matrix splitting methods 75

The spectral radius is less than 1 for any /2 > 0 and the Jacobi method converges. Moreover,
the G matrix for Jacobi is symmetric as seen in (4.9), and so (4.15) holds and the error is
monotonically decreasing at a rate given precisely by the spectral radius. Unfortunately,
though, for small / this value is very close to 1, resulting in very slow convergence.

How many iterations are required to obtain a good solution? Suppose we want to
reduce the error to ||e!*]|| & €||el%)]| (where typically ||e[%}|| is on the order of 1).! Then we
want ,ok ~ € and so

k ~ log(€)/ log(p). (4.17)

How small should we choose €? To get full machine precision we might choose € to be
close to the machine round-off level. However, this typically would be very wasteful. For
one thing, we rarely need this many correct digits. More important, however, we should
keep in mind that even the exact solution u* of the linear system Au = f is only an
approximate solution of the differential equation we are actually solving. If we are using a
second order accurate method, as in this example, then u} differs from u(x;) by something
on the order of /42 and so we cannot achieve better accuracy than this no matter how well
we solve the linear system. In practice we should thus take € to be something related to the
expected global error in the solution, e.g., ¢ = Ch? for some fixed C.

To estimate the order of work required asymptotically as & — 0, we see that the
above choice gives

k = (log(C) + 21og(h))/ log(p). (4.18)

For Jacobi on the boundary value problem we have p ~ 1 — %nzhz and hence log(p) ~
—%nzhz. Since & = 1/(m + 1), using this in (4.18) gives

k = O(m?logm) as m — oo. (4.19)

Since each iteration requires O(m) work in this one-dimensional problem, the total work
required to solve the problem is

total work = O(m> logm).

Of course this tridiagonal problem can be solved exactly in O(m) work, so we would be
foolish to use an iterative method at all here!

For a Poisson problem in two or three dimensions it can be verified that (4.19) still
holds, although now the work required per iteration is O(m?) or O(m?), respectively, if
there are m grid points in each direction. In two dimensions we would thus find that

total work = O(m* logm). (4.20)

Recall from Section 3.7 that Gaussian elimination on the banded matrix requires O(m*)
operations, while other direct methods can do much better, so Jacobi is still not competitive.
Luckily there are much better iterative methods.

! Assuming we are using some grid function norm, as discussed in Appendix A. Note that for the 2-norm in

one dimension this requires introducing a factor of ~/% in the definitions of both [|le¥1]| and ||el®!]|, but these
factors cancel out in choosing an appropriate €.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

76 Chapter 4. lterative Methods for Sparse Linear Systems

For the Gauss—Seidel method applied to the Poisson problem in any number of space
dimensions, it can be shown that

p(G) =1—m*h*+ O(h*) as h — 0. (4.21)

This still approaches 1 as # — 0, but it is better than (4.16) by a factor of 2, and the number
of iterations required to reach a given tolerance typically will be half the number required
with Jacobi. The order of magnitude figure (4.20) still holds, however, and this method
also is not widely used.

4.2.2 Successive overrelaxation

If we look at how iterates u!¥] behave when Gauss—Seidel is applied to a typical problem,
we will often see that uEkH] is closer to u} than uEk] was, but only by a little bit. The Gauss—
Seidel update moves u; in the right direction but is far too conservative in the amount it
allows u; to move. This suggests that we use the following two-stage update, illustrated

again for the problem u” = f:

1
uf = = (4l -)

2 ak (4.22)
D i)
where w is some scalar parameter. If w = 1, then uEkH] = uiGS is the Gauss—Seidel

update. If @ > 1, then we move farther than Gauss—Seidel suggests. In this case the
method is known as successive overrelaxation (SOR).

If o < 1, then we would be underrelaxing, rather than overrelaxing. This would be
even less effective than Gauss—Seidel as a standalone iterative method for most problems,
although underrelaxation is sometimes used in connection with multigrid methods (see
Section 4.6).

The formulas in (4.22) can be combined to yield

k w k k k
af = S (=) + (- o, (4.23)
For a general system Au = f with 4 = D— L —U it can be shown that SOR with forward
sweeps corresponds to a matrix splitting method of the form (4.7) with

M = l(D—a)L), N = l((l—a))D+a)U). (4.24)
w w

Analyzing this method is considerably trickier than with the Jacobi or Gauss—Seidel
methods because of the form of these matrices. A theorem of Ostrowski states that if A
is symmetric positive definite (SPD) and D — wL is nonsingular, then the SOR method
converges forall 0 < w < 2. Young [105] showed how to find the optimal @ to obtain
the most rapid convergence for a wide class of problems (including the Poisson problem).
This elegant theory can be found in many introductory texts. (For example, see [37], [42],
[96], [106]. See also [67] for a different introductory treatment based on Fourier series

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.2. Analysis of matrix splitting methods 77

and modified equations in the sense of Section 10.9, and see [3] for applications of this
approach to the 9-point Laplacian.)

For the Poisson problem in any number of space dimensions it can be shown that the
SOR method converges most rapidly if @ is chosen as

2 2—2nh
Port = T sin(eh) i
This is nearly equal to 2 for small /2. One might be tempted to simply set @ = 2 in general,
but this would be a poor choice since SOR does not then converge! In fact the convergence
rate is quite sensitive to the value of w chosen. With the optimal w it can be shown that the
spectral radius of the corresponding G' matrix is

Popt = Wopt — 1 &~ 1 —2mh,

but if w is changed slightly this can deteriorate substantially.

Even with the optimal @ we see that pop; — 1 as 4 — 0, but only linearly in / rather
than quadratically as with Jacobi or Gauss—Seidel. This makes a substantial difference in
practice. The expected number of iterations to converge to the required O(/?) level, the
analogue of (4.19), is now

kops = O(mlogm).

Figure 4.1 shows some computational results for the methods described above on
the two-point boundary value problem #” = f. The SOR method with optimal w is

Jacobi

Gauss-Seidel

-6 I I I I I I I I I

0 10 20 30 40 50 60 70 80 920 100

Figure 4.1. Errors versus k for three methods.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

78 Chapter 4. lterative Methods for Sparse Linear Systems

far superior to Gauss—Seidel or Jacobi, at least for this simple problem with a symmetric
coefficient matrix. For more complicated problems it can be difficult to estimate the optimal
, however, and other approaches are usually preferred.

4.3 Descent methods and conjugate gradients

The CG method is a powerful technique for solving linear systems Au = f when the
matrix 4 is SPD, or negative definite since negating the system then gives an SPD matrix.
This may seem like a severe restriction, but SPD methods arise naturally in many applica-
tions, such as the discretization of elliptic equations. There are several ways to introduce
the CG method and the reader may wish to consult texts such as [39], [79], [91] for other
approaches and more analysis. Here the method is first motivated as a descent method for
solving a minimization problem.
Consider the function ¢ : R — R defined by

P(u) = %uTAu —uly. (4.25)
This is a quadratic function of the variables u1, ..., u,. For example, if m = 2, then
o) = ¢(uy,uz) = %(a“u% + 2aauius + azul) —uy fi —uz fo.
Note that since A4 is symmetric, ay; = a;3. If A is positive definite, then plotting ¢ () as
a function of u and u, gives a parabolic bowl as shown in Figure 4.2(a). There is a unique

value u™* that minimizes ¢ (1) over all choices of u. At the minimum, the partial derivative
of ¢ with respect to each component of u is zero, which gives the equations

0

37¢ =ajuy +apus— f1 =0,

3¢1 (4.26)
—— = axiuy +axnuy — f =0.

31/[2

This is exactly the linear system Au = f that we wish to solve. So finding u™* that solves
this system can equivalently be approached as finding #* to minimize ¢(u). This is true
more generally when u € R and 4 € R™*™ is SPD. The function ¢ («) in (4.25) has a
unique minimum at the point #*, where V¢ (1*) = 0, and

Vo) = Au — f, (4.27)

so the minimizer solves the linear system Au = f.

If A is negative definite, then ¢ (u) instead has a unique maximum at u*, which
again solves the linear system. If A is indefinite (neither positive nor negative definite),
i.e., if the eigenvalues of A are not all of the same sign, then the function ¢ (u) still has a
stationary point with V¢ (#*) = 0 at the solution to Au = f, but this is a saddle point
rather than a minimum or maximum, as illustrated in Figure 4.2(b). It is much harder to
find a saddle point than a minimum. An iterative method can find a minimum by always
heading downhill, but if we are looking for a saddle point, it is hard to tell if we need to

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 79

\
NANeesse v %
N

N\Weaeeloy
e NI SIS TS

(a) (b)

Figure 4.2. (a) The function ¢ (u) for m = 2 in a case where A is symmetric and
positive definite. (b) The function ¢ (u) for m = 2 in a case where A is symmetric but
indefinite.

head uphill or downbhill from the current approximation. Since the CG method is based on
minimization, it is necessary for the matrix to be SPD. By viewing CG in a different way it
is possible to generalize it and obtain methods that also work on indefinite problems, such
as the GMRES algorithm described in Section 4.4.

4.3.1 The method of steepest descent

As a prelude to studying CG, we first review the method of steepest descent for minimizing
¢(u). As in all iterative methods we start with an initial guess u(and iterate to obtain
ui,us,.... Fornotational convenience we now use subscripts to denote the iteration num-
ber: uy instead of u!*l. This is potentially confusing since normally we use subscripts to
denote components of the vector, but the formulas below get too messy otherwise and we
will not need to refer to the components of the vector in the rest of this chapter.

From one estimate u;_; to u* we wish to obtain a better estimate u; by moving
downhill, based on values of ¢ (u). It seems sensible to move in the direction in which ¢ is
decreasing most rapidly, and go in this direction for as far as we can before ¢ (1) starts to
increase again. This is easy to implement, since the gradient vector V¢ (1) always points
in the direction of most rapid increase of ¢. So we want to set

Uk = g1 — -1 VP (ug—1) (4.28)
for some scalar ox—1, chosen to solve the minimization problem

min g (ux—1 — @V (ur—1)) . (4.29)

a€R

We expect ay—; > 0 and ax—; = 0 only if we are already at the minimum of ¢, i.e., only
ifup_; =u*.
For the function ¢ (1) in (4.25), the gradient is given by (4.27) and so

Vo(up—1) = Aug—1 — [= —rp_1, (4.30)

where rp_; = f — Auy_q is the residual vector based on the current approximation uy_ .
To solve the minimization problem (4.29), we compute the derivative with respect to o and
set this to zero. Note that

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

80 Chapter 4. lterative Methods for Sparse Linear Systems

o+ ar)= (%uTAu — qu) +a@TAu—rTf) + %aerAr (4.31)

and so

do(u +ar) T
- =7
da

Setting this to zero and solving for o gives

Au—rT f +arT ar.

VTV

= —. 4.32
* rT Ar (4.32)

The steepest descent algorithm thus takes the form

choose a guess ug
fork =1, 2,
rk—1 = f — Aug—y
if ||rg—1]| is less than some tolerance then stop
T T
-1 = (rj_y7k—1)/(r_; Ark—1)
Ufp = U1 + Cp—1Tk—1
end

Note that implementing this algorithm requires only that we be able to multiply a vector by
A, as with the other iterative methods discussed earlier. We do not need to store the matrix
A, and if A is very sparse, then this multiplication can be done quickly.

It appears that in each iteration we must do two matrix-vector multiplies, Aug_; to
compute 1, and then Arg_; to compute ;. However, note that

re = f—Auk
= f— A(ug—1 + ag—17k—1) (4.33)
=rp_1 —Op_1Arg_g.

So once we have computed Ari_; as needed for a1, we can also use this result to com-
pute rx. A better way to organize the computation is thus:

choose a guess ug
ro = f —Auo
fork =1, 2,
Wi—1 = Arg—q
ap—1 = L re—0)/ (] wie—y)
Uk = Uf—1 + Cf—1Tk—1
Tk = Fg—1 — Qg—1Wk—1
if || || is less than some tolerance then stop
end

Figure 4.3 shows how this iteration proceeds for a typical case with m = 2. This
figure shows a contour plot of the function ¢ (u) in the u;-u, plane (where u; and u,
mean the components of u here), along with several iterates u, of the steepest descent
algorithm. Note that the gradient vector is always orthogonal to the contour lines. We
move along the direction of the gradient (the “search direction” for this algorithm) to the

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 81

Figure 4.3. Several iterates of the method of steepest descent in the case m = 2.
The concentric ellipses are level sets of ¢ (u).

point where ¢ (u) is minimized along this line. This will occur at the point where this line
is tangent to a contour line. Consequently, the next search direction will be orthogonal to
the current search direction, and in two dimensions we simply alternate between only two
search directions. (Which particular directions depend on the location of u.)

If A is SPD, then the contour lines (level sets of ¢) are always ellipses. How rapidly
this algorithm converges depends on the geometry of these ellipses and on the particular
starting vector u¢ chosen. Figure 4.4(a) shows the best possible case, where the ellipses are
circles. In this case the iterates converge in one step from any starting guess, since the first
search direction ry generates a line that always passes through the minimum u* from any
point.

Figure 4.4(b) shows a bad case, where the ellipses are long and skinny and the iter-
ation slowly traverses back and forth in this shallow valley searching for the minimum. In
general steepest descent is a slow algorithm, particularly when m is large, and should not
be used in practice. Shortly we will see a way to improve this algorithm dramatically.

The geometry of the level sets of ¢(u) is closely related to the eigenstructure of
the matrix 4. In the case m = 2 as shown in Figures 4.3 and 4.4, each ellipse can be
characterized by a major and minor axis, as shown in Figure 4.5 for a typical level set.
The points vy and v, have the property that the gradient V¢ (v;) lies in the direction that
connects v; to the center u*, i.e.,

AUj—fZ)\j(Uj—u*) (434)
for some scalar A ;. Since /= Au*, this gives

Awj —u™) = Aj(v; —u®) (4.35)

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

82 Chapter 4. lterative Methods for Sparse Linear Systems

y

(a) // (b)

Figure 4.4. (a) If A is a scalar multiple of the identity, then the level sets of ¢(u)
are circular and steepest descent converges in one iteration from any initial guess uo. (b)
If the level sets of ¢ (u) are far from circular, then steepest descent may converge slowly.

U1

U2

Figure 4.5. The major and minor axes of the elliptical level set of ¢ (u) point in
the directions of the eigenvectors of A.

and hence each direction v; — u* is an eigenvector of the matrix 4, and the scalar A ; is an
eigenvalue.

If the eigenvalues of A are distinct, then the ellipse is noncircular and there are two
unique directions for which the relation (4.34) holds, since there are two one-dimensional
eigenspaces. Note that these two directions are always orthogonal since a symmetric matrix

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 83

A has orthogonal eigenvectors. If the eigenvalues of A are equal, A; = X,, then every
vector is an eigenvector and the level curves of ¢ () are circular. For m = 2 this happens
only if 4 is a multiple of the identity matrix, as in Figure 4.4(a).

The length of the major and minor axes is related to the magnitude of A; and A,.
Suppose that v; and v lie on the level set along which ¢ (1) = 1, for example. (Note that
ow*) = —%M*TAM* < 0, so this is reasonable.) Then

1
EujTAuj —v] Au* = 1. (4.36)

Taking the inner product of (4.35) with (v; — u*) and combining with (4.36) yields

2 4+ u*T Au*

x 4.37)

lvj —u*lly =

Hence the ratio of the length of the major axis to the length of the minor axis is

”Ul —u*|2 \/7 \/Z(—A (4.38)

lva = w2

where A; < X, and «(A) is the 2-norm condition number of 4. (Recall that in general
k2(A) = max; |A;|/ min; |A;| when A4 is symmetric.)

A multiple of the identity is perfectly conditioned, k, = 1, and has circular level
sets. Steepest descent converges in one iteration. An ill-conditioned matrix (k2 > 1) has
long skinny level sets, and steepest descent may converge very slowly. The example shown
in Figure 4.4(b) has «, = 50, which is not particularly ill-conditioned compared to the
matrices that often arise in solving differential equations.

When m > 2 the level sets of ¢ (1) are ellipsoids in m-dimensional space. Again the
eigenvectors of A determine the directions of the principal axes and the spread in the size
of the eigenvalues determines how stretched the ellipse is in each direction.

4.3.2 The A-conjugate search direction

The steepest descent direction can be generalized by choosing a search direction pg_; in
the kth iteration that might be different from the gradient direction rx_;. Then we set

Up = Up—1 + Og—1 Pk—1, (4.39)

where af_; is chosen to minimize ¢ (ux—; + apx—1) over all scalars «. In other words,
we perform a line search along the line through uy_; in the direction pg_; and find the
minimum of ¢ on this line. The solutionis at the point where the line is tangent to a contour
line of ¢, and

T
Pr_1Tk—1
R (4.40)
pk_lApk—l

A bad choice of search direction py_; would be a direction orthogonal to r_, since
then pg_; would be tangent to the level set of ¢ at uz_y, ¢ (1) could only increase along

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

84 Chapter 4. lterative Methods for Sparse Linear Systems

Uo

Figure 4.6. The CG algorithm converges in two iterations from any initial guess
uo in the case m = 2. The two search directions used are A-conjugate.

this line, and so uy = uj—_;. But as long as ka_lrk_l # 0, the new point u; will be
different from u_; and will satisfy ¢ (ug) < ¢ (ugx—1).

Intuitively we might suppose that the best choice for px_; would be the direction
of steepest descent rx_1, but Figure 4.4(b) illustrates that this does not always give rapid
convergence. A much better choice, if we could arrange it, would be to choose the direction
Pk—1 to point directly toward the solution #*, as shown in Figure 4.6. Then minimizing ¢
along this line would give uy = u*, in which case we would have converged.

Since we don’t know u*, it seems there is little hope of determining this direction in
general. But in two dimensions (2 = 2) it turns out that we can take an arbitrary initial
guess uo and initial search direction po and then from the next iterate u; determine the
direction p; that leads directly to the solution, as illustrated in Figure 4.6. Once we obtain
u1 by the formulas (4.39) and (4.40), we choose the next search direction p; to be a vector
satisfying

pTApo =0. (4.41)

Below we will show that this is the optimal search direction, leading directly to u, = u*.
When m > 2 we generally cannot converge in two iterations, but we will see below that it
is possible to define an algorithm that converges in at most 7 iterations to the exact solution
(in exact arithmetic, at least).

Two vectors po and p; that satisfy (4.41) are said to be A-conjugate. For any SPD
matrix A, the vectors u and v are A-conjugate if the inner product of u with Av is zero,
uT Av = 0. If A = I, this just means the vectors are orthogonal, and A-conjugacy is a
natural generalization of the notion of orthogonality. This concept is easily explained in
terms of the ellipses that are level sets of the function ¢ (#) defined by (4.25). Consider

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 85

an arbitrary point on an ellipse. The direction tangent to the ellipse at this point and the
direction that points toward the center of the ellipse are always A-conjugate. This is the
fact that allows us to determine the direction toward the center once we know a tangent
direction, which has been achieved by the line search in the first iteration. If 4 = I then
the ellipses are circles and the direction toward the center is simply the radial direction,
which is orthogonal to the tangent direction.

To prove that the two directions shown in Figure 4.6 are A-conjugate, note that the
direction py is tangent to the level set of ¢ at u; and so pg is orthogonal to the residual
ry = f— Au; = A(u* — uy), which yields

PeAW* —uy) =0. (4.42)

On the other hand, u* — u; = ap; for some scalar @ # 0 and using this in (4.42) gives
(4.41).

Now consider the case m = 3, from which the essential features of the general
algorithm will be more apparent. In this case the level sets of the function ¢ (u) are con-
centric ellipsoids, two-dimensional surfaces in R® for which the cross section in any two-
dimensional plane is an ellipse. We start at an arbitrary point u¢ and choose a search
direction pg (typically po = rp, the residual at uy). We minimize ¢(u) along the one-
dimensional line u¢ + apo, which results in the choice (4.40) for g, and we set u; =
Uy + o po- We now choose the search direction p; to be A-conjugate to po. In the pre-
vious example with m = 2 this determined a unique direction, which pointed straight to
u*. With m = 3 there is a two-dimensional space of vectors p; that are A-conjugate to po
(the plane orthogonal to the vector Apg). In the next section we will discuss the full CG
algorithm, where a specific choice is made that is computationally convenient, but for the
moment suppose p; is any vector that is both A-conjugate to pg and also linearly indepen-
dent from po. We again use (4.40) to determine ¢; so that uy; = u; + o p; minimizes
¢ (u) along the line u; + ap;.

We now make an observation that is crucial to understanding the CG algorithm for
general m. The two vectors po and p; are linearly independent and so they span a plane
that cuts through the ellipsoidal level sets of ¢(u), giving a set of concentric ellipses that
are the contour lines of ¢ (u) within this plane. The fact that py and p; are A-conjugate
means that the point u» lies at the center of these ellipses. In other words, when restricted
to this plane the algorithm so far looks exactly like the m = 2 case illustrated in Figure 4.6.

This means that %, not only minimizes ¢ () over the one-dimensional line #1 + ap;
but in fact minimizes ¢ (u) over the entire two-dimensional plane ug + apo + Bp; for all
choices of @ and B (with the minimum occurring at « = « and 8 = ay).

The next step of the algorithm is to choose a new search direction p, that is A-
conjugate to both py and pq. It is important that it be A-conjugate to both the previous
directions, not just the most recent direction. This defines a unique direction (the line
orthogonal to the plane spanned by 4po and Ap;). We now minimize ¢ (u) over the line
Ur + apy to obtain us = uy + oz pr (with oy given by (4.40)). It turns out that this
always gives u3 = u™, the center of the ellipsoids and the solution to our original problem
Au = f.

In other words, the direction p, always points from u, directly through the center of
the concentric ellipsoids. This follows from the three-dimensional version of the result we
showed above in two dimensions, that the direction tangent to an ellipse and the direction

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

86 Chapter 4. lterative Methods for Sparse Linear Systems

toward the center are always A-conjugate. In the three-dimensional case we have a plane
spanned by po and p; and the point u, that minimized ¢ (u) over this plane. This plane
must be the tangent plane to the level set of ¢ (1) through u,. This tangent plane is always
A-conjugate to the line connecting u, to u*.

Another way to interpret this process is the following. After one step, #; minimizes
¢ (u) over the one-dimensional line ug + apg. After two steps, #, minimizes ¢ (1) over
the two-dimensional plane ug + apg + B p1. After three steps, u3 minimizes ¢ (1) over the
three-dimensional space uy + apo + Bp1 + yp2. But this is all of R? (provided po, pi,
and p, are linearly independent) and so u3 = ug + ®opo + @1 p1 + a2 p> must be the
global minimizer u*.

For m = 3 this procedure always converges in at most three iterations (in exact
arithmetic, at least). It may converge to ™ in fewer iterations. For example, if we happen
to choose an initial guess uo that lies along one of the axes of the ellipsoids, then ry will
already point directly toward u*, and so u; = u™ (although this is rather unlikely).

However, there are certain matrices 4 for which it will always take fewer iterations
no matter what initial guess we choose. For example, if A4 is a multiple of the identity
matrix, then the level sets of ¢ (1) are concentric circles. In this case ry points toward u*
from any initial guess 1o and we always obtain convergence in one iteration. Note that in
this case all three eigenvalues of 4 are equal, Ay = A, = A3.

In the “generic” case (i.e., a random SPD matrix A4), all the eigenvalues of A are
distinct and three iterations are typically required. An intermediate case is if there are only
two distinct eigenvalues, e.g., A; = Ay # A3. In this case the level sets of ¢ appear circular
when cut by certain planes but appear elliptical when cut at other angles. As we might
suspect, it can be shown that the CG algorithm always converges in at most two iterations
in this case, from any initial u.

This generalizes to the following result for the analogous algorithm in 72 dimensions:
in exact arithmetic, an algorithm based on A-conjugate search directions as discussed above
converges in at most 7 iterations, where # is the number of distinct eigenvalues of the matrix
A e R™™ (n < m).

4.3.3 The conjugate-gradient algorithm

In the above description of algorithms based on A-conjugate search directions we required
that each search direction pj be A-conjugate to all previous search directions, but we did
not make a specific choice for this vector. In this section the full “conjugate gradient al-
gorithm” is presented, in which a specific recipe for each pj is given that has very nice
properties both mathematically and computationally. The CG method was first proposed
in 1952 by Hestenes and Stiefel [46], but it took some time for this and related methods to
be fully understood and widely used. See Golub and O’Leary [36] for some history of the
early developments.

This method has the feature mentioned at the end of the previous section: it always
converges to the exact solution of Au = f in a finite number of iterations n < m (in
exact arithmetic). In this sense it is not really an iterative method mathematically. We can
view it as a “direct method” like Gaussian elimination, in which a finite set of operations
produces the exact solution. If we programmed it to always take m iterations, then in
principle we would always obtain the solution, and with the same asymptotic work estimate

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 87

as for Gaussian elimination (since each iteration takes at most O(m?) operations for matrix-
vector multiplies, giving O(m?) total work). However, there are two good reasons why CG
is better viewed as an iterative method than a direct method:

e In theory it produces the exact solution in 7 iterations (where 7 is the number of dis-
tinct eigenvalues) but in finite precision arithmetic u, will not be the exact solution,
and may not be substantially better than u,_;. Hence it is not clear that the algorithm
converges at all in finite precision arithmetic, and the full analysis of this turns out to
be quite subtle [39].

o On the other hand, in practice CG frequently “converges” to a sufficiently accurate
approximation to u* in far less than n iterations. For example, consider solving a
Poisson problem using the 5-point Laplacian on a 100 x 100 grid, which gives a
linear system of dimension 71 = 10,000 and a matrix A that has n ~ 5000 dis-
tinct eigenvalues. An approximation to u* consistent with the truncation error of
the difference formula is obtained after approximately 150 iterations, however (after
preconditioning the matrix appropriately).

That effective convergence often is obtained in far fewer iterations is crucial to the
success and popularity of CG, since the operation count of Gaussian elimination is far too
large for most sparse problems and we wish to use an iterative method that is much quicker.
To obtain this rapid convergence it is often necessary to precondition the matrix, which
effectively moves the eigenvalues around so that they are distributed more conducively for
rapid convergence. This is discussed in Section 4.3.5, but first we present the basic CG
algorithm and explore its convergence properties more fully.

The CG algorithm takes the following form:

Choose initial guess ¢ (possibly the zero vector)

ro = f—Auo
Po =To
fork =1, 2,

Wi—1 = Apr—1

ak—1 = (L re—0)/(pl_ wi—1)

Uk = Ug—1 + Ok—1 Pk—1

Tk = Fg—1 — Og—1 Wk—1

if ||r || is less than some tolerance then stop
Br—1 =)/ (L re—1)

Pk =Tk + Br—1Pk—1

end

As with steepest descent, only one matrix-vector multiply is required at each iteration
in computing wi—;. In addition, two inner products must be computed each iteration.
(By more careful coding than above, the inner product of each residual with itself can be
computed once and reused twice.) To arrange this, we have used the fact that

T T
Pr—1Tk—1 = Tj_1Tk—1

to rewrite the expression (4.40).

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

88 Chapter 4. lterative Methods for Sparse Linear Systems

Compare this algorithm to the steepest descent algorithm presented on page 80. Up
through the convergence check it is essentially the same except that the A-conjugate search
direction pi_ is used in place of the steepest descent search direction rx_; in several
places.

The final two lines in the loop determine the next search direction pg. This simple
choice gives a direction p; with the required property that py is A-conjugate to all the
previous search directions p; for j = 0, 1, ,..., k — 1. This is part of the following
theorem, which is similar to Theorem 38.1 of Trefethen and Bau [91], although there it is
assumed that #y = 0. See also Theorem 2.3.2 in Greenbaum [39].

Theorem 4.1. The vectors generated in the CG algorithm have the following properties,
provided ry, # 0 (if rp, = 0, then we have converged):

1. px is A-conjugate to all the previous search directions, i.e., pZApj = 0forj =
0, 1,,..., k—1.

2. The residual ry is orthogonal to all previous residuals, rkTrj =0forj=0,1,,...,
k—1.

3. The following three subspaces of R™ are identical:

span(po, P1, P2, .-+ Pk—1)s
span(rg, Aro, A?ry, ..., Ak_lro), (4.43)
span(Aey, A2eqy, Aleq, ..., Akeo).

The subspace Ky = span(rg, Aro, A?rg, ..., Ak_lro) spanned by the vector rg

and the first k — 1 powers of A applied to this vector is called a Krylov space of dimension
k associated with this vector.

The iterate uy is formed by adding multiples of the search directions p; to the initial
guess o and hence must lie in the affine spaces ug + g (i.e., the vector uy — ug is in the
linear space Ky,).

We have seen that the CG algorithm can be interpreted as minimizing the function
¢ (u) over the space uy + span(po, pi, - .-, pk—1) in the kth iteration, and by the theorem
above this is equivalent to minimizing ¢ (1) over the 1o + /Cx. Many other iterative methods
are also based on the idea of solving problems on an expanding sequence of Krylov spaces;
see Section 4.4.

4.3.4 Convergence of conjugate gradient

The convergence theory for CG is related to the fact that ; minimizes ¢ () over the affine
space uo + Ky defined in the previous section. We now show that a certain norm of the
error is also minimized over this space, which is useful in deriving estimates about the size
of the error and rate of convergence.

Since A is assumed to be SPD, the A-norm defined by

lella= Vel Ae (4.44)

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 89

satisfies the requirements of a vector norm in Section A.3, as discussed further in Sec-
tion C.10. This is a natural norm to use because

lel’y = (u —u*)T A —u*)
=ul Au —2uT Au* + u*T Au* (4.45)
=24 (u) + u*T Au*.

Since u*T Au* is a fixed number, we see that minimizing ||e|| 4 is equivalent to minimizing

é(u).
Since
U = Up +Qopo +o1p1+ -+ Qk—1 Pk—1,

we find by subtracting ™ that

e =eo+oopo+arpr + -+ Xk—1Dk—1-

Hence e; — ey is in i and by Theorem 4.1 lies in span(A4ey, A?e, ..., Akeo). So e, =
eo + crAeg + caA%eq + -+ + ckAkeo for some coefficients ¢y, ..., c. In other words,
ex = Pr(A)eg, (4.46)

where
Pr(A) =1+ c1A+cy A% + -+ ¢ AF (4.47)

is a polynomial in A. For a scalar value x we have
Pr(x) =14 c1x + cox? + - + cpx® (4.48)
and Py € Py, where
Pr = {polynomials P(x) of degree at most k satisfying P(0) = 1}. (4.49)

The polynomial Py constructed implicitly by the CG algorithm solves the minimization
problem
min || P(A)eo|l 4. (4.50)
PePy

To understand how a polynomial function of a diagonalizable matrix behaves, recall that
A=VAVT' = A/ =VAVT,

where V' is the matrix of right eigenvectors, and so

Pr(4) = VP MV,
where

Pr(A1)

Pr(22)
Pr(A) =

Pk()\m)

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

90 Chapter 4. lterative Methods for Sparse Linear Systems

Note, in particular, that if Py (x) has a root at each eigenvalue A1, ..., Ay, then Pr(A)
is the zero matrix and so ey = Pr(A)eo = 0. If A has only n < m distinct eigenvalues
AL, ..., Ap,then there is a polynomial P, € P, that has these roots, and hence the CG

algorithm converges in at most # iterations, as was previously claimed.
To get an idea of how small ||eg|| 4 will be at some earlier point in the iteration, we
will show that for any polynomial P(x) we have

IPeolla _ 1 ox 1P 451)

||€0||A 1<j<m

and then exhibit one polynomial Py € Py for which we can use this to obtain a useful
upper bound on |lex || 4/leo]|%-

Since A is SPD, the eigenvectors are orthogonal and we can choose the matrix V' so
that V! = VT and A = VAV ~!. In this case we obtain

IP(A)eol’y = el P(A)T AP(A)eo
VPNV T AVP (M) VT e
el Vdiag(A; P(A ;) VT e (4.52)

IA

max P()»j)2 (eOTVAVTeo).

1<j<m

Taking square roots and rearranging results in (4.51).

We will now show that for a particular choice of polynomials Py € Py we can
evaluate the right-hand side of (4.51) and obtain a bound that decreases with increasing k.
Since the polynomial Py constructed by CG solves the problem (4.50), we know that

| P(A)eolla < || Pr(A)eol| 4,

and so this will give a bound for the convergence rate of the CG algorithm.
Consider the case k = 1, after one step of CG. We choose the linear function
2x

C Am A

where we assume the eigenvalues are ordered 0 < Ay < Ay < --- < A,. A typical case is

shown in Figure 4.7(a). The linear function P (x) = 14+ c1x must pass through P;(0) = 1
and the slope ¢ has been chosen so that

Pi(A1) = —Pi(Am),

Pi(x) =1 (4.53)

which gives
2

CAm A

If the slope were made any larger or smaller, then the value of |I31 (A)| would increase at
either A,, or A1, respectively; see Figure 4.7(a). For this polynomial we have

2A1 _ Am/r1—1
Am + A - Am/h1+1

l+cihi=—-1—cihyy = 1=

 max |Py(Aj)| = Pi(h) =1 —
<j<m

‘1 (4.54)

Kk+1’

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 91

s s
a 0 p : s 0 m 0 ; : s 0 m

Figure 4.7. (a) The polynomial P (x) based on a sample set of eigenvalues
marked by dots on the x-axis. (b) The polynomial P»(x) for the same set of eigenvalues.

where k = k7 (A) is the condition number of 4. This gives an upper bound on the reduction
of the error in the first step of the CG algorithm and is the best estimate we can obtain by
knowing only the distribution of eigenvalues of A. The CG algorithm constructs the actual
P1(x) based on ¢p as well as A and may do better than this for certain initial data. For
example, if g = ajv; has only a single eigencomponent, then P;(x) = 1 —x/A; reduces
the error to zero in one step. This is the case where the initial guess lies on an axis of the
ellipsoid and the residual points directly to the solution u* = A~! f. But the above bound
is the best we can obtain that holds for any ey.

Now consider the case k = 2, after two iterations of CG. Figure 4.7(b) shows the
quadratic function P, (x) that has been chosen so that

Py(A1) = =Py (A + %1)/2) = Pa(Am).

This function equioscillates at three points in the interval [Aq, A;,], where the maximum
amplitude is taken. This is the polynomial from P, that has the smallest maximum value
on this interval, i.e., it minimizes

max | P(x)].

AM=<x=<Am

This polynomial does not necessarily solve the problem of minimizing

max |P(A;)]

1<j<m

unless (A; + A,;)/2 happens to be an eigenvalue, since we could possibly reduce this
quantity by choosing a quadratic with a slightly larger magnitude near the midpoint of the
interval but a smaller magnitude at each eigenvalue. However, it has the great virtue of
being easy to compute based only on Ay and A,,. Moreover, we can compute the analogous
polynomial Py (x) for arbitrary degree k, the polynomial from Py with the property of
minimizing the maximum amplitude over the entire interval [A1, A,;]. The resulting maxi-
mum amplitude also can be computed in terms of A and A, and in fact depends only on
the ratio of these and hence depends only on the condition number of 4. This gives an
upper bound for the convergence rate of CG in terms of the condition number of A that
often is quite realistic.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

92 Chapter 4. lterative Methods for Sparse Linear Systems

The polynomials we want are simply shifted and scaled versions of the Chebyshev
polynomials discussed in Section B.3.2. Recall that Tx(x) equioscillates on the interval
[—1, 1] with the extreme values 11 being taken at k + 1 points, including the endpoints.
We shift this to the interval [A 1, A, scale it so that the value at x = 0 is 1, and obtain

Am+A1—2x
Tk(Am—hy)

P = 4.
() = — = (4.55)
k\ =y
For k = 1 this gives (4.53) since T71(x) = x. We now need only compute
max |Pr(A;)| = Pr(h1)
1<j<m
to obtain the desired bound on | ey || 4. We have
~ T (1) 1
Pr(hy) = (= (4.56)

Amt+Ay AmAA)
Tk (xm—xl) T (xm—h

Am + A _)»m/)»1+1 _K+l

Am—A1 Am/Ai—1 k-1
so we need to evaluate the Chebyshev polynomial at a point outside the interval [—1, 1],
which according to (B.27) is

Note that
> 1

Ty (x) = cosh(k cosh™! x).
We have
e? 4 e *
2

where y = €7, so if we make the change of variables x = %(y +y7), thencosh™! x = z
and

cosh(z) = = %(J/ +y7h

ekz + e—kz
2
We can find y from any given x by solving the quadratic equation y> — 2xy + 1 = 0,

yielding
y=x++vVx2-1.

To evaluate (4.56) we need to evaluate Ty at x = (k + 1)/(k — 1), where we obtain

1 1\?
K+ 4 K+ 1
Kk—1 Kk—1

Tr(x) = cosh(kz) = = %(yk +y75).

_K+l:tm
«—1 (4.57)
R
T W+ D(Wk=1)
IRVES Jr—1

or .
Ve —1 Ve +1

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 93

Either choice of y gives the same value for

A] e

Using this in (4.56) and combining with (4.51) gives

-1
I1PA)eola [(‘/EJF l)k + (ﬁ_ l)k] <2 (ﬁ_ !)k. (4.59)
lleoll 4 Ve —1 Vi +1 Vi +1

This gives an upper bound on the error when the CG algorithm is used. In practice the
error may be smaller, either because the initial error ep happens to be deficient in some
eigencoefficients or, more likely, because the optimal polynomial P (x) is much smaller at
all the eigenvalues A ; than our choice Py (x) used to obtain the above bound. This typically
happens if the eigenvalues of A are clustered near fewer than m points. Then the Py (x)
constructed by CG will be smaller near these points and larger on other parts of the interval
[A1, Am] where no eigenvalues lie. As an iterative method it is really the number of clusters,
not the number of mathematically distinct eigenvalues, that then determines how rapidly
CG converges in practical terms.

The bound (4.59) is realistic for many matrices, however, and shows that in general
the convergence rate depends on the size of the condition number «. If « is large, then

k k
z(ﬁli) %2(1—%) ~ Qe KIVE (4.60)
K K

and we expect that the number of iterations required to reach a desired tolerance will be
k = 0(J¥).

For example, the standard second order discretization of the Poisson problem on
a grid with m points in each direction gives a matrix with k = O(1/h?), where h =
1/(m + 1). The bound (4.60) suggests that CG will require O(m) iterations to converge,
which is observed in practice. This is true in any number of space dimensions. In one
dimension where there are only m unknowns this does not look very good (and of course
it’s best just to solve the tridiagonal system by elimination). In two dimensions there are m2
unknowns and m? work per iteration is required to compute A py_, so CG requires O(m?)
work to converge to a fixed tolerance, which is significantly better than Gauss elimination
and comparable to SOR with the optimal . Of course for this problem a fast Poisson solver
could be used, requiring only O(m? logm) work. But for other problems, such as variable
coefficient elliptic equations with symmetric coefficient matrices, CG may still work very
well while SOR works well only if the optimal w is found, which may be impossible, and
fast Fourier transform (FFT) methods are inapplicable. Similar comments apply in three
dimensions.

4.3.5 Preconditioners

We saw in Section 4.3.4 that the convergence rate of CG generally depends on the condi-
tion number of the matrix A. Often preconditioning the system can reduce the condition

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

94 Chapter 4. lterative Methods for Sparse Linear Systems

number of the matrix involved and speed up convergence. In fact preconditioning is abso-
lutely essential for most practical problems, and there are many papers in the literature on
the development of effective preconditioners for specific applications or general classes of
problems.

If M is any nonsingular matrix, then

Au=f = M 'Au=M"'f (4.61)

So we could solve the system on the right instead of the system on the left. If M is some
approximation to 4, then M ~! A4 may have a much smaller condition number than A. If
M = A, then M ~'A4 is perfectly conditioned but we’d still be faced with the problem of
computing M1 f = A7 f.

Of course in practice we don’t actually form the matrix M ~'A4. As we will see
below, the preconditioned conjugate gradient (PCG) algorithm has the same basic form
as CG, but a step is added in which a system of the form Mz = r is solved, and it is
here that the preconditioner is “applied.” The idea is to choose an M for which M ~!4 is
better conditioned than A but for which systems involving M are much easier to solve than
systems involving A. Often this can be done by solving some approximation to the original
physical problem (e.g., by solving on a coarser grid and then interpolating, by solving a
nearby constant-coefficient problem).

A very simple preconditioner that is effective for some problems is simply to use
M = diag(A), a diagonal matrix for which solving linear systems is trivial. This doesn’t
help for the Poisson problem on a rectangle, where this is just a multiple of the identity
matrix, and hence doesn’t change the condition number at all, but for other problems such
as variable coefficient elliptic equations with large variation in the coefficients, this can
make a significant difference.

Another popular approach is to use an incomplete Cholesky factorization of the ma-
trix A4, as discussed briefly in Section 4.3.6. Other iterative methods are sometimes used
as a preconditioner, for example, the multigrid algorithm of Section 4.6. Other precondi-
tioners are discussed in many places; for example, there is a list of possible approaches in
Trefethen and Bau [91].

A problem with the approach to preconditioning outlined above is that M ~! 4 may
not be symmetric, even if M ~! and A are, in which case CG could not be applied to the
system on the right in (4.61). Instead we can consider solving a different system, again
equivalent to the original:

(CcTac™Hcuy=c 1y, (4.62)
where C is a nonsingular matrix. Write this system as
Ai = f. (4.63)

Note that since AT = A, the matrix A is also symmetric even if C is not. Moreover Ais
positive definite (provided A is) since

ul Au =uTCTAC'u = (C'w)TAC™"'u) >0

for any vector u # 0.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3. Descent methods and conjugate gradients 95

Now the problem is that it may not be clear how to choose a reasonable matrix C in
this formulation. The goal is to make the condition number of A small, but C appears twice
in the definition of A so C should be chosen as some sort of “square root” of A. But note
that the condition number of A depends only on the eigenvalues of this matrix, and we can
apply a similarity transformation to A without changing its eigenvalues, e.g.,

cl'Aic=c'cTa=«To)'A. (4.64)

The matrix A thus has the same condition number as (CT C)~1A. So if we have a sensible
way to choose a preconditioner M in (4.61) that is SPD, we could in principle determine C
by a Cholesky factorization of the matrix M.

In practice this is not necessary, however. There is a way to write the PCG algorithm
in such a form that it only requires solving systems involving M (without ever computing
C) but that still corresponds to applying CG to the SPD system (4.63).

To see this, suppose we apply CG to (4.63) and generate vectors iy, pi, Wk, and 7.
Now define

ukZC_lflk, pkzc_lﬁk, wk:CTlZ)k,andrszTFk.

Note that 7 is multiplied by CT, not C~!. Here 7 is the residual when iy is used in the
system (4.63). Note that if 7i; approximates the solution to (4.62), then u; will approximate
the solution to the original system Au = f. Moreover, we find that

re=C(f — Aiix) = f — Auy

and so ry is the residual for the original system. Rewriting this CG algorithm in terms of
the variables uy, px, wg, and r¢, we find that it can be rewritten as the following PCG
algorithm:

ro= f — Aug
Solve Mzy = ro for zg
P0o =20
fork=1, 2, ...
Wg—1 = Api—1
ar—1 =l =) /(pl_ wi—1)
Uk = Uk—1 + Xk—1 Pk—1
Tk =Tk—1 — Ok—1 Wk—1
if |||l is less than some tolerance then stop
Solve Mzy = ry for zj
Br—1 = (2} ri)/(z}_ 75-1)
Pk = 2k + Bk—1Pk—1
end

Note that this is essentially the same as the CG algorithm on page 87, but we solve
the system Mzy =ry forzp = M —1y4 in each iteration and then use the z vector in place of
r in several places in the algorithm.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

96 Chapter 4. lterative Methods for Sparse Linear Systems

4.3.6 Incomplete Cholesky and ILU preconditioners

There is one particular preconditioning strategy where the matrix C is in fact computed and
used. Since 4 is SPD it has a Cholesky factorization of the form 4 = R” R, where R is
an upper triangular matrix (this is just a special case of the LU factorization). The problem
with computing and using this factorization to solve the original system Au = f is that
the elimination process used to compute R generates a lot of nonzeros in the R matrix, so
that it is typically much less sparse than A.

A popular preconditioner that is often very effective is to do an incomplete Cholesky
factorization of the matrix A, in which nonzeros in the factors are allowed to appear only
in positions where the corresponding element of A is nonzero, simply throwing away the
other elements as we go along. This gives an approximate factorization of the form 4 ~
CT C. This defines a preconditioner M = CT C. To solve systems of the form Mz = r
required in the PCG algorithm we use the known Cholesky factorization of M and only
need to do forward and back substitutions for these lower and upper triangular systems.
This approach can be generalized by specifying a drop tolerance and dropping only those
elements of R that are smaller than this tolerance. A smaller drop tolerance will give a
better approximation to 4 but a denser matrix C.

Methods for nonsymmetric linear systems (e.g., the GMRES algorithm in the next
section) also generally benefit greatly from preconditioners and this idea can be extended
to incomplete LU (ILU) factorizations as a preconditioner for nonsymmetric systems.

4.4 The Arnoldi process and GMRES algorithm

For linear systems that are not SPD, many other iterative algorithms have been developed.
We concentrate here on just one of these, the popular GMRES (generalized minimum resid-
ual) algorithm. In the course of describing this method we will also see the Arnoldi process,
which is useful in other applications.

In the kth step of GMRES a least squares problem is solved to find the best approx-
imation to the solution of Au = f from the affine space u¢ + K, where again Ky, is the
k-dimensional Krylov space Ky = span(rg, Aro, A?rg, ..., Ak_lro) based on the initial
residual rg = f — Auyg. To do this we build up a matrix of the form

Ok =lq1 q2 -+ qx) € R™k,

whose columns form an orthonormal basis for the space . In the kth iteration we deter-
mine the vector g4 by starting with some vector v; that is not in Xy and orthogonalizing

ittoqi, g2, ..., gk using a Gram—Schmidt-type procedure. How should we choose vy ?
One obvious choice might be v, = Akro. This is a bad choice, however. The vectors
ro, Arg, A%rg, ... although linearly independent and a natural choice from our defini-

tion of the Krylov space, tend to become more and more closely aligned (nearly linearly
dependent) as k grows. (In fact they converge to the eigenvector direction of the dominant
eigenvalue of A since this is just the power method.) In other words the Krylov matrix

Kyy1 = [ro Arg A%rg -+ A¥rg)]

has rank & + 1 but has some very small singular values. Applying the orthogonalization
procedure using vy = A¥ry would amount to doing a QR factorization of the matrix Ky 1,

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.4. The Arnoldi process and GMRES algorithm 97

which is numerically unstable in this case. Moreover, it is not clear how we would use
the resulting basis to find the least square approximation to Au = f in the affine space
uo + Kr.

Instead we choose vy = Agqy as the starting point in the kth step. Since g has al-
ready been orthogonalized to all the previous basis vectors, this does not tend to be aligned
with an eigendirection. In addition, the resulting procedure can be viewed as building up
a factorization of the matrix A itself that can be directly used to solve the desired least
squares problem.

This procedure is called the Arnoldi process. This algorithm is important in other
applications as well as in the solution of linear systems, as we will see below. Here is
the basic algorithm, with an indication of where a least squares problem should be solved
in each iteration to compute the GMRES approximations uj to the solution of the linear
system:

q1 = ro/[Iroll2

fork =1, 2, ...

v = Aqy

fori =1:k
hik = qf'v
vV="0v—hiqi % orthogonalize to previous vectors
end

hir1e = |vll2

Gk+1 = v/ hk1k % normalize

% For GMRES: Check residual of least squares problem (4.75).
% 1f it’s sufficiently small, halt and compute uj
end

Before discussing the least squares problem, we must investigate the form of the
matrix factorization we are building up with this algorithm. After k iterations we have

Ok =lq1 92 -+~ qi] € R™*, Okr1 =[Ok qiy1] € R™EFD,
which form orthonormal bases for Ky and ICg 4 1, respectively. Let
hit hia his oo hig—r hui
har haa hay -0 hag—1 hog
H, = hsy hsz - hsg—y sk | ¢ gR<k (4.65)
hick—1 hik

be the upper Hessenberg matrix consisting of the /& values computed so far. We will also
need the matrix I:Ik e Rk+Dxk consisting of Hy with an additional row that is all zeros
except for the /g4 x entry, also computed in the kth step of Arnoldi.

Now consider the matrix product

AQk =[Aqy Aqa -+ Aqx).

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

98 Chapter 4. lterative Methods for Sparse Linear Systems

The jth column of this matrix has the form of the starting vector v used in the jth iteration
of Arnoldi, and unraveling the computations done in the jth step shows that

hjvi.jqj+1 = Aqj —hijqr —hajqa —---—hjjq;.
This can be rearranged to give
Agj = hjqr +hajqa+ -+ hjjq; + hjt1igj (4.66)

The left-hand side is the jth column of 4 Qy and the right-hand side, at least for j < k, is
the jth column of the matrix Qy Hy. We find that

AQk = OrHi + hict1 k k4161 - (4.67)

In the final term the vector ekT =1[00 --- 0 1] is the vector of length k with a 1 in the last
component and /41 k Jr+1 ekT is the m x k matrix that is all zeros except the last column,
which is /g 41 kqk+1. This term corresponds to the last term in the expression (4.66) for
Jj = k. The expression (4.67) can also be rewritten as

AQy = Qi1 H. (4.68)

If we run the Arnoldi process to completion (i.e., up to k = m, the dimension of
A), then we will find in the final step that v = Agy, lies in the Krylov space XCp, (which is
already all of R™), so orthogonalizing it to each of the ¢; for i = 1 : m will leave us with
v = 0. So in this final step there is no /41, value or ¢4 vector and setting QO = Q,,
and H = H,, gives the result

AQ = QH,
which yields
0T40=H or A=QHQT. (4.69)

We have reduced A to Hessenberg form by a similarity transformation.

Our aim at the moment is not to reduce A4 all the way by running the algorithm to
k = m but rather to approximate the solution to Au = f well in a few iterations. After k
iterations we have (4.67) holding. We wish to compute u, an approximationtou = A~! f
from the affine space uo + K, by minimizing the 2-norm of the residual r, = f — Auy
over this space. Since the columns of Qf form a basis for Ky, we must have

ug =uo + Ok (4.70)
for some vector y; € R¥, and so the residual is
re = f — Ao + Qryi)
=ro—AQkyk 4.71)
=To— Qk+1l‘~1kyk,

where we have used (4.68). But recall that the first column of Qg1 is just g1 = ro/||70||2
so we have ro = Qg+11, where 7 is the vector

lIrolla
0
n=| |emkt 4.72)

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.4. The Arnoldi process and GMRES algorithm 99

Hence ~
'k = Qk+1(— Hr yi)- (4.73)

Since Q1{+1 Qk+1 = I, computing rkTrk shows that

Irell2 = ln — Heeyiell2. (4.74)

In the kth iteration of GMRES we choose yy to solve the least squares problem

min [y — Hyyla, (4.75)
yeRk

and the approximation uy is then given by (4.70).
Note the following (see, e.g., Greenbaum [39] for details):

o H e Rk+Dxk ang n € R¥*1 5o thisis a small least squares problem when k < m.

o My is already nearly upper triangular, so solving the least squares problem by com-
puting the QR factorization of this matrix is relatively cheap.

e Moreover, in each iteration I:Ik consists of I:Ik_l with one additional row and column
added. Since the QR factorization of Hj_; has already been computed in the pre-
vious iteration, the QR factorization of Hy is easily computed with little additional
work.

e Once the QR factorization is known, it is possible to compute the residual in the least
squares problem (4.75) without actually solving for y; (which requires solving an
upper triangular system of size k using the R matrix from QR). So in practice only
the residual is checked each iteration and the final y; and uy are actually computed
only after the convergence criterion is satisfied.

Notice, however, one drawback of GMRES, and the Arnoldi process more generally,
for nonsymmetric matrices: in the kth iteration we must orthogonalize v to all k previ-
ous basis vectors, so we must keep all these vectors in storage. For practical problems
arising from discretizing a multidimensional partial differential equation (PDE), each of
these “vectors” is an approximation to the solution over the full grid, which may consist
of millions of grid points. Taking more than a few iterations may consume a great deal of
storage.

Often in GMRES the iteration is restarted periodically to save storage: the approxi-
mation uy at some point is used as the initial guess for a new GMRES iteration. There’s a
large literature on this and other variations of GMRES.

4.4.1 Krylov methods based on three term recurrences
Note that if 4 is symmetric, then so is the Hessenberg matrix H, since
HT =(QT40)" = 0T4T0 = 0" 40 = H,

and hence H must be tridiagonal. In this case the Arnoldi iteration simplifies in a very
important way: hjy = 0fori = 1, 2,..., (k —2) and in the kth iteration of Arnoldi v

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

100 Chapter 4. lterative Methods for Sparse Linear Systems

only needs to be orthogonalized to the previous two basis vectors. There is a three-term
recurrence relation for each new basis vector in terms of the previous two. This means
only the two previous vectors need to be stored at any time, rather than all the previous ¢;
vectors, which is a dramatic improvement for systems of large dimension.

The special case of Arnoldi on a symmetric matrix (or more generally a complex
Hermitian matrix) is called the Lanczos iteration and plays an important role in many nu-
merical algorithms, not just for linear systems but also for eigenvalue problems and other
applications.

There are also several iterative methods for nonsymmetric systems of equations that
are based on three-term recurrence relations using the idea of biorthogonalization—in ad-
dition to building up a Krylov space based on powers of the matrix A, a second Krylov
space based on powers of the matrix A is simultaneously determined. Basis vectors v;
and w; for the two spaces are found that are not orthogonal sets separately, but are instead
“biorthogonal” in the sense that

vw; =0 ifi #j.

It turns out that there are three-term recurrence relations for these sets of basis vectors,
eliminating the need for storing long sequences of vectors. The disadvantage is that two
matrix-vector multiplies must be performed each iteration, one involving 4 and another
involving A . One popular method of this form is Bi-CGSTAB (bi-conjugate gradient
stabilized), introduced by Van der Vorst [95]. See, e.g., [39], [91] for more discussion of

this method and other variants.

4.4.2 Other applications of Arnoldi

The Arnoldi process has other applications besides the approximate solution of linear sys-
tems. Note from (4.67) that
OFT AQy = Hy (4.76)

since Q,{ QOr =1 and Q,{qu = 0. This looks much like (4.69), but here Qy is a rectan-
gular matrix (for k < m) and so this is not a similarity transformation and Hy does not have
the same eigenvalues as A (or even the same number of eigenvalues, since it has only k).
However, a very useful fact is that the eigenvalues of H are typically good approximations
to the dominant eigenvalues of 4 (those with largest magnitude). In many eigenvalue appli-
cations where A is a large sparse matrix, the primary interest is in determining the dominant
eigenvalues (e.g., in determining stability or asymptotic growth properties of matrix iter-
ations or exponentials). In this case we can run the Arnoldi process (which requires only
matrix-vector multiplies with A) and then calculate the eigenvalues of the small matrix Hy
in the kth iteration as an approximation to the dominant eigenvalues of 4. This approach
is implemented in the ARPACK software [62], which is used, for example, by the eigs
command in MATLAB.
Also note that from (4.76), by multiplying on the left by Qf and on the right by Q,{
we obtain
0k Qf AQi O = QkH OF . 4.77)
If £k = m, then Qy Q,{ = [and this is simply (4.69). For k < m, Q Q,{ is the pro-
jection matrix that projects any vector z in R™ onto the k-dimensional Krylov space k.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.5. Newton-Krylov methods for nonlinear problems 101

So the operator on the left of (4.77), when applied to any vector in z € R™, has the fol-
lowing effect: the vector is first projected to g, then A is applied, and then the result
is again projected to K. The operator on the right does the same thing in a different
form: Q,{z € R* consists of the coefficients of the basis vectors of Qy for the projected
vector. Multiplying by H transforms these coefficients according to the effect of A, and
H; Q,{z are then the modified coefficients used to form a linear combination of the basis
vectors when this is multiplied by Q. Hence we can view Hj as the restriction of A4 to
the k-dimensional Krylov space ;. Thus it is not so surprising, for example, that the
eigenvalues of Hj approximate the dominant eigenvalues of 4. As commented above, the
basis vectors f, Af, A% f, ...for Kj tend to align with the dominant eigenvectors of A,
and if an eigenvector of A4 lies in K, then it is also an eigenvector of the restriction of A
to this space.

We will see another use of Krylov space methods in Section 11.6, where we consider
exponential time differencing methods for time-dependent ordinary differential equations
(ODEs). The matrix exponential applied to a vector, e’ v, arises in solving linear systems
of ODEs. This often can be effectively approximated by Qy ek’ Q,{v for k <« m. More
generally, other functions ¢(z) can be extended to matrix arguments (using the Cauchy
integral formula (D.4), for example) and their action often approximated by ¢(A)v =

Ox¢(Hit) Of v.

4.5 Newton—Krylov methods for nonlinear problems

So far in this chapter we have considered only linear problems and a variety of iterative
methods that can be used to solve sparse linear systems of the form Au = f. However,
many differential equations are nonlinear and these naturally give rise to nonlinear systems
of equations after discretization. In Section 2.16 we considered a nonlinear boundary value
problem and discussed the use of Newton’s method for its solution. Recall that Newton’s
method is an iterative method based on linearizing the problem about the current approxi-
mation to the solution and then solving a linear system of equations involving the Jacobian
matrix to determine the next update to the approximation. If the nonlinear system is written
as G(u) = 0, then the Newton update is

w1 = 3 U1 sl (4.78)
where 51/ is the solution to the linear system
JUIsUL = Gy, (4.79)

Here JU! = G’(ul1) is the Jacobian matrix evaluated at the current iterate. For the one-
dimensional problem of Section 2.16 the Jacobian matrix is tridiagonal and the linear sys-
tem is easily solved in each iteration by a direct method.

For a nonlinear problem in more space dimensions the Jacobian matrix typically will
have the same nonzero structure as the matrices discussed in the context of linear elliptic
equations in Chapter 3. (Of course for a linear problem Au = f we have G(u) = Au — f
and the matrix A is the Jacobian matrix.) Hence when solving a nonlinear elliptic equation
by a Newton method we must solve, in each Newton iteration, a sparse linear system of
the type we are tackling in this chapter. For practical problems the Jacobian matrix is often

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

102 Chapter 4. lterative Methods for Sparse Linear Systems

nonsymmetric and Krylov space methods such as GMRES are a popular choice. This gives
an obvious way to combine Newton’s method with Krylov space methods: in each iteration
of Newton’s method determine all the elements of the Jacobian matrix JU/1 and then apply
a Krylov space method to solve the system (4.79).

However, the term Newton—Krylov method often refers to something slightly dif-
ferent, in which the calculation of the full Jacobian matrix is avoided in performing the
Krylov space iteration. These methods are also called Jacobian—free Newton—Krylov meth-
ods (JFNK), and a good survey of these methods and their history and applicability is given
in the review paper of Knoll and Keyes [57].

To explain the basic idea, consider a single iteration of the Newton method and drop
the superscript j for notational convenience. So we need to solve a linear system of the
form

JW)d = G(u), (4.80)

where u a fixed vector (the current Newton iterate ull]).

When the GMRES algorithm (or any other iterative method requiring only matrix
vector products) is applied to the linear system (4.80), we require only the product J (#)qx
for certain vectors ¢ (where k is the iteration index of the linear solver). The key to
JENK is to recognize that since J(#) is a Jacobian matrix, the vector J(u)qy is simply
the directional derivative of the nonlinear function G at this particular in the direction
qr- The Jacobian matrix contains all the information needed to compute the directional
derivative in any arbitrary direction, but there is no need to compute the full matrix if, in
the course of the Krylov iteration, we are only going to need the directional derivative in
relatively few directions. This is the case if we hope that the Krylov iteration will converge
in very few iterations relative to the dimension of the system.

How do we compute the directional derivative J(u)q; without knowing J(u)? The
standard approach is to use a simple finite difference approximation,

S ~ (G(u + eqi) — Gu))/e, (4.81)

where € is some small real number. This approximation is first order accurate in € but is
sufficiently accurate for the needs of the Krylov space method if we take € quite small.
If € is too small, however, then numerical cancellation can destroy the accuracy of the
approximation in finite precision arithmetic. For scalar problems the optimal trade-off
typically occurs at € = /€mach, the square root of the machine precision (i.e., € ~ 1078
for 64-bit double precision calculations). See [57] for some comments on good choices.

JFNK is particularly advantageous for problems where the derivatives required in the
Jacobian matrix cannot be easily computed analytically, for example, if the computation of
G (u) involves table look-ups or requires solving some other nonlinear problem. A subrou-
tine evaluating G(u) is already needed for a Krylov space method in order to evaluate the
right-hand side of (4.80), and the JFNK method simply calls this in each iteration of the
Krylov method to compute G(u + €qy,).

Good preconditioners generally are required to obtain good convergence properties
and limit the number of Krylov iterations (and hence nonlinear G evaluations) required. As
with Newton’s method in other contexts, a good initial guess is often required to achieve
convergence of the Newton iteration, regardless of how the system (4.79) is solved in each
iteration. See [57] for more comments on these and other issues.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.6. Multigrid methods 103

4.6 Multigrid methods

We return to the solution of linear systems Au = f and discuss a totally different approach
to the solution of such systems. Multigrid methods also can be applied directly to nonlinear
problems and there is a vast literature on variations of these methods and applications to
a variety of problems. Here we concentrate on understanding the main idea of multigrid
methods in the context of the one-dimensional model problem u”(x) = f(x). For more
discussion, see, for example, [11], [52], [41], [101].

4.6.1 Slow convergence of Jacobi

Let
f(x) = =20+ ag” (x) cos(p(x)) — a(¢' (x))* sin(¢ (x)), (4.82)

where a = 0.5, ¢(x) = 207 x>, and consider the boundary value problem u”(x) = f(x)
with Dirichlet boundary conditions #(0) = 1 and u(1) = 3. The true solution is

u(x) = 1+ 12x — 10x2 + asin(¢(x)). (4.83)

which is plotted in Figure 4.8(a). This function has been chosen because it clearly con-
tains variations on many different spatial scales, i.e., large components of many different
frequencies.

We discretize this problem with the standard tridiagonal systems (2.10) and apply
the Jacobi iterative method of Section 4.1 to the linear initial guess u¢ with components
1 + 2x;, which is also shown in Figure 4.8(a). Figure 4.8(b) shows the error ¢ in this
initial guess on a grid with m = 255 grid points.

The left column of Figure 4.9 shows the approximations obtained after &k = 20, 100,
and 1000 iterations of Jacobi. This method converges very slowly and it would take about
10° iterations to obtain a useful approximation to the solution. However, notice something
very interesting in Figure 4.9. The more detailed features of the solution develop relatively
quickly and it is the larger-scale features that are slow to appear. At first this may seem
counterintuitive since we might expect the small-scale features to be harder to capture.

Approximate solution after 0 Jacobi iterations Error after 0 Jacobi iterations

(a) 01 02 03 04 05 06 07 0.8 09 1

Figure 4.8. (a) The solution u(x) (solid line) and initial guess uq (circles). (b)
The error e in the initial guess.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

104 Chapter 4. lterative Methods for Sparse Linear Systems

Approximate solution after 20 Jacobi iterations

55 Error after 20 Jacobi iterations

450

Approximate solution after 100 Jacobi iterations

Error after 100 Jacobi iterations

0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Approximate solution after 1000 Jacobi iterations Error after 1000 Jacobi iterations

Figure 4.9. On the left: The solution u(x) (solid line) and Jacobi iterate uy, after
k iterations. On the right: The error ey, shown for k = 20 (top), k = 100 (middle), and
k = 1000 (bottom,).

This is easier to understand if we look at the errors shown on the right. The initial error is
highly oscillatory but these oscillations are rapidly damped by the Jacobi iteration, and after
only 20 iterations the error is much smoother than the initial error. After 100 iterations it is
considerably smoother and after 1000 iterations only the smoothest components of the error
remain. This component takes nearly forever to be damped out, and it is this component
that dominates the error and renders the approximate solution worthless.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.6. Multigrid methods 105

To understand why higher frequency components of the error are damped most rapidly,
recall from Section 4.2 that the error ¢ = uy = u™ satisfies

e = Geg_y,
where, for the tridiagonal matrix A4,

0 1/2 T

/2 0 1/2
h2 /2 0 1/2
G=1+—A4=))
/2 0 1/2
/2 0

The ith element of ey, is simply obtained by averaging the (i — 1) and (i + 1) elements of
er—1 and this averaging damps out higher frequencies more rapidly than low frequencies.
This can be quantified by recalling from Section 4.1 that the eigenvectors of G are the same
as the eigenvectors of 4. The eigenvector ## has components

uj.’ = sin(mwpx;) (xj=Jjh. j=12,....m), (4.84)

while the corresponding eigenvalue is

Vp = cos(pmh) (4.85)
for p =1, 2, ..., m. If we decompose the initial error ¢p into eigencomponents,
eo = crul + cou® + -+ cpqu™, (4.86)
then we have
ek =clylku1 +czy2ku2+---+cmy,ﬁum. (4.87)

Hence the pth eigencomponent decays at the rate y;f as k increases. For large k the error

is dominated by the components c; ylk u' and ¢y, y,ﬁu”’, since these eigenvalues are closest
to 1:
272
VI =—Ym~1—-mh~.
2
This determines the overall convergence rate, as discussed in Section 4.1.
Other components of the error, however, decay much more rapidly. In fact, for half
the eigenvectors, those with m/4 < p < 3m/4, the eigenvalue y,, satisfies

1

and |yp|20 < 1073, so that 20 iterations are sufficient to reduce these components of the
error by a factor of 1000. Decomposing the error e as in (4.86) gives a Fourier sine series
representation of the error, since u” in (4.84) is simply a discretized version of the sine

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

106 Chapter 4. lterative Methods for Sparse Linear Systems

function with frequency p. Hence eigencomponents c,u? for larger p represent higher-
frequency components of the initial error e, and so we see that higher-frequency compo-
nents decay more rapidly.

Actually it is the middle range of frequencies, those nearest p ~ m/2, that decay
most rapidly. The highest frequencies p ~ m decay just as slowly as the lowest frequencies
p ~ 1. The error e¢ shown in Figure 4.9 has a negligible component of these highest
frequencies, however, and we are observing the rapid decay of the intermediate frequencies
in this figure.

For this reason Jacobi is not the best method to use in the context of multigrid. A
better choice is underrelaxed Jacobi, where

U1 = (1 —w)ug + oGuy (4.88)

with @ = 2/3. The iteration matrix for this method is

Gy =1 —-w)I +o0G (4.89)

with eigenvalues
vp = (1 —w) + wcos(prh). (4.90)
The choice @ = 2/3 minimizes max,,/2<p<m |Vpl, giving optimal smoothing of high
frequencies. With this choice of w, all frequencies above the midpoint p = m/2 have

lypl =1/3.

As a standalone iterative method this would be even worse than Jacobi, since low-
frequency components of the error decay even more slowly (y; is now % + % cos(mh) =~
11— %nzhz), but in the context of multigrid this does not concern us. What is important is
that the upper half of the range frequencies are all damped by a factor of at least 1/3 per
iteration, giving a reduction by a factor of (1/3)3 a 0.037 after only three iterations, for
example.

4.6.2 The multigrid approach

We are finally ready to introduce the multigrid algorithm. If we use underrelaxed Jacobi,
then after only three iterations the high-frequency components of the error have already
decayed significantly, but convergence starts to slow down because of the lower-frequency
components. But because the error is now much smoother, we can represent the remaining
part of the problem on a coarser grid. The key idea in multigrid is to switch now to a coarser
grid to estimate the remaining error. This has two advantages. Iterating on a coarser grid
takes less work than iterating further on the original grid. This is nice but is a relatively
minor advantage. Much more important, the convergence rate for some components of the
error is greatly improved by transferring the error to a coarser grid.

For example, consider the eigencomponent p = m /4 that is not damped so much by
underrelaxed Jacobi, /4 ~ 0.8, and after three iterations on this grid this component of
the error is damped only by a factor (0.8)3 = 0.512. The value p = m/4 is not in the
upper half of frequencies that can be represented on a grid with m points—it is right in the
middle of the lower half.

However, if we transfer this function to a grid with only half as many points, it
is suddenly at the halfway point of the frequencies we can represent on the coarser grid

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.6. Multigrid methods 107

(p ~ m¢/2 now, where m, = (m — 1)/2 is the number of grid points on the coarser grid).
Hence this same component of the error is damped by a factor of (1/3)* ~ 0.037 after
only three iterations on this coarser grid. This is the essential feature of multigrid.

But how do we transfer the remaining part of the problem to a coarser grid? We don’t
try to solve the original problem on a coarser grid. Instead we solve an equation for the
error. Suppose we have taken v iterations on the original grid and now want to estimate
the error e, = u,, — u™. This is related to the residual vector r, = f — Au, by the linear
system

Ae, = —ry. 4.91)

If we can solve this equation for e,, then we can subtract e, from u, to obtain the desired
solution u*. The system (4.91) is the one we approximate on a coarsened grid. After taking
a few iterations of Jacobi on the original problem, we know that e, is smoother than the
solution u to the original problem, and so it makes sense that we can approximate this
problem well on a coarser grid and then interpolate back to the original grid to obtain the
desired approximation to e,. As noted above, iterating on the coarsened version of this
problem leads to much more rapid decay of some components of the error.
The basic multigrid algorithm can be informally described as follows:

1. Take a fixed number of iterations (e.g., v = 3) of a simple iterative method (e.g.,
underrelaxed Jacobi or another choice of “smoother”) on the original m x m system
Au = f. This gives an approximation u, € R™,

2. Compute the residual r, = f — Au, € R™.

3. Coarsen the residual: approximate the grid function r,, on a grid withm, = (m—1)/2
points to obtain 7 € R™¢,

4. Approximately solve the system Aé = —F, where A is the m. x m, version of A
(the tridiagonal approximation to d?/dx? on a grid with m, points).

5. The vector ¢ approximates the error in u,, but only at 7, points on the coarse grid.
Interpolate this grid function back to the original grid with m points to obtain an
approximation to e,. Subtract this from u,, to get a better approximation to u*.

6. Using this as a starting guess, take a few more iterations (e.g., v = 3) of a simple
iterative method (e.g., underrelaxed Jacobi) on the original m x m system Au = f
to smooth out errors introduced by this interpolation procedure.

The real power of multigrid comes from recursively applying this idea. In step 4
of the algorithm above we must approximately solve the linear system Aé = —F of size
m.. As noted, some components of the error that decayed slowly when iterating on the
original system will now decay quickly. However, if m. is still quite large, then there will
be other lower-frequency components of the error that still decay abysmally slowly on this
coarsened grid. The key is to recurse. We only iterate a few times on this problem before
resorting to a coarser grid with (m, — 1)/2 grid points to speed up the solution to this
problem. In other words, the entire algorithm given above is applied within step 4 to solve
the linear system Aé = —F. In arecursive programming language (such as MATLAB) this
is not hard to implement and allows one to recurse back as far as possible. If m + 1 is a

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

108 Chapter 4. lterative Methods for Sparse Linear Systems

Level 7 After 1 Vcycles

55 Il Error |1 = 0.11806

sl
45¢
4t
350 W “ AGiSI 0.04
al
250
ok

1.5r

(a) ! 0.2 04 0.6 08 1 (b) 0.12

Figure 4.10. (a) The solution u(x) (solid line) and approximate solution (circles)
obtained after one V-cycle of the multigrid algorithm with v = 3. (b) The error in this
approximation. Note the change in scale from Figure 4.9(b).

power of 2, then in principle one could recurse all the way back to a coarse grid with only
a single grid point, but in practice the recursion is generally stopped once the problem is
small enough that an iterative method converges very quickly or a direct method such as
Gaussian elimination is easily applied.

Figure 4.10 shows the results obtained when the above algorithm is used starting with
m =28 — 1 = 255, using v = 3, and recursing down to a grid with three grid points, i.e.,
seven levels of grids. On each level we apply three iterations of underrelaxed Jacobi, do a
coarse grid correction, and then apply three more iterations of under-relaxed Jacobi. Hence
a total of six Jacobi iterations are used on each grid, and this is done on grids with 2/ — 1
points for j =8, 7, 6, 5, 4, 3, 2, since the coarse grid correction at each level requires
doing this recursively at coarser levels. A total of 42 underrelaxed Jacobi iterations are
performed, but most of these are on relatively coarse grids. The total number of grid values
that must be updated in the course of these iterations is

8
6ZZj ~6-2° =3072,
j=2

roughly the same amount of work as 12 iterations on the original grid would require. But
the improvement in accuracy is dramatic—compare Figure 4.10 to the results in Figure 4.9
obtained by simply iterating on the original grid with Jacobi.

More generally, suppose we start on a grid with m 4+ 1 = 27 points and recurse all
the way down, taking v iterations of Jacobi both before and after the coarse grid correction
on each level. Then the work is proportional to the total number of grid values updated,

which is
J

20 2/ ~av2 ~ dvm = O(m). (4.92)

j=2
Note that this is /inear in the number of grid points m2, although as m increases we are using
an increasing number of coarser grids. The number of grids grows at the rate of log, (m)
but the work on each grid is half as much as the previous finer grid and, so the total work

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.6. Multigrid methods 109

is O(m). This is the work required for one “V-cycle” of the multigrid algorithm, starting
on the finest grid, recursing down to the coarsest grid and then back up as illustrated in
Figure 4.11(a) and (b). Taking a single V-cycle often results in a significant reduction in
the error, as illustrated in Figure 4.10, but more than one V-cycle might be required to
obtain a sufficiently accurate solution. In fact, it can be shown that for this model problem
O(log(m)) V-cycles would be needed to reach a given level of error, so that the total work
would grow like O(m log m).

We might also consider taking more that one iteration of the cycle on each of the
coarser grids to solve the coarse grid problems within each cycle on the finest grid. Sup-
pose, for example, that we take two cycles at each stage on each of the finer grids. This
gives the W-cycle illustrated in Figure 4.11(c).

Even better results are typically obtained by using the “full multigrid” (FMG) algo-
rithm, which consists of starting the process on the coarsest grid level instead of the finest
grid. The original problem u”(x) = f(x) is discretized and solved on the coarsest level
first, using a direct solver or a few iterations of some iterative method. This approximation
to u(x) is then interpolated to the next finer grid to obtain a good initial guess for solving
the problem on this grid. The two-level multigrid algorithm is used on this level to solve
the problem. The result is then interpolated to the next-level grid to give good initial data
there, and so on. By the time we get to the finest grid (our original grid, where we want the
solution), we have a very good initial guess to start the multigrid process described above.
This process is illustrated using the V-cycle in Figure 4.12.

This start-up phase of the computation adds relatively little work since it is mostly
iterating on coarser grids. The total work for FMG with one V-cycle is only about 50%
more than for the V-cycle alone. With this initialization process it often turns out that one
V-cycle then suffices to obtain good accuracy, regardless of the number of grid points. In

h-grid
2h-grid .\-/ \// \\/\//
4h-grid

(a) (b) (©

Figure 4.11. (a) One V-cycle with two levels. (b) One V-cycle with three levels.
(c) One W-cycle with three levels.

h-grid
2h-grid

4h-grid

Figure 4.12. FMG with one V-cycle on three levels.

Downloaded 06/09/16 to 205.155.65.226. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

110 Chapter 4. lterative Methods for Sparse Linear Systems

this case the total work is O(m), which is optimal. For the example shown in Figure 4.10,
switching to FMG gives an error of magnitude 6 x 10~ after a single V-cycle.

Of course in one dimension simply solving the tridiagonal system requires only
O(m) work and is easier to implement, so this is not so impressive. But the same re-
sult carries over to more space dimensions. The FMG algorithm for the Poisson problem
on an m x m grid in two dimensions requires O(m?) work, which is again optimal since
there are this many unknowns to determine. Recall that fast Poisson solvers based on the
FFT require O(m? logm) work, while the best possible direct method would require (m23).
Applying multigrid to more complicated problems can be more difficult, but optimal results
of this sort have been achieved for a wide variety of problems.

The multigrid method described here is intimately linked to the finite difference grid
being used and the natural manner in which a vector and matrix can be “coarsened” by
discretizing the same differential operator on a coarser grid. However, the ideas of multigrid
can also be applied to other sparse matrix problems arising from diverse applications where
it may not be at all clear how to coarsen the problem. This more general approach is called
algebraic multigrid (AMG); see, for example, [76], [86].

