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Chapter 3

Elliptic Equations

In more than one space dimension, the steady-state equations discussed in Chapter 2 gen-
eralize naturally to elliptic partial differential equations, as discussed in Section E.1.2. In
two space dimensions a constant-coefficient elliptic equation has the form

a1uxx C a2uxy C a3uyy C a4ux C a5uy C a6u D f; (3.1)

where the coefficients a1; a2; a3 satisfy

a2
2 � 4a1a3 < 0: (3.2)

This equation must be satisfied for all .x; y/ in some region of the plane �, together with
some boundary conditions on @�, the boundary of�. For example, we may have Dirichlet
boundary conditions in which case u.x; y/ is given at all points .x; y/ 2 @�. If the ellip-
ticity condition (3.2) is satisfied, then this gives a well-posed problem. If the coefficients
vary with x and y, then the ellipticity condition must be satisfied at each point in �.

3.1 Steady-state heat conduction
Equations of elliptic character often arise as steady-state equations in some region of space,
associated with some time-dependent physical problem. For example, the diffusion or heat
conduction equation in two space dimensions takes the form

ut D .�ux /x C .�uy/y C  ; (3.3)

where �.x; y/ > 0 is a diffusion or heat conduction coefficient that may vary with x and
y, and  .x; y; t/ is a source term. The solution u.x; y; t/ generally will vary with time
as well as space. We also need initial conditions u.x; y; 0/ in � and boundary conditions
at each point in time at every point on the boundary of �. If the boundary conditions and
source terms are independent of time, then we expect a steady state to exist, which we can
find by solving the elliptic equation

.�ux /x C .�uy /y D f; (3.4)
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60 Chapter 3. Elliptic Equations

where again we set f .x; y/ D � .x; y/, together with the boundary conditions. Note that
(3.2) is satisfied at each point, provided � > 0 everywhere.

We first consider the simplest case where � � 1. We then have the Poisson problem

uxx C uyy D f: (3.5)

In the special case f � 0, this reduces to Laplace’s equation,

uxx C uyy D 0: (3.6)

We also need to specify boundary conditions all around the boundary of the region �.
These could be Dirichlet conditions, where the temperature u.x; y/ is specified at each
point on the boundary, or Neumann conditions, where the normal derivative (the heat flux)
is specified. We may have Dirichlet conditions specified at some points on the boundary
and Neumann conditions at other points.

In one space dimension the corresponding Laplace’s equation u00.x/ D 0 is trivial:
the solution is a linear function connecting the two boundary values. In two dimensions
even this simple equation in nontrivial to solve, since boundary values can now be speci-
fied at every point along the curve defining the boundary. Solutions to Laplace’s equation
are called harmonic functions. You may recall from complex analysis that if g.z/ is any
complex analytic function of z D x C iy, then the real and imaginary parts of this function
are harmonic. For example, g.z/ D z2 D .x2 � y2/ C 2ixy is analytic and the functions
x2 � y2 and 2xy are both harmonic.

The operator r2 defined by

r2u D uxx C uyy

is called the Laplacian. The notation r2 comes from the fact that, more generally,

.�ux/x C .�uy/y D r � .�ru/;

where ru is the gradient of u,

ru D
�

ux

uy

�
; (3.7)

and r� is the divergence operator,

r �
�

u

v

�
D ux C vy : (3.8)

The symbol� is also often used for the Laplacian but would lead to confusion in numerical
work where �x and �y are often used for grid spacing.

3.2 The 5-point stencil for the Laplacian
To discuss discretizations, first consider the Poisson problem (3.5) on the unit square 0 �
x � 1, 0 � y � 1 and suppose we have Dirichlet boundary conditions. We will use a
uniform Cartesian grid consisting of grid points .xi ; yj /, where xi D i�x and yj D j�y.
A section of such a grid is shown in Figure 3.1.D
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3.3. Ordering the unknowns and equations 61

(a)

1

1

-4 1
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(b)
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11
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yjC1

yj�2

yjC2

Figure 3.1. Portion of the computationalgrid for a two-dimensionalelliptic equa-
tion. (a) The 5-point stencil for the Laplacian about the point .i; j / is also indicated. (b)
The 9-point stencil is indicated, which is discussed in Section 3.5.

Let uij represent an approximation to u.xi ; yj /. To discretize (3.5) we replace the
x- and y-derivatives with centered finite differences, which gives

1

.�x/2
.ui�1;j � 2uij C uiC1;j /C

1

.�y/2
.ui;j�1 � 2uij C ui;jC1/ D fij : (3.9)

For simplicity of notation we will consider the special case where�x D �y � h, although
it is easy to handle the general case. We can then rewrite (3.9) as

1

h2
.ui�1;j C uiC1;j C ui;j�1 C ui;jC1 � 4uij / D fij : (3.10)

This finite difference scheme can be represented by the 5-point stencil shown in Figure 3.1.
We have both an unknown uij and an equation of the form (3.10) at each of m2 grid points
for i D 1; 2; : : : ; m and j D 1; 2; : : : ; m, where h D 1=.m C 1/ as in one dimension.
We thus have a linear system of m2 unknowns. The difference equations at points near the
boundary will of course involve the known boundary values, just as in the one-dimensional
case, which can be moved to the right-hand side.

3.3 Ordering the unknowns and equations
If we collect all these equations together into a matrix equation, we will have an m2 �
m2 matrix that is very sparse, i.e., most of the elements are zero. Since each equation
involves at most five unknowns (fewer near the boundary), each row of the matrix has at
most five nonzeros and at least m2 � 5 elements that are zero. This is analogous to the
tridiagonal matrix (2.9) seen in the one-dimensional case, in which each row has at most
three nonzeros.

Recall from Section 2.14 that the structure of the matrix depends on the order we
choose to enumerate the unknowns. Unfortunately, in two space dimensions the struc-
ture of the matrix is not as compact as in one dimension, no matter how we order theD
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62 Chapter 3. Elliptic Equations

unknowns, and the nonzeros cannot be as nicely clustered near the main diagonal. One
obvious choice is the natural rowwise ordering, where we take the unknowns along the
bottom row, u11; u21; u31; : : : ; um1, followed by the unknowns in the second row,
u12; u22; : : : ;um2, and so on, as illustrated in Figure 3.2(a). The vector of unknowns
is partitioned as

u D

2
6664

uŒ1�

uŒ2�

:::

uŒm�

3
7775 ; where uŒj � D

2
6664

u1j

u2j

:::

umj

3
7775 : (3.11)

This gives a matrix equation where A has the form

A D
1

h2

2
666664

T I

I T I

I T I
: : :

: : :
: : :

I T

3
777775
; (3.12)

which is an m � m block tridiagonal matrix in which each block T or I is itself an m � m

matrix,

T D

2
666664

�4 1

1 �4 1

1 �4 1
: : :

: : :
: : :

1 �4

3
777775
;

and I is the m � m identity matrix. While this has a nice structure, the 1 values in the I

matrices are separated from the diagonal by m�1 zeros, since these coefficients correspond
to grid points lying above or below the central point in the stencil and hence are in the next
or previous row of unknowns.

Another possibility, which has some advantages in the context of certain iterative
methods, is to use the red-black ordering (or checkerboard ordering) shown in Figure 3.2.
This is the two-dimensional analogue of the odd-even ordering that leads to the matrix
(2.63) in one dimension. This ordering is significant because all four neighbors of a red grid
point are black points, and vice versa, and it leads to a matrix equation with the structure

�
D H

H T D

� �
ured

ublack

�
D
�

fred

�fblack

�
; (3.13)

where D D � 4
h2 I is a diagonal matrix of dimension m2=2 and H is a banded matrix of

the same dimension with four nonzero diagonals.
When direct methods such as Gaussian elimination are used to solve the system, one

typically wants to order the equations and unknowns so as to reduce the amount of fill-in
during the elimination procedure as much as possible. This is done automatically if the
backslash operator in MATLAB is used to solve the system, provided it is set up using
sparse storage; see Section 3.7.1.D
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(a)

41 2 3

5 6 7 8

9 10 11 12

13 14 15 16

(b)

15

9 2

13 14

10

65

1

11 3 12 4

16 87

Figure 3.2. (a) The natural rowwise order of unknowns and equations on a 4 ×4
grid. (b) The red-black ordering.

3.4 Accuracy and stability
The discretization of the two-dimensional Poisson problem can be analyzed using exactly
the same approach as we used for the one-dimensional boundary value problem. The local
truncation error τi j at the (i , j ) grid point is defined in the obvious way,

τi j = 1

h2 (u(xi−1, y j ) + u(xi+1, y j ) + u(xi , y j−1) + u(xi , y j+1) − 4u(xi , y j )) − f (xi , y j ),

and by splitting this into the second order difference in the x- and y-directions it is clear
from previous results that

τi j = 1

12
h2(ux x x x + uyyyy) + O(h4).

For this linear system of equations the global error Eij = ui j − u(xi , y j ) then solves the
linear system

Ah Eh = −τ h

just as in one dimension, where Ah is now the discretization matrix with mesh spacing h,
e.g., the matrix (3.12) if the rowwise ordering is used. The method will be globally second
order accurate in some norm provided that it is stable, i.e., that ‖(Ah)−1‖ is uniformly
bounded as h → 0.

In the 2-norm this is again easy to check for this simple problem, since we can explic-
itly compute the spectral radius of the matrix, as we did in one dimension in Section 2.10.
The eigenvalues and eigenvectors of A can now be indexed by two parameters p and q
corresponding to wave numbers in the x- and y-directions for p, q = 1, 2, . . . , m. The
(p,q) eigenvector u p,q has the m2 elements

u p,q
i j = sin( pπ ih) sin(qπ jh). (3.14)

The corresponding eigenvalue is

λp,q = 2

h2
((cos(pπh) − 1) + (cos(qπh) − 1)). (3.15)D
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64 Chapter 3. Elliptic Equations

The eigenvalues are strictly negative (A is negative definite) and the one closest to the origin
is

�1;1 D �2�2 C O.h2/:

The spectral radius of .Ah/�1, which is also the 2-norm, is thus

�..Ah/�1/ D 1=�1;1 � �1=2�2:

Hence the method is stable in the 2-norm.
While we’re at it, let’s also compute the condition number of the matrix Ah, since it

turns out that this is a critical quantity in determining how rapidly certain iterative methods
converge. Recall that the 2-norm condition number is defined by

�2.A/ D kAk2kA�1k2:

We’ve just seen that k.Ah/�1k2 � �1=2�2 for small h, and the norm of A is given by its
spectral radius. The largest eigenvalue of A (in magnitude) is

�m;m � �
8

h2

and so

�2.A/ �
4

�2h2
D O

�
1

h2

�
as h ! 0: (3.16)

The fact that the matrix becomes very ill-conditioned as we refine the grid is responsible
for the slow-down of iterative methods, as discussed in Chapter 4.

3.5 The 9-point Laplacian
Above we used the 5-point Laplacian, which we will denote by r2

5
uij , where this denotes

the left-hand side of equation (3.10). Another possible approximation is the 9-point Lapla-
cian

r2
9 uij D

1

6h2
Œ4ui�1;j C 4uiC1;j C 4ui;j�1 C 4ui;jC1

C ui�1;j�1 C ui�1;jC1 C uiC1;j�1 C uiC1;jC1 � 20uij �

(3.17)

as indicated in Figure 3.1. If we apply this to the true solution and expand in Taylor series,
we find that

r2
9 u.xi; yj / D r2u C

1

12
h2.uxxxx C 2uxxyy C uyyyy/C O.h4/:

At first glance this discretization looks no better than the 5-point discretization since the
error is still O.h2/. However, the additional terms lead to a very nice form for the dominant
error term, since

uxxxx C 2uxxyy C uyyyy D r2.r2u/ � r4u:D
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3.5. The 9-point Laplacian 65

This is the Laplacian of the Laplacian of u and r4 is called the biharmonic operator. If we
are solving r2u D f , then we have

uxxxx C 2uxxyy C uyyyy D r2f:

Hence we can compute the dominant term in the truncation error easily from the known
function f without knowing the true solution u to the problem.

In particular, if we are solving Laplace’s equation, where f D 0, or more gener-
ally if f is a harmonic function, then this term in the local truncation error vanishes and
the 9-point Laplacian would give a fourth order accurate discretization of the differential
equation.

More generally, we can obtain a fourth order accurate method of the form

r2
9 uij D fij (3.18)

for arbitrary smooth functions f .x; y/ by defining

fij D f .xi ; yj /C
h2

12
r2f .xi ; yj /: (3.19)

We can view this as deliberately introducing an O.h2/ error into the right-hand side of the
equation that is chosen to cancel the O.h2/ part of the local truncation error. Taylor series
expansion easily shows that the local truncation error of the method (3.18) is now O.h4/.
This is the two-dimensional analogue of the modification (2.117) that gives fourth order
accuracy for the boundary value problem u00.x/ D f .x/.

If we have only data f .xi ; yj / at the grid points (but we know that the underlying
function is sufficiently smooth), then we can still achieve fourth order accuracy by using

fij D f .xi ; yj /C
h2

12
r2

5f .xi ; yj /

instead of (3.19).
This is a trick that often can be used in developing numerical methods—introducing

an “error” into the equations that is carefully chosen to cancel some other error.
Note that the same trick wouldn’t work with the 5-point Laplacian, or at least not as

directly. The form of the truncation error in this method depends on uxxxx C uyyyy. There
is no way to compute this directly from the original equation without knowing u. The extra
points in the 9-point stencil convert this into the Laplacian of f , which can be computed if
f is sufficiently smooth.

On the other hand, a two-pass approach could be used with the 5-point stencil, in
which we first estimate u by solving with the standard 5-point scheme to get a second order
accurate estimate of u. We then use this estimate of u to approximate uxxxx C uyyyy and
then solve a second time with a right-hand side that is modified to eliminate the dominant
term of the local truncation error. This would be more complicated for this particular
problem, but this idea can be used much more generally than the above trick, which depends
on the special form of the Laplacian. This is the method of deferred corrections, already
discussed for one dimension in Section 2.20.3.D
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66 Chapter 3. Elliptic Equations

3.6 Other elliptic equations
In Chapter 2 we started with the simplest boundary value problem for the constant coeffi-
cient problem u00.x/ D f .x/ but then introduced various, more interesting problems, such
as variable coefficients, nonlinear problems, singular perturbation problems, and boundary
or interior layers.

In the multidimensional case we have discussed only the simplest Poisson problem,
which in one dimension reduces to u00.x/ D f .x/. All the further complications seen in
one dimension can also arise in multidimensional problems. For example, heat conduction
in a heterogeneous two-dimensional domain gives rise to the equation

.�.x; y/ux .x; y//x C .�.x; y/uy .x; y//y D f .x; y/; (3.20)

where �.x; y/ is the varying heat conduction coefficient. In any number of space dimen-
sions this equation can be written as

r � .�ru/ D f: (3.21)

These problems can be solved by generalizations of the one-dimensional methods. The
terms .�.x; y/ux .x; y//x and .�.x; y/uy .x; y//y can each be discretized as in the one-
dimensional case, again resulting in a 5-point stencil in two dimensions.

Nonlinear elliptic equations also arise in multidimensions, in which case a system of
nonlinear algebraic equations will result from the discretization. A Newton method can be
used as in one dimension, but now in each Newton iteration a large sparse linear system will
have to be solved. Typically the Jacobian matrix has a sparsity pattern similar to those seen
above for linear elliptic equations. See Section 4.5 for a brief discussion of Newton–Krylov
iterative methods for such problems.

In multidimensional problems there is an additional potential complication that is
not seen in one dimension: the domain � where the boundary value problem is posed
may not be a simple rectangle as we have supposed in our discussion so far. When the
solution exhibits boundary or interior layers, then we would also like to cluster grid points
or adaptively refine the grid in these regions. This often presents a significant challenge
that we will not tackle in this book.

3.7 Solving the linear system
Two fundamentally different approaches could be used for solving the large linear systems
that arise from discretizing elliptic equations. A direct method such as Gaussian elimination
produces an exact solution (or at least would in exact arithmetic) in a finite number of
operations. An iterative method starts with an initial guess for the solution and attempts to
improve it through some iterative procedure, halting after a sufficiently good approximation
has been obtained.

For problems with large sparse matrices, iterative methods are often the method of
choice, and Chapter 4 is devoted to a study of several iterative methods. Here we briefly
consider the operation counts for Gaussian elimination to see the potential pitfalls of this
approach.

It should be noted, however, that on current computers direct methods can be suc-
cessfully used for quite large problems, provided appropriate sparse storage and efficientD
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3.7. Solving the linear system 67

elimination procedures are used. See Section 3.7.1 for some comments on setting up sparse
matrices such as (3.12) in MATLAB.

It is well known (see, e.g., [35], [82], [91]) that for a general N � N dense matrix
(one with few elements equal to zero), performing Gaussian elimination requires O.N 3/

operations. (There are N .N � 1/=2 D O.N 2/ elements below the diagonal to eliminate,
and eliminating each one requires O.N / operations to take a linear combination of the
rows.)

Applying a general Gaussian elimination program blindly to the matrices we are
now dealing with would be disastrous, or at best extremely wasteful of computer resources.
Suppose we are solving the three-dimensional Poisson problem on a 100�100�100 grid—
a modest problem these days. Then N D m3 D 106 and N 3 D 1018. On a reasonably fast
desktop that can do on the order of 1010 floating point operations per second (10 gigaflops),
this would take on the order of 108 seconds, which is more than 3 years. More sophisticated
methods can solve this problem in seconds.

Moreover, even if speed were not an issue, memory would be. Storing the full matrix
A in order to modify the elements and produce L and U would require N 2 memory loca-
tions. In 8-byte arithmetic this requires 8 N 2 bytes. For the problem mentioned above, this
would be 8 � 1012 bytes, or eight terabytes. One advantage of iterative methods is that they
do not store the matrix at all and at most need to store the nonzero elements.

Of course with Gaussian elimination it would be foolish to store all the elements of
a sparse matrix, since the vast majority are zero, or to apply the procedure blindly without
taking advantage of the fact that so many elements are already zero and hence do not need
to be eliminated.

As an extreme example, consider the one-dimensional case where we have a tridi-
agonal matrix as in (2.9). Applying Gaussian elimination requires eliminating only the
nonzeros along the subdiagonal, only N � 1 values instead of N .N � 1/=2. Moreover,
when we take linear combinations of rows in the course of eliminating these values, in
most columns we will be taking linear combinations of zeros, producing zero again. If we
do not do pivoting, then only the diagonal elements are modified. Even with partial pivot-
ing, at most we will introduce one extra superdiagonal of nonzeros in the upper triangular
U that were not present in A. As a result, it is easy to see that applying Gaussian elimina-
tion to an m � m tridiagonal system requires only O.m/ operations, not O.m3/, and that
the storage required is O.m/ rather than O.m2/.

Note that this is the best we could hope for in one dimension, at least in terms of the
order of magnitude. There are m unknowns and even if we had exact formulas for these
values, it would require O.m/ work to evaluate them and O.m/ storage to save them.

In two space dimensions we can also take advantage of the sparsity and structure
of the matrix to greatly reduce the storage and work required with Gaussian elimination,
although not to the minimum that one might hope to attain. On an m � m grid there are
N D m2 unknowns, so the best one could hope for is an algorithm that computes the
solution in O.N / D O.m2/ work using O.m2/ storage. Unfortunately, this cannot be
achieved with a direct method.

One approach that is better than working with the full matrix is to observe that the A

is a banded matrix with bandwidth m both above and below the diagonal. Since a general
N � N banded matrix with a nonzero bands above the diagonal and b below the diagonal
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68 Chapter 3. Elliptic Equations

can be factored in O.Nab/ operations, this results in an operation count of O.m4/ for the
two-dimensional Poisson problem.

A more sophisticated approach that takes more advantage of the special structure (and
the fact that there are already many zeros within the bandwidth) is the nested dissection
algorithm [34]. This algorithm requires O.m3/ operations in two dimensions. It turns out
this is the best that can be achieved with a direct method based on Gaussian elimination.
George proved (see [34]) that any elimination method for solving this problem requires at
least O.m3/ operations.

For certain special problems, very fast direct methods can be used, which are much
better than standard Gaussian elimination. In particular, for the Poisson problem on a
rectangular domain there are fast Poisson solvers based on the fast Fourier transform that
can solve on an m � m grid in two dimensions in O.m2 log m/ operations, which is nearly
optimal. See [87] for a review of this approach.

3.7.1 Sparse storage in MATLAB

If you are going to work in MATLAB with sparse matrices arising from finite difference
methods, it is important to understand and use the sparse matrix commands that set up
matrices using sparse storage, so that only the nonzeros are stored. Type help sparse
to get started.

As one example, the matrix of (3.12) can be formed in MATLAB by the commands

I = eye(m);
e = ones(m,1);
T = spdiags([e -4*e e],[-1 0 1],m,m);
S = spdiags([e e],[-1 1],m,m);
A = (kron(I,T) + kron(S,I))/hˆ2;

The spy(A) command is also useful for looking at the nonzero structure of a matrix.
The backslash command in MATLAB can be used to solve systems using sparse

storage, and it implements highly efficient direct methods using sophisticated algorithms
for dynamically ordering the equations to minimize fill-in, as described by Davis [24].
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