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Chapter 11

Mixed Equations

We have now studied the solution of various types of time-dependent equations: ordinary
differential equations (ODEs), parabolic partial differential equations (PDEs) such as the
heat equation, and hyperbolic PDEs such as the advection equation. In practice several
processes may be happening simultaneously, and the PDE model will not be a pure equation
of any of the types already discussed but rather will be a mixture. In this chapter we discuss
several approaches to handling more complicated equations. We restrict our attention to
time-dependent PDEs of the form

ut D A1.u/CA2.u/C � � � C AN .u/; (11.1)

where each of the Aj .u/ are (possibly nonlinear) functions or differential operators in-
volving only spatial derivatives of u. For simplicity, most of our discussion will be further
restricted to only two terms, which we will write as

ut D A.u/C B.u/; (11.2)

but more terms often can be handled by extension or combination of the methods described
here.

11.1 Some examples
We begin with some examples of PDEs involving more than one term. See Appendix E for
more discussion of some of these equations.

� Multidimensional problems, such as the diffusion equation in two dimensions,

ut D �.uxx C uyy/; (11.3)

or the three-dimensional version. This problem has already been discussed in Sec-
tion 9.7, where we saw that efficient methods can be developed by splitting (11.3)
into two one-dimensional problems. Hyperbolic equations also arise in multidimen-
sional domains, such as the two-dimensional hyperbolic system

ut C Aux C Buy D 0 (11.4)
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234 Chapter 11. Mixed Equations

or nonlinear hyperbolic conservation laws

ut C f .u/x C g.u/y D 0; (11.5)

where f .u/ and g.u/ are the flux functions in the two directions.

All the problems discussed below also have multidimensional variants, where even
more terms arise. For simplicity we display only the one-dimensional case.

� Reaction-diffusion equations of the form

ut D �uxx C R.u/; (11.6)

where � is a diffusion coefficient (or diagonal matrix of diffusion coefficients if dif-
ferent components in the system diffuse at different rates) and R.u/ represents chem-
ical reactions, and is typically nonlinear. The reaction terms might or might not be
stiff. If not, then we typically want to handle these terms explicitly (to avoid solving
nonlinear systems of equations in each time step), while the diffusion term is stiff
and requires appropriate methods.

Even if the reaction terms are stiff, they apply locally at a point in space, unlike the
diffusion term that couples different grid points together. Recognizing this fact can
lead to more efficient solution techniques, as discussed further below.

� Advection-diffusion equations of the form

ut C aux D �uxx : (11.7)

The diffusion term is stiff and requires an appropriate solver, while the advection
term can be handled explicitly.

� Nonlinear hyperbolic equations with viscous terms,

ut C f .u/x D �uxx : (11.8)

The advection-diffusion equation (11.7) is one example of this form, but more gener-
ally the flux function f .u/ can be nonlinear, modeling fluid dynamics, for example,
in which case the right-hand side represents viscous terms and perhaps heat conduc-
tion. The Navier–Stokes equations for compressible gas dynamics have this general
form, for example. A simpler example is the viscous Burgers equation,

ut C uux D �uxx ; (11.9)

where the flux function is f .u/ D 1
2
u2. This is a simple scalar model for some of

the effects seen in compressible flow, and it has been widely studied.

� Advection-diffusion-reaction equations or reacting flow problems,

ut C f .u/x D �uxx C R.u/: (11.10)

If chemical reactions are occurring in a fluid flow, then equations of this general
form are obtained. Combustion problems are particularly challenging problems ofD
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11.2. Fully coupled method of lines 235

this type, where exothermic chemical reactions directly influence the fluid dynamics.
Chemotaxis problems are also of this type, which arise in biology when substances
move in response to concentration gradients of other substances, and often give rise
to interesting pattern formation [73].

� The Korteweg–de Vries (KdV) equation,

ut C uux D �uxxx : (11.11)

This is similar to the viscous Burgers equation (11.9), but the term on the right-
hand side is dispersive rather than dissipative. This leads to very different behavior
and is the simplest example of an equation having soliton solutions. It arises as a
simple model of certain kinds of wave phenomena in fluid dynamics and elsewhere.
The third derivative term is stiffer than a uxx term and would typically require k D
O.h3/ for an explicit method. However, similar to the advective terms considered in
Chapter 10, the eigenvalues of a discretization of uxxx will typically lie on or near
the imaginary axis over an interval stretching distance O.1=h3/ from the origin,
rather than along the negative real axis, influencing the type of time discretization
appropriate for these equations.

Many other equations that couple nonlinearity with dispersion are of importance in
applications, for example, the nonlinear Schrödinger equation

i t .x; t/ D � xx.x; t/C V . / (11.12)

with a nonlinear potential V . /. (With V D 0 the equation is linear and dispersive,
as shown in Section E.3.8.)

� The Kuramoto–Sivashinsky equation,

ut C
1

2
.ux/

2 D �uxx � uxxxx : (11.13)

The right-hand side gives exponential growth of some low wave numbers, as shown
in Section E.3.7. The nonlinear term transfers energy from low wave numbers to
higher wave numbers, which are damped by the fourth order diffusion. The result
is bounded solutions, but ones that can behave quite chaotically. The fourth order
diffusion term is even more stiff than second order diffusion. Eigenvalues of a dis-
cretization of this term typically lie on the negative real axis over an interval of length
O.1=h4/.

Many approaches can be used for problems that involve two or more different terms,
and a huge number of specialized methods have been developed for particular equations.
The remainder of this chapter contains a brief overview of a few popular approaches, but it
is by no means exhaustive.

11.2 Fully coupled method of lines
One simple approach is to discretize the full right-hand side of (11.1) in space using appro-
priate spatial discretizations of each term to obtain a semidiscrete method of lines (MOL)D
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236 Chapter 11. Mixed Equations

system of the form U 0.t/ D F.U.t//, where F represents the full spatial discretization.
This system of ODEs can now be solved using an ODE method in MATLAB or with other
ODE software. This may work well for equations where the terms all have similar charac-
ter. The problem in general, however, is that the same ODE method is being applied to all
aspects of the spatial discretization, which can be very wasteful for many of the problems
listed above.

Consider a reaction-diffusion equation of the form (11.6), for example. If this rep-
resents a system of s equations and we discretize in x on a grid with m points, then we
obtain a coupled system of ms ODEs. Typically the reaction terms R.u/ are nonlinear and
so this will be a nonlinear system. Generally an implicit method is used since the diffusion
terms are stiff, so in every time step a nonlinear system of dimension ms must be solved.
However, if the reaction terms are not stiff, then there is no need to make these terms im-
plicit and it should be possible to solve only linear systems for the diffusion terms, and
s decoupled linear systems of size m each (with tridiagonal matrices) rather than a fully
coupled nonlinear system of size ms. Even if the reaction terms are stiff, the reaction terms
ut D R.u/ are local at a point and by splitting the reaction from the diffusion (using one of
the other approaches discussed below), it is possible to solve decoupled nonlinear equations
of dimension s at each grid point to advance the reaction terms in a stable manner.

11.3 Fully coupled Taylor series methods
A first order accurate explicit method for the equation (11.2) can be obtained by using the
first order term in the Taylor series,

u.x; tn C k/ � u.x; tn/C k.A.u.x; tn//C B.u.x; tn///; (11.14)

and then replacing the spatial operators A and B with discretizations. A second order
accurate method can sometimes be obtained by adding the next term in the Taylor series,
but this requires determining utt in terms of spatial derivatives of u. We did this for the
advection equation ut C aux D 0 in Section 10.3 to derive the Lax–Wendroff method, in
which case utt D a2uxx . Whether we can do this in general for (11.2) depends on how
complicated the right-hand side is, but in some cases it can be done. For example, for the
two-dimensional hyperbolic equation (11.4) we can compute

utt D �Autx � Buty

D A.Aux C Buy/x C B.Aux C Buy/y

D A2uxx C .AB C BA/uxy C B2uyy:

(11.15)

A second order accurate Lax–Wendroff method can then be derived from

u.x; y; tn Ck/ � u�k.Aux CBuy/C
1

2
k2.A2uxx C.AB CBA/uxy CB2uyy/ (11.16)

(where the terms on the right-hand side are all evaluated at .x; y; tn/) by discretizing in
space using second order accurate centered approximations. This gives the two-dimensional
Lax–Wendroff method.

For some other problems a similar approach works, e.g., for advection-reaction terms
with nonstiff reactions, but this is generally useful only if all terms are nonstiff and can beD
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11.4. Fractional step methods 237

advanced with explicit methods. Moreover, it is generally difficult to achieve higher than
second order accuracy with this approach.

11.4 Fractional step methods
The idea of a fractional step method (also called a time-split or split-step method, among
other things) is to split up the equation into its constituent pieces and alternate between
advancing simpler equations in time. The simplest splitting for an equation with two terms
of the form (11.2) would be

U � D NA.U
n; k/;

U nC1 D NB.U
�; k/:

(11.17)

Here NA.U
n; k/ represents some one-step numerical method that solves ut D A.u/ over

a time step of length k starting with data U n. Similarly, NB.U
�; k/ solves ut D B.u/ over

a time step of length k starting with the data U �.
Below we will see that this splitting of the equation does often work—the numerical

solution obtained will usually converge to solutions of the original problem as k ! 0

provided the numerical methods used in each step are consistent and stable approximations
to the separate problems they are designed to solve. The approximation obtained often will
be only first order accurate, however, no matter how good each of the constituent numerical
methods is. We will see why below and consider some improvements.

First we note that this fractional step approach has several advantages. It allows us to
use very different methods for each piece ut D A.u/ and ut D B.u/. One can be implicit
and the other explicit, for example. For the reaction-diffusion problem (11.6), if A.u/
represents the diffusion terms, then these can be solved with an implicit method, solving
tridiagonal linear systems for each component. The reaction terms can be solved with an
explicit or implicit method, depending on whether they are stiff. If an implicit method is
used, then a nonlinear system is obtained at each grid point, but each is decoupled from the
nonlinear system at other grid points, typically leading to a much more efficient solution of
these systems.

Another situation in which this type of splitting is often used is in reducing a mul-
tidimensional problem to a sequence of one-dimensional problems. In this context the
fractional step approach is often called dimensional splitting. We saw an example of this
in Section 9.8, where the locally one-dimensional (LOD) method for the heat equation
was discussed. By decoupling the space dimensions, one obtains a sequence of tridiagonal
systems to solve instead of a large sparse matrix with more complicated structure.

Another advantage of the fractional step approach is that existing methods for the
simpler subproblems are easily patched together, e.g., ODE methods for the reaction terms
can be applied without worrying about the spatial coupling, or a one-dimensional method
for a PDE can easily be extended to two or three dimensions by repeatedly applying it on
one-dimensional slices.

To see that the fractional step method (11.17) may be only first order accurate, con-
sider a simple linear system of ODEs where the coefficient matrix is split into two matrices
as A C B, so the system is

ut D Au C Bu: (11.18)D
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238 Chapter 11. Mixed Equations

Suppose we use the fractional step method (11.17) with the exact solution operator for each
step, so

NA.U; k/ D eAkU; NB.U; k/ D eBkU: (11.19)

Then (11.17) gives the numerical method

U nC1 D eBkU � D eBkeAkU n; (11.20)

whereas the exact solution satisfies

u.tnC1/ D e.ACB/ku.tn/: (11.21)

By Taylor series expansion of the matrix exponentials (see (D.31)), we find that

e.ACB/k D I C k.A C B/C
1

2
k2.A C B/2 C � � � ; (11.22)

whereas

eBk eAk D
�

I C kA C
1

2
k2A2 C � � �

� �
I C kB C

1

2
k2B2 C � � �

�

D I C k.A C B/C
1

2
k2.A2 C 2AB C B2/C � � � :

(11.23)

Note that the quadratic term in (11.22) is

.A C B/2 D A2 C AB C BA C B2;

which is not the same as the quadratic term in (11.23) if the matrices A and B do not
commute.

If they do commute, e.g., in the scalar case, then the splitting is exact and all terms in
the Taylor series agree. But in general a one-step error of magnitude O.k2/ is introduced,
and so the method is only first order accurate even when the exact solution is used for each
piece.

A second order accurate splitting was introduced by Strang [83] in the context of
methods for multidimensional hyperbolic equations and is often called the Strang splitting:

U � D NA.U
n; k=2/;

U �� D NB.U
�; k/;

U nC1 D NA.U
��; k=2/:

(11.24)

Working out the product of the Taylor series expansions in this case for the ODE system
(11.18) gives agreement to the quadratic term in (11.22), although there is an error in the
O.k3/ term unless A and B commute. A similar result can be shown for general PDEs
with smooth solutions split in the form (11.2).

An alternative procedure, which also gives second order accuracy, is to use the split-
ting (11.17) in every other time step, and in the alternate time steps use a similar splitting
but with the order of NA and NB reversed. Over two time steps this has roughly the same
form as the Strang splitting over a time step of length 2k, although with two applications
of NB with time step k rather than one application with time step 2k.D
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11.5. Implicit-explicit methods 239

Example 11.1. The LOD method for the heat equation discussed in Section 9.8 uses
a splitting of the form (11.17) but is able to achieve second order accuracy because there
is no splitting error in this case (except near the boundaries, where appropriate treatment
is required). In this case the two-dimensional heat equation is split with A.u/ D uxx and
B.u/ D uyy , and the operators @2

x and @2
y commute. For a more general variable coefficient

heat equation with A.u/ D .�.x; y/ux /x and B.u/ D .�.x; y/uy /y , the two operators no
longer commute and the LOD method would be only first order accurate.

Another possible way to improve the accuracy of fractional step methods is to com-
bine them with the spectral deferred correction method of [28]. This method improves the
accuracy of a time-stepping procedure by a deferred correction process. Application to
advection-diffusion-reaction equations in the context of fractional step methods was inves-
tigated in [9].

One difficulty with fractional step methods is that boundary conditions may be hard
to apply properly when initial boundary value problems are solved. Each application of
NA or NB typically requires boundary conditions, either physical or artificial, and it is
not always clear how to properly specify the “intermediate boundary conditions” needed in
each stage of the splitting. This has been discussed in relation to the LOD method for the
heat equation in Section 9.8. See [65] for a discussion of intermediate boundary conditions
for hyperbolic equations.

Another potential difficulty is stability. Even if the methods NA and NB are each sta-
ble methods for the problems they are designed to solve, it is not always clear that alternat-
ing between these methods in every time step will lead to a stable procedure. Example D.3
shows the problem that can arise. Suppose NA.U

n; k/ D A0U n and NB.U
�; k/ D A1u� ,

where A0 and A1 are given by (D.84). Then each method is stable by itself but the frac-
tional step procedure (11.17) generates exponentially growing solutions. Often stability
of fractional step methods can be easily shown, for example, if kNA.U; k/k � kU k and
kNB.U; k/k � kU k both hold in the same norm, but caution is required.

11.5 Implicit-explicit methods
Suppose we have an equation split as in (11.2), where A.u/ represents stiff terms that we
wish to integrate using an implicit method, whereas B.u/ corresponds to nonstiff terms
that can be handled explicitly with a reasonable time step. We have seen various examples
of this form, such as reaction-diffusion equations with nonstiff reactions, where it may be
much more efficient to avoid an implicit solve for the nonlinear reaction terms.

Implicit-explicit (IMEX) methods are fully coupled methods that are designed to han-
dle some terms implicitlyand others explicitly. A simple example is obtained by combining
forward Euler with backward Euler:

U nC1 D U n C k.A.U nC1/C B.U n//: (11.25)

Another example is a two-step combination of the second order Adams–Bashforth method
for the explicit term with the trapezoidal method for the implicit term:

U nC1 D U n C
k

2

�
A.U n/C A.U nC1/C 3B.U n/ � B.U n�1/

�
: (11.26)D
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240 Chapter 11. Mixed Equations

Higher order methods of this type have been derived and widely used. See, for example,
[7] for a number of other multistep methods and [6] for some Runge–Kutta methods of this
type.

11.6 Exponential time differencing methods
Consider a nonlinear ODE u0 D f .u/ (possibly an MOL discretization of a PDE) and
suppose that over the time interval Œtn; tnC1� we write this as

u0.t/ D Anu.t/ C Bn.u.t//; (11.27)

where we have split the function f .u/ into a linear part and a nonlinear part. The idea of
exponential time differencing (ETD) methods is to use a form of Duhamel’s principle (5.8)
to handle the linear part exactly using the matrix exponential and combine this with an
appropriate numerical method of the desired order for the Bn.u/ term, typically an explicit
method if we assume that the linear term captures the stiff part of the problem.

Two common forms of this type of splitting are as follows:

1. For a general nonlinear function f .u/, let An D f 0.U n/, the Jacobian matrix evalu-
ated at U n (or perhaps some approximate Jacobian), and then

Bn.u/ D f .u/ � Anu: (11.28)

2. For problems such as MOL discretizations of reaction-diffusion equations we may
take An to be the matrix representing the diffusion operator for all n and let Bn.u/ be
the reaction terms. In this case An is not the full Jacobian of the nonlinear problem,
but if the reaction terms are not stiff they might be easily approximated with ex-
plicit methods, and there are advantages to having A unchanged from one step to the
next—the ETD methods require working with the matrix exponential ekAn , and if A

is constant we may be able to compute this once before beginning the time stepping.

For the system (11.27), Duhamel’s principle (5.8) can be generalized to

u.tnC1/ D eAnku.tn/C
Z tnC1

tn

eAn.tnC1��/Bn.u.�// d�: (11.29)

This expression is exact, but the integral must be approximated since we don’t know
Bn.u.�//. Methods of various order can be obtained by different discretizations of this
integral. The simplest approximation is obtained by replacing Bn.u.�// with Bn.U

n/. We
can then pull this out of the integral and can compute the exact integral of the remaining
integrand by integrating the Taylor series for the matrix exponential (D.31) term by term,
resulting in (5.12),

Z tnC1

tn

eAn.tnC1��/ d� D k C
1

2
k2An C

1

6
k3A2

n C � � �

D A�1
n

�
eAnk � I

�
(if An is nonsingular):

(11.30)
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11.6. Exponential time differencing methods 241

Using this, we obtain from (11.29) the numerical method

U nC1 D eAnkU n C A�1
n

�
eAnk � I

�
Bn.U

n/: (11.31)

Since Bn.U
n/ D f .U n/ � AnU n, we can rewrite this as

U nC1 D U n C A�1
n

�
eAnk � I

�
f .U n/: (11.32)

Note that if An D 0, then using the first line of (11.30) we see that (11.32) reduces to
Euler’s method for u0 D f .u/ and is only first order accurate. However, we normally
assume that An is nonsingular and an approximation to the Jacobian matrix. In general we
can compute the local truncation error to be

�n D
�

u.tnC1/ � u.tn/

k

�
� k�1A�1

n

�
eAnk � I

�
u0.tn/

D
�
u0.tn/C

1

2
ku00.tn/C

1

6
k2u000.tn/C � � �

�

�
�
I C

1

2
Ank C

1

6
A2

nk2 C � � �
�

u0.tn/

D
1

2
k
�
u00.tn/ � Anu0.tn/

�
C

1

6
k2
�
u000.tn/ � Anu0.tn/

�
C � � �

D
1

2
k
�
f 0.u.tn// � An

�
u0.tn/C O.k2/:

(11.33)

We see that the method is second order accurate if An D f 0.U n/.
Higher order methods can be derived by using better approximations of the integral

in (11.29). This can be done either as a multistep method, approximating Bn.u/ by an
interpolating polynomial through previous values U n�j as in the derivation of the Adams–
Bashforth methods, or as multistage generalizations of the Runge–Kutta methods. See, for
example, [8], [19], [48], [53] for more discussion of these methods.

Note that the ETD method is exact on the test problem u0 D �u if we take An D �.
So the region of absolute stability for this method is exactly the left half-plane. The method
is exact more generally on a linear system of equations, provided of course that we can
compute the matrix exponential accurately, as discussed in the next section.

Many mixed equations involve higher order derivative terms that are linear (and of-
ten constant coefficient) and ETD methods may be particularly suitable for handling the
stiffness of spatial discretizations. Note in particular that for dispersive terms, such as the
uxxx term in the KdV equation (11.11), an ETD method that handles this term exactly may
be advantageous over an implicit method. This dispersion is nondissipative (eigenvalues
are on the imaginary axis), but many implicit methods designed for stiff problems have the
imaginary axis in the interior of the stability region, leading to nonphysical dissipation.

11.6.1 Implementing exponential time differencing methods

Computing the matrix exponential is nontrivial—the classic paper [70] presented “19 du-
bious ways” to do this, and its recent update [71] discusses a 20th way in the appendix,D
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a more recently developed approach based on Krylov space methods. The latter approach
has made the exponential time differencing approach viable for MOL discretizations of
parabolic equations and other linear systems of ODEs involving large but sparse coefficient
matrices and is discussed further below.

One situation in which ETD methods are relatively easy to implement is when the ma-
trix An is diagonal, for then eAnk is just a diagonal matrix of scalar exponential functions.
This arises naturally in some applications, for example, if a problem such as a reaction-
diffusion equation is solved with periodic boundary conditions. By Fourier transforming
the problem, the diffusion operator is reduced to a diagonal matrix. For this reason ETD
methods are often particularly attractive in connection with Fourier spectral methods.

Even in the scalar case, however, the evaluation of the exponential factor

�.z/ D .ez � 1/=z (11.34)

that appears in (11.32) can be susceptible to numerical cancellation effects in floating point
arithmetic. For higher order ETD methods such as the fourth order method considered by
Cox and Matthews [19], higher order terms of the same nature appear that are even more
sensitive to numerical errors. Kassam and Trefethen [53] suggest an approach to evaluating
these coefficients in the numerical method using contour integration in the complex plane,
numerically approximating the Cauchy integral representation (D.4).

In the nondiagonal case, directly computing the matrix exponential by this sort of
approach can still be very effective if the matrix A involved is of modest size, such as may
arise from a spectral approximation based on polynomials.

For very large sparse matrices, the Krylov space approach often works best. In this
case we do not compute the matrix exponential itself, which is a very large dense matrix,
but rather the application of this matrix to a vector. This is all that is needed in (11.32),
for example. Actually we need to apply A�1.eAk � I / D k�.Ak/ to a vector, which
could be done in two steps, first using a Krylov space method for the exponential and then
a second Krylov space method to solve the linear system, but the Krylov approach can
be applied directly to the function �.Ak/. This approach has been briefly outlined at the
end of Section 4.4. In practice it has been found that in some cases, particularly if a good
preconditioner is not available, Krylov space methods may converge faster on the matrix
exponential and related functions than it does for a simple linear system with the same
coefficient matrix. In such cases the ETD methods may be more efficient than using a
traditional implicit method. See, e.g., [32], [48], [77] for more details.
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