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Chapter 10

Advection Equations and
Hyperbolic Systems

Hyperbolic partial differential equations (PDEs) arise in many physical problems, typi-
cally whenever wave motion is observed. Acoustic waves, electromagnetic waves, seis-
mic waves, shock waves, and many other types of waves can be modeled by hyperbolic
equations. Often these are modeled by linear hyperbolic equations (for the propagation
of sufficiently small perturbations), but modeling large motions generally requires solv-
ing nonlinear hyperbolic equations. Hyperbolic equations also arise in advective transport,
when a substance is carried along with a flow, giving rise to an advection equation. This
is a scalar linear first order hyperbolic PDE, the simplest possible case. See Appendix E
for more discussion of hyperbolic problems and a derivation of the advection equation in
particular.

In this chapter we will primarily consider the advection equation. This is sufficient to
illustrate many (although certainly not all) of the issues that arise in the numerical solution
of hyperbolic equations. Section 10.10 contains a very brief introduction to hyperbolic sys-
tems, still in the linear case. A much more extensive discussion of hyperbolic problems and
numerical methods, including nonlinear problems and multidimensional methods, can be
found in [66]. Those interested in solving more challenging hyperbolic problems may also
look at the CLAWPACK software [64], which was designed primarily for hyperbolic prob-
lems. There are also a number of other books devoted to nonlinear hyperbolic equations
and their solution, e.g., [58], [88].

10.1 Advection
In this section we consider numerical methods for the scalar advection equation

ut C aux D 0; (10.1)

where a is a constant. See Section E.2.1 for a discussion of this equation. For the Cauchy
problem we also need initial data

u.x; 0/ D �.x/:
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202 Chapter 10. Advection Equations and Hyperbolic Systems

This is the simplest example of a hyperbolic equation, and it is so simple that we can write
down the exact solution,

u.x; t/ D �.x � at/: (10.2)

One can verify directly that this is the solution (see also Appendix E). However, many of
the issues that arise more generally in discretizing hyperbolic equations can be most easily
seen with this equation.

The first approach we might consider is the analogue of the method (9.4) for the heat
equation. Using the centered difference in space,

ux.x; t/ D
u.x C h; t/ � u.x � h; t/

2h
C O.h2/ (10.3)

and the forward difference in time results in the numerical method

U nC1
j � U n

j

k
D �

a

2h
.U n

jC1 � U n
j�1/; (10.4)

which can be rewritten as

U nC1
j D U n

j �
ak

2h
.U n

jC1 � U n
j�1/: (10.5)

This again has the stencil shown in Figure 9.1(a). In practice this method is not useful
because of stability considerations, as we will see in the next section.

A minor modification gives a more useful method. If we replace U n
j on the right-

hand side of (10.5) by the average 1
2
.U n

j�1
C U n

jC1
/, then we obtain the Lax–Friedrichs

method,

U nC1
j D

1

2
.U n

j�1 C U n
jC1/ �

ak

2h
.U n

jC1 � U n
j�1/: (10.6)

Because of the low accuracy, this method is not commonly used in practice, but it
serves to illustrate some stability issues and so we will study this method along with (10.5)
before describing higher order methods, such as the well-known Lax–Wendroff method.

We will see in the next section that Lax–Friedrichs is Lax–Richtmyer stable (see
Section 9.5) and convergent provided

ˇ̌
ˇ̌ak

h

ˇ̌
ˇ̌ � 1: (10.7)

Note that this stability restriction allows us to use a time step k D O.h/ although the
method is explicit, unlike the case of the heat equation. The basic reason is that the advec-
tion equation involves only the first order derivative ux rather than uxx and so the difference
equation involves 1=h rather than 1=h2.

The time step restriction (10.7) is consistent with what we would choose anyway
based on accuracy considerations, and in this sense the advection equation is not stiff, unlike
the heat equation. This is a fundamental difference between hyperbolic equations and
parabolic equations more generally and accounts for the fact that hyperbolic equations are
typically solved with explicit methods, while the efficient solution of parabolic equations
generally requires implicit methods.D
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10.2. Method of lines discretization 203

To see that (10.7) gives a reasonable time step, note that

ux.x; t/ D �0.x � at/;

while
ut.x; t/ D �aux.x; t/ D �a�0.x � at/:

The time derivative ut is larger in magnitude than ux by a factor of a, and so we would
expect the time step required to achieve temporal resolution consistent with the spatial
resolution h to be smaller by a factor of a. This suggests that the relation k � h=a would
be reasonable in practice. This is completely consistent with (10.7).

10.2 Method of lines discretization
To investigate stability further we will again introduce the method of lines (MOL) dis-
cretization as we did in Section 9.2 for the heat equation. To obtain a system of equations
with finite dimension we must solve the equation on some bounded domain rather than
solving the Cauchy problem. However, in a bounded domain, say, 0 � x � 1, the advec-
tion equation can have a boundary condition specified on only one of the two boundaries.
If a > 0, then we need a boundary condition at x D 0, say,

u.0; t/ D g0.t/; (10.8)

which is the inflow boundary in this case. The boundary at x D 1 is the outflow boundary
and the solution there is completely determined by what is advecting to the right from the
interior. If a < 0, we instead need a boundary condition at x D 1, which is the inflow
boundary in this case.

The symmetric 3-point methods defined above can still be used near the inflow
boundary but not at the outflow boundary. Instead the discretization will have to be cou-
pled with some “numerical boundary condition” at the outflow boundary, say, a one-sided
discretization of the equation. This issue complicates the stability analysis and will be
discussed in Section 10.12.

For analysis purposes we can obtain a nice MOL discretization if we consider the
special case of periodic boundary conditions,

u.0; t/ D u.1; t/ for t � 0:

Physically, whatever flows out at the outflow boundary flows back in at the inflow boundary.
This also models the Cauchy problem in the case where the initial data is periodic with
period 1, in which case the solution remains periodic and we need to model only a single
period 0 � x � 1.

In this case the value U0.t/ D UmC1.t/ along the boundaries is another unknown,
and we must introduce one of these into the vector U.t/. If we introduce UmC1.t/, then we
have the vector of grid values

U.t/ D

2
6664

U1.t/

U2.t/
:::

UmC1.t/

3
7775 :
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204 Chapter 10. Advection Equations and Hyperbolic Systems

For 2 � j � m we have the ordinary differential equation (ODE)

U 0
j .t/ D �

a

2h
.UjC1.t/ � Uj�1.t//;

while the first and last equations are modified using the periodicity:

U 0
1.t/ D �

a

2h
.U2.t/ � UmC1.t//;

U 0
mC1.t/ D �

a

2h
.U1.t/ � Um.t//:

This system can be written as
U 0.t/ D AU.t/ (10.9)

with

A D �
a

2h

2
66666664

0 1 �1

�1 0 1

�1 0 1
: : :

: : :
: : :

�1 0 1

1 �1 0

3
77777775

2 R.mC1/�.mC1/: (10.10)

Note that this matrix is skew-symmetric (AT D �A) and so its eigenvalues must be pure
imaginary. In fact, the eigenvalues are

�p D �
ia

h
sin.2�ph/ for p D 1; 2; : : : ; m C 1: (10.11)

The corresponding eigenvector up has components

u
p
j D e2� ipjh for j D 1; 2; : : : ; m C 1: (10.12)

The eigenvalues lie on the imaginary axis between �ia=h and ia=h.
For absolute stability of a time discretization we need the stability region S to include

this interval. Any method that includes some interval iy; jyj < b of the imaginary axis
will lead to a stable method for the advection equation provided jak=hj � b. For example,
looking again at the stability regions plotted in Figures 7.1 through 7.3 and Figure 8.5 shows
that the midpoint method or certain Adams methods may be suitable for this problem,
whereas the backward differentiation formula (BDF) methods are not.

10.2.1 Forward Euler time discretization

The method (10.5) can be viewed as the forward Euler time discretization of the MOL
system of ODEs (10.9). We found in Section 7.3 that this method is stable only if j1Ck�j �
1 and the stability region S is the unit circle centered at �1. No matter how small the ratio
k=h is, since the eigenvalues �p from (10.11) are imaginary, the values k�p will not lie in
S . Hence the method (10.5) is unstable for any fixed mesh ratio k=h; see Figure 10.1(a).D
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10.2. Method of lines discretization 205

The method (10.5) will be convergent if we let k ! 0 faster than h, since then
k�p ! 0 for all p and the zero-stability of Euler’s method is enough to guarantee con-
vergence. Taking k much smaller than h is generally not desirable and the method is not
used in practice. However, it is interesting to analyze this situation also in terms of Lax–
Richtmyer stability, since it shows an example where the Lax–Richtmyer stability uses a
weaker bound of the form (9.22), kBk � 1 C˛k, rather than kBk � 1. Here B D I C kA.
Suppose we take k D h2, for example. Then we have

j1 C k�pj2 � 1 C .ka=h/2

for each p (using the fact that �p is pure imaginary) and so

j1 C k�pj2 � 1 C a2h2 D 1 C a2k:

Hence kI C kAk2
2

� 1 C a2k and if nk � T , we have

k.I C kA/nk2 � .1 C a2k/n=2 � ea2T=2;

showing the uniform boundedness of kBnk (in the 2-norm) needed for Lax–Richtmyer
stability.

10.2.2 Leapfrog

A better time discretization is to use the midpoint method (5.23),

U nC1 D U n�1 C 2kAU n;

which gives the leapfrog method for the advection equation,

U nC1
j D U n�1

j �
ak

h
.U n

jC1 � U n
j�1/: (10.13)

This is a 3-level explicit method and is second order accurate in both space and time.
Recall from Section 7.3 that the stability region of the midpoint method is the interval

i˛ for �1 < ˛ < 1 of the imaginary axis. This method is hence stable on the advection
equation provided jak=hj < 1 is satisfied.

On the other hand, note that the k�p will always be on the boundary of the stability
region (the stability region for midpoint has no interior). This means the method is only
marginally stable—there is no growth but also no decay of any eigenmode. The difference
equation is said to be nondissipative. In some ways this is good—the true advection equa-
tion is also nondissipative, and any initial condition simply translates unchanged, no matter
how oscillatory. Leapfrog captures this qualitative behavior well.

However, there are problems with this. All modes translate without decay, but they do
not all propagate at the correct velocity, as will be explained in Example 10.12. As a result
initial data that contains high wave number components (e.g., if the data contains steep
gradients) will disperse and can result in highly oscillatory numerical approximations.

The marginal stability of leapfrog can also turn into instability if a method of this sort
is applied to a more complicated problem with variable coefficients or nonlinearities.D
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206 Chapter 10. Advection Equations and Hyperbolic Systems

10.2.3 Lax–Friedrichs

Again consider the Lax–Friedrichs method (10.6). Note that we can rewrite (10.6) using
the fact that

1

2
.U n

j�1 C U n
jC1/ D U n

j C
1

2
.U n

j�1 � 2U n
j C U n

jC1/

to obtain

U nC1
j D U n

j �
ak

2h
.U n

jC1 � U n
j�1/C

1

2
.U n

j�1 � 2U n
j C U n

jC1/: (10.14)

This can be rearranged to give

U nC1
j � U n

j

k
C a

 
U n

jC1 � U n
j�1

2h

!
D

h2

2k

 
U n

j�1 � 2U n
j C U n

jC1

h2

!
:

If we compute the local truncation error from this form we see, as expected, that it is
consistent with the advection equation ut C aux D 0, since the term on the right-hand side
vanishes as k; h ! 0 (assuming k=h is fixed). However, it looks more like a discretization
of the advection-diffusion equation

ut C aux D �uxx ;

where � D h2=2k.
Later in this chapter we will study the diffusive nature of many methods for the

advection equation. For our present purposes, however, the crucial part is that we can now
view (10.14) as resulting from a forward Euler discretization of the system of ODEs

U 0.t/ D A�U.t/

with

A� D �
a

2h

2
66666664

0 1 �1

�1 0 1

�1 0 1
: : :

: : :
: : :

�1 0 1

1 �1 0

3
77777775

C
�

h2

2
66666664

�2 1 1

1 �2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 1 �2

3
77777775
;

(10.15)

where � D h2=2k. The matrix A� differs from the matrix A of (10.10) by the addition of
a small multiple of the second difference operator, which is symmetric rather than skew-
symmetric. As a result the eigenvalues of A� are shifted off the imaginary axis and now lieD
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10.3. The Lax–Wendroff method 207

in the left half-plane. There is now some hope that each k� will lie in the stability region
of Euler’s method if k is small enough relative to h.

It can be verified that the eigenvectors (10.12) of the matrix A are also eigenvectors of
the second difference operator (with periodic boundary conditions) that appears in (10.15),
and hence these are also the eigenvectors of the full matrix A�. We can easily compute that
the eigenvalues of A� are

�p D �
ia

h
sin.2�ph/ �

2�

h2
.1 � cos.2�ph//: (10.16)

The values k�p are plotted in the complex plane for various different values of � in Fig-
ure 10.1. They lie on an ellipse centered at �2k�=h2 with semi-axes of length 2k�=h2

in the x-direction and ak=h in the y-direction. For the special case � D h2=2k used in
Lax–Friedrichs, we have �2k�=h2 D �1 and this ellipse lies entirely inside the unit circle
centered at �1, provided that jak=hj � 1. (If jak=hj > 1, then the top and bottom of
the ellipse would extend outside the circle.) The forward Euler method is stable as a time-
discretization, and hence the Lax–Friedrichs method is Lax–Richtmyer stable, provided
jak=hj � 1.

10.3 The Lax–Wendroff method
One way to achieve second order accuracy on the advection equation is to use a second
order temporal discretization of the system of ODEs (10.9), since this system is based
on a second order spatial discretization. This can be done with the midpoint method, for
example, which gives rise to the leapfrog scheme (10.13) already discussed. However, this
is a three-level method and for various reasons it is often much more convenient to use
two-level methods for PDEs whenever possible—in more than one dimension the need to
store several levels of data may be restrictive, boundary conditions can be harder to impose,
and combining methods using fractional step procedures (as discussed in Chapter 11) may
require two-level methods for each step, to name a few reasons. Moreover, the leapfrog
method is nondissipative, leading to potential stability problems if the method is extended
to variable coefficient or nonlinear problems.

Another way to achieve second order accuracy in time would be to use the trapezoidal
method to discretize the system (10.9), as was done to derive the Crank–Nicolson method
for the heat equation. But this is an implicit method and for hyperbolic equations there is
generally no need to introduce this complication and expense.

Another possibility is to use a two-stage Runge–Kutta method such as the one in
Example 5.11 for the time discretization. This can be done, although some care must be
exercised near boundaries, and the use of a multistage method again typically requires
additional storage.

One simple way to achieve a two-level explicit method with higher accuracy is to use
the idea of Taylor series methods, as described in Section 5.6. Applying this directly to the
linear system of ODEs U 0.t/ D AU.t/ (and using U 00 D AU 0 D A2U ) gives the second
order method

U nC1 D U n C kAU n C
1

2
k2A2U n:D
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208 Chapter 10. Advection Equations and Hyperbolic Systems

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(a) � D 0:0 (Forward Euler)

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(b) � D 0:001

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(c) � D 0:005

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(d) � D 0:008 (Lax-Wendroff)

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(e) � D 0:0125 (Lax-Friedrichs)

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
(f) � D 0:014

Figure 10.1. Eigenvalues of the matrix A� in (10.15), for various values of �, in
the case h D 1=50 and k D 0:8h, a D 1, so ak=h D 0:8. (a) shows the case � D 0

which corresponds to the forward Euler method (10.5). (d) shows the case � D a2k=2, the
Lax–Wendroff method (10.18). (e) shows the case � D h2=2k, the Lax–Friedrichs method
(10.6). The method is stable for � between a2k=2 and h2=2k, as in (d) through (e).

D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 209i

i
i

i

i
i

i
i

10.3. The Lax–Wendroff method 209

Here A is the matrix (10.10), and computing A2 and writing the method at the typical grid
point then gives

U nC1
j D U n

j �
ak

2h
.U n

jC1 � U n
j�1/C

a2k2

8h2
.U n

j�2 � 2U n
j C U n

jC2/: (10.17)

This method is second order accurate and explicit but has a 5-point stencil involving the
points U n

j�2
and U n

jC2
. With periodic boundary conditions this is not a problem, but with

other boundary conditions this method needs more numerical boundary conditions than a 3-
point method. This makes it less convenient to use and potentially more prone to numerical
instability.

Note that the last term in (10.17) is an approximation to 1
2
a2k2uxx using a centered

difference based on step size 2h. A simple way to achieve a second order accurate 3-point
method is to replace this term by the more standard 3-point formula. We then obtain the
standard Lax–Wendroff method:

U nC1
j D U n

j �
ak

2h
.U n

jC1 � U n
j�1/C

a2k2

2h2
.U n

j�1 � 2U n
j C U n

jC1/: (10.18)

A cleaner way to derive this method is to use Taylor series expansions directly on the
PDE ut C aux D 0, to obtain

u.x; t C k/ D u.x; t/C kut.x; t/C
1

2
k2utt .x; t/C � � � :

Replacing ut by �aux and utt by a2uxx gives

u.x; t C k/ D u.x; t/ � kaux.x; t/C
1

2
k2a2uxx.x; t/C � � � :

If we now use the standard centered approximations to ux and uxx and drop the higher
order terms, we obtain the Lax–Wendroff method (10.18). It is also clear how we could
obtain higher order accurate explicit two-level methods by this same approach, by retaining
more terms in the series and approximating the spatial derivatives (including the higher
order spatial derivatives that will then arise) by suitably high order accurate finite difference
approximations. The same approach can also be used with other PDEs. The key is to
replace the time derivatives arising in the Taylor series expansion with spatial derivatives,
using expressions obtained by differentiating the original PDE.

10.3.1 Stability analysis

We can analyze the stability of Lax–Wendroff following the same approach used for Lax–
Friedrichs in Section 10.2. Note that with periodic boundary conditions, the Lax–Wendroff
method (10.18) can be viewed as Euler’s method applied to the linear system of ODEs
U 0.t/ D A�U.t/, where A� is given by (10.15) with � D a2k=2 (instead of the value
� D h2=2k used in Lax–Friedrichs). The eigenvalues of A� are given by (10.16) with the
appropriate value of �, and multiplying by the time step k gives

k�p D �i

�
ak

h

�
sin.p�h/C

�
ak

h

�2

.cos.p�h/ � 1/:D
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210 Chapter 10. Advection Equations and Hyperbolic Systems

These values all lie on an ellipse centered at �.ak=h/2 with semi-axes of length .ak=h/2

and jak=hj. If jak=hj � 1, then all of these values lie inside the stability region of Euler’s
method. Figure 10.1(d) shows an example in the case ak=h D 0:8. The Lax–Wendroff
method is stable with exactly the same time step restriction (10.7) as required for Lax–
Friedrichs. In Section 10.7 we will see that this is a very natural stability condition to
expect for the advection equation and is the best we could hope for when a 3-point method
is used.

A close look at Figure 10.1 shows that the values k�p near the origin lie much closer
to the boundary of the stability region for the Lax–Wendroff method (Figure 10.1(d)) than
for the other methods illustrated in this figure. This is a reflection of the fact that Lax–
Wendroff is second order accurate, while the others are only first order accurate. Note that
a value k�p lying inside the stability region indicates that this eigenmode will be damped
as the wave propagates, which is unphysical behavior since the true solution advects with
no dissipation. For small values of �p (low wave numbers, smooth components) the Lax–
Wendroff method has relatively little damping and the method is more accurate. Higher
wave numbers are still damped with Lax–Wendroff (unless jak=hj D 1, in which case
all the k�p lie on the boundary of S) and resolving the behavior of these modes properly
would require a finer grid.

Comparing Figures 10.1(c), (d), and (e) shows that Lax–Wendroff has the minimal
amount of numerical damping needed to bring the values k�p within the stability region.
Any less damping, as in Figure 10.1(c) would lead to instability, while more damping as
in Figure 10.1(e) gives excessive smearing of low wave numbers. Recall that the value of
� used in Lax–Wendroff was determined by doing a Taylor series expansion and requiring
second order accuracy, so this makes sense.

10.4 Upwind methods
So far we have considered methods based on symmetric approximations to derivatives. Al-
ternatively, one might use a nonsymmetric approximation to ux in the advection equation,
e.g.,

ux.xj ; t/ �
1

h
.Uj � Uj�1/ (10.19)

or

ux.xj ; t/ �
1

h
.UjC1 � Uj /: (10.20)

These are both one-sided approximations, since they use data only to one side or the other
of the point xj . Coupling one of these approximations with forward differencing in time
gives the following methods for the advection equation:

U nC1
j D U n

j �
ak

h
.U n

j � U n
j�1/ (10.21)

or

U nC1
j D U n

j �
ak

h
.U n

jC1 � U n
j /: (10.22)

These methods are first order accurate in both space and time. One might wonder why we
would want to use such approximations, since centered approximations are more accurate.D
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10.4. Upwind methods 211

For the advection equation, however, there is an asymmetry in the equations because the
equation models translation at speed a. If a > 0, then the solution moves to the right,
while if a < 0 it moves to the left. There are situations where it is best to acknowledge this
asymmetry and use one-sided differences in the appropriate direction.

The choice between the two methods (10.21) and (10.22) should be dictated by the
sign of a. Note that the true solution over one time step can be written as

u.xj ; t C k/ D u.xj � ak; t/

so that the solution at the point xj at the next time level is given by data to the left of xj

if a > 0, whereas it is determined by data to the right of xj if a < 0. This suggests that
(10.21) might be a better choice for a > 0 and (10.22) for a < 0.

In fact the stability analysis below shows that (10.21) is stable only if

0 �
ak

h
� 1: (10.23)

Since k and h are positive, we see that this method can be used only if a > 0. This method
is called the upwind method when used on the advection equation with a > 0. If we view
the equation as modeling the concentration of some tracer in air blowing past us at speed
a, then we are looking in the correct upwind direction to judge how the concentration will
change with time. (This is also referred to as an upstream differencing method in some
literature.)

Conversely, (10.22) is stable only if

�1 �
ak

h
� 0 (10.24)

and can be used only if a < 0. In this case (10.22) is the proper upwind method to use.

10.4.1 Stability analysis

The method (10.21) can be written as

U nC1
j D U n

j �
ak

2h
.U n

jC1 � U n
j�1/C

ak

2h
.U n

jC1 � 2U n
j C U n

j�1/; (10.25)

which puts it in the form (10.15) with � D ah=2. We have seen previously that methods of
this form are stable provided jak=hj � 1 and also �2 < �2�k=h2 < 0. Since k; h > 0,
this requires in particular that � > 0. For Lax–Friedrichs and Lax–Wendroff, this condition
was always satisfied, but for upwind the value of � depends on a and we see that � > 0 only
if a > 0. If a < 0, then the eigenvalues of the MOL matrix lie on a circle that lies entirely
in the right half-plane, and the method will certainly be unstable. If a > 0, then the above
requirements lead to the stability restriction (10.23).

If we think of (10.25) as modeling an advection-diffusion equation, then we see that
a < 0 corresponds to a negative diffusion coefficient. This leads to an ill-posed equation,
as in the “backward heat equation” (see Section E.3.4).

The method (10.22) can also be written in a form similar to (10.25), but the last term
will have a minus sign in front of it. In this case we need a < 0 for any hope of stability
and then easily derive the stability restriction (10.24).D
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212 Chapter 10. Advection Equations and Hyperbolic Systems

The three methods, Lax–Wendroff, upwind, and Lax–Friedrichs, can all be written
in the same form (10.15) with different values of �. If we call these values �LW , �up, and
�LF , respectively, then we have

�LW D
a2k

2
D

ah�

2
; �up D

ah

2
; �LF D

h2

2k
D

ah

2�
;

where � D ak=h. Note that

�LW D ��up and �up D ��LF :

If 0 < � < 1, then �LW < �up < �LF and the method is stable for any value of � between
�LW and �LF , as suggested by Figure 10.1.

10.4.2 The Beam–Warming method

The upwind method is only first order accurate. A second order accurate method with the
same one-sided character can be derived by following the derivation of the Lax–Wendroff
method, but using one-sided approximations to the spatial derivatives. This results in the
Beam–Warming method, which for a > 0 takes the form

U nC1
j D U n

j �
ak

2h
.3U n

j � 4U n
j�1 C U n

j�2/C
a2k2

2h2
.U n

j � 2U n
j�1 C U n

j�2/: (10.26)

For a < 0 the Beam–Warming method is one-sided in the other direction:

U nC1
j D U n

j �
ak

2h
.�3U n

j C 4U n
jC1 � U n

jC2/C
a2k2

2h2
.U n

j � 2U n
jC1 C U n

jC2/: (10.27)

These methods are stable for 0 � � � 2 and �2 � � � 0, respectively.

10.5 Von Neumann analysis
We have analyzed the stability of various algorithms for the advection equation by viewing
them as ODE methods applied to the MOL system (10.9). The same stability criteria can
be obtained by using von Neumann analysis as described in Section 9.6. Recall that this
is done by replacing U n

j by g.�/nei�jh (where i D
p

�1 in this section). Canceling out
common factors results in an expression for the amplification factor g.�/, and requiring
that this be bounded by 1 in magnitude gives the stability bounds for the method.

Also recall from Section 9.6 that this can be expected to give the same result as our
MOL analysis because of the close relation between the ei�jh factor and the eigenvectors
of the matrix A. In a sense von Neumann analysis simply combines the computation of the
eigenvalues of A together with the absolute stability analysis of the time-stepping method
being used. Nonetheless we will go through this analysis explicitly for several of the meth-
ods already considered to show how it works, since for other methods it may be more
convenient to work with this approach than to interpret the method as an MOL method.

For the von Neumann analysis in this section we will simplify notation slightly by
setting � D ak=h, the Courant number.D

ow
nl

oa
de

d 
06

/0
9/

16
 to

 2
05

.1
55

.6
5.

22
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



rjlfdm
2010/8/24
page 213�

�
�

�

�
�

�
�

10.5. Von Neumann analysis 213

Example 10.1. Following the procedure of Example 9.6 for the upwind method
(10.21) gives

g(ξ ) = 1 − ν
(

1 − e−iξh
)

= (1 − ν) + νe−iξh. (10.28)

As the wave number ξ varies, g(ξ ) moves around a circle of radius ν centered at 1 − ν.
These values stay within the unit circle if and only if 0 ≤ ν ≤ 1, the stability limit that was
also found in Section 10.4.1.

Example 10.2. Going through the same procedure for Lax–Friedrichs (10.6) gives

g(ξ ) = 1

2

(
e−iξh + eiξh

)
− 1

2
ν
(

eiξh − e−iξh
)

= cos(ξh) − νi sin(ξh)
(10.29)

and so

|g(ξ )|2 = cos2(ξh) + ν2 sin2(ξh), (10.30)

which is bounded by 1 for all ξ only if |ν| ≤ 1.
Example 10.3. For the Lax–Wendroff method (10.18) we obtain

g(ξ ) = 1 − 1

2
ν
(

eiξh − e−iξh
)

+ 1

2
ν2

(
eiξh − 2 + e−iξh

)

= 1 − iν sin(ξh) + ν2(cos(ξh) − 1)

= 1 − iν[2sin(ξh/2)cos(ξh/2)] − ν2[2sin2(ξh/2)],

(10.31)

where we have used two trigonometric identities to obtain the last line. This complex
number has modulus

|g(ξ )|2 = [1 − 2ν2 sin2(ξh/2)]2 + 4ν2 sin2(ξh/2)cos2(ξh/2)

= 1 − 4ν2(1 − ν2) sin4(ξh/2).
(10.32)

Since 0 ≤ sin4(ξh/2) ≤ 1 for all values of ξ , we see that |g(ξ )|2 ≤ 1 for all ξ , and hence
the method is stable provided that |ν| ≤ 1, which again gives the expected stability bound
(10.7).

Example 10.4. The leapfrog method (10.13) involves three time levels but can still
be handled by the same basic approach. If we set Un

j = g(ξ )neiξ j h in the leapfrog method
we obtain

g(ξ )n+1eiξ j h = g(ξ )n−1eiξ j h − νg(ξ )n
(

eiξ ( j+1)h − eiξ ( j−1)h
)

. (10.33)

If we now divide by g(ξ )n−1eiξ j h we obtain a quadratic equation for g(ξ ),

g(ξ )2 = 1 − 2νi sin(ξh)g(ξ ). (10.34)

Examining this in the same manner as the analysis of the stability region for the midpoint
method in Example 7.7 yields the stability limit |ν| < 1.D
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214 Chapter 10. Advection Equations and Hyperbolic Systems

It is important to note the severe limitations of the von Neumann approach just pre-
sented. It is strictly applicable only in the constant coefficient linear case (with periodic
boundary conditions or on the Cauchy problem). Applying von Neumann analysis to the
“frozen coefficient” problem locally often gives good guidance to the stability properties
of a method more generally, but it cannot always be relied on. A great deal of work has
been done on proving that methods stable for frozen coefficient problems remain stable for
variable coefficient or nonlinear problems when everything is sufficiently smooth; see, for
example, [40], [75]. In the nonlinear case, where the solution can contain shocks, a non-
linear stability theory is needed that employs techniques very different from von Neumann
analysis; see, e.g., [66].

10.6 Characteristic tracing and interpolation
The solution to the advection equation is given by (10.2). The value of u is constant along
each characteristic, which for this example is a straight line with constant slope. Over a
single time step we have

u.xj ; tnC1/ D u.xj � ak; tn/: (10.35)

Tracing this characteristic back over time step k from the grid point xj results in the picture
shown in Figure 10.2(a). Note that if 0 < ak=h < 1, then the point xj � ak lies between
xj�1 and xj . If we carefully choose k and h so that ak=h D 1 exactly, then xj � ak D
xj�1 and we would find that u.xj ; tnC1/ D u.xj�1; tn/. The solution should just shift one
grid cell to the right in each time step. We could compute the exact solution numerically
with the method

U nC1
j D U n

j�1: (10.36)

Actually, all the two-level methods that we have considered so far reduce to the formula
(10.36) in this special case ak D h, and each of these methods happens to be exact in this
case.

(a)

xjxj�1

tn

tnC1

h

ak (b)

xj xjC1

h

�ak

Figure 10.2. Tracing the characteristic of the advection equation back in time
from the point .xj ; tnC1/ to compute the solution according to (10.35). Interpolating the
value at this point from neighboring grid values gives the upwind method (for linear inter-
polation) or the Lax–Wendroff or Beam–Warming methods (quadratic interpolation). (a)
shows the case a > 0, (b) shows the case a < 0.D
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10.7. The Courant–Friedrichs–Lewy condition 215

If ak=h < 1, then the point xj � ak is not exactly at a grid point, as illustrated
in Figure 10.2. However, we might attempt to use the relation (10.35) as the basis for a
numerical method by computing an approximation to u.xj �ak; tn/ based on interpolation
from the grid values U n

i at nearby grid points. For example, we might perform simple
linear interpolation between U n

j�1
and U n

j . Fitting a linear function to these points gives
the function

p.x/ D U n
j C .x � xj /

 
U n

j � U n
j�1

h

!
: (10.37)

Evaluating this at xj � ak and using this to define U nC1
j gives

U nC1
j D p.xj � ak/ D U n

j �
ak

h
.U n

j � U n
j�1/:

This is precisely the first order upwind method (10.21). Note that this also can be inter-
preted as a linear combination of the two values U n

j�1
and U n

j :

U nC1
j D

�
1 �

ak

h

�
U n

j C
ak

h
U n

j�1: (10.38)

Moreover, this is a convex combination (i.e., the coefficients of U n
j and U n

j�1
are both

nonnegative and sum to 1) provided the stability condition (10.23) is satisfied, which is
also the condition required to ensure that xj � ak lies between the two points xj�1 and
xj . In this case we are interpolating between these points with the function p.x/. If the
stability condition is violated, then we would be using p.x/ to extrapolate outside of the
interval where the data lies. It is easy to see that this sort of extrapolation can lead to
instability—consider what happens if the data U n is oscillatory with U n

j D .�1/j , for
example.

To obtain better accuracy, we might try using a higher order interpolating polynomial
based on more data points. If we define a quadratic polynomial p.x/ by interpolating
the values U n

j�1
, U n

j , and U n
jC1

, and then define U nC1
j by evaluating p.xj � ak/, we

simply obtain the Lax–Wendroff method (10.18). Note that in this case we are properly
interpolating provided that the stability restriction jak=hj � 1 is satisfied. If we instead
base our quadratic interpolation on the three points U n

j�2 , U n
j�1 , and U n

j , then we obtain
the Beam–Warming method (10.26), and we are properly interpolating provided 0 � ak=

h � 2.

10.7 The Courant–Friedrichs–Lewy condition
The discussion of Section 10.6 suggests that for the advection equation, the point xj � ak

must be bracketed by points used in the stencil of the finite difference method if the method
is to be stable and convergent. This turns out to be a necessary condition in general for any
method developed for the advection equation: if U nC1

j is computed based on values U n
jCp ,

U n
jCpC1

; : : : ; U n
jCq with p � q (negative values are allowed for p and q), then we must

have xjCp � xj � ak � xjCq or the method cannot be convergent. Since xi D ih, this
requires

�q �
ak

h
� �p:D
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216 Chapter 10. Advection Equations and Hyperbolic Systems

This result for the advection equation is one special case of a much more general principle
that is called the CFL condition. This condition is named after Courant, Friedrichs, and
Lewy, who wrote a fundamental paper in 1928 that was the first paper on the stability and
convergence of finite difference methods for PDEs. (The original paper [17] is in German
but an English translation is available in [18].) The value � D ak=h is often called the
Courant number.

To understand this general condition, we must discuss the domain of dependence of
a time-dependent PDE. (See, e.g., [55], [66] for more details.) For the advection equation,
the solution u.X;T / at some fixed point .X;T / depends on the initial data � at only a
single point: u.X;T / D u.X � aT /. We say that the domain of dependence of the point
.X;T / is the point X � aT :

D.X;T / D fX � aT g:

If we modify the data � at this point, then the solution u.X;T / will change, while modify-
ing the data at any other point will have no effect on the solution at this point.

This is a rather unusual situation for a PDE. More generally we might expect the
solution at .X;T / to depend on the data at several points or over a whole interval. In
Section 10.10 we consider hyperbolic systems of equations of the form ut C Aux D 0,
where u 2 Rs and A 2 Rs�s is a matrix with real eigenvalues �1; �2; : : : ; �s . If these
values are distinct then we will see that the solution u.X;T / depends on the data at the s

distinct points X � �1T; : : :, X � �sT , and hence

D.X;T / D fX � �pT for p D 1; 2; : : : ; sg: (10.39)

The heat equation ut D uxx has a much larger domain of dependence. For this
equation the solution at any point .X;T / depends on the data everywhere and the domain
of dependence is the whole real line,

D.X;T / D .�1;1/:

This equation is said to have infinite propagation speed, since data at any point affects the
solution everywhere at any small time in the future (although its effect of course decays
exponentially away from this point, as seen from the Green’s function (E.37)).

A finite difference method also has a domain of dependence. On a particular fixed
grid we define the domain of dependence of a grid point .xj ; tn/ to be the set of grid points
xi at the initial time t D 0 with the property that the data U 0

i at xi has an effect on the
solution U n

j . For example, with the Lax–Wendroff method (10.18) or any other 3-point

method, the value U n
j depends on U n�1

j�1
, U n�1

j , and U n�1
jC1

. These values depend in turn on

U n�2
j�2 through U n�2

jC2 . Tracing back to the initial time we obtain a triangular array of grid
points as seen in Figure 10.3(a), and we see that U n

j depends on the initial data at the points
xj�n; : : : ; xjCn .

Now consider what happens if we refine the grid, keeping k=h fixed. Figure 10.3(b)
shows the situation when k and h are reduced by a factor of 2, focusing on the same value
of .X;T / which now corresponds to U 2n

2j on the finer grid. This value depends on twice
as many values of the initial data, but these values all lie within the same interval and are
merely twice as dense.D
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10.7. The Courant–Friedrichs–Lewy condition 217

(a) xjxj�2 xjC2

t0

t2

(b) xjxj�4 xjC4

t0

t4

Figure 10.3. (a) Numerical domain of dependence of a grid point when using a
3-point explicit method. (b) On a finer grid.

If the grid is refined further with k=h � r fixed, then clearly the numerical domain of
dependence of the point .X;T / will fill in the interval ŒX � T=r; X C T=r �. As we refine
the grid, we hope that our computed solution at .X;T / will converge to the true solution
u.X;T / D �.X � aT /. Clearly this can be possible only if

X � T=r � X � aT � X C T=r: (10.40)

Otherwise, the true solution will depend only on a value �.X � aT / that is never seen by
the numerical method, no matter how fine a grid we take. We could change the data at
this point and hence change the true solution without having any effect on the numerical
solution, so the method cannot be convergent for general initial data.

Note that the condition (10.40) translates into jaj � 1=r and hence jak=hj � 1.
This can also be written as jakj � h, which just says that over a single time step the
characteristic we trace back must lie within one grid point of xj . (Recall the discussion of
interpolation versus extrapolation in Section 10.6.)

The CFL condition generalizes this idea:

The CFL condition: A numerical method can be convergent only if its numerical
domain of dependence contains the true domain of dependence of the PDE, at least in the
limit as k and h go to zero.

For the Lax–Friedrichs, leapfrog, and Lax–Wendroff methods the condition on k and
h required by the CFL condition is exactly the stability restriction we derived earlier in this
chapter. But it is important to note that in general the CFL condition is only a necessary
condition. If it is violated, then the method cannot be convergent. If it is satisfied, then the
method might be convergent, but a proper stability analysis is required to prove this or to
determine the proper stability restriction on k and h. (And of course consistency is also
required for convergence—stability alone is not enough.)

Example 10.5. The 3-point method (10.5) has the same stencil and numerical domain
of dependence as Lax–Wendroff but is unstable for any fixed value of k=h even though the
CFL condition is satisfied for jak=hj � 1.

Example 10.6. The upwind methods (10.21) and (10.22) each have a 2-point sten-
cil and the stability restrictions of these methods, (10.23) and (10.24), respectively, agree
precisely with what the CFL condition requires.D
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218 Chapter 10. Advection Equations and Hyperbolic Systems

Example 10.7. The Beam–Warming method (10.26) has a 3-point one-sided stencil.
The CFL condition is satisfied if 0 � ak=h � 2. When a < 0 the method (10.27) is used
and the CFL condition requires �2 � ak=h � 0. These are also the stability regions for
the methods, which must be verified by appropriate stability analysis.

Example 10.8. For the heat equation the true domain of dependence is the whole real
line. It appears that any 3-point explicit method violates the CFL condition, and indeed
it does if we fix k=h as the grid is refined. However, recall from Section 10.2.1 that
the 3-point explicit method (9.5) is convergent as we refine the grid, provided we have
k=h2 � 1=2. In this case when we make the grid finer by a factor of 2 in space it will
become finer by a factor of 4 in time, and hence the numerical domain of dependence will
cover a wider interval at time t D 0. As k ! 0 the numerical domain of dependence
will spread to cover the entire real line, and hence the CFL condition is satisfied in this
case.

An implicit method such as the Crank–Nicolson method (9.7) satisfies the CFL con-
dition for any time step k. In this case the numerical domain of dependence is the entire
real line because the tridiagonal linear system couples together all points in such a man-
ner that the solution at each point depends on the data at all points (i.e., the inverse of a
tridiagonal matrix is dense).

10.8 Some numerical results
Figure 10.4 shows typical numerical results obtained with three of the methods discussed
in the previous sections. The initial data at time t D 0, shown in Figure 10.4(a), are smooth
and consist of two Gaussian peaks, one sharper than the other:

u.x; 0/ D �.x/ D exp.�20.x � 2/2/C exp.�.x � 5/2/: (10.41)

The remaining frames in this figure show the results obtained when solving the advection
equation ut C ux D 0 up to time t D 17, so the exact solution is simply the initial
data shifted by 17 units. Note that only part of the computational domain is shown; the
computation was done on the interval 0 � x � 25. The grid spacing h D 0:05 was used,
with time step k D 0:8h so the Courant number is ak=h D 0:8. On this grid one peak is
fairly well resolved and the other is poorly resolved.

Figure 10.4(b) shows the result obtained with the upwind method (10.21) and illus-
trates the extreme numerical dissipation of this method. Figure 10.4(c) shows the result
obtained with Lax–Wendroff. The broader peak remains well resolved, while the disper-
sive nature of Lax–Wendroff is apparent near the sharper peak. Dispersion is even more
apparent when the leapfrog method is used, as seen in Figure 10.4(d).

The “modified equation” analysis of the next section sheds more light on these results.

10.9 Modified equations
Our standard tool for estimating the accuracy of a finite difference method has been the
“local truncation error.” Seeing how well the true solution of the PDE satisfies the differ-
ence equation gives an indication of the accuracy of the difference equation. Now we will
study a slightly different approach that can be very illuminating since it reveals much more
about the structure and behavior of the numerical solution.D
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Upwind
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LaxWendroff
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Leapfrog

Figure 10.4. The numerical experiments on the advection equation described in
Section 10:8.

The idea is to ask the following question: is there a PDE vt D � � � such that our
numerical approximation U n

j is actually the exact solution to this PDE, U n
j D v.xj ; tn/?

Or, less ambitiously, can we at least find a PDE that is better satisfied by U n
j than the

original PDE we were attempting to model? If so, then studying the behavior of solutions
to this PDE should tell us much about how the numerical approximation is behaving. This
can be advantageous because it is often easier to study the behavior of PDEs than of finite
difference formulas.

In fact it is possible to find a PDE that is exactly satisfied by the U n
j by doing Taylor

series expansions as we do to compute the local truncation error. However, this PDE will
have an infinite number of terms involving higher and higher powers of k and h. By
truncating this series at some point we will obtain a PDE that is simple enough to study and
yet gives a good indication of the behavior of the U n

j .
The procedure of determining a modified equation is best illustrated with an example.

See [100] for a more detailed discussion of the derivation of modified equations.
Example 10.9. Consider the upwind method (10.21) for the advection equation ut C

aux D 0 in the case a > 0,

U nC1
j D U n

j �
ak

h
.U n

j � U n
j�1/: (10.42)
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220 Chapter 10. Advection Equations and Hyperbolic Systems

The process of deriving the modified equation is very similar to computing the local trun-
cation error, only now we insert the formula v.x; t/ into the difference equation. This is
supposed to be a function that agrees exactly with U n

j at the grid points and so, unlike
u.x; t/, the function v.x; t/ satisfies (10.42) exactly:

v.x; t C k/ D v.x; t/ �
ak

h
.v.x; t/ � v.x � h; t//:

Expanding these terms in Taylor series about .x; t/ and simplifying gives
�
vt C

1

2
kvtt C

1

6
k2vtt t C � � �

�
C a

�
vx �

1

2
hvxx C

1

6
h2vxxx C � � �

�
D 0:

We can rewrite this as

vt C avx D
1

2
.ahvxx � kvtt /C

1

6
.ah2vxxx � k2vtt t /C � � � :

This is the PDE that v satisfies. If we take k=h fixed, then the terms on the right-hand side
are O.k/; O.k2/; etc., so that for small k we can truncate this series to get a PDE that is
quite well satisfied by the U n

j .
If we drop all the terms on the right-hand side, we just recover the original advection

equation. Since we have then dropped terms of O.k/, we expect that U n
j satisfies this

equation to O.k/, as we know to be true since this upwind method is first order accurate.
If we keep the O.k/ terms, then we get something more interesting:

vt C avx D
1

2
.ahvxx � kvtt /: (10.43)

This involves second derivatives in both x and t , but we can derive a slightly different
modified equation with the same accuracy by differentiating (10.43) with respect to t to
obtain

vtt D �avxt C
1

2
.ahvxxt � kvtt t /

and with respect to x to obtain

vtx D �avxx C
1

2
.ahvxxx � kvttx/:

Combining these gives
vtt D a2vxx C O.k/:

Inserting this in (10.43) gives

vt C avx D
1

2
.ahvxx � a2kvxx/C O.k2/:

Since we have already decided to drop terms of O.k2/, we can drop these terms here also
to obtain

vt C avx D
1

2
ah

�
1 �

ak

h

�
vxx : (10.44)D
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10.9. Modified equations 221

This is now a familiar advection-diffusion equation. The grid values U n
j can be viewed as

giving a second order accurate approximation to the true solution of this equation (whereas
they give only first order accurate approximations to the true solution of the advection
equation).

The fact that the modified equation is an advection-diffusion equation tells us a great
deal about how the numerical solution behaves. Solutions to the advection-diffusion equa-
tion translate at the proper speed a but also diffuse and are smeared out. This is clearly
visible in Figure 10.4(b).

Note that the diffusion coefficient in (10.44) is 1
2
.ah � a2k/, which vanishes in the

special case ak D h. In this case we already know that the exact solution to the advection
equation is recovered by the upwind method.

Also note that the diffusion coefficient is positive only if 0 < ak=h < 1. This is
precisely the stability limit of upwind. If this is violated, then the diffusion coefficient in
the modified equation is negative, giving an ill-posed problem with exponentially growing
solutions. Hence we see that even some information about stability can be extracted from
the modified equation.

Example 10.10. If the same procedure is followed for the Lax–Wendroff method, we
find that all O.k/ terms drop out of the modified equation, as is expected since this method
is second order accurate on the advection equation. The modified equation obtained by
retaining the O.k2/ term and then replacing time derivatives by spatial derivatives is

vt C avx C
1

6
ah2

 
1 �

�
ak

h

�2
!
vxxx D 0: (10.45)

The Lax–Wendroff method produces a third order accurate solution to this equation. This
equation has a very different character from (10.43). The vxxx term leads to dispersive
behavior rather than diffusion. This is clearly seen in Figure 10.4(c), where the U n

j com-
puted with Lax–Wendroff are compared to the true solution of the advection equation. The
magnitude of the error is smaller than with the upwind method for a given set of k and h,
since it is a higher order method, but the dispersive term leads to an oscillating solution and
also a shift in the location of the main peak, a phase error. This is similar to the dispersive
behavior seen in Figure E.1 for an equation very similar to (10.45).

In Section E.3.6 the propagation properties of dispersive waves is analyzed in terms
of the dispersion relation of the PDE and the phase and group velocities of different wave
numbers. Following the discussion there, we find that for the modified equation (10.45),
the group velocity for wave number � is

cg D a �
1

2
ah2

 
1 �

�
ak

h

�2
!
�2;

which is less than a for all wave numbers. As a result the numerical result can be expected
to develop a train of oscillations behind the peak, with the high wave numbers lagging
farthest behind the correct location.

Some care must be used here, however, when looking at highly oscillatory waves
(relative to the grid, i.e., waves for which �h is far from 0). For �h sufficiently small
the modified equation (10.45) is a reasonable model, but for larger �h the terms we haveD
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222 Chapter 10. Advection Equations and Hyperbolic Systems

neglected in this modified equation may play an equally important role. Rather than deter-
mining the dispersion relation for a method from its modified equation, it is more reliable
to determine it directly from the numerical method, which is essentially what we have done
in von Neumann stability analysis. This is pursued further in Example 10.13 below.

If we retain one more term in the modified equation for Lax–Wendroff, we would
find that the U n

j are fourth order accurate solutions to an equation of the form

vt C avx C
1

6
ah2

 
1 �

�
ak

h

�2
!
vxxx D ��vxxxx ; (10.46)

where the � in the fourth order dissipative term is O.k3Ch3/ and positive when the stability
bound holds. This higher order dissipation causes the highest wave numbers to be damped
(see Section E.3.7), so that there is a limit to the oscillations seen in practice.

The fact that this method can produce oscillatory approximations is one of the reasons
that the first order upwind method is sometimes preferable in practice. In some situations
nonphysical oscillations may be disastrous, for example, if the value of u represents a
concentration that cannot become negative or exceed some limit without difficulties arising
elsewhere in the modeling process.

Example 10.11. The Beam–Warming method (10.26) has a similar modified equa-
tion,

vt C avx D
1

6
ah2

 
2 �

3ak

h
C
�

ak

h

�2
!
vxxx : (10.47)

In this case the group velocity is greater than a for all wave numbers in the case 0 <

ak=h < 1, so that the oscillations move ahead of the main hump. If 1 < ak=h < 2,
then the group velocity is less than a and the oscillations fall behind. (Again the dispersion
relation for (10.47) gives an accurate idea of the dispersive properties of the numerical
method only for �h sufficiently small.)

Example 10.12. The modified equation for the leapfrog method (10.13) can be de-
rived by writing

�
v.x; t C k/ � v.x; t � k/

2k

�
D a

�
v.x C h; t/ � v.x � h; t/

2h

�
D 0 (10.48)

and expanding in Taylor series. As in Example 10.9 we then further differentiate the result-
ing equation (which has an infinite number of terms) to express higher spatial derivatives
of v in terms of temporal derivatives. The dominant terms look just like Lax–Wendroff,
and (10.45) is again obtained.

However, from the symmetric form of (10.48) in both x and t we see that all even-
order derivatives drop out. If we derive the next term in the modified equation we will find
an equation of the form

vt C avx C
1

6
ah2

 
1 �

�
ak

h

�2
!
vxxx D �vxxxxx C � � � (10.49)

for some � D O.h4 C k4/, and higher order modified equations will also involve only odd-
order derivatives and even powers of h and k. Hence the numerical solution produced with
the leapfrog method is a fourth order accurate solution to the modified equation (10.45).D
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10.9. Modified equations 223

Moreover, recall from Section E.3.6 that all higher order odd-order derivatives give
dispersive terms. We conclude that the leapfrog method is nondissipative at all orders. This
conclusion is consistent with the observation in Section 10.2.2 that kλp is on the boundary
of the stability region for all eigenvalues of A from (10.10), and so we see neither growth
nor decay of any mode. However, we also see from the form of (10.49) that high wave
number modes will not propagate with the correct velocity. This was also true of Lax–
Wendroff, but there the fourth order dissipation damps out the worst offenders, whereas
with leapfrog this dispersion of often much more apparent in computational results, as
observed in Figure 10.4(d).

Example 10.13. Since leapfrog is nondissipative it serves as a nice example for
calculating the true dispersion relation of the numerical method. The approach is very
similar to the von Neumann stability analysis of Section 10.5, only now we use ei(ξ x j −ωtn )

as our Ansatz (so that the g from von Neumann analysis is replaced by e−iωk ). Following
the same procedure as in Example 10.4, we find that

e−iωk = eiωk − ak

h

(
eiξh − e−iξh

)
, (10.50)

which can be simplified to yield

sin(ωk) = ak

h
sin(ξh). (10.51)

This is the dispersion relation relating ω to ξ . Note that |ξh| ≤ π for waves that can
be resolved on our grid and that for each such ξh there are two corresponding values of
ωk. The dispersion relation is multivalued because leapfrog is a three-level method, and
different temporal behavior of the same spatial wave can be seen, depending on the relation
between the initial data chosen on the two initial levels. For well-resolved waves (|ξh|
small) and reasonable initial data we expect ωk also near zero (not near ±π , where the
other solution is in this case).

Solving for ω as a function of ξ and expanding in Taylor series for small ξh would
show this agrees with the dispersion relation of the infinite modified equation (10.49). We
do not need to do this, however, if our goal is to compute the group velocity for the leapfrog
method. We can differentiate (10.51) with respect to ξ and solve for

dω

dξ
= a cos(ξh)

cos(ωk)
= ± a cos(ξh)√

1 − ν2 sin2(ξh)
, (10.52)

where ν = ak/h is the Courant number and again the ± arises from the multivalued dis-
persion relation. The velocity observed would depend on how the initial two levels are
set.

Note that the group velocity can be negative and near −a for |ξh| ≈ π . This is not
surprising since the leapfrog method has a 3-point centered stencil, and it is possible for
numerical waves to travel from right to left although physically there is advection only
to the right. This can be observed in some computations, for example, in Figure 10.5 as
discussed in Example 10.14.D
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224 Chapter 10. Advection Equations and Hyperbolic Systems

10.10 Hyperbolic systems
The advection equation ut C aux D 0 can be generalized to a first order linear system of
equations of the form

ut C Aux D 0; (10.53)

u.x; 0/ D �.x/;

where u W R�R ! Rs and A 2 Rs�s is a constant matrix. (Note that this is not the matrix
A from earlier in this chapter, e.g., (10.10).)

This is a system of conservation laws (see Section E.2) with the flux function f .u/ D
Au. This system is called hyperbolic if A is diagonalizable with real eigenvalues, so that
we can decompose

A D RƒR�1; (10.54)

whereƒ D diag.�1; �2; : : : ; �s/ is a diagonal matrix of eigenvalues and R D Œr1jr2j � � � jrs �

is the matrix of right eigenvectors. Note that AR D Rƒ, i.e.,

Arp D �prp for p D 1; 2; : : : ; s: (10.55)

The system is called strictly hyperbolic if the eigenvalues are distinct.

10.10.1 Characteristic variables

We can solve (10.53) by changing to the “characteristic variables”

w D R�1u (10.56)

in much the same way we solved linear systems of ODEs in Section 7.4.2. Multiplying
(10.53) by R�1 and using (10.54) gives

R�1ut CƒR�1ux D 0 (10.57)

or, since R�1 is constant,
wt Cƒwx D 0: (10.58)

Since ƒ is diagonal, this decouples into s independent scalar equations

.wp/t C �p.wp/x D 0; p D 1; 2; : : : ; s: (10.59)

Each of these is a constant coefficient linear advection equation with solution

wp.x; t/ D wp.x � �p t; 0/: (10.60)

Since w D R�1u, the initial data for wp is simply the pth component of the vector

w.x; 0/ D R�1�.x/: (10.61)

The solution to the original system is finally recovered via (10.56):

u.x; t/ D Rw.x; t/: (10.62)D
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10.11. Numerical methods for hyperbolic systems 225

Note that the value wp.x; t/ is the coefficient of rp in an eigenvector expansion of
the vector u.x; t/, i.e., (10.62) can be written out as

u.x; t/ D
sX

pD1

wp.x; t/rp : (10.63)

Combining this with the solutions (10.60) of the decoupled scalar equations gives

u.x; t/ D
sX

pD1

wp.x � �p t; 0/rp: (10.64)

Note that u.x; t/ depends only on the initial data at the s points x � �pt . This set of points
is the domain of dependent D.x; t/ of (10.39).

The curves x D x0 C �p t satisfying x0.t/ D �p are the “characteristics of the
pth family,” or simply “p-characteristics.” These are straight lines in the case of a constant
coefficient system. Note that for a strictly hyperbolic system, s distinct characteristic curves
pass through each point in the x-t plane. The coefficient wp.x; t/ of the eigenvector rp in
the eigenvector expansion (10.63) of u.x; t/ is constant along any p-characteristic.

10.11 Numerical methods for hyperbolic systems
Most of the methods discussed earlier for the advection equation can be extended directly
to a general hyperbolic system by replacing a with A in the formulas. For example, the
Lax–Wendroff method becomes

U nC1
j D U n

j �
k

2h
A.U n

jC1 � U n
j�1/C

k2

2h2
A2.U n

j�1 � 2U n
j C U n

jC1/: (10.65)

This is second order accurate and is stable provided the Courant number is no larger than
1, where the Courant number is defined to be

� D max
1�p�s

j�pk=hj: (10.66)

For the scalar advection equation, there is only one eigenvalue equal to a, and the Courant
number is simply jak=hj. The Lax–Friedrichs and leapfrog methods can be generalized in
the same way to systems of equations and remain stable for � � 1.

The upwind method for the scalar advection equation is based on a one-sided ap-
proximation to ux, using data in the upwind direction. The one-sided formulas (10.21) and
(10.22) generalize naturally to

U nC1
j D U n

j �
k

h
A.U n

j � U n
j�1/ (10.67)

and

U nC1
j D U n

j �
k

h
A.U n

jC1 � U n
j /: (10.68)D
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226 Chapter 10. Advection Equations and Hyperbolic Systems

For a system of equations, however, neither of these is useful unless all the eigenvalues of A

have the same sign, so that the upwind direction is the same for all characteristic variables.
The method (10.67) is stable only if

0 �
k�p

h
� 1 for all p D 1; 2; : : : ; s; (10.69)

while (10.68) is stable only if

�1 �
k�p

h
� 0 for all p D 1; 2; : : : ; s: (10.70)

It is possible to generalize the upwind method to more general systems with eigenvalues of
both signs, but to do so requires decomposing the system into the characteristic variables
and upwinding each of these in the appropriate direction. The resulting method can also be
generalized to nonlinear hyperbolic systems and generally goes by the name of Godunov’s
method. These methods are described in much more detail in [66].

10.12 Initial boundary value problems
So far we have studied only numerical methods for hyperbolic problems on a domain with
periodic boundary conditions (or the Cauchy problem, if we could use a grid with an infinite
number of grid points).

Most practical problems are posed on a bounded domain with nonperiodic boundary
conditions, which must be specified in addition to the initial conditions to march forward
in time. These problems are called initial boundary value problems (IBVPs).

Consider the advection equation ut C aux D 0 with a > 0, corresponding to flow
to the right, on the domain 0 � x � 1 where some initial conditions u.x; 0/ D �.x/

are given. This data completely determine the solution via (10.2) in the triangular region
0 � x � at � 1 of the x-t plane. Outside this region, however, the solution is determined
only if we also impose boundary conditions at x D 0, say, (10.8). Then the solution is

u.x; t/ D
�
�.x � at/ if 0 � x � at � 1;

g0.t � x=a/ otherwise:
(10.71)

Note that boundary data are required only at the inflow boundary x D 0, not at the outflow
boundary x D 1, where the solution is determined via (10.71). Trying to impose a different
value on u.1; t/ would lead to a problem with no solution.

If a < 0 in the advection equation, then x D 1 is the inflow boundary, the solution is
transported to the left, and x D 0 is the outflow boundary.

10.12.1 Analysis of upwind on the initial boundary value problem

Now suppose we apply the upwind method (10.21) to this IBVP with a > 0 on a grid with
h D 1=.m C 1/ and xi D ih for i D 0; 1; : : : ; m C 1. The formula (10.21) can be
applied for i D 1; : : : ; m C 1 in each time step, while U n

0
D g.tn/ is set by the boundary

condition. Hence the method is completely specified.D
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10.12. Initial boundary value problems 227

When is this method stable? Intuitively we expect it to be stable if 0 � ak=h � 1.
This is the stability condition for the problem with periodic boundary conditions, and here
we are using the same method at every point except i D 0, where the exact solution is
being set in each time step. Our intuition is correct in this case and the method is stable if
0 � ak=h � 1.

Notice, however, that von Neumann analysis cannot be used in this case, as discussed
already in Section 10.5: the Fourier modes ei�h are no longer eigengridfunctions. But
von Neumann analysis is still useful because it generally gives a necessary condition for
stability. In most cases a method that is unstable on the periodic domain or Cauchy problem
will not be useful on a bounded domain either, since locally on a fine grid, away from the
boundaries, any instability indicated by von Neumann analysis is bound to show up.

Instead we can use MOL stability analysis, although it is sometimes subtle to do so
correctly. We have a system of ODEs similar to (10.9) for the vector U.t/, which again has
m C 1 components corresponding to u.xi ; t/. But now we must incorporate the boundary
conditions, and so we have a system of the form

U 0.t/ D AU.t/ C g.t/; (10.72)

where

A D �
a

h

2
666664

1

�1 1

�1 1
: : :

�1 1

3
777775
; g.t/ D

2
666664

g0.t/a=h

0

0
:::

0

3
777775
: (10.73)

The upwind method corresponds to using Euler’s method on the ODE (10.72).
The change from the matrix of (10.10) to (10.73) may seem trivial but it completely

changes the character of the matrix. The matrix (10.10) is circulant and normal and has
eigenvalues uniformly distributed about the circle of radius a=h in the complex plane cen-
tered at z D �a=h. The matrix (10.73) is a defective Jordan block with all its eigenvalues
at the point �a=h. The eigenvalues have moved distance a=h ! 1 as h ! 0.

Suppose we attempt to apply the usual stability analysis of Chapter 7 to this system
and require that k�p 2 S for all eigenvalues of A, where S is the stability region for
Euler’s method. Since S contains the interval Œ�2; 0� on the real axis, this would suggest
the stability restriction

0 � ak=h � 2 (10.74)

for the upwind method on the IBVP. This is wrong by a factor of 2. It is a necessary
condition but not sufficient.

The problem is that A in (10.73) is highly nonnormal. It is essentially a Jordan block
of the sort discussed in Section D.5.1, and on a fine grid its �-pseudospectra roughly fill up
the circle of radius a=h about �a=h, even for very small �. This is a case where we need
to apply a more stringent requirement than simply requiring that k� be inside the stability
region for all eigenvalues; we also need to require that

dist.k��;S/ � C� (10.75)D
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228 Chapter 10. Advection Equations and Hyperbolic Systems

holds for the �-pseudoeigenvalues (see Section D.5), where C is a modest constant, as sug-
gested in [47], [92]. Requiring (10.75) shows that the expected requirement 0 � ak=h � 1

is needed rather than (10.74).

10.12.2 Outflow boundary conditions

When the upwind method is used for the advection equation, as in the previous section,
the outflow boundary poses no problem. The finite difference formula is one sided and the
value U n

mC1
at the rightmost grid point is computed by the same formula that is used in the

interior.
However, if we use a finite difference method whose stencil extends to the right as

well as the left, we will need to use a different formula at the rightmost point in the domain.
This is called a numerical boundary condition or artificial boundary condition since it is
required by the method, not for the PDE. Numerical boundary conditions may also be
required at boundaries where a physical boundary condition is imposed, if the numerical
method requires more conditions than the equation. For example, if we use the Beam–
Warming method for advection, which has a stencil that extends two grid points in the
upwind direction, then we can use this only for updating U nC1

2
; U nC1

3
; : : :. The value

U nC1
0

will be set by the physical boundary condition but U nC1
1

will have to be set by some
other method, which can be viewed as a numerical boundary condition for Beam–Warming.

Naturally some care must be used in choosing numerical boundary conditions, both
in terms of the accuracy and stability of the resulting method. This is a difficult topic,
particularly the stability analysis of numerical methods for IBVPs, and we will not pursue
it here. See, for example, [40], [84], [89].

Example 10.14. We will look at one example simply to give a flavor of the potential
difficulties. Suppose we use the leapfrog method to solve the IBVP for the advection
equation ut C aux D 0. At the left (inflow) boundary we can use the given boundary
condition, but at the right we will need a numerical boundary condition. Suppose we use
the first order upwind method at this point,

U nC1
mC1

D U n
mC1 �

ak

h
.U n

mC1 � U n
m/; (10.76)

which is also consistent with the advection equation. Figure 10.5 shows four snapshots of
the solution when the initial data is u.x; 0/ D �.x/ D exp.�5.x � 2/2/ and the first two
time levels for leapfrog are initialized based on the exact solution u.x; t/ D �.x � at/. We
see that as the wave passes out the right boundary, a reflection is generated that moves to
the left, back into the domain. The dispersion relation for the leapfrog method found in
Example 10.13 shows that waves with �h � � can move to the left with group velocity
approximately equal to �a, and this wave number corresponds exactly to the sawtooth
wave seen in the figure.

For an interesting discussion of the relation of numerical dispersion relations and
group velocity to the stability of numerical boundary conditions, see [89].

Outflow boundaries are often particularly troublesome. Even if a method is formally
stable (as the leapfrog method in the previous example is with the upwind boundary condi-
tion), it is often hard to avoid spurious reflections. We have seen this even for the advection
equation, where in principle flow is entirely to the right, and it can be even more difficultD
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Figure 10.5. Numerical solution of the advection equation using the leapfrog
method in the interior and the upwind method at the right boundary. The solution is shown
at four equally spaced times, illustrating the generation and leftward propagation of a
sawtooth mode.

to develop appropriate boundary conditions for wave propagation or fluid dynamics equa-
tions that admit wave motion in all directions. Yet in practice we always have to compute
over a finite domain and this often requires setting artificial boundaries around the region
of interest. The assumption is that the phenomena of interest happen within this region,
and the hope is that any waves hitting the artificial boundary will leave the domain with
no reflection. Numerical boundary conditions that attempt to achieve this are often called
nonreflecting or absorbing boundary conditions.D
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230 Chapter 10. Advection Equations and Hyperbolic Systems

10.13 Other discretizations
As in the previous chapter on parabolic equations, we have concentrated on a few basic
methods in order to explore some fundamental ideas. We have also considered only the
simplest case of constant coefficient linear hyperbolic equations, whereas in practice most
hyperbolic problems of interest have variable coefficients (e.g., linear wave propagation in
heterogeneous media) or are nonlinear. These problems give rise to a host of new difficul-
ties, not least of which is the fact that the solutions of interest are often discontinuous since
nonlinearity can lead to shock formation. There is a well-developed theory of numerical
methods for such problems that we will not delve into here; see, for example, [66].

Even in the case of constant coefficient linear problems, there are many other dis-
cretizations possible beyond the ones presented here. We end with a brief overview of just
a few of these:

� Higher order discretizations of ux can be used in place of the discretizations consid-
ered so far. If we write the MOL system for the advection equation as

U 0
j .t/ D �aWj .t/; (10.77)

where Wj .t/ is some approximation to ux.xj ; t/, then there are many ways to ap-
proximate Wj .t/ from the Uj values beyond the centered approximation (10.3).
One-sided approximations are one possibility, as in the upwind method. For suf-
ficiently smooth solutions we might instead use higher order accurate centered ap-
proximations, e.g.,

Wj D
4

3

�
UjC1 � Uj�1

2h

�
�

1

3

�
UjC2 � Uj�2

4h

�
: (10.78)

This and other approximations can be determined using the fdcoeffV.m routine
discussed in Section 1.5; e.g., fdcoeffV(1,0,-2:2) produces (10.78). Cen-
tered approximations such as (10.78) generally lead to skew-symmetric matrices
with pure imaginary eigenvalues, at least when applied to the problem with periodic
boundary conditions. In practice most problems are on a finite domain with nonpe-
riodic boundary conditions, and other issues arise as already seen in Section 10.12.
Note that the discretization (10.78) requires more numerical boundary conditions
than the upwind or second order centered operator.

� An interesting approach to obtaining better accuracy in Wj is to use a so-called
compact method, in which the Wj are determined by solving a linear system rather
than explicitly. A simple example is

1

4
Wj�1 C Wj C

1

4
WjC1 D

3

2

�
UjC1 � Uj�1

2h

�
: (10.79)

This gives a tridiagonal system of equations to solve for the Wj values, and it can be
shown that the resulting values will be O.h4/ approximations to ux.xj ; t/. Higher
order methods of this form also exist; see Lele [63] for an in-depth discussion. In
addition to giving higher order of accuracy with a compact stencil, these approx-
imations also typically have much better dispersion properties than standard finite
difference approximations of the same order.D
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10.13. Other discretizations 231

� Spectral approximations to the first derivative can be used, based on the same ideas
as in Section 2.21. In this case W D DU is used to obtain the approximations to the
first derivative, where D is the dense spectral differentiation matrix. These methods
can also be generalized to variable coefficient and even nonlinear problems and often
work very well for problems with smooth solutions.

Stability analysis of these methods can be tricky. To obtain reasonable results a
nonuniform distribution of grid points must be used, such as the Chebyshev extreme
points as discussed in Section 2.21. In this case the eigenvalues of the matrix D turn
out to be O.1=h2/, rather than O.1=h/ as is expected for a fixed-stencil discretiza-
tion of the first derivative. If instead we use the roots of the Legendre polynomial
(see Section B.3.1), another popular choice of grid points for spectral methods, it can
be shown that the eigenvalues are O.1=h/, which appears to be better. In both cases,
however, the matrix D is highly nonnormal and the eigenvalues are misleading, and
in fact a time step k D O.h2/ is generally required if an explicit method is used for
either choice of grid points; see, e.g., [92].

� Other time discretizations can be used in place of the ones discussed in this chapter.
In particular, for spectral methods the MOL system is stiff and it may be beneficial
to use an implicit method as discussed in Chapters 8 and 9. Another possibility is to
use an exponential time differencing method, as discussed in Section 11.6.

� For conservation laws (see Section E.2) numerical methods are often more naturally
derived using the integral form (E.9) than by using finite difference approximations to
derivatives. Such methods are particularly important for nonlinear hyperbolic prob-
lems, where shock waves (discontinuous solutions) can develop spontaneously even
from smooth initial data. In this case the discrete value U n

i is viewed as an approxi-
mation to the cell average of u.x; tn/ over the grid cell Œxi�1=2; xiC1=2� of length h

centered about xi ,

U n
i �

1

h

Z xiC1=2

xi�1=2

u.x; tn/ dx: (10.80)

According to (E.9) this cell average evolves at a rate given by the difference of fluxes
at the cell edges, and a particular numerical method is obtained by approximating
these fluxes based on the current cell averages. Methods of this form are often called
finite volume methods since the spatial domain is partitioned into volumes of finite
size. Simple finite volume methods often look identical to finite difference methods,
but the change in viewpoint allows the development of more sophisticated methods
that are better suited to solving nonlinear conservation laws. These methods also
have some advantages for linear problems, particularly if they have variable coeffi-
cients with jump discontinuities, as often arises in solving wave propagation prob-
lems in heterogeneous media. See [66] for a detailed description of such methods.
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