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Chapter 1

Finite Difference
Approximations

Our goal is to approximate solutions to differential equations, i.e., to find a function (or
some discrete approximation to this function) that satisfies a given relationship between
various of its derivatives on some given region of space and/or time, along with some
boundary conditions along the edges of this domain. In general this is a difficult problem,
and only rarely can an analytic formula be found for the solution. A finite difference method
proceeds by replacing the derivatives in the differential equations with finite difference
approximations. This gives a large but finite algebraic system of equations to be solved in
place of the differential equation, something that can be done on a computer.

Before tackling this problem, we first consider the more basic question of how we can
approximate the derivatives of a known function by finite difference formulas based only
on values of the function itself at discrete points. Besides providing a basis for the later
development of finite difference methods for solving differential equations, this allows us
to investigate several key concepts such as the order of accuracy of an approximation in
the simplest possible setting.

Let u.x/ represent a function of one variable that, unless otherwise stated, will always
be assumed to be smooth, meaning that we can differentiate the function several times and
each derivative is a well-defined bounded function over an interval containing a particular
point of interest Nx.

Suppose we want to approximate u0. Nx/ by a finite difference approximation based
only on values of u at a finite number of points near Nx. One obvious choice would be to
use

DCu. Nx/ �
u. Nx C h/ � u. Nx/

h
(1.1)

for some small value of h. This is motivated by the standard definition of the derivative as
the limiting value of this expression as h ! 0. Note that DCu. Nx/ is the slope of the line
interpolating u at the points Nx and Nx C h (see Figure 1.1).

The expression (1.1) is a one-sided approximation to u0 since u is evaluated only at
values of x � Nx. Another one-sided approximation would be

D�u. Nx/ �
u. Nx/ � u. Nx � h/

h
: (1.2)
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4 Chapter 1. Finite Difference Approximations

Nx � h Nx Nx C h
u.x/

slope u0. Nx/

slope DCu. Nx/

slope D�u. Nx/

slope D0u. Nx/

Figure 1.1. Various approximations to u0. Nx/ interpreted as the slope of secant lines.

Each of these formulas gives a first order accurate approximation to u0. Nx/, meaning that
the size of the error is roughly proportional to h itself.

Another possibility is to use the centered approximation

D0u. Nx/ �
u. Nx C h/ � u. Nx � h/

2h
D

1

2
.DCu. Nx/C D�u. Nx//: (1.3)

This is the slope of the line interpolating u at Nx � h and Nx C h and is simply the average
of the two one-sided approximations defined above. From Figure 1.1 it should be clear
that we would expect D0u. Nx/ to give a better approximation than either of the one-sided
approximations. In fact this gives a second order accurate approximation—the error is
proportional to h2 and hence is much smaller than the error in a first order approximation
when h is small.

Other approximations are also possible, for example,

D3u. Nx/ �
1

6h
Œ2u. Nx C h/C 3u. Nx/ � 6u. Nx � h/C u. Nx � 2h/�: (1.4)

It may not be clear where this came from or why it should approximate u0 at all, but in fact
it turns out to be a third order accurate approximation—the error is proportional to h3 when
h is small.

Our first goal is to develop systematic ways to derive such formulas and to analyze
their accuracy and relative worth. First we will look at a typical example of how the errors
in these formulas compare.

Example 1.1. Let u.x/ D sin.x/ and Nx D 1; thus we are trying to approximate
u0.1/ D cos.1/ D 0:5403023. Table 1.1 shows the error Du. Nx/ � u0. Nx/ for various values
of h for each of the formulas above.

We see that DCu and D�u behave similarly although one exhibits an error that is
roughly the negative of the other. This is reasonable from Figure 1.1 and explains why
D0u, the average of the two, has an error that is much smaller than both.D
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1.1. Truncation errors 5

Table 1.1. Errors in various finite difference approximations to u0. Nx/.

h DCu. Nx/ D�u. Nx/ D0u. Nx/ D3u. Nx/
1.0e�01 �4.2939e�02 4.1138e�02 �9.0005e�04 6.8207e�05
5.0e�02 �2.1257e�02 2.0807e�02 �2.2510e�04 8.6491e�06
1.0e�02 �4.2163e�03 4.1983e�03 �9.0050e�06 6.9941e�08
5.0e�03 �2.1059e�03 2.1014e�03 �2.2513e�06 8.7540e�09
1.0e�03 �4.2083e�04 4.2065e�04 �9.0050e�08 6.9979e�11

We see that

DCu. Nx/ � u0. Nx/ � �0:42h;

D0u. Nx/ � u0. Nx/ � �0:09h2;

D3u. Nx/ � u0. Nx/ � 0:007h3;

confirming that these methods are first order, second order, and third order accurate,
respectively.

Figure 1.2 shows these errors plotted against h on a log-log scale. This is a good way
to plot errors when we expect them to behave like some power of h, since if the error E.h/

behaves like
E.h/ � C hp;

then
log jE.h/j � log jC j C p log h:

So on a log-log scale the error behaves linearly with a slope that is equal to p, the order of
accuracy.

1.1 Truncation errors
The standard approach to analyzing the error in a finite difference approximation is to
expand each of the function values of u in a Taylor series about the point Nx, e.g.,

u. Nx C h/ D u. Nx/C hu0. Nx/C
1

2
h2u00. Nx/C

1

6
h3u000. Nx/C O.h4/; (1.5a)

u. Nx � h/ D u. Nx/ � hu0. Nx/C
1

2
h2u00. Nx/ �

1

6
h3u000. Nx/C O.h4/: (1.5b)

These expansions are valid provided that u is sufficiently smooth. Readers unfamiliar with
the “big-oh” notation O.h4/ are advised to read Section A.2 of Appendix A at this point
since this notation will be heavily used and a proper understanding of its use is critical.

Using (1.5a) allows us to compute that

DCu. Nx/ D
u. Nx C h/ � u. Nx/

h
D u0. Nx/C

1

2
hu00. Nx/C

1

6
h2u000. Nx/C O.h3/:D
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6 Chapter 1. Finite Difference Approximations
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Figure 1.2. The errors in Du. Nx/ from Table 1.1 plotted against h on a log-log scale.

Recall that Nx is a fixed point so that u00. Nx/; u000. Nx/, etc., are fixed constants independent of
h. They depend on u of course, but the function is also fixed as we vary h.

For h sufficiently small, the error will be dominated by the first term 1
2
hu00. Nx/ and all

the other terms will be negligible compared to this term, so we expect the error to behave
roughly like a constant times h, where the constant has the value 1

2
u00. Nx/.

Note that in Example 1.1, where u.x/ D sin x, we have 1
2
u00.1/ D �0:4207355,

which agrees with the behavior seen in Table 1.1.
Similarly, from (1.5b) we can compute that the error in D�u. Nx/ is

D�u. Nx/ � u0. Nx/ D �
1

2
hu00. Nx/C

1

6
h2u000. Nx/C O.h3/;

which also agrees with our expectations.
Combining (1.5a) and (1.5b) shows that

u. Nx C h/ � u. Nx � h/ D 2hu0. Nx/C
1

3
h3u000. Nx/C O.h5/

so that

D0u. Nx/ � u0. Nx/ D
1

6
h2u000. Nx/C O.h4/: (1.6)

This confirms the second order accuracy of this approximation and again agrees with what
is seen in Table 1.1, since in the context of Example 1.1 we have

1

6
u000. Nx/ D �

1

6
cos.1/ D �0:09005038:

Note that all the odd order terms drop out of the Taylor series expansion (1.6) for D0u. Nx/.
This is typical with centered approximations and typically leads to a higher order approxi-
mation.D
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1.2. Deriving finite difference approximations 7

To analyze D3u we need to also expand u. Nx � 2h/ as

u. Nx � 2h/ D u. Nx/ � 2hu0. Nx/C
1

2
.2h/2u00. Nx/ �

1

6
.2h/3u000. Nx/C O.h4/: (1.7)

Combining this with (1.5a) and (1.5b) shows that

D3u. Nx/ D u0. Nx/C
1

12
h3u.4/. Nx/C O.h4/; (1.8)

where u.4/ is the fourth derivative of u.

1.2 Deriving finite difference approximations
Suppose we want to derive a finite difference approximation to u0. Nx/ based on some given
set of points. We can use Taylor series to derive an appropriate formula, using the method
of undetermined coefficients.

Example 1.2. Suppose we want a one-sided approximation to u0. Nx/ based on u. Nx/;
u. Nx � h/, and u. Nx � 2h/ of the form

D2u. Nx/ D au. Nx/C bu. Nx � h/C cu. Nx � 2h/: (1.9)

We can determine the coefficients a; b, and c to give the best possible accuracy by expand-
ing in Taylor series and collecting terms. Using (1.5b) and (1.7) in (1.9) gives

D2u. Nx/ D .a C b C c/u. Nx/ � .b C 2c/hu0. Nx/C
1

2
.b C 4c/h2u00. Nx/

�
1

6
.b C 8c/h3u000. Nx/C � � � :

If this is going to agree with u0. Nx/ to high order, then we need

a C b C c D 0;

b C 2c D �1=h; (1.10)

b C 4c D 0:

We might like to require that higher order coefficients be zero as well, but since there are
only three unknowns a; b; and c, we cannot in general hope to satisfy more than three such
conditions. Solving the linear system (1.10) gives

a D 3=2h; b D �2=h; c D 1=2h

so that the formula is

D2u. Nx/ D
1

2h
Œ3u. Nx/ � 4u. Nx � h/C u. Nx � 2h/�: (1.11)

This approximation is used, for example, in the system of equations (2.57) for a 2-point
boundary value problem with a Neumann boundary condition at the left boundary.D
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8 Chapter 1. Finite Difference Approximations

The error in this approximation is

D2u(x̄) − u′(x̄) = −1

6
(b + 8c)h3u′′′(x̄) +·· ·

= −1

3
h2u′′′(x̄) + O(h3).

(1.12)

There are other ways to derive the same finite difference approximations. One way
is to approximate the function u(x) by some polynomial p(x) and then use p′(x̄) as an
approximation to u′(x̄). If we determine the polynomial by interpolating u at an appropriate
set of points, then we obtain the same finite difference methods as above.

Example 1.3. To derive the method of Example 1.2 in this way, let p(x) be the
quadratic polynomial that interpolates u at x̄ , x̄ − h and x̄ − 2h, and then compute p′(x̄).
The result is exactly (1.11).

1.3 Second order derivatives
Approximations to the second derivative u′′(x) can be obtained in an analogous manner.
The standard second order centered approximation is given by

D2u(x̄) = 1

h2 [u(x̄ − h) − 2u(x̄) + u(x̄ + h)]

= u′′(x̄) + 1

12
h2u′′′′(x̄) + O(h4).

(1.13)

Again, since this is a symmetric centered approximation, all the odd order terms drop out.
This approximation can also be obtained by the method of undetermined coefficients, or
alternatively by computing the second derivative of the quadratic polynomial interpolating
u(x) at x̄ − h, x̄ , and x̄ + h, as is done in Example 1.4 below for the more general case of
unequally spaced points.

Another way to derive approximations to higher order derivatives is by repeatedly
applying first order differences. Just as the second derivative is the derivative of u′, we can
view D2u(x̄) as being a difference of first differences. In fact,

D2u(x̄) = D+ D−u(x̄)

since

D+(D−u(x̄)) = 1

h
[D−u(x̄ + h) − D−u(x̄)]

= 1

h

[(
u(x̄ + h) − u(x̄)

h

)
−

(
u(x̄) − u(x̄ − h)

h

)]

= D2u(x̄).

Alternatively, D2(x̄) = D− D+u(x̄), or we can also view it as a centered difference of cen-
tered differences, if we use a step size h/2 in each centered approximation to the first
derivative. If we define

D̂0u(x) = 1

h

(
u

(
x + h

2

)
− u

(
x − h

2

))
,D
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1.4. Higher order derivatives 9

then we find that

OD0. OD0u. Nx// D
1

h

��
u. Nx C h/ � u. Nx/

h

�
�
�

u. Nx/ � u. Nx � h/

h

��
D D2u. Nx/:

Example 1.4. Suppose we want to approximate u00.x2/ based on data values U1, U2,
and U3, at three unequally spaced points x1; x2, and x3. This approximation will be used
in Section 2.18. Let h1 D x2 � x1 and h2 D x3 � x2. The approximation can be found by
interpolating by a quadratic function and differentiating twice. Using the Newton form of
the interpolating polynomial (see Section B.2.3),

p.x/ D U Œx1�C U Œx1;x2�.x � x1/C U Œx1;x2;x3�.x � x1/.x � x2/;

we see that the second derivative is constant and equal to twice the second order divided
difference,

p00.x2/ D 2U Œx1;x2;x3�

D 2

�
U3 � U2

h2

�
U2 � U1

h1

� .
.h1 C h2/

D c1U1 C c2U2 C c3U3;

(1.14)

where

c1 D
2

h1.h1 C h2/
; c2 D �

2

h1h2

; c3 D
2

h2.h1 C h2/
: (1.15)

This would be our approximation to u00.x2/. The same result can be found by the method
of undetermined coefficients.

To compute the error in this approximation, we can expand u.x1/ and u.x3/ in Taylor
series about x2 and find that

c1u.x1/C c2u.x2/C c3u.x3/ � u00.x2/

D
1

3
.h2 � h1/u

.3/.x2/C
1

12

 
h3

1
C h3

2

h1 C h2

!
u.4/.x2/C � � � :

(1.16)

In general, if h1 ¤ h2, the error is proportional to max.h1; h2/ and this approximation is
“first order” accurate.

In the special case h1 D h2 (equally spaced points), the approximation (1.14) reduces
to the standard centered approximate D2u.x2/ from (1.13) with the second order error
shown there.

1.4 Higher order derivatives
Finite difference approximations to higher order derivatives can also be obtained using any
of the approaches outlined above. Repeatedly differencing approximations to lower order
derivatives is a particularly simple approach.

Example 1.5. As an example, here are two different approximations to u000. Nx/. The
first is uncentered and first order accurate:D
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10 Chapter 1. Finite Difference Approximations

DCD2u. Nx/ D
1

h3
.u. Nx C 2h/ � 3u. Nx C h/C 3u. Nx/ � u. Nx � h//

D u000. Nx/C
1

2
hu0000. Nx/C O.h2/:

The next approximation is centered and second order accurate:

D0DCD�u. Nx/ D
1

2h3
.u. Nx C 2h/ � 2u. Nx C h/C 2u. Nx � h/ � u. Nx � 2h//

D u000. Nx/C
1

4
h2u00000. Nx/C O.h4/:

Another way to derive finite difference approximations to higher order derivatives
is by interpolating with a sufficiently high order polynomial based on function values at
the desired stencil points and then computing the appropriate derivative of this polynomial.
This is generally a cumbersome way to do it. A simpler approach that lends itself well to
automation is to use the method of undetermined coefficients, as illustrated in Section 1.2
for an approximation to the first order derivative and explained more generally in the next
section.

1.5 A general approach to deriving the coefficients
The method illustrated in Section 1.2 can be extended to compute the finite difference co-
efficients for computing an approximation to u.k/. Nx/, the kth derivative of u.x/ evaluated
at Nx, based on an arbitrary stencil of n � k C 1 points x1; : : : ; xn. Usually Nx is one of the
stencil points, but not necessarily.

We assume u.x/ is sufficiently smooth, namely, at least n C 1 times continuously
differentiable in the interval containing Nx and all the stencil points, so that the Taylor series
expansions below are valid. Taylor series expansions of u at each point xi in the stencil
about u. Nx/ yield

u.xi/ D u. Nx/C .xi � Nx/u0. Nx/C � � � C
1

k!
.xi � Nx/k u.k/. Nx/C � � � (1.17)

for i D 1; : : : ; n. We want to find a linear combination of these values that agrees with
u.k/. Nx/ as well as possible. So we want

c1u.x1/C c2u.x2/C � � � C cnu.xn/ D u.k/. Nx/C O.hp /; (1.18)

where p is as large as possible. (Here h is some measure of the width of the stencil. If
we are deriving approximations on stencils with equally spaced points, then h is the mesh
width, but more generally it is some “average mesh width,” so that max1�i�n jxi � Nxj � C h

for some small constant C .)
Following the approach of Section 1.2, we choose the coefficients cj so that

1

.i � 1/!

nX

jD1

cj .xj � Nx/.i�1/ D
�

1 if i � 1 D k;

0 otherwise
(1.19)

for i D 1; : : : ; n. Provided the points xj are distinct, this n � n Vandermonde system is
nonsingular and has a unique solution. If n � k (too few points in the stencil), then theD
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1.5. A general approach to deriving the coefficients 11

right-hand side and solution are both the zero vector, but for n > k the coefficients give a
suitable finite difference approximation.

How accurate is the method? The right-hand side vector has a 1 in the i D k C 1

row, which ensures that this linear combination approximates the kth derivative. The 0 in
the other component of the right-hand side ensures that the terms

0
@

nX

jD1

cj .xj � Nx/.i�1/

1
Au.i�1/. Nx/

drop out in the linear combination of Taylor series for i � 1 ¤ k. For i � 1 < k this
is necessary to get even first order accuracy of the finite difference approximation. For
i � 1 > k (which is possible only if n > k C 1), this gives cancellation of higher order
terms in the expansion and greater than first order accuracy. In general we expect the order
of accuracy of the finite difference approximation to be at least p � n � k. It may be even
higher if higher order terms happen to cancel out as well (as often happens with centered
approximations, for example).

In MATLAB it is very easy to set up and solve this Vandermonde system. If xbar is
the point Nx and x(1:n) are the desired stencil points, then the following function can be
used to compute the coefficients:

function c = fdcoeffV(k,xbar,x)
A = ones(n,n);
xrow = (x(:)-xbar)’; % displacements as a row vector.
for i=2:n

A(i,:) = (xrow .ˆ (i-1)) ./ factorial(i-1);
end

b = zeros(n,1); % b is right hand side,
b(k+1) = 1; % so k’th derivative term remains
c = A\b; % solve system for coefficients
c = c’; % row vector

If u is a column vector of n values u.xi/, then in MATLAB the resulting approximation to
u.k/. Nx/ can be computed by c*u.

This function is implemented in the MATLAB function fdcoeffV.m available on
the Web page for this book, which contains more documentation and data checking but is
essentially the same as the above code. A row vector is returned since in applications we
will often use the output of this routine as the row of a matrix approximating a differential
operator (see Section 2.18, for example).

Unfortunately, for a large number of points this Vandermonde procedure is numeri-
cally unstable because the resulting linear system can be very poorly conditioned. A more
stable procedure for calculating the weights is given by Fornberg [30], who also gives a
FORTRAN implementation. This modified procedure is implemented in the MATLAB
function fdcoeffF.m on the Web page.

Finite difference approximations of the sort derived in this chapter form the basis for
finite difference algorithms for solving differential equations. In the next chapter we begin
the study of this topic.D
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