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Appendix E

Partial Differential
Equations

In this appendix we briefly discuss some of the basic partial differential equations (PDEs)
that are used in this book to illustrate the development of numerical methods, and we review
the manner in which Fourier analysis can be used to gain insight into these problems.

E.1 Classification of differential equations
First we review the classification of differential equations into elliptic, parabolic, and hy-
perbolic equations. Not all PDEs fall into one of these classes, by any means, but many
important equations that arise in practice do. These classes of equations model different
sorts of phenomena, display different behavior, and require different numerical techniques
for their solution. Standard texts on partial differential equations such as Kevorkian [55]
give further discussion.

E.1.1 Second order equations

In most elementary texts the classification is given for a linear second-order differential
equation in two independent variables of the form

auxx C buxy C cuyy C dux C euy C f u D g:

The classification depends on the sign of the discriminant,

b2 � 4ac

8
<
:
< 0 H) elliptic,
D 0 H) parabolic,
> 0 H) hyperbolic,

and the names arise by analogy with conic sections. The canonical examples are the Pois-
son problem uxx C uyy D g for an elliptic problem, the heat equation ut D �uxx (with
� > 0) for a parabolic problem, and the wave equation utt D c2uxx for a hyperbolic prob-
lem. In the parabolic and hyperbolic case t is used instead of y since these are typically
time-dependent problems. These can all be extended to more space dimensions. These
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312 Appendix E. Partial Differential Equations

equations describe different types of phenomena and require different techniques for their
solution (both analytically and numerically), and so it is convenient to have names for
classes of equations exhibiting the same general features. Other equations have some of
the same features, and the classification scheme can be extended beyond the second order
linear form given above. Some hint of this is given in the next few sections.

E.1.2 Elliptic equations

The classic example of an elliptic equation is the Poisson problem

r2u D f; (E.1)

where r2 is the Laplacian operator and f is a given function of Ex D .x; y/ in some spatial
domain �. We seek a function u.Ex/ in � satisfying (E.1) together with some boundary
conditions all along the boundary of �. Elliptic equations typically model steady-state or
equilibrium phenomena, and so there is no temporal dependence (however, see Section 2.16
for a counterexample). Elliptic equations may also arise in solving time-dependent prob-
lems if we are modeling some phenomena that are always in local equilibrium and equili-
brate on time scales that are much faster than the time scale being modeled. For example,
in “incompressible” flow the fast acoustic waves are not modeled and instead the pressure
is computed by solving a Poisson problem at each time step which models the global effect
of these waves.

Elliptic equations give boundary value problems where the solution at all points must
be simultaneously determined based on the boundary conditions all around the domain.
This typically leads to a very large sparse system of linear equations to be solved for the
values of U at each grid point. If an elliptic equation must be solved in every time step of a
time-dependent calculation, as in the examples above, then it is crucial that these systems
be solved as efficiently as possible.

More generally, a linear elliptic equation has the form

Lu D f; (E.2)

where L is some elliptic operator. For our purposes we will consider only constant coeffi-
cient second order operators, which in N space dimensions have the form

L D
NX

j ;kD1

Ajk

@2

@xj@xk

C
NX

jD1

Bj

@

@xj

C C; (E.3)

where the Ajk ; Bj ; C are real numbers. Note that since @2u=@xj@xk D @2u=@xk@xj , we
can always choose the N � N matrix A defined by the second order term to be symmetric.
This operator is said to be elliptic if A is positive definite or negative definite, as defined in
Section C.4. This means that vT Av has the same sign for all nonzero vectors v 2 RN and
cannot pass through zero. This can be shown to ensure that the boundary value problem
(E.2) has a unique solution. For an indication of why this is true, see Section E.3.5.

In two space dimensions writing the matrix as

A D
�

a b=2

b=2 c

�
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E.1. Classification of differential equations 313

and considering when this matrix is definite, we find that the operator is elliptic if b2 �
4ac < 0, as in the classification of the previous section.

For the Laplacian operator r2u, A is the N � N identity matrix and so this is an
elliptic operator. Note that in one space dimension r2u reduces to u00.x/ and the problem
(E.1) is the 2-point boundary value problem considered in Chapter 2.

E.1.3 Parabolic equations

If L is an elliptic operator with a positive definite A, then the time-dependent equation

ut D Lu � f (E.4)

is well posed (see Section E.3.5) and is called parabolic. If L D r2 is the Laplacian, then
(E.4) is known as the heat equation or diffusion equation and models the diffusion of heat
in a material, for example.

Now u.Ex; t/ varies with time and we require initial data u.Ex; 0/ for every Ex 2 �

as well as boundary conditions around the boundary at each time t > 0. If the boundary
conditions are independent of time, then we might expect the heat distribution to reach a
steady state in which u is independent of t . We could then solve for the steady state directly
by setting ut D 0 in (E.4), which results in the elliptic equation (E.2).

Marching to steady state by solving the time-dependent equation (E.4) numerically
would be one approach to solving the elliptic equation (E.2), but this is typically not the
fastest method if all we require is the steady state.

E.1.4 Hyperbolic equations

Rather than discretizing second order hyperbolic equations such as the wave equation
utt D c2uxx , we will consider a related form of hyperbolic equations known as first order
hyperbolic systems. The linear problem in one space dimension has the form

ut C Aux D 0; (E.5)

where u.x; t/ 2 Rs and A is an s �s matrix. The problem is called hyperbolic if A has real
eigenvalues and is diagonalizable, i.e., has a complete set of linearly independent eigen-
vectors. These conditions allow us to view the solution in terms of propagating waves, and
indeed hyperbolic systems typically arise from physical processes that give wave motion
or advective transport. This is explored more in Section 10.10.

The simplest example of a hyperbolic equation is the constant-coefficient advection
equation

ut C aux D 0; (E.6)

where u is the advection velocity. The solution is simply u.x; t/ D u.x � at; 0/, so any u

profile simply advects with the flow at velocity a.
As a simple example of a linear hyperbolic system, the equations of linearized acous-

tics arising from elasticity or gas dynamics can be written as a first order system of two
equations in one space dimension as
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314 Appendix E. Partial Differential Equations

�
p

u

�

t

C
�

0 �0

1=�0 0

��
p

u

�

x

D 0 (E.7)

in terms of pressure and velocity perturbations, where �0 is the background density and �0

is the “bulk modulus” of the material. Note that if we differentiate the first equation with
respect to t , the second with respect to x, and then eliminate uxt D utx, we obtain the
second order wave equation for the pressure:

ptt D c2pxx ;

where
c D

p
�0=�0

is the speed of sound in the material.
Often hyperbolic equations arise most naturally as first order systems, as motivated

in the next section, and we consider only this formulation.

E.2 Derivation of partial differential equations from
conservation principles

Many physically relevant partial differential equations can be derived based on the principle
of conservation. We can view u.x; t/ as a concentration or density function for some
substance or chemical that is in dilute suspension in a liquid, for example. Basic equations
of the same form arise in many other applications, however. The material presented here
is meant to be a brief review, and much more complete discussions are available in many
sources. See, for example, [55], [61], [66], [102].

A reasonable model to consider in one space dimension is the concentration or den-
sity of a contaminant in a stream or pipe, where the variable x represents distance along the
pipe. The concentration is assumed to be constant across any cross section, so that its value
varies only with x. The density function u.x; t/ is defined in such a way that integrating
the function u.x; t/ between any two points x1 and x2 gives the total mass of the substance
in this section of the pipe at time t :

Total mass between x1 and x2 at time t D
Z x2

x1

u.x; t/ dx:

The density function in measured in units such as grams/meter. (Note that this u really
represents the integral over the cross section of the pipe of a density function that is properly
measured in grams/meter3.)

The basic form of differential equation that models many physical processes can be
derived in the followingway. Consider a section x1 < x < x2 and the manner in which

R x2

x1

u.x; t/ dx changes with time. This integral represents the total mass of the substance in
this section, so if we are studying a substance that is neither created nor destroyed within
this section, then the total mass within this section can change only due to the flux or flow
of particles through the endpoints of the section at x1 and x2. This flux is given by some
function f which, in the simplest case, depends only on the value of u at the corresponding
point.D
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E.2. Derivation of partial differential equations from conservation principles 315

E.2.1 Advection

If the substance is simply carried along (advected) in a flow at some constant velocity a,
then the flux function is

f .u/ D au: (E.8)

The local density u.x; t/ (in grams/meter, say) multiplied by the velocity (in meters/sec,
say) gives the flux of material past the point x (in grams/sec).

Since the total mass in Œx1;x2� changes only due to the flux at the endpoints, we have

d

dt

Z x2

x1

u.x; t/ dx D f .u.x1; t// � f .u.x2; t//: (E.9)

The minus sign on the last term comes from the fact that f is, by definition, the flux to the
right.

If we assume that u and f are smooth functions, then this equation can be rewritten
as

d

dt

Z x2

x1

u.x; t/ dx D
Z x2

x1

@

@x
f .u.x; t// dx

or, with some further modification, as
Z x2

x1

�
@

@t
u.x; t/C

@

@x
f .u.x; t//

�
dx D 0:

Since this integral must be zero for all values of x1 and x2, it follows that the integrand
must be identically zero. This gives, finally, the differential equation

@

@t
u.x; t/C

@

@x
f .u.x; t// D 0: (E.10)

This form of equation is called a conservation law.
For the case considered in Section E.2.1, f .u/ D au with a constant and this equa-

tion becomes the advection equation (E.6). This equation requires initial conditions and
possibly also boundary conditions in order to determine a unique solution. The simplest
case is the Cauchy problem on �1 < x < 1 (with no boundary), also called the pure
initial value problem. Then we need only to specify initial data

u.x; 0/ D �.x/: (E.11)

Physically, we would expect the initial profile of � to simply be carried along with the flow
at speed a, so we should find

u.x; t/ D �.x � at/: (E.12)

It is easy to verify that this function satisfies the advection equation (E.6) and is the solution
of the PDE.

The curves
x D x0 C at

through each point x0 at time 0 are called the characteristics of the equation. If we set

U.t/ D u.x0 C at; t/D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 316i

i
i

i

i
i

i
i

316 Appendix E. Partial Differential Equations

then

U 0.t/ D aux.x0 C at; t/C ut.x0 C at; t/

D 0

using (E.6). Along these curves the PDE reduces to a simple ordinary differential equation
(ODE) U 0 D 0 and the solution must be constant along each such curve, as is also seen
from the solution (E.12).

E.2.2 Diffusion

Now suppose that the fluid in the pipe is not flowing and has zero velocity. Then according
to the above equation, ut D 0 and the initial profile �.x/ does not change with time. How-
ever, if � is not constant in space then in fact it will tend to slowly change due to molecular
diffusion. The velocity a should really be thought of as a mean velocity, the average veloc-
ity that the roughly 1023 molecules in a given drop of fluid have. But individual molecules
are bouncing around in different directions and so molecules of the substance we are track-
ing will tend to get spread around in the ambient fluid, just as a drop of ink spreads in water.
There will tend to be a net motion from regions where the density is large to regions where
it is smaller, and in fact it can be shown that the flux (in one dimension) is proportional to
�ux. The flux at a point x now depends on the value of ux at this point, rather than on the
value of u, so we write

f .ux/ D ��ux ; (E.13)

where � is the diffusion coefficient. The relation (E.13) is known as Fick’s law. Using this
flux in (E.10) gives

ut D �uxx ; (E.14)

which is known as the diffusion equation.
This equation is also called the heat equation since heat diffuses in much the same

way. In this case u.x; t/ represents the density of thermal energy, which is proportional to
the temperature. The proportionality factor is the heat capacity of the material, which we’ll
take to be the value 1 (with suitable units) so that u can also be viewed as the temperature.
The one-dimensional equation models the conduction of heat in a rod. The heat conduction
coefficient � depends on the material and how well it conducts heat. The relation (E.13)
is known as Fourier’s law of heat conduction, which states more generally that the flux of
thermal energy is proportional to the temperature gradient.

In some problems the diffusion coefficient may vary with x, for example, in a rod
made of a composite of different materials. Then f D ��.x/ux and the equation becomes

ut D .�.x/ux /x :

Returning to the example of fluid flow, more generally there would be both advection
and diffusion occurring simultaneously. Then the flux is f .u;ux/ D au � �ux , giving the
advection-diffusion equation

ut C aux D �uxx : (E.15)

The diffusion and advection-diffusion equations are examples of the general class of
PDEs called parabolic.D
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E.3. Fourier analysis of linear partial differential equations 317

E.2.3 Source terms

In some situations
R x2

x1
u.x; t/ dx changes due to effects other than flux through the end-

points of the section, if there is some source or sink of the substance within the section.
Denote the density function for such a source by  .x; t/. (Negative values of  corre-
spond to a sink rather than a source.) Then the equation becomes

d

dt

Z x2

x1

u.x; t/ dx D �
Z x2

x1

@

@x
f .u.x; t// dx C

Z x2

x1

 .x; t/ dx:

This leads to the PDE
ut .x; t/C f .u.x; t//x D  .x; t/: (E.16)

For example, if we have heat conduction in a rod together with an external source of heat
energy distributed along the rod with density  , then we have

ut D �uxx C  :

In some cases the strength of the source may depend on the value of u. For example, if the
rod is immersed in a liquid that is held at constant temperature u0, then the flux of heat into
the rod at the point .x; t/ is proportional to u0 � u.x; t/ and the equation becomes

ut.x; t/ D �uxx.x; t/C ˛.u0 � u.x; t//:

E.2.4 Reaction-diffusion equations

One common form of source term arises from chemical kinetics. If the components of
u 2 Rs represent concentrations of s different species reacting with one another, then the
kinetics equations have the form ut D R.u/, as described in Section 7.4.1. This assumes
the different species are well mixed at all times and so the concentrations vary only with
time. If there are spatial variations in concentrations, then these equations may be combined
with diffusion of each species. This would lead to a system of reaction-diffusion equations
of the form

ut D �uxx C R.u/: (E.17)

The diffusion coefficient could be different for each species, in which case � would be a
diagonal matrix instead of a scalar. This generalizes to more space dimensions by replacing
uxx by r2u, the Laplacian of u.

Advection terms might also be present if the reactions are taking place in a flowing
fluid. More generally the reaction-diffusion equations may be coupled with nonlinear equa-
tions of fluid dynamics, which may themselves contain both hyperbolic terms and parabolic
viscous terms.

E.3 Fourier analysis of linear partial differential equations
For linear PDEs, Fourier analysis is often used to obtain solutions or perform theoreti-
cal analysis. This is because the functions ei�x D cos.�x/ C i sin.�x/ are essentially1

1On a periodic domain. For the Cauchy problem these functions are not L2 functions and so strictly speaking
are not called eigenfunctions, but this is unimportant for our purposes.D
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318 Appendix E. Partial Differential Equations

eigenfunctions of the differentiation operator @x D @
@x

. Differentiating this function gives
a scalar multiple of the function, and hence simple differential equations (linear constant
coefficient ones, at least) are simplified and can be reduced to algebraic equations.

Fourier analysis is equally important in the study of finite difference methods for
linear PDEs for the same reason: these same functions are eigenfunctions of translation
invariant finite difference operators. This is exploited in Sections 9.6 and 10.5, where von
Neumann stability analysis of finite difference methods is discussed. An understanding of
Fourier analysis of PDEs is also required in Section 10.9, where finite difference methods
are analyzed by studying “modified equations.”

E.3.1 Fourier transforms

Recall that a function v.x/ is in the space L2 if it has a finite 2-norm, defined by

kvk2 D
�Z 1

�1
jv.x/j2 dx

�1=2

:

If v 2 L2, then we can define its Fourier transform Ov.�/ by

Ov.�/ D
1

p
2�

Z 1

�1
v.x/e�i�x dx: (E.18)

The function Ov.�/ is also in L2 and in fact it has exactly the same 2-norm as v,

kOvk2 D kvk2: (E.19)

This is known as Parseval’s relation.
We can express the original function v.x/ as a linear combination of the set of func-

tions ei�x for different values of �, which together form a basis for the infinite dimensional
function space L2. The Fourier transform Ov.�/ gives the coefficients in the expression

v.x/ D
1

p
2�

Z 1

�1
Ov.�/ei�x d�; (E.20)

which is known as the inverse Fourier transform. This is analogous to writing a vector as a
linear combination of basis vectors.

E.3.2 The advection equation

We already know the solution (E.12) to the advection equation (E.6), but to illustrate the
role of Fourier analysis we will solve the advection equation ut C aux D 0 using Fourier
transforms. We will transform in x only and denote the transform of u.x; t/ (a function of
x at each fixed t) by Ou.�; t/:

Ou.�; t/ D
1

p
2�

Z 1

�1
u.x; t/e�i�x dx: (E.21)

Then

u.x; t/ D
1

p
2�

Z 1

�1
Ou.�; t/ei�x d� (E.22)

and differentiating this with respect to t and x givesD
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E.3. Fourier analysis of linear partial differential equations 319

ut .x; t/ D
1

p
2�

Z 1

�1
Out.�; t/e

i�x dx;

ux.x; t/ D
1

p
2�

Z 1

�1
Ou.�; t/i�ei�x dx:

From this we see that the Fourier transform of ut .x; t/ is Out.�; t/ and the Fourier transform
of ux.x; t/ is i� Ou.�; t/. Fourier transforming the advection equation by computing

1
p

2�

Z 1

�1
.ut C aux/e

�i�x dx D 0

thus gives
Out .�; t/C ai� Ou.�; t/ D 0

or
Out D �i�a Ou:

This is a time-dependent ODE for the evolution of Ou.�; t/ in time. There are two important
points to notice:

� Since differentiation with respect to x has become multiplication by i� after Fourier
transforming, the original PDE involving derivatives with respect to x and t has
become an ODE in t alone.

� The ODEs for different values of � are decoupled from one another. We have to solve
an infinite number of ODEs, one for each value of �, but they are decoupled scalar
equations rather than a coupled system.

It is easy to solve these ODEs. We need initial data Ou.�; 0/ at time t D 0 for each
value of �, but this comes from Fourier transforming the initial data u.x; 0/ D �.x/,

Ou.�; 0/ D O�.�/ D
1

p
2�

Z 1

�1
�.x/e�i�x dx:

Solving the ODEs then gives
Ou.�; t/ D e�i�at O�.�/: (E.23)

We can now Fourier transform back using (E.22) to get the desired solution u.x; t/:

u.x; t/ D
1

p
2�

Z 1

�1
e�i�at O�.�/ei�x d�

D
1

p
2�

Z 1

�1
O�.�/ei�.x�at/ d�

D �.x � at/:

This last equality comes from noting that we are simply evaluating the inverse Fourier
transform of O� at the point x � at . We see that we have recovered the standard solution
(E.12) of the advection equation in this manner.

We can also calculate the “Green’s function” for the advection equation, the solution
to ut C aux D 0 with special initial data �.x/ D ı.x � Nx/. The solution is clearlyD
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320 Appendix E. Partial Differential Equations

G.x; t I Nx/ D ı.x � Nx � at/: (E.24)

The general solution for arbitrary �.x/ can be written as a linear combination of these
Green’s functions, weighted by the data:

u.x; t/ D
Z 1

�1
�. Nx/G.x; t I Nx/ d Nx

D
Z 1

�1
�. Nx/ı.x � Nx � at/ d Nx

D �.x � at/:

(E.25)

E.3.3 The heat equation

Now consider the heat equation,
ut D �uxx : (E.26)

Since the Fourier transform of uxx.x; t/ is .i�/2 Ou.�; t/ D ��2 Ou.�; t/, Fourier transforming
(E.26) gives the ODE

Out .�; t/ D ���2 Ou.�; t/: (E.27)

Again we have initial data Ou.�; 0/ D O�.�/ from the given initial data on u. Now solving the
ODE gives

Ou.�; t/ D e���2t O�.�/: (E.28)

Note that this has a very different character than (E.23), the Fourier transform obtained from
the advection equation. For the advection equation, Ou.�; t/ D eia�t O�.�/ and j Ou.�; t/j D
j O�.�/j for all t . Each Fourier component maintains its original amplitude and is modified
only in phase, leading to a traveling wave behavior in the solution.

For the heat equation, however, j Ou.�; t/j decays in time exponentially fast. The decay
rate depends on �, the diffusion coefficient, and also on �, the wave number. Highly oscil-
latory components (with �2 large) decay much faster than those with low wave numbers.
This results in a smoothing of the solution as time evolves. (See Figure 9.3.)

The fact that the solution contains components that decay at very different rates leads
us to expect numerical difficulties with stiffness, similar to those discussed for ODEs in
Chapter 8. In Section 9.4 we will see that this is indeed the case and that implicit methods
must generally be used to efficiently solve the heat equation.

A single Fourier mode decaying exponentially in time is one special solution to the
heat equation. Another class of special solutions that is useful to know about arises from
Gaussian initial data. The Fourier transform of a Gaussian is another Gaussian. Take

�.x/ D e�ˇx2

(E.29)

for some ˇ. Then

O�.�/ D
1

p
2�

Z 1

�1
e�ˇx2

ei�x dx

D
1p
2ˇ

e��2=4ˇ:

(E.30)
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Then (E.22) combined with (E.28) gives the solution

u.x; t/ D
1

p
2�

Z 1

�1
e���2t O�.�/ei�x d�

D
1

2
p
�ˇ

Z 1

�1
e��2.�tC1=4ˇ/ei�x d�:

(E.31)

This is just the inverse Fourier transform of another Gaussian, with e��2=4C in place of
e��2=4ˇ , where C D 1=.4�t C 1=ˇ/, and so

u.x; t/ D

s
C

ˇ
e�Cx2

D
1p

4ˇ�t C 1
e�x2=.4�tC1=ˇ/:

(E.32)

As t increases this Gaussian becomes more spread out and the magnitude decreases, as
we expect from diffusion. You can check that (E.32) solves the heat equation directly by
differentiating.

Note what happens if we shift the initial data to a different location,

�.x/ D e�ˇ.x� Nx/2

: (E.33)

Then the solution simply shifts too,

u.x; t/ D
1p

4ˇ�t C 1
e�.x� Nx/2=.4�tC1=ˇ/: (E.34)

As a special case we can find the Green’s function for the heat equation. Scale the
data (E.33) by

p
ˇ=� so that it has integral equal to 1 and represents a smeared out version

of the delta function, setting

vˇ.x; 0I Nx/ D
r
ˇ

�
e�ˇ.x� Nx/2

: (E.35)

The solution to (E.26) with this data is then

vˇ.x; t I Nt/ D
1p

4��t C �=ˇ
e�.x� Nx/2=.4�tC1=ˇ/: (E.36)

Now let ˇ ! 0 so the initial data approaches a delta function. The solution vˇ.x; t I Nt/ then
approaches the Green’s function for (E.26),

G.x; t I Nx/ D
1

p
4��t

e�.x� Nx/2=.4�t/: (E.37)

Delta function initial data spreads out into a decaying Gaussian. Note that initial data
concentrated at a single point (an idealization of a very tiny drop of ink in water, say)D
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322 Appendix E. Partial Differential Equations

spreads out immediately to have a nonzero value for all x. More generally if we look at the
solution for general initial data by integrating �. Nx/ against the Green’s function, we see that
the data at each Nx immediately have an effect everywhere. Thus information propagates
infinitely quickly in the heat equation. This is quite different from the advection equation,
where the data at Nx affect the solution at only one point Nx C at at a later time t .

Of course physically information cannot propagate at infinite speed, and the discrep-
ancy with the behavior of the heat equation simply shows that the heat equation is only a
model of reality, and one that is not exactly correct. But note that away from the point Nx
the effect decays very rapidly and so this is often a very accurate model of reality.

E.3.4 The backward heat equation

Note that the diffusion coefficient � is required to be positive (because heat flows from
warm to cool regions, not the other way around). Mathematically we could consider trying
to solve the equation (E.26) with � < 0 but this equation turns out to be ill-posed2 One
way to interpret this physically is to view it as solving the heat equation with coefficient
�� > 0 backward in time, starting at some final heat distribution and working backward
to the heat distribution at earlier times. Intuitively this can be seen to be ill-posed be-
cause many different sets of initial data can give rise to very similar solutions at later times
since any high-frequency components in initial data for the heat equation are very rapidly
smoothed out. We can formally solve the backward heat equation in Fourier space with the
expression (E.28), but for � < 0 each Fourier mode is growing exponentially in time in-
stead of decaying. Exponential growth in itself doesn’t make the problem ill posed—many
well-posed equations have exponentially growing solutions—but the problem with (E.28)
is that the growth rate depends on the wave number � and increases without bound with �.
We can make an infinitesimal high-frequency perturbation to the initial data that will make
an order 1 change in the solution at some fixed time t . Hence the solution to the backward
heat equation does not depend continuously on the data.

E.3.5 More general parabolic equations

Consider a second order parabolic equation ut D Lu in N space dimensions as defined in
Section E.1.3. For simplicity, just consider the second order part of the system, so

L D
NX

j ;kD1

Ajk

@2

@xj@xk

; (E.38)

where the N �N coefficient matrix A is symmetric positive definite. Let � D .�1; : : : ; �N /

be a wave number vector, one for each space dimension, so that a general Fourier mode has
the form ei��x , where x D .x1; : : : ; xN /. Let Ou.�; t/ be the Fourier transform of u.x; t/

in all space dimensions, defined by

Ou.�; t/ D
1

p
2�

Z
u.x; t/e�i��x dx; (E.39)

2A problem is said to be well posed (in the sense of Hadamard) if it has a unique solution for every valid set
of data and if the solution depends continuously on the data.D
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E.3. Fourier analysis of linear partial differential equations 323

where the integral is now over all of N -dimensional space. Then it can be verified that the
parabolic equation ut D Lu transforms to

Out .�; t/ D ��T A� Ou.�; t/: (E.40)

The requirement that A be positive definite is just what is needed to ensure that all Fourier
modes decay, giving a well-posed problem. If �T A� < 0 for some vector �, then it is also
negative for any scalar multiple ˛� of this wave vector, and there would be exponential
growth of some Fourier modes with arbitrarily large growth rate ˛2�T A�. As observed for
the backward heat equation, this would give an ill-posed problem. (For the heat equation
with N D 1, the matrix A is just the scalar coefficient �.)

E.3.6 Dispersive waves

Now consider the equation
ut D uxxx : (E.41)

Fourier transforming now leads to the ODE

Out .�; t/ D �i�3 Ou.�; t/;

so
Ou.�; t/ D e�i�3t O�.�/:

This has a character similar to advection problems in that j Ou.�; t/j D j O�.�/j for all time and
each Fourier component maintains its original amplitude. However, when we recombine
with the inverse Fourier transform we obtain

u.x; t/ D
1

p
2�

Z 1

�1
O�.�/ei�.x��2t/ d�; (E.42)

which shows that the Fourier component with wave number � is propagating with velocity
�2. In the advection equation all Fourier components propagate with the same speed a, and
hence the shape of the initial data is preserved with time. The solution is the initial data
shifted over a distance at .

With (E.41), the shape of the initial data in general will not be preserved, unless the
data is simply a single Fourier mode. This behavior is called dispersive since the Fourier
components disperse relative to one another. Smooth data typically lead to oscillatory
solutions since the cancellation of high wave number modes that smoothness depends on
will be lost as these modes shift relative to one another. See, for example, Whitham [102]
for an extensive discussion of dispersive waves.

Extending this analysis to an equation of the form

ut C aux C buxxx D 0; (E.43)

we find that the solution can be written as

u.x; t/ D
1

p
2�

Z 1

�1
O�.�/ei�.x�.a�b�2/t/ d�;D
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324 Appendix E. Partial Differential Equations

where O�.�/ is the Fourier transform of the initial data �.x/. Each Fourier mode ei�x prop-
agates at velocity a � b�2, called the phase velocity of this wave number. In general the
initial data �.x/ is a linear combination of infinitely many different Fourier modes. For
b ¤ 0 these modes propagate at different speeds relative to one another. Their peaks and
troughs will be shifted relative to other modes and they will no longer add up to a shifted
version of the original data. The waves are called dispersive since the different modes
do not move in tandem. Moreover, we will see below that the “energy” associated with
different wave numbers also disperses.

E.3.7 Even- versus odd-order derivatives

Note that odd-order derivatives @x; @
3
x; : : : (as in the advection equation or the dispersive

equation (E.41)) have pure imaginary eigenvalues i�; � i�3; : : :, which results in Fourier
components that propagate with their magnitude preserved. Even-order derivatives, such
as the @2

x in the heat equation, have real eigenvalues (��2 for the heat equation), which
results in exponential decay of the eigencomponents. Another such equation is

ut D �uxxxx ;

in which case Ou.�; t/ D e��4t O�.�/. Solutions to this equation behave much like solutions
to the heat equation but with even more rapid damping of oscillatory data.

Another interesting example is

ut D �uxx � uxxxx ; (E.44)

for which
Ou.�; t/ D e.�2��4/t O�.�/: (E.45)

Note that the uxx term has the “wrong” sign—it looks like a backward heat equation and
there is exponential growth of some wave numbers. But for j�j > 1 the fourth order
diffusion dominates and Ou.�; t/ ! 0 exponentially fast. For all � we have j Ou.�; t/j �
et=4j O�.�/j (since �2 � �4 � 1=4 for all �) and the equation is well posed.

The Kuramoto–Sivashinsky equation (11.13) involves terms of this form, and the
exponential growth of some wave numbers leads to chaotic behavior and interesting pattern
formation.

E.3.8 The Schrödinger equation

The discussion of the previous section supposed that u.x; t/ is a real-valued function. The
vacuum Schrödinger equation for a complex wave function .x; t/ has the form (dropping
some physical constants)

i t .x; t/ D � xx .x; t/: (E.46)

This involves a second derivative, but note the crucial fact that t is multiplied by i . Fourier
transforming thus gives

i O t.�; t/ D �2 O .�; t/;
so

O .�; t/ D e�i�2t O .�; 0/D
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E.3. Fourier analysis of linear partial differential equations 325

and

 .x; t/ D
1

p
2�

Z 1

�1
O .�; 0/ei�.x�.a��/t/ d�:

Hence the Schrödinger equation has dispersive wavelike solutions in spite of the even-order
derivative.

E.3.9 The dispersion relation

Consider a general real-valued PDE of the form

ut C a1ux C a3uxxx C a5uxxxxx C � � � D 0 (E.47)

that contains only odd-order derivative in x. The Fourier transform Ou.�; t/ satisfies

Out.�; t/C a1i� Ou.�; t/ � a3i�3 Ou.�; t/C a5i�5 Ou.�; t/C � � � D 0;

and hence
Ou.�; t/ D e�i!t O�.�/;

where
! D !.�/ D a1� � a3�

3 C a5�
5 � � � � : (E.48)

The solution can thus be written as

u.x; t/ D
1

p
2�

Z 1

�1
O�.�/ei.�x�!.�/t/ d�: (E.49)

The relation (E.48) between � and ! is called the dispersion relation for the PDE. Once
we’ve gone through this full Fourier analysis a couple times we realize that since the differ-
ent wave numbers � decouple, the dispersion relation for a linear PDE can be found simply
by substituting a single Fourier mode of the form

u.x; t/ D e�i!t ei�x (E.50)

into the PDE and canceling the common terms to find the relation between ! and �. This
is similar to what is done when applying von Neumann analysis for analyzing finite dif-
ference methods (see Section 9.6). In fact, there is a close relation between determining
the dispersion relation and doing von Neumann analysis, and the dispersion relation for a
finite difference method can be defined by an approach similar to von Neumann analysis
by setting U n

j D e�i!nkei�jh, i.e., using e�i!k in place of g.
Note that this same analysis can be done for equations that involve even-order deriva-

tives, such as

ut C a1ux C a2uxx C a3uxxx C a4uxxxx C � � � D 0;

but then we find that

!.�/ D a1� C ia2�
2 � a3�

3 � ia4�
4 � � � � :D
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326 Appendix E. Partial Differential Equations

The even-order derivatives give imaginary terms in !.�/ so that

e�i!t D e.a2�2�a4�4C��� /t ei.a1��a3�3C��� /t :

The first term gives exponential growth or decay, as we expect from Section E.3.3, rather
than dispersive behavior. For this reason we call the PDE (purely) dispersive only if !.�/
is real for all � 2 R. Informally we also speak of an equation like ut D uxx C uxxx as
having both a diffusive and a dispersive term.

In the purely dispersive case (E.47) the single Fourier mode (E.50) can be written as

u.x; t/ D ei�.x�.!=�/t/

and so a pure mode of this form propagates at velocity!=�. This is called the phase velocity
for this wave number,

cp.�/ D
!.�/

�
: (E.51)

Most physical problems have data �.x/ that is not simply sinusoidal for all x 2 .�1;1/

but instead is concentrated in some restricted region, e.g., a Gaussian pulse as in (E.29),

�.x/ D e�ˇx2

: (E.52)

The Fourier transform of this function is a Gaussian in �, (E.30),

O�.�/ D
1p
2ˇ

e��2=4ˇ : (E.53)

Note that for ˇ small, �.x/ is a broad and smooth Gaussian with a Fourier transform that
is sharply peaked near � D 0. In this case �.x/ consists primarily of low wave number
smooth components. For ˇ large �.x/ is sharply peaked while the transform is broad.
More high wave number components are needed to represent the rapid spatial variation of
�.x/ in this case.

If we solve the dispersive equation with data of this form, then the different modes
propagate at different phase velocities and will no longer sum to a Gaussian, and the so-
lution evolves as shown in Figure E.1, forming “dispersive ripples.” Note that for large
times it is apparent that the wave length of the ripples is changing through this wave and
that the energy associated with the low wave numbers is apparently moving faster than the
energy associated with larger wave numbers. The propagation velocity of this energy is
not, however, the phase velocity cp.�/. Instead it is given by the group velocity

cg.�/ D
d!.�/

d�
: (E.54)

For the advection equation ut Caux D 0 the dispersion relation is!.�/ D a� and the group
velocity agrees with the phase velocity (since all waves propagate at the same velocity a),
but more generally the two do not agree. For the dispersive equation (E.43), !.�/ D
a� � b�3 and we find that

cg.�/ D a � 3b�2;

whereas
cp.�/ D a � b�2:D
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Figure E.1. Gaussian initial data propagating with dispersion.

E.3.10 Wave packets

The notion and importance of group velocity is easiest to appreciate by considering a “wave
packet” with data of the form

�.x/ D ei�0xe�ˇx2

(E.55)

or the real part of such a wave,

�.x/ D cos.�0x/e�ˇx2

: (E.56)

This is a single Fourier mode modulated by a Gaussian, as shown in Figure E.2.
The Fourier transform of (E.55) is

O�.�/ D
1p
2ˇ

e�.���0/2=4ˇ; (E.57)

a Gaussian centered about � � �0. If the packet is fairly broad (ˇ small), then the Fourier
transform is concentrated near � D �0 and hence the propagation properties of the wave
packet are well approximated in terms of the phase velocity cp.�/ and the group velocity
cg.�/. The wave crests propagate at the speed cp.�0/, while the envelope of the packet
propagates at the group velocity cg.�0/.

To get some idea of why the packet propagates at the group velocity, consider the
expression (E.49),

u.x; t/ D
1

p
2�

Z 1

�1
O�.�/ei.�x�!.�/t/ d�:D
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Figure E.2. The oscillatory wave packet satisfies the dispersive equation ut C
aux C buxxx D 0. Also shown is a black dot attached to one wave crest, translating at
the phase velocity cp.�0/, and a Gaussian that is translating at the group velocity cg.�0/.
Shown for a case in which cg.�0/ < 0 < cp.�0/.

For a concentrated packet, we expect u.x; t/ to be very close to zero for most x, except
near some point ct , where c is the propagation velocity of the packet. To estimate c we
will ask where this integral could give something nonzero. At each fixed x the integral is a
Gaussian in � (the function O�.�/) multiplied by an oscillatory function of � (the exponential
factor). Integrating this product will given essentially zero at a particular x provided the
oscillatory part is oscillating rapidly enough in � that it averages out to zero, although it is
modulated by the Gaussian O�.�/. This happens provided the function �x �!.�/t appearing
as the phase in the exponential is rapidly varying as a function of � at this x. Conversely,
we expect the integral to be significantly different from zero only near points x where this
phase function is stationary, i.e., where

d

d�
.�x � !.�/t/ D 0:

This occurs at
x D !0.�/t;

showing that the wave packet propagates at the group velocity cg D !0.�/. This approach
to studying oscillatory integrals is called the “method of stationary phase” and is useful in
other applications as well. See, for example, [55], [102] for more on dispersive waves.D
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