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Appendix C

Eigenvalues and
Inner-Product Norms

The analysis of differential equations and of finite difference methods for their solution
relies heavily on “spectral analysis,” based on the eigenvalues and eigenfunctions of dif-
ferential operators or the eigenvalues and eigenvectors of matrices approximating these
operators. In particular, knowledge of the spectrum of a matrix (the set of eigenvalues)
gives critical information about the behavior of powers or exponentials of the matrix, as
reviewed in Appendix D. An understanding of this is crucial in order to analyze the be-
havior and stability properties of differential or finite difference equations, as discussed in
Section D.2.1 and at length in the main text.

This appendix contains a review of basic spectral theory and also some additional
results on inner-product norms and the relation between these norms and spectra.

Let A 2 Cm�m be an m � m matrix with possibly complex components. We will
mostly be working with real matrices, but many of the results carry over directly to the
complex case or are most easily presented in this generality. Moreover, even real matrices
can have complex eigenvalues and eigenvectors, so we must work in the complex plane.

The matrix A has m eigenvalues �1; �2; : : : ; �m that are the roots of the character-
istic polynomial,

pA.z/ D det.A � zI / D .z � �1/.z � �2/ � � � .z � �m/:

This polynomial of degree m always has m roots, although some may be multiple roots. If
no two are equal, then we say the roots are distinct. The set of m eigenvalues is called the
spectrum of the matrix, and the spectral radius of A, denoted by �.A/, is the maximum
magnitude of any eigenvalue,

�.A/ D max
1�p�m

j�pj:

If the characteristic polynomial pA.z/ has a factor .z � �/s , then the eigenvalue � is said
to have algebraic multiplicity ma.�/ D s. If � is an eigenvalue, then A � �I is a singu-
lar matrix and the null space of this matrix is the eigenspace of A corresponding to this
eigenvalue,

N .A � �I / D fu 2 Cm W .A � �I /u D 0g D fu 2 Cm W Au D �ug:
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270 Appendix C. Eigenvalues and Inner-Product Norms

Any vector u in the eigenspace satisfies Au D �u. The dimension of this eigenspace is
called the geometric multiplicity mg.�/ of the eigenvalue �. We always have

1 � mg.�/ � ma.�/: (C.1)

If mg.�/ D ma.�/, then A has a complete set of eigenvectors for this eigenvalue. Oth-
erwise this eigenvalue is said to be defective. If A has one or more defective eigenvalues,
then A is a defective matrix.

Example C.1. If the eigenvalues of A are all distinct, then mg D ma D 1 for every
eigenvalue and the matrix is not defective.

Example C.2. A diagonal matrix cannot be defective. The eigenvalues are simply
the diagonal elements, and the unit vectors ej (the vector with a 1 in the j th element, zeros
elsewhere) form a complete set of eigenvectors. For example,

A D

2
4

3 0 0

0 3 0

0 0 5

3
5

has �1 D �2 D 3 and �3 D 5. The two-dimensional eigenspace for � D 3 is spanned by
e1 D .1; 0; 0/T and e2 D .0; 1; 0/T . The one-dimensional eigenspace for � D 5 is spanned
by e3 D .0; 0; 1/T .

Example C.3. Any upper triangular matrix has eigenvalues equal to its diagonal
elements di since the characteristic polynomial is simply pA.z/ D .z � d1/ � � � .z � dm/.
The matrix may be defective if there are repeated roots. For example,

A D

2
664

3 1 0 0

0 3 0 0

0 0 3 0

0 0 0 5

3
775

has �1 D �2 D �3 D 3 and �4 D 5. The eigenvalue � D 3 has algebraic multiplicity
ma D 3 but there is only a two-dimensional space of eigenvectors associated with � D 3,
spanned by e1 and e3, so mg D 2.

C.1 Similarity transformations
Let S be any nonsingular matrix and set

B D S�1AS: (C.2)

Then B has the same eigenvalues as A. To see this, suppose

Ar D �r (C.3)

for some vector r and scalar �. Let w D S�1r and multiply (C.3) by S�1 to obtain

.S�1AS/.S�1 r / D �.S�1r / H) Bw D �w;D
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C.3. The Jordan canonical form 271

so � is also an eigenvalue of B with eigenvector S�1r . Conversely, if � is any eigenvalue
of B with eigenvector w, then similar manipulations in reverse show that � is also an
eigenvalue of A with eigenvector Sw.

The transformation (C.2) from A to B is called a similarity transformation and we
say that the matrices A and B are similar if such a relation holds. The fact that similar
matrices have the same eigenvalues is exploited in most numerical methods for computing
eigenvalues of a matrix—a sequence of similarity transformations is performed to approxi-
mately reduce A to a simpler form from which it is easy to determine the eigenvalues, such
as a diagonal or upper triangular matrix. See, for example, [35] for introductory discussions
of such algorithms.

C.2 Diagonalizable matrices
If A is not defective (i.e., if every eigenvalue has a complete set of eigenvectors), then
it is diagonalizable. In this case we can choose a set of m linearly independent right
eigenvectors rj spanning all of Cm such that Arj D �j rj for j D 1; 2; : : : ; m. Let R

be the matrix of right eigenvectors

R D Œr1jr2j � � � jrm�: (C.4)

Then
AR D Rƒ; (C.5)

where
ƒ D diag.�1; �2; : : : ; �m/: (C.6)

This follows by viewing the matrix multiplication columnwise. Since the vectors rj are
linearly independent, the matrix R is invertible and so from (C.5) we obtain

R�1AR D ƒ; (C.7)

and hence we can diagonalize A by a similarity transformation. We can also write

A D RƒR�1; (C.8)

which is sometimes called the eigendecomposition of A. This is a special case of the Jordan
canonical form discussed in the next section.

Let `T
j be the j th row of R�1. We can also write the above expressions as

R�1A D ƒR�1

and when these multiplications are viewed rowwise we obtain `T
j A D �j`

T
j , which shows

that the rows of R�1 are the left eigenvectors of A.

C.3 The Jordan canonical form
If A is diagonalizable, we have just seen in (C.8) that we can decompose A as A D
RƒR�1. If A is defective, then it cannot be written in this form; A is not similar to aD
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272 Appendix C. Eigenvalues and Inner-Product Norms

diagonal matrix. The closest we can come is to write it in the form A D RJR�1, where
the matrix J is block diagonal. Each block has nonzeros everywhere except perhaps on
its diagonal and superdiagonal, and is a Jordan block of some order. The Jordan blocks of
orders 1, 2, and 3 are

J.�; 1/ D �; J.�; 2/ D
�
� 1

0 �

�
; J.�; 3/ D

2
4
� 1 0

0 � 1

0 0 �

3
5 :

In general a Jordan block of order k has the form

J.�; k/D �Ik C Sk ; (C.9)

where Ik is the k � k identity matrix and Sk is the k � k shift matrix

Sk D

2
666664

0 1 0 0 � � � 0

0 0 1 0 � � � 0
:::

:::
:::

0 0 0 0 � � � 1

0 0 0 0 � � � 0

3
777775

for k > 1 .with S1 D 0/; (C.10)

so called because Sk .u1;u2; : : : ;uk�1;uk/
T D .u2;u3; : : : ;uk ; 0/

T . A Jordan block of
order k has eigenvalues � with algebraic multiplicity ma D k and geometric multiplicity
mg D 1. The unit vector e1 D .1; 0; : : : ; 0/T 2 Ck is a basis for the one-dimensional
eigenspace of this block.

Theorem C.1. Every m � m matrix A 2 Cm�m can be transformed into the form

A D RJR�1; (C.11)

where J is a block diagonal matrix of the form

J D

2
6664

J.�1; k1/

J.�2; k2/
: : :

J.�s; ks/

3
7775 : (C.12)

Each J.�i ; ki/ is a Jordan block of some order ki and
Ps

iD1 ki D m. If � is an eigenvalue
of A with algebraic multiplicity ma and geometric multiplicity mg , then � appears in mg

blocks and the sum of the orders of these blocks is ma.

The nonsingular matrix R contains eigenvectors of A. In the defective case, R must
also contain other vectors since there is not a complete set of eigenvectors in this case.
These other vectors are called principal vectors.

Example C.4. For illustration, consider a 3 � 3 matrix A with a single eigenvalue �
with ma.�/ D 3 but mg.�/ D 1. Then we wish to find a 3 � 3 invertible matrix R such
that

AR D RJ D Œr1jr2jr3�

2
4
� 1 0

0 � 1

0 0 �

3
5 :

D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 273i

i
i

i

i
i

i
i

C.4. Symmetric and Hermitian matrices 273

From this we obtain

Ar1 D �r1 H) .A � �I /r1 D 0;

Ar2 D r1 C �r2 H) .A � �I /r2 D r1 H) .A � �I /2r2 D 0;

Ar3 D r2 C �r3 H) .A � �I /r3 D r2 H) .A � �I /3r3 D 0:

(C.13)

The vector r1 forms a basis for the one-dimensional eigenspace. The vectors r2 and r3 are
principal vectors. They are linearly independent vectors in the null space of .A ��I /2 and
the null space of .A � �I /3 that are not in the null space of A � �I .

The choice of the value 1 on the superdiagonal of the nontrivial Jordan blocks is
the standard convention, but this can be replaced with any nonzero value ı by modifying
the matrix R appropriately. This is easy to verify by applying the following similarity
transformation to a Jordan block J.�; k/. Choose ı ¤ 0 and set

D D

2
666664

1

ı

ı2

: : :

ık�1

3
777775
; D�1 D

2
666664

1

ı�1

ı�2

: : :

ı�.k�1/

3
777775
:

(C.14)
Then

D�1J.�; k/D D �Ik C ıSk :

Note that left multiplying by D�1 multiplies the i th row by ı�.i�1/, while right multiplying
by D multiplies the j th column by ıj�1. On the diagonal the two effects cancel, while on
the superdiagonal the net effect is to multiply each element by ı.

Similarity transformations of this nature are useful in other contexts as well. If this
transformation is applied to an arbitrary matrix, then all elements on the pth diagonal will
be multiplied by ıp (with p positive for superdiagonals and negative for subdiagonals).

By applying this idea to each block in the Jordan canonical form with ı � 1, we
can find a matrix R so that R�1AR is close to diagonal with the 0 or ı at each location
on the superdiagonal. This is done, for example, in the proof of Theorem C.4. But note
that for ı < 1 the condition number is �.D/ D ı1�k and this blows up as ı ! 0 if
k > 1, so bringing a defective matrix to nearly diagonal form requires an increasingly ill-
conditioned matrix R as the off-diagonals vanish. There is no nonsingular matrix R that
will diagonalize A in the defective case.

C.4 Symmetric and Hermitian matrices
If A 2 Rm�m and A D AT , then A is a symmetric matrix. Symmetric matrices arise
naturally in many applications, in particular when discretizing “self-adjoint” differential
equations. The complex analogue of the transpose is the complex conjugate transpose
or adjoint matrix AH D NAT , in which the matrix is transposed and then the complex
conjugate of each element taken. If A is a real matrix, then AH D AT . If A D AH , then
A is said to be Hermitian (so in particular a real symmetric matrix is Hermitian).D
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274 Appendix C. Eigenvalues and Inner-Product Norms

Hermitian matrices always have real eigenvalues and are always diagonalizable. More-
over, the eigenvectors r1; : : : ; rm can be chosen to be mutually orthogonal, and normalized
to have r H

j rj D 1, so that the eigenvector matrix R is a unitary matrix, RH R D I , and

hence R�1 D RH . (If R is real and Hermitian, then R�1 D RT and R is called an
orthogonal matrix.)

If R D RT and the eigenvalues of A are all positive, then A is said to be symmetric
positive definite (SPD), or Hermitian positive definite in the complex case, or often simply
“positive definite.” In this case

uH Au > 0 (C.15)

for any vector u ¤ 0.
This concept is generalized to the following: A is

positive definite () uH Au > 0 for all u ¤ 0() �p > 0 for all p,
positive semidefinite () uH Au � 0 for all u ¤ 0() �p � 0 for all p,
negative definite () uH Au < 0 for all u ¤ 0() �p < 0 for all p,
negative semidefinite () uH Au � 0 for all u ¤ 0() �p � 0 for all p,
indefinite () uH Au indefinite () �p < 0 < �q

for some p; q.

The proofs follow directly from the observation that

uH Au D uH RƒRH u D wHƒw D
mX

iD1

�ijwi j2;

where w D RH u.

C.5 Skew-symmetric and skew-Hermitian matrices
If A D �AT , then A is said to be skew-symmetric (or skew-Hermitian in the complex case
if A D �AH ). Matrices of this form also arise in discretizing certain types of differen-
tial equations (e.g., the advection equation as discussed in Chapter 10). Skew-Hermitian
matrices are diagonalizable and have eigenvalues that are pure imaginary. This is a gen-
eralization of the fact that for a scalar �, if N� D ��, then � is pure imaginary. As in
the Hermitian case, the eigenvectors of a skew-Hermitian matrix can be chosen so that the
matrix R is unitary, RH R D I .

C.6 Normal matrices
If A commutes with its adjoint, AAH D AH A, then A is said to be a normal matrix.
In particular, Hermitian and skew-Hermitian matrices are normal. Any normal matrix is
diagonalizable and R can be chosen to be unitary. Conversely, if A can be decomposed as

A D RƒRH

with RH D R�1 and ƒ diagonal, then A is normal since ƒƒH D ƒHƒ for any diagonal
matrix.D
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C.7. Toeplitz and circulant matrices 275

Eigenvalue analysis is particularly useful for normal matrices, since they can be di-
agonalized by a unitary matrix. A unitary matrix R satisfies kRk2 D kR�1k2 D 1, and
hence the behavior of powers of A is very closely related to the powers of the eigenvalues,
for example. Nonnormal matrices can be harder to analyze, and in this case studying only
the eigenvalues of A can be misleading. See Section D.4 for more discussion of this.

C.7 Toeplitz and circulant matrices
A matrix is said to be Toeplitz if the value along each diagonal is constant, e.g.,

A D

2
664

d0 d1 d2 d3

d�1 d0 d1 d2

d�2 d�1 d0 d1

d�3 d�2 d�1 d0

3
775

is a 4 � 4 example. Here we use di to denote the constant element along the i th diagonal.
If d1 D d�3, d2 D d�2, and d3 D d�1 in the above example, or more generally if

di D di�m for i D 1; 2; : : : ; m � 1 in the m � m case, then the matrix is said to be
circulant.

Toeplitz matrices naturally arise in the study of finite difference methods (see, e.g.,
Section 2.4) and it is useful to have closed-form expressions for their eigenvalues and eigen-
vectors. This is often possible because of their simple structure.

First consider a “tridiagonal” circulant matrix (which also has nonzero corner terms)
of the form

A D

2
66666664

d0 d1 d�1

d�1 d0 d1

d�1 d0

: : :

d1

d1 d�1 d0

3
77777775

2 R.mC1/�.mC1/: (C.16)

Alternatively we could use the symbol dm in place of d�1. We take the dimension to be mC
1 to be consistent with notation used in Chapter 2, since such matrices arise in studying 3-
point difference equations on the unit interval with periodic boundary conditions. Then h D
1=.m C 1/ is the mesh spacing between grid points and the unknowns are U1; : : : ; UmC1.

The pth eigenvalue of the matrix (C.16) is given by

�p D d�1e�2� iph C d0 C d1e2� iph; (C.17)

where i D
p

�1, and the j th element of the corresponding eigenvector rp is given by

rjp D e2� ipjh: (C.18)

This is the .j ;p/ element of the matrix R that diagonalizes A. Once the form of the
eigenvector has been “guessed,” it is easy to compute the corresponding eigenvalue �p by
computing the j th component of Arp and using the fact that

e2� ip.j˙1/h D e˙2�iphe2� ipjh (C.19)D
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276 Appendix C. Eigenvalues and Inner-Product Norms

to obtain
.Arp/j D .d�1e�2� iph C d0 C d1e2� iph/rjp :

The circulant structure is needed to verify that this formula also holds for j D 1 and
j D m C 1, using e2� i.mC1/h D 1.

The same vectors rp with components (C.18) are the eigenvectors of any .m C 1/ �
.m C 1/ circulant matrix with diagonals d0; d1; : : : ; dm. It can be verified, as in the
computation above, that the corresponding eigenvalue is

�p D
mX

kD0

dke2� ipkh: (C.20)

In the “tridiagonal” example above we used the label d�1 instead of dm, but note that
e�2� ih D e2� imh, so the expression (C.20) is invariant under this change of notation.

Any constant coefficient difference equation with periodic boundary conditions gives
rise to a circulant matrix of this form and has eigenvectors with components (C.18). Note
that the j th component of rp can be rewritten as

rjp D e2� ipxj D �p.xj /;

where xj D j h is the j th grid point and �p.x/ D e2� ipx . The function �p.x/ is the pth
eigenfunction of the differentiation operator @x on the unit interval with periodic boundary
conditions,

@x�p.x/ D .2� ip/�p .x/:

It is also the eigenfunction of any higher order derivative @s
x, with eigenvalue .2� ip/s .

This is the basis of Fourier analysis of linear differential equations, and the fact that differ-
ence equations have eigenvectors that are discretized versions of �p.x/ means that discrete
Fourier analysis can be used to analyze finite difference methods for constant coefficient
problems, as is done in von Neumann analysis; see Sections 9.6 and 10.5.

Now consider the symmetric tridiagonal Toeplitz matrix (now truly tridiagonal)

A D

2
66666664

d0 d1

d1 d0 d1

d1 d0 d1

: : :

d1

d1 d0

3
77777775

2 Rm�m: (C.21)

Such matrices arise in 3-point discretizations of uxx with Dirichlet boundary conditions,
for example; see Section 2.4. The eigenvalues of A are now

�p D d0 C 2d1 cos.p�h/; p D 1; 2; : : : ; m; (C.22)

where again h D 1=.m C 1/ and now A has dimension m since boundary values are not
included in the solution vector. The eigenvector now has components

rjp D sin.p�j h/; j D 1; 2; : : : ; m: (C.23)D
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C.8. The Gershgorin theorem 277

Again it is easy to verify that (C.22) gives the eigenvalue once the form of the eigenvector
is known. In this case we use the fact that, for any p,

sin.p�j h/ D 0 for j D 0 and j D m C 1

to verify that .Arp /j D �prjp for j D 0 and j D m C 1 as well as in the interior.
Now consider a nonsymmetric tridiagonal Toeplitz matrix,

A D

2
66666664

d0 d1

d�1 d0 d1

d�1 d0 d1

: : :

d1

d�1 d0

3
77777775

2 Rm�m: (C.24)

If d1 D d�1 D 0, then the matrix is diagonal with all eigenvalues equal to d0. Otherwise,
if one of d1 or d�1 is zero the eigenvalues are all equal to d0 but the matrix is a single
Jordan block, a defective matrix with a one-dimensional eigenspace.

In the general case where both d1 and d�1 are nonzero, the eigenvalues are

�p D d0 C 2d1

p
d�1=d1 cos.p�h/; p D 1; 2; : : : ; m; (C.25)

and the corresponding eigenvector rp has j th component

rjp D
�p

d�1=d1

�j

sin.p�j h/; j D 1; 2; : : : ; m: (C.26)

These formulas hold also if d�1=d1 is negative, in which case the eigenvalues are complex.
For example, the skew-symmetric centered difference matrix with d�1 D �1, d0 D 0, and
d1 D 1 has eigenvalues

�p D 2i cos.p�h/: (C.27)

C.8 The Gershgorin theorem
If A is diagonal, then its eigenvalues are simply the diagonal elements. If A is “nearly
diagonal,” in the sense that the off-diagonal elements are small compared to the diagonal,
then we might expect the diagonal elements to be good approximations to the eigenvalues.
The Gerschgorin theorem quantifies this and also provides bounds on the eigenvalues in
terms of the diagonal and off-diagonal elements. These bounds are valid in general and
often very useful even when A is far from diagonal.

Theorem C.2. Let A 2 Cm�m and let Di be the closed disk in the complex plane cen-
tered at aii with radius ri D

P
j¤i jaij j, the sum of the magnitude of all the off-diagonal

elements in the ith row of A,

Di D fz 2 C W jz � aii j � rig:D
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278 Appendix C. Eigenvalues and Inner-Product Norms

Then,

1. all the eigenvalues of A lie in the union of the disks Di for i D 1; 2; : : : ; m.

2. if some set of k overlapping disks is disjoint from all the other disks, then exactly k

eigenvalues lie in the union of these k disks.

Note the following:

� If a disk Di is disjoint from all other disks, then it contains exactly one eigenvalue of
A.

� If a disk Di overlaps other disks, then it need not contain any eigenvalues (although
the union of the overlapping disks contains the appropriate number).

� If A is real, then AT has the same eigenvalues as A. Then the theorem can also be
applied to AT (or equivalently the disk radii can be defined by summing elements of
columns rather than rows).

For a proof of this theorem see Wilkinson [103], for example.
Example C.5. Let

A D

2
4

5 0:6 0:1

�1 6 �0:1

1 0 2

3
5 :

Applying the Gershgorin theorem to A, we have

D1 D fz W jz � 5j � 0:7g; D2 D fz W jz � 6j � 1:1g; D3 D fz W jz � 2j � 1:0g;

as shown in Figure C.1(a). From the theorem we can conclude that there is exactly one
eigenvalue in D3 and two eigenvalues in D1 [ D2. We can also conclude that all eigen-
values have real parts between 1 and 7.7 (and hence positive real parts, in particular). The
eigenvalue in D3 must be real, since complex eigenvalues must appear in conjugate pairs
(since A is real). The eigenvalues in D1 [D2 could be real or imaginary, but the imaginary
part must be bounded by 1.1. The actual eigenvalues of A are also shown in Figure C.1(a),
and are

� � 1:9639; 5:518 ˙ 0:6142i:

Applying the theorem to AT would give

D1 D fz W jz � 5j � 2:0g; D2 D fz W jz � 6j � 0:6g; D3 D fz W jz � 2j � 0:2g;

as shown in Figure C.1(b). Note that this gives a tighter bound on the eigenvalue near 2 but
a larger region around the complex pair.

A matrix is said to be reducible if it is possible to reorder the rows and columns in
such a way that the eigenvalue problem is decoupled into simpler problem, specifically if
there exists a permutation matrix P so that

PAP �1 D
�

A11 0

A12 A22

�
;
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(a) −1 0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

(b) −1 0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

Figure C.1. Gerschgorin circles containing the eigenvalues of A for Example C.5.

where A11 and A22 are square matrices of size at least 1 � 1. In this case the eigenvalues
of A consist of the eigenvalues of A11 together with those of A22 . If no such P exists, then
A is irreducible. The matrix of Example C.5 is irreducible, for example.

For irreducible matrices, a more refined version of the Gerschgorin theorem states
also that a point on the boundary of a set of Gerschgorin disks can be an eigenvalue only if
it is on the boundary of all disks.

Example C.6. The tridiagonal matrix A of (2.10) arises from discretizing the second
derivative. Since this matrix is symmetric all its eigenvalues are real. By the Gerschgorin
theorem they must lie in the circle of radius 2=h2 centered at �2=h2. In fact, they must
lie in the interior of this disk since the matrix is irreducible and the first and last row of A

give disks with radius 1=h2. Hence �4=h2 < �p < 0 for all eigenvalues �p . In particular
this shows that all the eigenvalues are negative and hence the matrix A is nonsingular and
negative definite. Showing nonsingularity is one use of the Gerschgorin theorem.

For the tridiagonal matrix (2.10) the eigenvalues can be explicitly computed and are
given by the formula (2.23),

�p D
2

h2
.cos.p�h/ � 1/ for p D 1; 2; : : : ; m;

where h D 1=.m C 1/. They are distributed all along the interval �4=h2 < �p < 0.
For related matrices that arise from discretizing variable coefficient elliptic equations the
matrices cannot be explicitly computed, but the Gerschgorin theorem can still be used to
show nonsingularity.

Example C.7. Consider the matrix (2.73) with all � > 0. The Gerschgorin disks all
lie in the left half-plane and the disks D1 and Dm are bounded away from the origin. The
matrix is irreducible and hence must be negative definite (and in particular nonsingular).

C.9 Inner-product norms
Some standard vector norms and the corresponding matrix norms were introduced in Sec-
tion A.3. Here we further investigate the 2-norm and its relation to the spectral radius ofD
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280 Appendix C. Eigenvalues and Inner-Product Norms

a matrix. We will also see how new inner-product norms can be defined that are closely
related to a particular matrix.

Let A 2 Cm�m and u 2 Cm. The 2-norm of of u is defined by

kuk2
2 D uH u D

mX

iD1

juij2 D hu;ui; (C.28)

where h�; �i is the standard inner product,

hu; vi D uHv D
mX

iD1

Nuivi : (C.29)

The 2-norm of the matrix A is defined by the formula (A.9) as

kAk2 D sup
kuk2D1

kAuk2 D sup
kuk2D1

�
uH AH Au

�1=2

:

Note that if we choose u to be an eigenvector of A, with Au D �u, then

.uH AH Au/1=2 D j�j;

and so kAk2 � max1�p�m j�pj D �.A/. The 2-norm of A is always at least as large as the
spectral radius. Note that the matrix B D AH A is always Hermitian (BH D B) and so it
is diagonalizable with a unitary eigenvector matrix,

B D RMRH .RH D R�1/;

where M is the diagonal matrix of eigenvectors �j � 0 of B. Any vector u can be written
as u D Rw where w D RH u. Note that kuk2 D kwk2 since

uH u D wH RH Rw D wHw;

i.e., multiplication by a unitary matrix preserves the 2-norm. It follows that

kAk2 D sup
kuk2D1

.uH Bu/1=2

D sup
kwk2D1

.wH RH BRw/1=2

D sup
kwk2D1

.wH Mw/1=2

D max
pD1;2;:::;m

j�p j1=2 D
q
�.AH A/:

(C.30)

If AH D A, then �.AH A/ D .�.A//2 and kAk2 D �.A/. More generally this is true for
any normal matrix A (as defined in Section C.6). If A is normal, then A and AH have the
same eigenvector matrix R and so

AH A D .RƒH R/.RƒRH / D RƒHƒRH :

It follows that �.AH A/ D maxpD1;2;:::;m j�pj2.D
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C.10. Other inner-product norms 281

If A is not normal, then typically kAk2 > �.A/. If A is diagonalizable, then an upper
bound on kAk2 can be obtained from

kAk2 D kRƒR�1k2

� kRk2kR�1k2 max
pD1;2;:::;m

j�pj D �2.R/�.A/;
(C.31)

where �2.R/ D kRk2kR�1k2 is the 2-norm condition number of the eigenvector matrix
R. We thus have the general relation

�.A/ � kAk2 � �2.R/�.A/; (C.32)

which holds for any diagonalizable matrix A. If A is normal, then R is unitary and
�2.R/ D 1.

This relation between the norm and spectral radius is important in studying iterations
of the form U nC1 D AU n, which leads to U n D AnU 0 (where the superscript on U is
an index and the superscript on A is a power). Such iterations arise both in time-stepping
algorithms for solving differential equations and in iterative methods for solving linear
systems. We often wish to investigate the behavior of kU nk as n ! 1, or the related
question of the behavior of powers of the matrix A. For diagonalizable A we have An D
RƒnR�1, so that

kAnk2 � �2.R/.�.A//
n : (C.33)

From this we see that kAnk2 ! 0 as n ! 1 if �.A/ < 1. In fact this is true for any A,
not just diagonalizable matrices, as can be seen by using the Jordan canonical form. See
Appendix D for more about bounding powers of a matrix.

This spectral analysis is particularly useful when A is normal, in which case �2.R/ D
1. In this case kAnk2 � .�.A//n and if �.A/ < 1, then we have a strictly decreasing upper
bound on the norm. The asymptotic behavior is still the same if A is not normal, but
convergence is not necessarily monotone and this spectral analysis can be quite misleading
if A is far from normal. This topic is discussed in more detail in Appendix D along with a
discussion of the nondiagonalizable (defective) case.

C.10 Other inner-product norms
If T is any nonsingular matrix, then we can define an inner product based on T in terms of
the standard inner product (C.29) by

hu; viT D hT �1u; T �1vi D uH Gv; (C.34)

where G D T �H T �1. The matrix G is always Hermitian positive definite (SPD if T is
real). We can define a corresponding norm (the T -norm of u) by

kukT D hu;uiT D kT �1uk2 D .uH Gu/1=2 D hu;Gui: (C.35)

This satisfies the requirements of a norm summarized in Section A.3.
Inner-product norms of this type naturally arise in the study of conjugate gradient

methods for solving linear system Au D f when A is SPD. In this case G D A is usedD
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282 Appendix C. Eigenvalues and Inner-Product Norms

(see Section 4.3.4) and T could be defined as a “square root” of A, e.g., T D Rƒ1=2R�1

if A D RƒR�1.
In studying iterations of the form U nC1 D AU n, and variants such as U nC1 D

AnU n (where the matrix An changes in each iteration), it is often useful to choose norms
that are adapted to the matrix or matrices in question in order to obtain more insight into the
asymptotic behavior of U n. A few results are summarized below that are used elsewhere.

Note that w D T �1u can be viewed as the vector of coefficients obtained if u is
written as a linear combination of the columns of T , u D Tw. Hence kukT D kwk2 can
be viewed as a measure of u based on its representation in the coordinate system defined
by T rather than in the standard basis vectors. A particularly useful coordinate system is
the coordinates defined by the eigenvectors, as we will see below.

We can compute the matrix T -norm of a matrix A using the standard definition of a
matrix norm from (A.9):

kAkT D sup
u¤0

kAukT

kukT

D sup
w¤0

kATwkT

kTwkT

D sup
w¤0

kT �1ATwk2

kwk2

D kT �1AT k2:

(C.36)

Now suppose A is a diagonalizable matrix with R�1AR D ƒ. Then choosing T D
R yields kAkR D kR�1ARk2 D �.A/. Recall that kAk � �.A/ in any matrix norm
subordinate to a vector norm. We have just shown that equality can be achieved by an
appropriate choice of norm in the case when A is diagonalizable. We have proved the
following theorem.

Theorem C.3. Suppose A 2 Cm�m is diagonalizable. Then there exists a norm k � k in
which kAk D �.A/. The norm is given by the R-norm based on the eigenvector matrix.

This theorem will be generalized to the defective case in Theorem C.4 below.
Note that in general the T -norm, for any nonsingular T , is “equivalent” to the 2-norm

in the sense of Section A.3.1 with the equivalence inequalities

kT k�1
2 kuk2 � kukT � kT �1k2kuk2 (C.37)

for the vector norm and

�2.T /
�1kAk2 � kAkT � �2.T /kAk2 (C.38)

for the matrix norm, where �2.T / is the 2-norm condition number of T . Applying this last
inequality in conjunction with Theorem C.3 gives

�.A/ D kAkR � �2.R/kAk2; (C.39)

which agrees with the bound (C.31) obtained earlier.
For general matrices A 2 Cm�m that are not necessarily diagonalizable, Theo-

rem C.3 can be generalized to the following.D
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C.10. Other inner-product norms 283

Theorem C.4. (a) If A 2 Cm�m has no defective eigenvalues with modulus �.A/, then
there exists a nonsingular matrix T such that

kAkT D �.A/:

(b) If A has defective eigenvalue(s) of modulus �.A/, then for every � > 0 there exists a
matrix T .�/ such that

kAkT .�/ < �.A/C �: (C.40)

In the latter case we can find a norm in which kAk is arbitrarily close to �.A/, but
T .�/ becomes increasingly ill conditioned as � ! 0. The proof of this theorem is based
on a modification of the Jordan canonical form in which the superdiagonal elements are
made sufficiently small by the transformation discussed in Section C.3. Let R�1AR D J

have the form (C.12), and let Z D fi W j�ij D �.A/g, the set of indices of the maximal
eigenvalues. To prove part (a), if i 2 Z, then ki D 1 and Ji D �i with j�i j D �.A/. In
this case set Di D 1. If i … Z, let ıi D �.A/ � j�ij > 0 and set

Di D diag.1; ıi ; : : : ; ı
ki �1
i /:

Let D be the block diagonal matrix formed by these blocks. Then QJ D D�1JD has Jordan
blocks �iI C ıiSki

and so

k QJik2 � j�i j C ıi � �.A/ for i … Z:

It follows that kAkT D k QJk2 D �.A/, where the matrix A is given by T D RD.
To prove part (b), let � > 0 be given and choose

ıi D
�
� if i 2 Z;

�.A/ � j�ij > 0 if i … Z:

Define Di and D as before and we will achieve

k QJik � �.A/ for i … Z;

k QJik � �.A/C � for i 2 Z;

and so taking T .�/ D RD.�/ gives kAkT .�/ � �.A/ C �. Recall that �2.D.�// ! 1 as
� ! 0 and so �2.T .�// ! 1 as � ! 0 in case (b).
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