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Appendix B

Polynomial Interpolation
and Orthogonal
Polynomials

B.1 The general interpolation problem
Given a set of discrete points xi for i D 0; 1; : : : ; n and function values Fi , the interpola-
tion problem is to determine a function �.x/ of some specified form passing through these
points,

�.xi / D Fi for i D 0; 1; : : : ; n: (B.1)

We use the notation Int.x0; : : : ;xn/ to denote the smallest interval containing all these
points (which need not be in increasing order but which are assumed to be distinct).

Interpolation has many uses; for example,

� we may have only discrete data values and want to estimate values in between, x 2
Int.x0; : : : ;xn/. This is the origin of the term interpolation. We might also use this
function to extrapolate if we evaluate it outside the interval where data are given.

� we may know the true function F.x/ but want to approximate it by a function �.x/
that is cheaper to evaluate, or easier to work with symbolically (to differentiate or
integrate, for example).

� we may use it as a starting point for deriving numerical methods for differential
equations (or for integral equations or numerical integration).

There are infinitely many possible functions �. Typically � is chosen to be a linear
combination of some n C 1 given basis functions �0.x/; : : : ; �n.x/,

�.x/ D c0�0.x/C � � � C cn�n.x/: (B.2)

Then condition (B.1) gives a linear system of n C 1 equations to solve for the coefficients
c0; : : : ; cn,

2
6664

�0.x0/ �1.x0/ � � � �n.x0/

�0.x1/ �1.x1/ � � � �n.x1/
:::

:::

�0.xn/ �1.xn/ � � � �n.xn/

3
7775

2
6664

c0

c1

:::

cn

3
7775 D

2
6664

F0

F1

:::

Fn

3
7775 : (B.3)

259

D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 260i

i
i

i

i
i

i
i

260 Appendix B. Polynomial Interpolation and Orthogonal Polynomials

This system can we written as ˆc D F . Different choices of basis functions lead to
different types of interpolation. Using trigonometric functions gives Fourier series, for
example, the basis of Fourier spectral methods.

In this appendix we consider interpolation by polynomials, the basis of many finite
difference and spectral methods.

B.2 Polynomial interpolation
Through any n C 1 points there is a unique interpolating polynomial p.x/ of degree n.
There are many ways to represent this function depending on what basis is chosen for Pn,
the set of all polynomials of degree n.

B.2.1 Monomial basis

The monomial functions are

�0.x/ D 1; �1.x/ D x; �2.x/ D x2; : : : ; �n.x/ D xn: (B.4)

The matrixˆ appearing in (B.3) is then the Vandermonde matrix. This matrix may be quite
ill-conditioned for larger values of n.

B.2.2 Lagrange basis

The j th Lagrange basis function (based on a given set of interpolationpoints xi) is given by

�j .x/ D
nY

iD0
i¤j

.x � xi/

.xj � xi/
: (B.5)

This is a polynomial of degree n. Note that

�j .xi/ D ıij D
�

1 if i D j ;

0 if i ¤ j:

Then the matrix in (B.3) is the identity matrix and ci D Fi . The coefficients are easy to
determine in this form but the basis functions are a bit cumbersome.

B.2.3 Newton form

The Newton form of the interpolating polynomial is

p.x/ D c0Cc1.x�x0/Cc2.x�x0/.x�x1/C� � �Ccn.x�x0/.x�x1/ � � � .x�xn�1/: (B.6)

For these basis functions the matrix ˆ is lower triangular and the ci may be found by for-
ward substitution. Alternatively they are most easily computed using divided differences,
ci D F Œx0; : : : ;xi �. These can be computed from a tableau of the formD
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B.2. Polynomial interpolation 261

x0 F Œx0�

F Œx0;x1�

x1 F Œx1� F Œx0;x1;x2�

F Œx1;x2�

x2 F Œx2�;

(B.7)

where
F Œxj � D Fj

and for k > 0,

F Œxj ; : : : ;xjCk � D
F ŒxjC1; : : : ;xjCk � � F Œxj ; : : : ;xjCk�1�

xjCk � xj

: (B.8)

Then the Newton form can be built up as follows:

p0.x/ D F Œx0�

is the polynomial of degree 0 interpolating at x0,

p1.x/ D F Œx0�C F Œx0;x1�.x � x0/

is the polynomial of degree 1 interpolating at x0;x1,

p2.x/ D F Œx0�C F Œx0;x1�.x � x0/C F Œx0;x1;x2�.x � x0/.x � x1/

is the polynomial of degree 2 interpolating at x0;x1;x2,

etc.

In each step we add a term that vanishes at all the preceding interpolation points and makes
the function also interpolate at one new point. Note that the coefficients of previous basis
functions do not change.

Relation to Taylor series. Note that

F Œxj ;xjC1� D
FjC1 � Fj

xjC1 � xj

: (B.9)

Suppose the data values Fi come from some underlying smooth function F.x/, so Fi D
F.xi/. Then (B.9) approximates the derivative F 0.xj /. Similarly, if xj ; : : : ;xjCk are close
together, then

F Œxj ; : : : ;xjCk � �
1

k!
F .k/.xj /; (B.10)

where F .k/.x/ is the kth derivative. In fact, one can show that for sufficiently smooth F ,

F Œxj ; : : : ;xjCk � D
1

k!
F .k/.�/ (B.11)

for some � lying in the interval Int.xj ; : : : ;xjCk/. This is true provided that F is k times
continuously differentiable on this interval. The Newton form (B.6) thus is similar to the
Taylor series

F.x/ D F.x0/C F 0.x0/.x � x0/C
1

2!
F 00.x0/.x � x0/

2 C � � � (B.12)

and reduces to this in the limit as xj ! x0 for all j .D
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262 Appendix B. Polynomial Interpolation and Orthogonal Polynomials

B.2.4 Error in polynomial interpolation

Suppose F.x/ is a smooth function, we evaluate Fi D F.xi/ (i D 0; 1; : : : ; n), and
we now fit a polynomial p.x/ of degree n through these points. How well does p. Nx/
approximate F. Nx/ at some other point Nx?

Note that we could add Nx as another interpolation point and create an interpolating
polynomial Np.x/ of degree n C 1 that interpolates also at this point,

Np.x/ D p.x/C F Œx0; : : : ; xn; Nx�.x � x0/ � � � .x � xn/:

Then Np. Nx/ D F. Nx/ and so

F. Nx/ � p. Nx/ D F Œx0; : : : ; xn; Nx�. Nx � x0/ � � � . Nx � xn/:

Using (B.11), we obtain an error formula similar to the remainder formula for Taylor
series. If p.x/ is given by (B.6), then at any point x,

F.x/ � p.x/ D
1

n!
F .n/.�/.x � x0/ � � � .x � xn/; (B.13)

where � is some point lying in Int.x;x0; : : : ;xn/. How large this is depends on

� how close the point x is to the interpolation points x0; : : : ;xn, and

� how small the derivative F .n/.�/ is over this interval, i.e., how smooth the function
is.

For a given x we don’t know exactly what � is in general, but we can often use this expres-
sion to obtain an error bound of the form

jp.x/ � F.x/j � Kj.x � x0/ � � � .x � xn/j; (B.14)

where

K D
1

n!
max

�2 Int.x0;:::;xn/
jF .n/.�/j:

Note that the bound (B.14) involves values of the polynomial Q.x/ �
Qn

iD1.x � xi/, the
polynomial with roots at the interpolation points xi and with leading coefficient 1 (i.e., a
monic polynomial). If we want to minimize the error over some interval, then we might
want to choose the interpolation points to minimize the maximum value that Q.x/ takes
over that interval. We will return to this in Section B.3.2, where we will see that Cheby-
shev polynomials satisfy the required optimality condition. These are a particular class of
orthogonal polynomials, as described in the next section.

B.3 Orthogonal polynomials
If w.x/ is a function on an interval Œa; b� that is positive everywhere on the interval, then
we can define the inner product of two functions f .x/ and g.x/ on this interval by

hf;gi D
Z b

a

w.x/f .x/g.x/ dx: (B.15)D
ow

nl
oa

de
d 

06
/0

9/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



“rjlfdm”
2007/6/1
page 263i

i
i

i

i
i

i
i

B.3. Orthogonal polynomials 263

We say that two functions f .x/ and g.x/ are orthogonal in a given interval Œa; b� with
respect to the given weight functionw.x/ if the inner product of f and g is equal to zero.

For a given Œa; b� and w.x/, one can define a sequence of orthogonal polynomials
P0.x/, P1.x/; : : : of increasing degree which have the property that

Pm.x/ 2 Pm (the set of polynomials of degree m);

hPm;Pni D 0 for m ¤ n:
(B.16)

The sequence of polynomials is said to be orthonormal if, in addition,

hPm;Pmi D 1 for all m: (B.17)

Orthogonal polynomials have many interesting and useful properties and arise in nu-
merous branches of numerical analysis. In particular, the Chebyshev polynomials described
in Section B.3.2 are used in several contexts in this book.

The set of polynomials P0.x/, P1.x/; : : : ; Pk.x/ forms an orthogonal basis
for Pk . Any polynomial p 2 Pk can be uniquely expressed as a linear combination of
P0; : : : ; Pk . Note that each Pm must have an exact degree of m, meaning the coefficient
of xm is nonzero. Otherwise it would be a linear combination of previous polynomials in
the sequence and could not be orthogonal to them all.

Note that if Pm is orthogonal to P0; P1; : : : ; Pm�1, then in fact Pm is orthogonal
to all polynomials p 2 Pm�1 of degree less than m, since p can be written as p.x/ D
c0P0.x/C � � � C cm�1Pm�1.x/ and so

hp;Pmi D c0hP0;Pmi C � � � cm�1hPm�1;Pmi D 0:

We say that Pm is orthogonal to the space Pm�1.
Sequences of orthogonal polynomials can be built up by a Gram–Schmidt process,

analogous to the manner in which a sequence of linearly independent vectors is transformed
into a sequence of orthogonal vectors. Suppose P0; P1; : : : ; Pm are already mutually
orthogonal with Pn having exact degree n. We wish to construct PmC1.x/, a polynomial
of exact degree m C 1 that is orthogonal to all of these. Start with the polynomial

Q.x/ D ˛mxPm.x/

for some ˛m ¤ 0. This polynomial has exact degree m C 1 and hence is linearly indepen-
dent from P0; P1; : : : ; Pm. Moreover, it is already orthogonal to P0; P1; : : : ; Pm�2,
since

hQ;Pni D hxPm;Pni D
Z b

a

w.x/xPm.x/Pn.x/ dx D hPm;xPni D 0

for n � m � 2, since xPn 2 Pm�1 and Pm is orthogonal to this space. We wish to make Q

orthogonal to Pm�1 and Pm and, as in the Gram–Schmidt process for vectors, we do this
by subtracting multiples of Pm�1 and Pm from Q:

PmC1.x/ D ˛mxPm.x/ � ˇmPm.x/ � mPm�1.x/: (B.18)D
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264 Appendix B. Polynomial Interpolation and Orthogonal Polynomials

Requiring hPmC1;Pmi D 0 determines

ˇm D
hPm; ˛mxPmi

hPm;Pmi
(B.19)

and then hPmC1;Pm�1i D 0 gives

m D
hPm�1; ˛mxPmi � ˇmhPm�1;Pmi

hPm�1;Pm�1i
: (B.20)

The relation (B.18) is a three-term recurrence relation for the sequence of orthogonal poly-
nomials and can be used to generate the entire sequence once P0 and P1 are specified. For
many useful sets of orthogonal polynomials the coefficients ˛m; ˇm, and m take particu-
larly simple forms.

B.3.1 Legendre polynomials

The sequence of polynomials that are orthogonal on Œ�1; 1�with weight functionw.x/ D 1

are called the Legendre polynomials. We must also choose some normalization to uniquely
define this sequence (since multiplying two orthogonal polynomials by arbitrary constants
leaves them orthogonal). This amounts to choosing the nonzero constants ˛m in (B.18).
One might choose the polynomials to be orthonormal (i.e., normalize so that (B.17) is
satisfied), but this leads to messy coefficients. The traditional choice is to require that
Pm.1/ D 1 for all m. The first few Legendre polynomials are then

P0.x/ D 1;

P1.x/ D x;

P2.x/ D
3

2
x2 �

1

2
;

P3.x/ D
5

2
x3 �

3

2
x:

(B.21)

These polynomials satisfy a three-term recurrence relation (B.18) with

˛m D
2m C 1

m C 1
; ˇm D 0; m D

m

m C 1
:

The roots of the Legendre polynomials are of importance in various applications. In partic-
ular, they are the nodes for Gaussian quadrature formulas for approximating the integral
of a function; see, e.g., [16], [90]. There is no simple expression for the location of the
roots, but they can be found as the eigenvalues of a tridiagonal matrix in MATLAB by
the following code (adapted from the program gauss.m in [90], which also computes the
weights for the associated Gauss quadrature rules):

Toff = .5./sqrt(1-(2*(1:m-1)).ˆ(-2));
T = diag(Toff,1) + diag(Toff,-1);
xi = sort(eig(T));

These points are also sometimes used as grid points in spectral methods.D
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B.3. Orthogonal polynomials 265

B.3.2 Chebyshev polynomials

Several topics discussed in this book involve the Chebyshev polynomials Tm.x/. These
are a sequence of polynomials that are orthogonal on the interval Œ�1; 1� with the weight
function

w.x/ D .1 � x2/�1=2: (B.22)

The first few Chebyshev polynomials are

T0.x/ D 1;

T1.x/ D x;

T2.x/ D 2x2 � 1;

T3.x/ D 4x3 � 3x:

(B.23)

Again these are normalized so that Tm.1/ D 1 for m D 0; 1; : : :. Chebyshev polynomials
satisfy a particularly simple three-term recurrence,

TmC1.x/ D 2xTm.x/ � Tm�1.x/: (B.24)

While the weight function (B.22) may seem to be a less natural choice than w.x/ D 1, the
Chebyshev polynomials have a number of valuable properties, a few of which are listed
below and are used elsewhere in this text.

Property 1. The Chebyshev polynomial Tm.x/ equioscillates m C 1 times in the
interval Œ�1; 1�, i.e., jTm.x/j is maximized at m C 1 points x0; x1; : : : ; xm in the interval,
points where Tm.x/ takes the values

Tm.xj / D .�1/j :

These Chebyshev extreme points are given by

xj D cos.j�=m/; j D 0; 1; : : : ; m: (B.25)

(Note that these are labeled in decreasing order from x0 D 1 to xm D �1.) Figure B.1
shows a plot of T7.x/, for example. This set of extreme points will be useful for spectral
methods as discussed in Section 2.21.

Property 2. For x in the interval Œ�1; 1�, the value of Tm.x/ is given by

Tm.x/ D cos.m arccos x/: (B.26)

This does not look much like a polynomial, but it is since cos.m�/ can be written as a
polynomial in cos.�/ using trigonometric identities, and then set as x D cos.�/. Note that
from this formulation it is easy to check that (B.25) gives the desired extreme points.

Outside this interval there is an analogous formula in terms of the hyperbolic cosine,

Tm.x/ D cosh.m cosh�1 x/ for jxj � 1; (B.27)

an expression that is used in the analysis of the convergence of conjugate gradients. Note
that outside the unit interval the Chebyshev polynomials grow very rapidly.D
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266 Appendix B. Polynomial Interpolation and Orthogonal Polynomials
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Figure B.1. The Chebyshev polynomial T7.x/ of degree 7.
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Figure B.2. The Chebyshev polynomial viewed as a function Cm.�/ on the unit
disk ei� and when projected on the x-axis, i.e., as a function of x D cos.�/. Shown for
m D 15.

Property 3. Consider the function

Cm.�/ D Re.eim� / D cos.m�/ (B.28)

for 0 � � � � . We can view this as a function defined on the upper half of the unit circle in
the complex plane. If we identify x D cos.�/ or � D arccos x, then this reduces to (B.26),
so we can view the Chebyshev polynomial on the interval Œ�1; 1� as being the projection of
the function (B.28) onto the real axis, as illustrated in Figure B.2. This property is useful
in relating polynomial interpolation at Chebyshev points to trigonometric interpolation at
equally spaced points on the unit circle and allows the use of the Fast Fourier Transform
(FFT) algorithm to efficiently implement Chebyshev spectral methods. Orthogonality of
the Chebyshev polynomials with respect to the weight function (B.22) also can be easily
interpreted in terms of orthogonality of the trigonometric functions cos.m�/ and cos.n�/.D
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B.3. Orthogonal polynomials 267

Property 4. The m roots of Tm.x/ all lie in Œ�1; 1�, at the points

�j D cos

�
.j � 1=2/�

m

�
for j D 1; 2; : : : ; m: (B.29)

This follows directly from the representation (B.26).
Property 5. The Chebyshev polynomial Tm.x/ solves the mini-max optimization

problem
find p 2 P1

m to minimize max
�1�x�1

jp.x/j; (B.30)

where P1
m is the set of mth degree polynomials satisfying p.1/ D 1. Recall that Tm.x/

equioscillates with extreme values ˙1 so max�1�x�1 jTm.x/j D 1.
A slightly different formulation of this property is sometimes useful: the scaled

Chebyshev polynomial 21�mTm.x/ is the monic polynomial of degree m that minimizes
max�1�x�1 jp.x/j. A monic polynomial has leading coefficient 1 on the xm term. The
scaled Chebyshev polynomial 21�mTm.x/ D

Qm
jD1.x � �j / has leading coefficient 1 and

equioscillates between the values ˙21�m. If we try to reduce the level of any of these
peaks by perturbing the polynomial slightly, at least one of the other peaks will increase in
magnitude.

Note that 21�m decays to zero exponentially fast as we increase the degree. This is
responsible for the spectral accuracy of Chebyshev spectral methods and this optimality
is also used in proving the rapid convergence of the conjugate gradient algorithm (see
Section 4.3.4).

Returning to the formula (B.14) for the error in polynomial interpolation, we see
that if we are interested in approximating the function F.x/ uniformly well on the interval
Œ�1; 1�, then we should use the Chebyshev roots (B.29) as interpolationpoints. Then (B.14)
gives the bound

jp.x/ � F.x/j � K 21�n:

On a different interval Œa; b�, we can use the shifted Chebyshev polynomial

Tn

�
2x � .a C b/

.b � a/

�
: (B.31)

The corresponding Chebyshev extreme points and Chebyshev roots are then

xj D
a C b

2
C
.b � a/

2
cos

�
j�

m

�
for j D 0; 1; : : : ; m (B.32)

and

�j D
a C b

2
C
.b � a/

2
cos

�
.j � 1=2/�

m

�
for j D 1; 2; : : : ; m; (B.33)

respectively.
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