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Appendix A

Measuring Errors

To discuss the accuracy of a numerical solution, or the relative virtues of one numerical
method, versus another, it is necessary to choose a manner of measuring that error. It may
seem obvious what is meant by the error, but as we will see there are often many different
ways to measure the error which can sometimes give quite different impressions as to the
accuracy of an approximate solution.

A.1 Errors in a scalar value
First consider a problem in which the answer is a single value Oz 2 R. Consider, for exam-
ple, the scalar ordinary differential equation (ODE)

u0.t/ D f .u.t//; u.0/ D �;

and suppose we are trying to compute the solution at some particular time T , so Oz D u.T /.
Denote the computed solution by z. Then the error in this computed solution is

E D z � Oz:

A.1.1 Absolute error

A natural measure of this error would be the absolute value of E,

jEj D jz � Ozj:

This is called the absolute error in the approximation.
As an example, suppose that Oz D 2:2, while some numerical method produced a

solution z D 2:20345. Then the absolute error is

jz � Ozj D 0:00345 D 3:45 � 10�3:

This seems quite reasonable—we have a fairly accurate solution with three correct digits
and the absolute error is fairly small, on the order of 10�3. We might be very pleased
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246 Appendix A. Measuring Errors

with an alternative method that produced an error of 10�6 and horrified with a method that
produced an error of 106.

But note that our notion of what is a large error or a small error might be thrown
off completely if we were to choose a different set of units for measuring Oz. For example,
suppose the Oz discussed above were measured in meters, so Oz D 2:2 meters is the correct
solution. But suppose that instead we expressed the solution (and the approximate solu-
tion) in nanometers rather than meters. Then the true solution is Oz D 2:2 � 109 and the
approximate solution is z D 2:20345 � 109, giving an absolute error of

jz � Ozj D 3:45 � 106:

We have an error that seems huge and yet the solution is just as accurate as before, with
three correct digits.

Conversely, if we measured Oz in kilometers, then Oz D 2:2 � 10�3 and z D 2:20345 �
10�3 so

jz � Ozj D 3:45 � 10�6:

The error seems much smaller and yet there are still only three correct digits.

A.1.2 Relative error

The above difficulties arise from a poor choice of scaling of the problem. One way to avoid
this is to consider the relative error, defined by

ˇ̌
ˇ̌z � Oz

Oz

ˇ̌
ˇ̌ :

The size of the error is scaled by the size of the value being computed. For the above
examples, the relative error in z is equal to

ˇ̌
ˇ̌2:20345 � 2:2

2:2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌2:20345 � 109 � 2:2 � 109

2:2 � 109

ˇ̌
ˇ̌ D 1:57 � 10�3:

The value of the relative error is the same no matter what units we use to measure Oz, a
very desirable feature. Also note that in general a relative error that is on the order of 10�k

indicates that there are roughly k correct digits in the solution, matching our intuition.
For these reasons the relative error is often a better measure of accuracy than the

absolute error. Of course if we know that our problem is “properly” scaled, so that the
solution Oz has magnitude order 1, then it is fine to use the absolute error, which is roughly
the same as the relative error in this case.

In fact it is generally better to ensure that the problem is properly scaled than to
rely on the relative error. Poorly scaled problems can lead to other numerical difficulties,
particularly if several different scales arise in the same problem so that some numbers are
orders of magnitude larger than others for nonphysical reasons. Unless otherwise noted
below, we will assume that the problem is scaled in such a way that the absolute error is
meaningful.D
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A.2. “Big-oh” and “little-oh” notation 247

A.2 “Big-oh” and “little-oh” notation
In discussing the rate of convergence of a numerical method we use the notation O.hp /,
the so-called big-oh notation. In case this is unfamiliar, here is a brief review of the proper
use of this notation.

If f .h/ and g.h/ are two functions of h, then we say that

f .h/ D O.g.h// as h ! 0

if there is some constant C such that
ˇ̌
ˇ̌f .h/
g.h/

ˇ̌
ˇ̌ < C for all h sufficiently small

or, equivalently, if we can bound

jf .h/j < C jg.h/j for all h sufficiently small.

Intuitively, this means that f .h/ decays to zero at least as fast as the function g.h/ does.
Usually g.h/ is some monomial hq , but this isn’t necessary.

It is also sometimes convenient to use the “little-oh” notation

f .h/ D o.g.h// as h ! 0:

This means that ˇ̌
ˇ̌f .h/
g.h/

ˇ̌
ˇ̌ ! 0 as h ! 0:

This is slightly stronger than the previous statement and means that f .h/ decays to zero
faster than g.h/. If f .h/ D o.g.h//, then f .h/ D O.g.h//, although the converse may
not be true. Saying that f .h/ D o.1/ simply means that the f .h/ ! 0 as h ! 0.

Examples:

2h3 D O.h2/ as h ! 0; since
2h3

h2
D 2h < 1 for all h <

1

2
:

2h3 D o.h2/ as h ! 0; since 2h ! 0 as h ! 0:

sin.h/ D O.h/ as h ! 0; since sin h D h �
h3

3
C

h5

5
C � � � < h for all h > 0:

sin.h/ D h C o.h/ as h ! 0; since .sin h � h/=h D O.h2/:
p

h D O.1/ as h ! 0; and also
p

h D o.1/; but
p

h is not O.h/.

1 � cos h D o.h/ and 1 � cos h D O.h2/ as h ! 0:

h2=
p

h C h3 D O.h1:5/ and h2=
p

h C h3 D o.h/ as h ! 0:

e�1=h D o.hq/ as h ! 0 for every value of q.

To see this, let x D 1=h then
e�1=h

hq
D e�xxq ! 0 as x ! 1:D
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248 Appendix A. Measuring Errors

Note that saying f .h/ D O.g.h// is a statement about how f behaves in the limit as
h ! 0. This notation is sometimes abused by saying, for example, that if h D 10�3, then
the number 3 � 10�6 is O.h2/. Although it is clear what is meant, this is really meaning-
less mathematically and may be misleading when analyzing the accuracy of a numerical
method. If the error E.h/ on a grid with h D 10�3 turns out to be 3 � 10�6, we cannot
conclude that the method is second order accurate. It could be, for example, that the error
E.h/ has the behavior

E.h/ D 0:003 h; (A.1)

in which case E.10�3/ D 3 � 10�6, but it is not true that E.h/ D O.h2/. In fact the
method is only first order accurate, which would become apparent as we refined the grid.

Conversely, if
E.h/ D 106 h2; (A.2)

then E.10�3/ D 1, which is much larger than h2, and yet it is still true that

E.h/ D O.h2/ as h ! 0:

Also note that there is more to the choice of a method than its asymptotic rate of
convergence. While in general a second order method outperforms a first order method, if
we are planning to compute on a grid with h D 10�3, then we would prefer a first order
method with error (A.1) over a second order method with error (A.2).

A.3 Errors in vectors
Now suppose Oz 2 Rs , i.e., the true solution to some problem is a vector with s components.
For example, Oz may be the solution to a system of s ODEs at some particular fixed time T .
Then z is a vector of approximate values and the error e D z � Oz is also a vector in Rs . In
this case we can use some vector norm to measure the error.

There are many ways to define a vector norm. In general a vector norm is simply
a mapping from vectors x in Rs to nonnegative real numbers, satisfying the following
conditions (which generalize important properties of the absolute value for scalars):

1. kxk � 0 for any x 2 Rs , and kxk D 0 if and only if x D E0.

2. If a is any scalar, then kaxk D jaj kxk.

3. If x; y 2 Rm, then kx C yk � kxk C kyk (triangle inequality).

One common choice is the max-norm (or infinity-norm) denoted by k � k1:

kek1 D max
1�i�s

jei j: (A.3)

It is easy to verify that k � k1 satisfies the required properties. A bound on the max-norm
of the error is nice because we know that every component of the error can be no greater
than the max-norm. For some problems, however, there are other norms which are either
more appropriate or easier to bound using our analytical tools.D
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A.3. Errors in vectors 249

Two other norms that are frequently used are the 1-norm and 2-norm,

kek1 D
sX

iD1

jei j and kek2 D

vuut
sX

iD1

jei j2: (A.4)

These are special cases of the general family of q-norms, defined by

kekq D

"
sX

iD1

jei jq
#1=q

: (A.5)

Note that the max-norm can be obtained as the limit as q ! 1 of the q-norm. (Usually p

is used instead of q in defining these norms, but in this book p is often used for the order
of accuracy, which might be measured in some q-norm.)

A.3.1 Norm equivalence

With so many different norms to choose from, it is natural to ask whether results on con-
vergence of numerical methods will depend on our choice of norm. Suppose e.h/ is the
error obtained with some step size h, and that ke.h/k D O.hp/ in some norm, so that the
method is pth order accurate. Is it possible that the rate will be different in some other
norm? The answer is “no,” due to the following result on the “equivalence” of all norms on
Rs . (Note that this result is valid only as long as the dimension s of the vector is fixed as
h ! 0. See Section A.5 for an important case where the length of the vector depends on
h.)

Let k � k˛ and k � kˇ represent two different vector norms on Rs . Then there exist two
constants C1 and C2 such that

C1kxk˛ � kxkˇ � C2kxk˛ (A.6)

for all vectors x 2 Rm. For example, it is fairly easy to verify that the following relations
hold among the norms mentioned above:

kxk1 �kxk1� skxk1; (A.7a)

kxk1 �kxk2�
p

skxk1; (A.7b)

kxk2 �kxk1�
p

skxk2: (A.7c)

Now suppose that ke.h/k˛ � C hp as h ! 0 in some norm k � k˛ . Then we have

ke.h/kˇ � C2ke.h/k˛ � C2C hp

and so ke.h/kˇ D O.hp / as well. In particular, if ke.h/k ! 0 in some norm, then the
same is true in any other norm and so the notion of “convergence” is independent of our
choice of norm. This will not be true in Section A.4, where we consider approximating
functions rather than vectors.D
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250 Appendix A. Measuring Errors

A.3.2 Matrix norms

For any vector norm k �k we can define a corresponding matrix norm. The norm of a matrix
A 2 Rs�s is denoted by kAk and has the property that C D kAk is the smallest value of
the constant C for which the bound

kAxk � C kxk (A.8)

holds for every vector x 2 Rs . Hence kAk is defined by

kAk D max
x2Rs

x¤E0

kAxk
kxk

D max
x2Rs

kxkD1

kAxk: (A.9)

It would be rather difficult to calculate kAk from the above definitions, but for the most
commonly used norms there are simple formulas for computing kAk directly from the
matrix:

kAk1 D max
1�j�s

sX

iD1

jaij j (maximum column sum), (A.10a)

kAk1 D max
1�i�s

sX

jD1

jaij j (maximum row sum), (A.10b)

kAk2 D
q
�.AT A/: (A.10c)

In the definition of the 2-norm, �.B/ denotes the spectral radius of the matrix B (the
maximum modulus of an eigenvalue). In particular, if A is a normal matrix, e.g., if A D AT

is symmetric, then kAk2 D �.A/.
We also mention the condition number of a matrix in a given norm, defined by

�.A/ D kAk kA�1k; (A.11)

provided the matrix is nonsingular. If the matrix is normal then the 2-norm condition
number is the ratio of largest to smallest eigenvalue (in modulus). The condition number
plays a role in the convergence rate of many iterative methods for solving a linear system
with the matrix A (see Chapter 4). See, e.g., [35], [91] for more discussion.

A.4 Errors in functions
Now consider a problem in which the solution is a function u.x/ over some interval a �
x � b rather than a single value or vector. Some numerical methods, such as finite element
or collocation methods, produce an approximate solution U.x/ which is also a function.
Then the error is given by a function

e.x/ D U.x/ � u.x/:

We can measure the magnitude of this error using standard function space norms, which
are quite analogous to the vector norms described above. For example, the max-norm is
given by

kek1 D max
a�x�b

je.x/j: (A.12)D
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A.5. Errors in grid functions 251

The 1-norm and 2-norm are given by integrals over Œa; b� rather than by sums over the
vector elements:

kek1 D
Z b

a

je.x/j dx; (A.13)

kek2 D

 Z b

a

je.x/j2 dx

!1=2

: (A.14)

These are again special cases of the general q-norm, defined by

kekq D

 Z b

a

je.x/jq dx

!1=q

: (A.15)

A.5 Errors in grid functions
Finite difference methods do not produce a function U.x/ as an approximation to u.x/.
Instead they produce a set of values Ui at grid points xi . For example, on a uniform grid
with N equally spaced in some interval .a; b/ and grid spacing h, our approximation to
u.x/ would consist of the N values .U1; U2; : : : ; UN /. (Note that if h D .b �a/=.mC1/

as is often assumed in this book, then generally N D m; m C 1, or m C 2, depending
on whether one or both boundary points are included in the set of unknowns. For our
discussion here this is immaterial—what is important to note is that N D O.1=h/ as
h ! 0.)

How can we measure the error in this approximation? We want to compare a set of
discrete values with a function.

We must first decide what the values Ui are supposed to be approximating. Often
the value Ui is meant to be interpreted as an approximation to the pointwise value of the
function at xi , so Ui � u.xi/. In this case it is natural to define a vector of errors e D
.e1; e2; : : : ; eN / by

ei D Ui � u.xi/:

This is not always the proper interpretation of Ui , however. For example, some numerical
methods are derived using the assumption that Ui approximates the average value of u.x/

over an interval of length h, e.g.,

Ui �
1

h

Z xi

xi�1

u.x/ dx:

In this case it would be more appropriate to compare Ui to this cell average in defining the
error. Clearly the errors will be different depending on what definition we adopt and may
even exhibit different convergence rates, so it is important to make the proper choice for
the method being studied.

Once we have defined the vector of errors .e1; : : : ; eN /, we can measure its mag-
nitude using some norm. Since this is simply a vector with N components, it would be
tempting to simply use one of the vector norms discussed above, e.g.,

kek1 D
NX

iD1

jei j: (A.16)
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252 Appendix A. Measuring Errors

However, this choice would give a very misleading idea of the magnitude of the error. The
quantity in (A.16) can be expected to be roughly N times as large as the error at any single
grid point and here N is not the dimension of some physically relevant space, but rather
the number of points on our grid. If we refine the grid and increase N , then the quantity
(A.16) might well increase even if the error at each grid point decreases, which is clearly
not the correct behavior.

Instead we should define the norm of the error by discretizing the integral in (A.13),
which is motivated by considering the vector .e1; : : : ; eN / as a discretization of some
error function e.x/. This suggests defining

kek1 D h

NX

iD1

jeij (A.17)

with the factor of h corresponding to the dx in the integral. Note that since h � .b �a/=N ,
this scales the sum by 1=N as the number of grid points increases, so that kek1 is the
average value of e over the interval (times the length of the interval), just as in (A.13).
The norm (A.17) will be called a grid function norm and is distinct from the related vector
norm. The set of values .e1; : : : ; eN / will sometimes be called a grid function to remind
us that it is a special kind of vector that represents the discretization of a function.

Similarly, the q-norm should be scaled by h1=q , so that the q-norm for grid functions
is

kekq D

 
h

NX

iD1

jei jq
!1=q

: (A.18)

Since h1=q ! 1 as q ! 1, the max-norm remains unchanged,

kek1 D max
1�i�N

jei j;

which makes sense from (A.12).
In two space dimensions we have analogous norms of functions and grid functions,

e.g.,

kekq D
�“

je.x; y/jq dx dy

�1=q

for functions,

kekq D

0
@�x�y

X

i

X

j

jeij jq
1
A

1=q

for grid functions

with the obvious extension to more dimensions.

A.5.1 Norm equivalence

Note that we still have an equivalence of norms in the sense that, for any fixed N (and
hence fixed h), there are constants C1 and C2 such that

C1kxk˛ � kxkˇ � C2kxk˛D
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A.5. Errors in grid functions 253

for any vector e 2 RN . For example, translating (A.7a) to the context of grid function
norms gives the bounds

hkek1 �kek1� N hkek1 D .b � a/ kek1; (A.19a)
p

h kek1 �kek2�
p

N h kek1 D
p

b � a kek1; (A.19b)
p

h kek2 �kek1�
p

N h kek2 D
p

b � a kek2: (A.19c)

However, since these constants may depend on N and h, this equivalence does not carry
over when we consider the behavior of the error as we refine the grid so that h ! 0 and
N ! 1.

We are particularly interested in the convergence rate of a method. If e.h/ is the
vector of errors obtained on a grid with spacing h, we would like to show that

ke.h/k � O.hq /

for some q. In the last section we saw that the rate is independent of the choice of norm if
e.h/ is a vector in the space Rm with fixed dimension m. But now m D N and grows as
h ! 0, and as a result the rate may be quite different in different norms. This is particularly
noticeable if we approximate a discontinuous function, as the following example shows.

Example 3.1. Set

u.x/ D

(
0 x � 1

2
;

1 x > 1
2

and define the grid function approximation as indicated in Figure A.1. Then the error ei.h/

is zero at all grid points but the one at the discontinuity, where it has the value 1=2. Then
no matter how fine the grid is, there is always an error of magnitude 1=2 at one grid point
and hence

ke.h/k1 D
1

2
for all h:

On the other hand, in the 1-norm (A.17) we have

ke.h/k1 D h=2 D O.h/ as h ! 0:

We see that the 1-norm converges to zero as h goes to zero while the max-norm does not.
How should we interpret this? Should we say that U.h/ is a first order accurate ap-

proximation to u.x/ or should we say that it does not converge? It depends on what we

Figure A.1. The function u.x/ and the discrete approximation.D
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254 Appendix A. Measuring Errors

are looking for. If it is important that the maximum error over all grid points be uniformly
small, then the max-norm is the appropriate norm to use and the fact that ke.h/k1 does
not approach zero tells us that we are not achieving our goal. On the other hand, this may
not be required, and in fact this example illustrates that it is unrealistic to expect point-
wise convergence in problems where the function is discontinuous. For many purposes the
approximation shown in Figure A.1 would be perfectly acceptable.

This example also illustrates the effect of choosing a different definition of the “er-
ror.” If we were to define the error by

ei.h/ D Ui �
1

h

Z xi Ch=2

xi �h=2

u.x/ dx;

then we would have ei.h/ � 0 for all i and h and ke.h/k D 0 in every norm, including the
max-norm. With this definition of the error our approximation is not only acceptable, it is
the best possible approximation.

If the function we are approximating is sufficiently smooth, and if we expect the error
to be roughly the same magnitude at all points, then it typically does not matter so much
which norm is chosen. The convergence rate for a given method, as observed on sufficiently
smooth functions, will often be the same in any q-norm. The norm chosen for analysis is
then often determined by the nature of the problem and the availability of mathematical
techniques for estimating different error norms. For example, for linear problems where
Fourier analysis can be applied, the 2-norm is often a natural choice. For conservation laws
where integrals of the solution are studied, the 1-norm is often simplest to use.

A.6 Estimating errors in numerical solutions
When developing a computer program to solve a differential equation, it is generally a
good idea to test the code and ensure that it is producing correct results with the expected
accuracy. How can we do this?

A first step is often to try the code on a problem for which the exact solution is
known, in which case we can compute the error in the numerical solution exactly. Not
only can we then check that the error is small on some grid, we can also refine the grid
and check how the error is behaving asymptotically, to verify that the expected order of
accuracy, and perhaps even error constant, is seen. Of course one must be aware of some
of the issues raised earlier, e.g., that the expected order may appear only for h sufficiently
small.

It is important to test a computer program by doing grid refinement studies even if
the results look quite good on one particular grid. A subtle error in programming (or in
deriving the difference equations or numerical boundary conditions) can lead to a program
that gives reasonable results and may even converge to the correct solution, but at less than
the optimal rate. Consider, for example, the first approach of Section 2.12.

Of course in practice we are usually trying to solve a problem for which we do not
know the exact solution, or we wouldn’t bother with a numerical method in the first place.
However, there are often simplified versions of the problem for which exact solutions are
known, and a good place to start is with these special cases. They may reveal errors in the
code that will affect the solution of the real problem as well.D
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A.6. Estimating errors in numerical solutions 255

This is generally not sufficient, however, even when it is possible, since in going
from the easy special case to the real problem new errors may be introduced. How do we
estimate the error in a numerical solution if we do not have the exact solution with which
to compare it?

The standard approach, when we can afford to use it, is to compute a numerical
solution on a very fine grid and use this as a “reference solution” (or “fine-grid solution”).
This can be used as a good approximation to the exact solution in estimating the error on
other, much coarser, grids. When the fine grid is fine enough, we can obtain good estimates
not only for the errors but also for the order of accuracy. See Section A.6.2.

Often we cannot afford to take very fine grids, especially in more than one space
dimension. We may then be tempted to use a grid that is only slightly finer than the grid
we are testing in order to generate a reference solution. When done properly this approach
can also yield accurate estimates of the order of accuracy, but more care is required. See
Section A.6.3.

A.6.1 Estimates from the true solution

First suppose we know the true solution. Let E.h/ denote the error in the calculation with
grid spacing h, as computed using the true solution. In this section we suppose that E.h/

is a scalar, typically some norm of the error over the grid, i.e.,

E.h/ D kU.h/ � OU .h/k;

where U.h/ is the numerical solution vector (grid function) and OU .h/ is the true solution
evaluated on the same grid.

If the method is pth order accurate, then we expect

E.h/ D C hp C o.hp/ as h ! 0;

and if h is sufficiently small, then

E.h/ � C hp: (A.20)

If we refine the grid by a factor of 2, say, then we expect

E.h=2/ � C.h=2/p :

Defining the error ratio
R.h/ D E.h/ =E.h=2/; (A.21)

we expect
R.h/ � 2p; (A.22)

and hence
p � log2.R.h//: (A.23)

Here refinement by a factor of 2 is used only as an example, since this choice is often made
in practice. But more generally if h1 and h2 are any two grid spacings, then we can estimate
p based on calculations on these two grids using

p �
log.E.h1/=E.h2//

log.h1=h2/
: (A.24)D
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256 Appendix A. Measuring Errors

Hence we can estimate the order p based on any two calculations. (This will be valid only
if h is small enough that (A.20) holds, of course.)

Note that we can also estimate the error constant C by

C � E.h/=hp

once p is known.

A.6.2 Estimates from a fine-grid solution

Now suppose we don’t know the exact solution but that we can afford to run the problem on
a very fine grid, say, with grid spacing Nh, and use this as a reference solution in computing
the errors on some sequence of much coarser grids. To compare U.h/ on the coarser grid
with U. Nh/ on the fine grid, we need to make sure that these two grids contain coincident
grid points where we can directly compare the solutions. Typically we choose the grids in
such a way that all grid points on the coarser grid are also fine-grid points. (This is often the
hardest part of doing such grid refinement studies—getting the grids and indexing correct.)

Let NU .h/ be the restriction of the fine-grid solution to the h-grid, so that we can
define the approximate error NE.h/ � kU.h/ � NU .h/k, analogous to the true error E.h/ D
kU.h/ � OU .h/k. What is the error in this approximate error? We have

U.h/ � NU .h/ D .U.h/ � OU .h//C . OU .h/ � NU .h//:

If the method is supposed to be pth order accurate and Nhp � hp , then the second term on
the right-hand side (the true error on the Nh-grid) should be negligible compared to the first
term (the true error on the h-grid) and NE.h/ should give a very accurate estimate of the
error.

Warning: Estimating the error and testing the order of accuracy by this approach only
confirm that the code is converging to some function with the desired rate. It is very possible
that the code is converging very nicely to the wrong function. Consider a second order
accurate method applied to 2-point boundary value problem, for example, and suppose
that we code everything properly except that we mistype the value of one of the boundary
values. Then a grid-refinement study of this type would show that the method is converging
with second order accuracy, as indeed it is. The fact that it is converging to the solution of
the wrong problem would not be revealed by this test. One must use other tests as well, not
least of which is checking that the computed solutions make sense physically, e.g., that the
correct boundary conditions are in fact satisfied.

More generally, a good understanding of the problem being solved, a knowledge of
how the solution should behave, good physical intuition, and common sense are all neces-
sary components in successful scientific computing. Don’t believe the numbers coming out
simply because they are generated by a computer, even if the computer also tells you that
they are second order accurate!

A.6.3 Estimates from coarser solutions

Now suppose that our computation is very expensive even on relatively coarse grids, and
we cannot afford to run a calculation on a much finer grid to test the order of accuracy.D
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A.6. Estimating errors in numerical solutions 257

Suppose, for example, that we are willing to run the calculation only on grids with spacing
h, h=2, and h=4 and we wish to estimate the order of accuracy from these three calculations,
without using any finer grids. Since we can estimate the order from any two values of the
error, we could define the errors in the two coarser grid calculations by using the h=4

calculation as our reference solution. Will we get a good estimate for the order?
In the notation used above, we now have Nh D h=4, while h D 4 Nh and h=2 D 2 Nh.

Assuming the method is pth order accurate and that h is small enough that (A.20) is valid
(a poor assumption, perhaps, if we are using very coarse grids!), we expect

NE.h/ D E.h/ � E. Nh/
� C hp � C Nhp

D .4p � 1/C Nhp :

Similarly,
NE.h=2/ � .2p � 1/C Nhp:

The ratio of approximate errors is thus

NR.h/ D NE.h/= NE
�

h

2

�
�

4p � 1

2p � 1
D 2p C 1:

For modest p this differs significantly from (A.22). For a first order accurate method with
p D 1, we now have NR.h/ � 3 and we should expect the apparent error to decrease by
a factor of 3 when we go from h to h=2, not by the factor of 2 that we normally expect.
For a second order method we expect a factor of 5 improvement rather than a factor of 4.
This increase in NR.h/ results from the fact that we are comparing our numerical solutions
to another approximate solution that has a similar error.

We can obtain a good estimate of p from such calculations (assuming (A.20) is valid),
but to do so we must calculate p by

p � log2.
NR.h/ � 1/

rather than by (A.23). The approximation (A.23) would overestimate the order of accuracy.
Again we have used refinement by factors of 2 only as an example. If the calculation

is very expensive we might want to refine the grid more slowly, using, for example, h,
3h=4, and h=2. One can develop appropriate approximations to p based on any three grids.
The tricky part may be to estimate the error at grid points on the coarser grids if these
are not also grid points on the Nh grid. Interpolation can be used, but then one must be
careful to ensure that sufficiently accurate interpolation formulas are used that the error in
interpolation does not contaminate the estimate of the error in the numerical method being
studied.

Another approach that is perhaps simpler is to compare the solutions

QE.h/ � U.h/ � U.h=2/ and QE.h=2/ D U.h=2/ � U.h=4/:

In other words, we estimate the error on each grid by using the next finer grid as the refer-
ence solution, rather than using the same reference solution for both coarser grids. In this
case we have

QE.h/ D E.h/ � E

�
h

2

�
� C

�
1 �

1

2p

�
hp
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and
QE.h=2/ D E

�
h

2

�
� E

�
h

4

�
� C

�
1 �

1

2p

�
hp

2p

and so
QE.h/= QE

�
h

2

�
� 2p:

In this case the approximate error decreases by the same factor we would expect if the true
solution were used as the reference solution on each grid.
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