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Abstract

We study the scaling laws for wireless ad hoc networks in which the distribution

of n nodes in the network is homogeneous but the traffic they carry is heterogeneous.

More specifically, we consider the case in which a given node is the data-gathering

sink for k sources sending different information to it, while the rest of the s = n − k

nodes participate in unicast sessions with random destinations chosen uniformly. We

first study this type of network under both protocol and physical model but with a

bandwidth assumption which is that the bandwidth of each node is proportional to the

traffic of the corresponding cell or cluster.

Then we release the bandwidth assumption and present a separation theorem

for heterogeneous traffic showing that the optimum order aggregate throughput can be

attained in a wireless network in which traffic classes are distributed uniformly by en-

dowing each node with multiple radios, each operating in a separate orthogonal channel,

and by allocating a radio per node to each traffic class. Based on this theorem, we show

how this order capacity can be attained for the unicast and data-gathering traffic classes

by both extending cooperative communication scheme [1] under information theoretical

model and pure ”straight line” non-cooperative routing scheme [2] under protocol model

vi



respectively.
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Chapter 1

Introduction

1.1 Overview of Capacity of Wireless Ad-hoc Networks

The scaling laws of wireless networks with homogeneous traffic and uniform

node distribution have been extensively studied in the literature. Gupta and Kumar [2]

evaluated the capacity of wireless networks with uniform traffic and showed that the

capacity scales as Θ
(
√

n
log n

)

according to the protocol model1. This result was achieved

by considering no cooperation among nodes with simple point-to-point communication.

Xie and Kumar [3], [4] subsequently investigated the information-theoretic capacity of

wireless networks with cooperation among different nodes in the extended network. The

achievable capacity with cooperation for dense networks was studied by Özgür et al.

in [1] who showed this capacity is Θ
(

n1−ε
)

, where ε is any small positive constant.

1Given two functions f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant c and integer

N such that f(n) ≤ cg(n) for n > N . 2) f(n) = o (g(n)) if limn→∞
f(n)
g(n)

= 0. 3) f(n) = Ω (g(n)) if

g(n) = O (f(n)). 4) f(n) = ω (g(n)) if g(n) = o (f(n)). 5) f(n) = Θ (g(n)) if f(n) = O (g(n)) and
g(n) = O (f(n)).

1



Only a handful of prior works investigate heterogeneous traffic in the network.

Keshavarz-Haddad et al. [5] introduced the concept of transmission arena. Based on

that definition, they presented a method to compute the upper bound of the capacity for

different traffic patterns and different topologies of the network. However, they did not

provide closed-form scaling laws for the network capacity. Toumpis [6] investigated the

throughput capacity when there are s sources and sε destinations in the network, where

0 < ε < 1. Liu et al. [7] extended this result by relaxing the constraint on the number

of sources and destinations. While these results [6, 7] address asymmetric traffic, the

results apply to the case of a single type of traffic pattern in the network. Moreover,

none of this works apply cooperative communication schemes.

1.2 The Motivation of This Work

In practice, we always see the ad hoc networks with more than one type of

traffic. For example, in a military network, some solders may have unicast transmissions

between them and some solders may want to contact their higher authority at the

meantime. Thus, we need to study this type of network model. In this thesis, we consider

heterogeneous traffic in the network supporting different types of traffic patterns. In

particular, we consider two types of traffic classes, namely, data-gathering traffic in

which one of the nodes in the network acts as a sink with many sources transmitting

different information to that node, and the rest of the nodes in the network participate in

unicast traffic flows. The distribution of nodes in the network is still uniform. To the best

2



of our knowledge, this heterogeneous traffic model has not been studied in the literature,

except our own work. There is some prior work addressing data gathering [8], [9], [10]

as the only type of traffic in a network. Rodoplu et al. [11], [12] computed the network

capacity for data gathering and unicast flows separately by utilizing game theory and

defining a new capacity concept named core capacity.

This work first present the capacity of this type of network under both protocol

model and physical model but with a bandwidth assumption which is the bandwidth

of each node is proportional to the traffic of the corresponding cell or cluster. Then we

release the bandwidth assumption and introduce a new approach to support heteroge-

neous traffic efficiently in a wireless network by dividing the available bandwidth into

multiple channels separated in frequency and allocated dynamically to specific traffic

classes consisting of the aggregation of one or more flows. We present a separation theo-

rem showing that, in a multiple-channel multiple-radio (MR-MC) wireless network, the

optimum order achievable throughput can be attained in a wireless network in which

traffic classes are distributed uniformly by allocating a radio per node to each traffic

class. Based on this theorem, we first extend the Three-Phase approach first introduced

by Özgür et. al. [1] to accomodate different traffic classes. We demonstrate that the

maximum per-node capacity of Θ (log(n)) for unicast traffic can be attained in some

regions. This capacity was provided as an upper bound originally by Özgür et al [1]

without providing any specific communication scheme. Then, due to the complexity of

the Three Phase schemes, we provide the upper bound and achievable lower bound of

the throughput by only using pure routing scheme without any cooperation between

3



nodes under protocol model again.

In each chapter of this thesis, for convenience, we will reuse the same subscripts

of the same letter in other chapters to represent different constant value, but we will

state each constant value clearly.

1.3 The Organization of This Thesis

The thesis is organized as follows. In Chapter 2, we will present the wireless

model that are used in literatures and in this thesis. Then we introduce capacity result

under protocol model and the bandwidth assumption in Chapter 3. Later on, the

capacity result under physical model will be presented in Chapter 4. In Chapter 5, we

study the same network model but under the information theoretical model and release

the bandwidth assumption. We also introduce the Separation Theorem in this chapter.

Then we study the network under protocol model again but releasing the bandwidth

assumption in Chapter 6. In Chapter 7, we conclude the thesis and give the future

work.

4



Chapter 2

Wireless Network Model

In this chapter, we will present different network models used in literatures.

Then in the rest of this thesis, we derive the throughput in the network based on these

models.

First, we will introduce the network models which are most common in liter-

atures. This classification corresponds to the distribution of the nodes in the network.

2.1 Arbitrary Network Model

The arbitrary network means that the nodes in the network are arbitrarily

distributed in the network and each node can choose an arbitrary range or power level

for any transmission. According to the condition of successful transmission, we have

three models defined below, which are protocol model, physical model and information

theoretical model.

5



Definition 2.1 Protocol Model: Suppose node Xi transmits over the m-th sub channel

to a node Xj. Then this transmission at rate Wm bits/sec is assumed to be successfully

received by node Xj if |Xk − Xj | ≥ (1 + ∆)|Xi − Xj|, for every other node Xk simulta-

neously transmitting over the same sub-channel.

Definition 2.2 Physical Model: Let {Xk; k ∈ T (t)} be the subset of nodes simulta-

neously transmitting at some time instant over a certain subchannel m. Let Pk be the

power level chosen by node Xk, for k ∈ T (t). Then the transmission between node Xi,

i ∈ T(t) and XR(i) is successful if

Pi

|Xi−Xi(R)|α

N +
∑

k∈T ,k 6=i
Pk

|Xk−Xk(R)|α
≥ β. (2.1)

where N is the ambient noise power level.

Both the protocol and physicals model are a simplification of the successful

transmission condition. The actual amount of information that can be transmitted

through the network should be derived from information theory, which is referred as the

information theoretical model.

2.2 Random Network Model

For the random network, we mainly consider that the n nodes are uniformly

and independently distributed in the network. Similar to the arbitrary network model,

we still have the three models defined below.

6



Definition 2.3 Protocol Model: All nodes use a common transmission range r(n) for

all their communication. The network area is assumed to be a unit square area. Node

Xi can successfully transmit to node Xj if for any node Xk, k 6= i, that transmits at the

same time as Xi, it is true that |Xi − Xj | ≤ r(n) and |Xk − Xj | ≥ (1 + ∆)r(n).

Definition 2.4 Physical Model: Let {Xk; k ∈ N} be the subset of nodes simultaneously

transmitting at some time instant over a certain subchannel. All nodes in this subchannel

choose a common power level P for all their transmissions. For each subchannel, the

noise power is N . A node can transmit over several subchannels. A transmission from

a node Xi, i ∈ N , is successfully received by a node Xi(R) if

P
|Xi−Xi(R)|α

N +
∑

k∈N ,k 6=i
P

|Xk−Xk(R)|α
≥ β. (2.2)

for every subchannel.

The information theoretical model is also referred as the actual capacity which

can be achieved by using information theory.

2.3 Other Network Model

There are some other network models according to the different distribution

of the nodes. For example, in [13], the nodes are assumed to be Poisson distribution.

Moreover, in [14], the author assumed the node distribution of the network is a shot-

noise Cox process.

There are typically two models which are referred as dense network model

7



and extended network model. In the dense network model, the area is fixed and the

node density tends to infinity, which is typically assumed for protocol and physical

models. Meanwhile, in the extended network model, the node density is fixed and the

area increases with the number of nodes in the network, which is typically used in

information theoretical model.

According to different traffic types of the network, the network model can be

referred as the network with homogeneous traffic and the network with heterogeneous

traffic which is mainly considered in this thesis.

2.4 The Wireless Network Model Used in This Work

In this work, we mainly consider the the category of dense random network

which is the combination of dense network and random network. The traffic type

in this work is assumed to be heterogeneous traffic which means that there are two

types of traffic in the network. One is unicast traffic [2]. The other is data-gathering

traffic [10], [7], [9]. This means that part of the nodes in the network perform unicast

traffic and the rest of the nodes have data-gathering traffic. To calculate the aggregate

throughput in the network. All of the protocol model, physical model and information

theoretical model will be used. In the following chapters, we will explain the details of

the definition for each type of traffic.

8



Chapter 3

The Capacity of Wireless Ad-hoc

Networks with Heterogeneous Traffic

under Protocol Model: Part 1

In this chapter, we will give the capacity of wireless network with heterogeneous

traffic by using the protocol model shown in Definition 2.3. First, we will give the

network model and assumptions of this chapter. Then, the lower bound of the capacity

will be calculated. Third, we will provide the computation of the upper bound of the

capacity. In the end, we will discuss and conclude this work. This work is presented

as [15].

9



3.1 Wireless Network Model

We consider a network with nodes uniformly distributed in a dense network,

where the area of the network is a constant unit square. We assume heterogeneous traffic

for the network, such that a single node (called the access point) is the destination for k

sources in the network. For the rest of the n−k nodes in the network, we assume random

and uniformly distributed source-destination pairs. Therefore, the source-destination

pair selection for unicast communications is similar to that used by Gupta and Kumar [2]

for the rest of n − k nodes in the network. network model is shown in Fig. 3.1.

Figure 3.1: The Network Model

The transmission range is assumed to be the same for all the nodes and the

communication between nodes is point-to-point. A successful communication between

two nodes is modeled according to the protocol model which is shown in Definition 2.3.

The definitions of feasible throughput and order throughput capacity are shown

below [2].

Definition 3.1 Feasible Throughput:

10



A throughput of λi(n) bits per second is said to be feasible for the ith source-destination

pair if there is a common transmission range r(n), and a scheme to schedule trans-

missions and there are routes between source and destination, such that source i can

transmit to its destination at such rate successfully. For heterogeneous traffic, the fea-

sible throughput is defined for each source-destination pair.

Definition 3.2 Order of Throughput Capacity: The total throughput capacity is said

to be of order Θ(f(n)) bits per second if there exist a constant c and c′ such that

limn→∞ Pr(λ(n) =
n
∑

i=1

λi(n) = cf(n) is feasible) = 1; and

lim infn→∞ Pr(λ(n) =

n
∑

i=1

λi(n) = c′f(n) is feasible) < 1. (3.1)

3.2 The Lower Bound of the Capacity

We need to emphasize that there are two types of traffic in our model. One

traffic is associated to the k sources transmitting packets to the access node and the other

traffic stems from the rest of n− k nodes in the network with unicast communications.

Therefore, we need to define the routing protocol and scheduling under this traffic model.

3.2.1 The Routing Scheme and the Scheduling Protocol

The selection of sources for the access node i is based on the technique de-

scribed in [16]. We randomly and uniformly select k locations in the network and

choose the closest nodes to these k locations as sources for the access node. The routing

11



trajectory is a straight line Li from access node to these k locations. Then the packets

traverse from each source to destination in a multi-hop fashion passing through all the

cells that cross Li. For the rest of j nodes with unicast traffic where 1 ≤ j ≤ n−k, both

selections of source-destination pairs and routing is similar to the above technique.

For the scheduling scheme, we utilize a TDMA scheme similar to [16] with

some modifications to take into account the heterogeneity of the traffic.

3.2.2 The traffic caused by access node

Let us define a traffic from node i to node j as commodity [12]. Clearly, the

number of commodities for access node is k which is also equivalent to the number of

lines (paths) passing through the cell that contains the access node. For simplicity of

the analysis, we assume that the access node is located at the center of the network.

Now we compute the number of commodities for a cell that has a distance of x from

the access node. From Fig. 3.2 and by choosing XiC =
√

2, the area of triangle is

SXiAB =
√

2

√
2dn

√

(x + dn)2 − d2
n

<
2dn

x
, (3.2)

where dn = C1

√

log n
n

is selected to guarantee the connectivity between adjacent cells in

the network [2] and C1 is a constant factor.

Theorem 3.3 For any cell with a distance of xj from the access node, the upper bound

12



n
d

i
X

Figure 3.2: A geometric description of traffic by the access node in the network. Xi is
the access node and XiAB is a triangle whose altitude XiC is

√
2. D is the intersecting

point between XiC and the circle centered at E with radius EF = dn. The length of
DXi is x.

for the number of commodities caused by the traffic from the access node is

Nxj
< 2

dn

xj
k (3.3)

when k = Ω(
√

n
log n

).

proof 3.4 The average number of lines passing through the cell (E[Nxj
]) whose distance

from access node i is xj is less than 2dn

xj
k since k source nodes are uniformly distributed

in the network. Utilizing the Chernoff bound [17], we have

Pr
(

Nxj
− E[Nxj

] > δ E[Nxj
]
)

< exp
[

−((1 + δ) log(1 + δ) − δ) E(Nxj
)
]

(3.4)
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and

Pr
(

Nxj
− E[Nxj

] < −δ E[Nxj
]
)

< exp

[

−δ2

2
E[Nxj

]

]

(3.5)

where 0 < δ < 1. Combining the results and considering E[Nxj
] < 2dn

xj
k, we obtain

Pr
(

|Nxj
− E[Nxj

]| > δ E[Nxj
]
)

<

exp

[

−((1 + δ) log(1 + δ) − δ)
2dn

xj
k

]

+ exp

[

−δ2

2

2dn

xj
k

]

. (3.6)

Thus, the probability that the values of the random variables Nxj
for all j can simulta-

neously be arbitrarily close to E[Nxj
] is given by

Pr





⋂

j

|Nxj
− E[Nxj

]| < δ E[Nxj
]





= 1 − Pr





⋃

j

|Nxj
− E[Nxj

]| > δ E[Nxj
]





≥ 1 −
∑

j

Pr
[

|Nxj
− E[Nxj

]| > δ E[Nxj
]
]

> 1 −
∑

j

(

exp

[

−((1 + δ) log(1 + δ) − δ)
2dn

xj
k

]

+ exp

[

−δ2

2

2dn

xj
k

])

. (3.7)

Denote that if k = Ω(
√

n
log n

) and dn = Θ(
√

log n
n

), then this probability tends to 1 when

n → ∞.
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3.2.3 The traffic caused by unicast communications

In this section, we derive the number of lines passing through each cell because

of unicast traffic in the network. Since the unicast traffic is distributed uniformly in the

network, this value is the same for all the cells in the network.

Lemma 3.5 For any cell S, the maximum number of lines intersecting this cell caused

by unicast traffic is given by

Pr(Maximum number of lines Li passing throughS ≤ C2(n − k)

√

log n

n
) → 1,

when n − k 6= constant.

proof 3.6 Our proof is similar to that of [16] except that we account for n − k unicast

pairs in the network. The probability that the destination node j is x away from the

source node is C3π(x + dn) [16] where C3 is a constant. Thus, the probability p that

there is a line passing through the cell S which is with distance x from j is

Pr(Li intersects S) = p <

∫

√
2

dn

(

2dn

x

∨

1

)

k · C3

× π(x + dn)dx ≤ C4

√

log n

n
(3.8)

where C4 is a constant value. Each of n − k nodes randomly and uniformly selects any

15



other node in the network as destination. Define i.i.d. random variable Ii as

Ii =















1 If Li intersect S

0, Otherwise

(3.9)

where i = 1, 2, · · · , n − k. It is clear from Eq. (3.8) that Pr(Ii = 1) = p < C4

√

log n
n

.

Denote Zn =
∑n−k

i=1 Ii as the number of lines passing through the cell S. Thus for

positive values of a and m and using Chernoff Bound, we have

Pr(Zn > m) ≤ E eaZn

eam
. (3.10)

Further, it can be shown that [17]

E eaZn = (1 + (ea − 1)p)n−k

≤ exp((n − k)(ea − 1)p)

≤ exp(C4(n − k)(ea − 1)

√

log n

n
) (3.11)

Let’s define m = C2(n − k)
√

log n
n

, then Eq. (3.10) becomes

Pr(Zn > C2(n − k)

√

log n

n
)

≤ exp((n − k)

√

log n

n
(C4(e

a − 1) − C2a)). (3.12)
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If we select C2 such that C2a − C4(e
a − 1) = ǫ > 0, then

Pr(Zn > C2(n − k)

√

log n

n
) ≤ exp

(

−ǫ(n − k)

√

log n

n

)

. (3.13)

If the area for each cell is defined as s2
n = Θ( log n

n
), then by utilizing the union bound we

arrive at

Pr(Some cells have more than (n − k)

√

log n

n
lines)

≤
∑

all the cells

Pr(Zn > (n − k)

√

log n

n
)

≤ 1

s2
n

exp(−ǫ(n − k)

√

log n

n
)

=
n

2C1 log n
exp(−ǫ(n − k)

√

log n

n
). (3.14)

This probability goes to zero as n tends to infinity as long as n − k 6= constant.

3.2.4 The Lower Bound of the Capacity

3.2.4.1 Case of n − k 6= constant

From the previous two sections, we deduce that the number of lines passing

through a cell with distance x from the access node is upper bounded as 2dnk
x

+ C2(n−

k)
√

log n
n

and for the cell that contains the access node is k + C2(n − k)
√

log n
n

. In the

traditional analysis of capacity with homogeneous traffic, the inverse of traffic for a

cell using a TDMA scheme provides the throughput capacity. Given that this value

varies for different cells in heterogeneous traffic, we assign a bandwidth to each cell

17



that is proportional to the number of lines passing through the cell. This assignment

is based on the fact that each link in the network has the same bandwidth (similar to

the approach by Gupta and Kumar) but more allocation of bandwidth is given to a

cell with higher traffic. Clearly, our results demonstrate that the cell that contains the

access node has the highest traffic. If we divide the network into layers of cells starting

from the access point as shown in Fig. 3.3, the traffic for cells in each layer is the same

order. Let’s assume the traffic for each layer is Ti where i = 1, ...,Θ(
√

n
log n

). Then our

bandwidth requirement for each layer is given by

Wo

To
=

W1

T1
= ... =

W
Θ(
√

n
log n

)

TΘ(
√

n
log n

)
= c(n). (3.15)

Note that Wo = Wmax, To = Tmax and c(n) is a pre-determined function of n. This

assumption basically means that more bandwidth is provided to a cell with higher

traffic.

i
X

1l 2l 3l 4l

log

n

n

l

Figure 3.3: The layers around Xi
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The average number of nodes in each cell is proportional to Θ(log n), then the

lower bound capacity is

Clower =
1

MWmax









Θ(
√

n
log n

)
∑

l=1

8lWl

Tl
+

W0

T0









· Θ(log n),

=
1

MWmax









Θ(
√

n
log n

)
∑

l=1

8lc(n) + c(n)









· Θ(log n),

=
1

MWmax
· Θ
(

n

log n
+

√

n

log n

)

· Θ(log n) · c(n),

= Ω(
c(n)n

Wmax
) = Ω(

n

Tmax
), (3.16)

where M is the TDMA parameter that is required to separate cells in order to satisfy

the protocol model.

Note that the capacity defined in this paper is the total capacity since the

traffic for each node is different and per node capacity may not be meaningful.

3.2.4.2 Case of n − k = constant

Under this condition, clearly all the traffic is contributed by the access node

and since each source is sending different packet to the access node, the achievable

capacity is Ω(1) by allowing one source at the time to transmit its packet to the access

node.

Combining the above results, we state the following theorem for the achievable

lower bound.
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Theorem 3.7 The achievable lower bound for a heterogeneous traffic with maximum

number of traffic of Tmax for a cell can be given as follows.

Clower =



















Ω(
n

Tmax

) when n − k 6= C5

Ω(1) when n − k = C5

(3.17)

Note that Theorem 3.1 is proved only for k = Ω(
√

n
log n

). When k = O(
√

n
log n

),

the value of Tmax is less than that of k = Ω(
√

n
log n

). Hence, the maximum value of Tmax

for k = Ω(
√

n
log n

) can be utilized for all values of k for computation of the lower bound

capacity.

3.3 The Upper Bound of the Capacity

We first compute the capacity for the case when n−k 6= constant. The capacity

can be defined as

Cupper =
the sum of capacity for all cells

the average#of hops for source-destination pairs

× 1

max. bandwidth expansion × TDMA parameter
.

First, we consider the case when k = Ω
(
√

n
log n

)

. It is easy to show that x ≥ (2l−1)
√

2dn

2

where l varies from a constant value up to Θ(
√

n
log n

) depending on the location of cell

from the access node. From this lower bound for x, we can derive the upper bound for

20



Tl.

Tl <























2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√

log n

n
l 6= 0

k + C2(n − k)

√

log n

n
l = 0

(3.18)
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Then the capacity can be derived as

Cupper =
1

MWmax
·









Θ(
√

n
log n

)
∑

l=1

8lWl

L−o(1)
r(n)

+
W0

L−o(1)
r(n)









a
≤ 1

WmaxM(L − o(1))
r(n)c(n)×









Θ(
√

n
log n

)
∑

l=1

8l

(

2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√

log n

n

)

+

(

k + C2(n − k)

√

log n

n

)]

≤ 1

WmaxM(L − o(1))
r(n)c(n)









2
√

2k

Θ(
√

n
log n

)
∑

l=1

8l

2l − 1

+ k + C2(n − k)

√

log n

n

Θ(
√

n
log n

)
∑

l=1

(8l + 1)









=
1

WmaxM(L − o(1))
r(n)c(n)









2
√

2k

Θ(
√

n
log n

)
∑

l=1

(4

+
4

2l − 1

)

+ k+

C2(n − k)

√

log n

n

Θ(
√

n
log n

)
∑

l=1

(8l + 1)









=
1

WmaxM(L − o(1))
r(n)c(n)

(

2
√

2kΘ

(√

n

log n

+ log

(√

n

log n

))

+ k

+ C2(n − k)

√

log n

n
Θ

(

n

log n

)

)

=
1

WmaxM(L − o(1))
r(n)c(n)

(

2
√

2kΘ

(√

n

log n

)

+ C2(n − k)Θ

(√

n

log n

))
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b
=

1

WmaxM(L − o(1))
c(n)Θ(

√

log n

n
)

(

2
√

2kΘ

(√

n

log n

)

+ C2(n − k)Θ

(√

n

log n

))

=
1

WmaxM(L − o(1))
c(n)

(

2
√

2k + C2(n − k)
)

=Θ(
c(n)n

Wmax
) = Θ(

n

Tmax
) (3.19)

where L − o(1) = Θ(1) in this derivation is the average length of each unicast or the

average length over all distances between k sources and the access node, (a) is derived

by replacing Wl = Tlc(n), and (b) is derived by replacing r(n) with Θ(
√

log n
n

).

Second, we consider the case when k = O
(
√

n
log n

)

. We know from [2] that

the number of lines crossing a cell for n source-destination pair is Θ(
√

n log n) and we

have at most k traffic for many-to-one traffic for access node. Therefore, it is clear

that Tl ≤ Tmax = Θ(
√

n log n) + k. Now following similar procedure, we can derive the
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capacity as

Cupper =
1

MWmax











Θ

(

√

n
log n

)

∑

l=1

8lWl

L−o(1)
r(n)

+
W0

L−o(1)
r(n)











≤ 1

WmaxM(L − o(1))
r(n)c(n)×











Tmax

Θ

(

√

n
log n

)

∑

l=1

8l + T0











,

=
1

WmaxM(L − o(1))
r(n)c(n)×

(

TmaxΘ

(

n

log n

)

+ Tmax

)

,

a
=

1

WmaxM(L − o(1))
r(n)c(n)×

(

Θ
(

√

n log n + k
)

Θ

(

n

log n

))

,

b
=

1

WmaxM(L − o(1))
Θ

(
√

log n

n

)

c(n)×

(

Θ
(

√

n log n + k
)

Θ

(

n

log n

))

,

c
≤ 1

WmaxM(L − o(1))
Θ

(
√

log n

n

)

c(n)×

(

Θ

(

√

n log n +

√

n

log n

)

Θ

(

n

log n

))

=
1

TmaxM(L − o(1))
Θ

(

n +
n

log n

)

= Θ

(

n

Tmax

)

(3.20)

(a) is derived by replacing Tmax with its maximum value, (b) is computed by replacing
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r(n) with Θ

(

√

log n
n

)

and (c) is obtained by replacing k with its maximum value.

The case of n− k =constant is straightforward since we can at most have one

data sent to the access node when all the communications is dominated by the access

node.

Finally, from the analysis of the lower and upper bounds, we derive the follow-

ing tight bound for the capacity this network.

Theorem 3.8 In a random ad hoc network, under the heterogeneous traffic pattern

with one node performing as the destination for k source nodes and n − k nodes have

unicast communications, the overall capacity is

C =







































Θ

(√

n

log n

)

, k = O(
√

n log n)

Θ
(n

k

)

, k = Ω(
√

n log n)

Θ(1). when n − k = C5

(3.21)

proof 3.9 We have shown that the lower and upper bounds capacity of the network is

Θ( n
Tmax

). Further, it is clear that the maximum traffic is always inside the cell with access

node, i.e., Tmax = k + C2(n − k)
√

log n
n

. It is easy to show that when k = O(
√

n log n),

then Tmax = Θ(
√

n log n) and for k = Ω(
√

n log n), we have Tmax = k. The proof is

immediate by combining these results.
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3.4 Discussion

Fig. 3.4 shows the throughput capacity of a wireless network obtained from

(3.21) as a function of the number of sources for the access node. As the number of

the sources for this access node k increases from 1 to Θ(
√

n log n), the capacity of the

network is Θ(
√

n
log n

) which is the well known result computed by Gupta and Kumar

for homogeneous traffic model. We call this region as Homogeneous Traffic region. It is

clear that the capacity of the network in this region is dominated by the uniform unicast

traffic. Once the value of k passes this threshold of Θ(
√

n log n), the capacity of the

network is Θ(n
k
) which is smaller than the capacity of the Homogeneous Traffic region.

The capacity of the network is dominated by the access node which is the bottleneck

in the network and we call this capacity region as Heterogeneous Traffic region. This

result implies that for the cells near the access node, we should assign more resources

(bandwidth or time) to guarantee the data rate for each traffic. Finally if the number of

sources for the access node is such that n − k = C5, then the capacity is Θ(1) which is

the same as broadcast transport capacity [10]. Since the number of sources is relatively

large in this case, we call this capacity region as All to One Traffic region. We can

see that almost all of the nodes have traffic for the access node, thus, for the extreme

case that all the nodes have traffic to the access node, at each time, only one node can

transmit.

Furthermore, the capacity we calculated is a normalized capacity by the maxi-

mum bandwidth. We can see without this normalization, the capacity of the network is
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C

n

k

log

n

n

log

n

n

1

1

logn n n kn

Figure 3.4: The capacity result

nc(n) which is not related to k (see Eqs. (16) and (19)). However, to achieve the same

capacity for all nodes and for different values of k, we need to allocate more bandwidth

to the more congested areas of the network. Fig. 3.5 demonstrates that in the Homoge-

nous Traffic region, the maximum bandwidth needed is not related to k. However, in

the Heterogenous Traffic region, the bandwidth grows linearly with k, which is the price

for keeping the overall capacity the same. Finally, in the All to One Traffic region, the

order of the maximum bandwidth does not change.

max
W

k

log ( )n n c n

( )n c n

logn n n n

( )k c n

Figure 3.5: The maximum bandwidth required corresponding to different k

27



3.5 Conclusion

This chapter presented the first closed-form scaling laws for the capacity of

wireless ad hoc networks with heterogeneous traffic. More specifically, we assumed an

access node with k sources choosing this node as destination and the rest of nodes

in the network, having unicast communications. It was shown that the capacity of

such heterogeneous network is Θ( n
Tmax

). Equivalently, our derivations reveal that, when

n − k 6= constant, then the capacity is equal to Θ
(
√

n
log n

)

for k = O(
√

n log n) and

equal to Θ
(

n
k

)

for k = Ω(
√

n log n). Furthermore, when n − k = constant, then the

capacity is Θ(1). The results demonstrate that, as it should be expected, the capacity

of a heterogeneous network is dominated by the maximum traffic (congestion) in any

area of the network.

Notice that, in this work, we have an important assumption that the bandwidth

of each node can be proportional to the traffic in that node or the corresponding cell.

This may cause a significant waste of the bandwidth. In Chapter 6, we will present the

result without this assumption.
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Chapter 4

The Capacity of Wireless Ad-hoc

Networks with Heterogeneous Traffic

under Physical Model

In this chapter, we will give the capacity result in the wireless network with the

same traffic type as in Chapter 3 but using physical model which is originally defined in

Definition 2.4. However, according to the specific configuration of the network, we need

to modify this definition. In this chapter, the wireless network model will be presented

in Section 4.1. Then we will compute the upper bound and lower bound of the capacity

respectively in Section 4.2 and 4.3.2. Finally, we give the discussion and conclusion of

this work in Section 4.4 and 4.5. This work is presented in [18].
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4.1 Wireless Network Model

Nodes are uniformly distributed in a dense network where the area of the

network is a constant unit square. The heterogeneous traffic consists of data gathering

traffic in which a single node (called the access node) is the destination for k sources in

the network. For the rest of the n − k nodes in the network, we assume random and

uniformly distributed source-destination pairs. Therefore, the source-destination pair

selection for unicast communications is similar to that used by Gupta and Kumar [2].

This network model is shown in Figure 3.1.

The transmission range is the same for all the nodes and the communication

between nodes is point-to-point. A successful communication between two nodes is

modeled according to the physical model, which is modified according to our network

configuration and defined below.

Definition 4.1 Physical Model: Let {Xk; k ∈ K} be the subset of nodes simultaneously

transmitting at the same time over a certain subchannel. All nodes in this subchannel

choose a common power level P for all their transmissions. For each subchannel, the

noise power is N . A node can transmit over several subchannels. A transmission from

a node Xi, i ∈ K, is successfully received by a node Xi(R) if

P
|Xi−Xi(R)|α

N +
∑

k∈K,k 6=i
P

|Xk−Xk(R)|α
≥ β. (4.1)

for every subchannel.

One important assumption of our analysis which is the same as that in Chap-
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ter 3 is that the bandwidth for each traffic is assumed to be the same, which means that

the bandwidth for each node is proportional to its traffic. In another word, the fairness

for each flow is guaranteed. Let’s define bandwidth Wi and traffic Ti for cell i, then

Wi

Ti
= c(n), (4.2)

where c(n) is a pre-determined function of n.

4.2 The Upper Bound of the Capacity

In this section, we compute the upper bound of the capacity. From [2] and [13],

we know that the minimum transmission range under the physical model is Θ
(

1√
n

)

.

Therefore, the maximum number of hops for each source-destination pair is L−o(1)
r(n) =

Θ(
√

n). Note that there are at most n source-destination pairs in the network. Thus,

the total traffic is

∑

l

Tl = Θ(n
√

n). (4.3)

We know that each transmission consumes a disk of radius Θ(r(n)) and these

disks are disjoint. Note that all the traffic are carried by these disjoint disks and the

bandwidth distributed to each cell is proportional to the traffic. Therefore, the upper
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bound of the capacity is given by

Cupper =
the sum of traffic for all nodes

the average number of hops for source-destination pairs

× 1

maximum bandwidth expansion
,

=
1

Wmax
·
∑n

l=1 Wl

L−o(1)
r(n)

=
1

Wmax
·
∑n

l=1 Tlc(n)
L−o(1)

r(n)

,

=
1

Tmaxc(n)
· Θ(n

√
nc(n))

L−o(1)
1√
n

= Θ

(

n

Tmax

)

, (4.4)

where Wmax is the maximum bandwidth and Tmax is the maximum traffic for a cell in

the network.

4.3 The Lower Bound of the Capacity

For the lower bound of the capacity we need to emphasize that there are two

types of traffic in our model. One traffic is associated to the k sources transmitting

packets to the access node and the other traffic stems from the rest of n−k nodes in the

network with unicast communications. Therefore, the routing protocol and scheduling

are defined under this traffic model.

4.3.1 The Routing Scheme and the Scheduling Protocol

The selection of sources for the access node i is based on the technique de-

scribed in [16]. We randomly and uniformly select k locations in the network and

choose the closest nodes to these k locations as sources for the access node. The routing
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trajectory is a straight line Li from access node to these k locations. Then the packets

traverse from each source to destination in a multi-hop fashion passing through all the

cells that cross Li. The side length of each cell dn is selected as Θ(r(n)) = C1

√

log n
n

[2],

where C1 is a positive constant. For the rest of j nodes with unicast traffic where

1 ≤ j ≤ n − k, both selections of source-destination pairs and routing is similar to the

above technique.

For the scheduling scheme, we utilize a TDMA scheme similar to [16] with

some modifications to take into account the heterogeneity of the traffic.

4.3.2 The Lower Bound of the Capacity

For the lower bound of the capacity, we will introduce a specific network struc-

ture which divides the network into square cells. To guarantee the connectivity in the

network, the side length of each cell is chosen as Θ

(

√

log n
n

)

. We will show that the

lower bound of the capacity is still Θ
(

n
Tmax

)

.

4.3.2.1 Case of n − k = Ω
(√

n log n
)

From [15], it can be deduced that the number of lines passing through a cell

with distance x from the access node is upper bounded as

Tl <























2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√

log n

n
l 6= 0

k + C2(n − k)

√

log n

n
l = 0

(4.5)

In the traditional analysis of capacity with homogeneous traffic, the inverse
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of traffic for a cell using a TDMA scheme provides the throughput capacity. Given

that this value varies for different cells in heterogeneous traffic, as mentioned before,

we assign a bandwidth to the cell that is proportional to the number of lines passing

through a cell. This assignment is based on the fact that each link in the network has

the same bandwidth (similar to the approach by Gupta and Kumar) but more allocation

of bandwidth is given to a cell with higher traffic. Clearly, our results demonstrate that

the cell that contains the access node has the highest traffic. If we divide the network

into layers of cells starting from the access node as shown in Fig. 3.3, the traffic for

cells in each layer is the same order. Let’s assume the traffic for each layer is Ti where

i = 1, ...,Θ(
√

n
log n

). Then our bandwidth requirement for each layer is given by

W0

T0
=

W1

T1
= ... =

W
Θ(
√

n
log n

)

TΘ(
√

n
log n

)
= c(n). (4.6)

Note that W0 = Wmax, To = Tmax. This assumption basically means that more band-

width is provided to a cell with higher traffic1.

For the Physical Model, it is important to show that under the schedule given

in Section 4.3.1, the required SINR threshold β can be guaranteed. We can consider

that all the interference comes from cells that are active at the same time. It is obvious

to see that there are at most 8k interfering cells from the kth layer of the network.

Moreover, the distance from an interfering cell is at least k
√

Msn − sn, where M is the

1The bandwidth allocation in this paper is based on the common definition of throughput capacity
that is utilized in literature. Under this assumption, the achievable througput capacity is based the
fact that all the nodes in the network achieve the same rate. However, if one changes this definition of
capacity and allows different nodes to have different throughput capacity, then the bandwidth allocation
should accordingly changes in order to achieve the highest possible throughput.
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number of non-interference groups and sn is the side length of each cell.

Thereafter, for each specific node i, we can calculate a lower bound on the

achieved SINR as shown below.

P
|Xi−Xi(R)|α

N +
∑

k∈K,k 6=i
P

|Xk−Xi(R)|α

(a)

≥
P

(2
√

2sn)α

N +
∑∞

k=1 8k P

(k
√

Msn−sn)α

=

P

(2
√

2)α

Nsα
n + 8P

M
α
2

∑∞
k=1

1
(k− 1√

M
)α

(4.7)

Figure 4.1 shows the relationship between traffic in a cell and allocated bandwidth as

described in Eq. (4.6). Since each layer of cells has different bandwidth requirement,

therefore only portion of the transmitted signal in a layer will interfere with adjacent

cells. For example, when Tk ≥ Ti, the interfering portion of bandwidth for the cells

in layer i from cells in layer k is at most Ti. Similarly, when Tk < Ti, the interfering

bandwidth for the cells in layer i from cells in layer k is at most Tk. So for each

subchannel, the interference may come from part of every layer of the network that is

active at the same time. Since in the inequality (a) in Eq. (4.7), we calculate the entire

signal power while only portion of it may interfere with i, then this value is the lower

bound.

The summation in the denominator converges to a constant value when α > 2
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Figure 4.1: The distribution of the bandwidth in different cell layers of the network.

as described below.

∞
∑

k=1

1

(k − 1√
M

)α

=

∞
∑

k=1

1

(k − 1√
M

)α−1
+

1√
M

∞
∑

k=1

1

(k − 1√
M

)α−1

≤ 1

(k − 1√
M

)α−1
+

∫ ∞

1− 1√
M

1

xα−1

+
1√
M

(

1

(k − 1√
M

)α
+

∫ ∞

1− 1√
M

1

xα

)

=
1

(1 − 1√
M

)α−1
+

(

1 − 1√
M

)−(α−2)

α − 2

+
1√
M

1

(1 − 1√
M

)α
+

1√
M

(

1 − 1√
M

)−(α−1)

α − 1

= constant (4.8)

It is clear from these results that when M is sufficiently large, then the SINR

of an arbitrary subchannel can be made larger than the specific threshold β to satisfy
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the Physical Model (4.1).

The average number of nodes in each cell is proportional to Θ(log n), then the

lower bound capacity is

Clower =
1

MWmax









Θ(
√

n
log n

)
∑

l=1

8lWl

Tl
+

W0

T0









· Θ(log n),

=
1

MWmax









Θ(
√

n
log n

)
∑

l=0

8lc(n) + c(n)









· Θ(log n),

=
1

MWmax
· Θ(

n

log n
+

√

n

log n
) · Θ(log n) · c(n),

= Ω(
c(n)n

Wmax
) = Ω(

n

Tmax
), (4.9)

where M is the TDMA parameter that is required to separate cells in order to satisfy

the physical model.

Note that the capacity defined in this paper is the total capacity since the

traffic for each node is different and per node capacity may not be meaningful.

4.3.2.2 Case of n − k = o
(√

n log n
)

Under this condition, clearly most of the traffic is contributed by the access

node and since each source is sending different packet to the access node, the achievable

capacity is Ω(1) by allowing one source at the time to transmit its packet to the access

node.

Combining the above results, we state the following theorem for the achievable
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lower bound.

Theorem 4.2 The achievable lower bound for a heterogeneous traffic with maximum

number of traffic of Tmax in a cell can be given as follows.

Clower =



















Ω(
n

Tmax

) when n − k = Ω
(

√

n log n
)

Ω(1) when n − k = o
(

√

n log n
)

(4.10)

Finally, from the analysis above, we derive a tight bound for the capacity.

Theorem 4.3 In a random ad hoc network, under the heterogeneous traffic pattern

with one node performing as the destination for k source nodes and other nodes have

unicast communications, the overall capacity is

C = Θ

(

n

Tmax

)

(4.11)

4.4 Discussion

Eq.(4.5) provides the value of Tmax when k is small value compared to n. But

when k is a large number, i.e., n − k = o
(√

n log n
)

, then the dominant traffic in the

network is the data gathering traffic and for computation of Tmax, one can ignore the

contribution of unicast traffic. Under this assumption, then the data gathering traffic

provides the maximum traffic for the access node, i.e., Tmax = k. Thus, Eq. (4.11)
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becomes

C =



















Θ

(√

n

log n

)

, k = O(
√

n log n)

Θ
(n

k

)

, k = Ω(
√

n log n)

(4.12)

Fig. 4.2 shows the throughput capacity of a wireless network obtained from (4.12) as a

function of the number of sources for the access node k. Similarly as Chapter 3, when

k increases from 1 to Θ(
√

n log n), the capacity of the network is dominated by the

unicast traffic and it is equal to the well known result computed by Gupta and Kumar

for unicast communications as Θ(
√

n
log n

). This region is called unicast region. Once

the value of k passes this threshold of Θ(
√

n log n), the capacity of the network is equal

to Θ(n
k
) and it is affected by both the unicast and data gathering traffics. We call this

capacity region as Heterogeneous Traffic region. This result implies that for the cells

near the access node, we should assign more resources (bandwidth or time) to guarantee

the data rate for each traffic. Finally when k = Θ(n), then the capacity is Θ(1) which is

the same as broadcast transport capacity [10]. Since the number of sources is relatively

large in this case, we call this capacity region as All to One Traffic region. We can

see that almost all of the nodes have traffic for the access node, thus, for the extreme

case that all the nodes have traffic to the access node, at each time, only one node can

transmit.

The nodes with higher traffic consume more power for transmission of infor-

mation. Our goal is to demonstrate the relationship between k and maximum required

power. From (4.7), it is easy to observe that the minimum transmit power P for each
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Figure 4.2: The capacity result

subchannel to guarantee the SINR ≥ β condition is

Pmin = Θ(sα
n) = Θ

(

(

log n

n

)α
2

)

. (4.13)

Thus, the maximum required power is

Pmax = PminWmax = PminTmaxc(n). (4.14)

Combining the above result with Eq. (4.5), we arrive at

Pmax =















































Θ

(

(log n)
α
2
+ 1

2

n
α
2
− 1

2

)

c(n), k = O(
√

n log n)

Θ

(

(log n)
α
2

n
α
2

)

kc(n), Ω(
√

n log n) = k = O(n)

Θ

(

(log n)
α
2

n
α
2
−1

)

c(n). k = Θ(n)

, (4.15)
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Figure 4.3 shows the order of the maximum power as a function of k. It is clear that

the node with the maximum required power is the access node since it carried more

traffic than any other node in the network. In the unicast traffic region, the order of

the maximum power for the access node is not growing because the unicast traffic is

the dominant traffic. In the homogeneous traffic region, as k increases, the traffic for

the access node increases and accordingly, this node requires more transmit power. In

the final region of all to one traffic, the traffic in the network is dominated by the data

gathering scheme and the access node carries majority of the traffic in the network. The

maximum transmit power is achieved in this region because the traffic for the access

node has reached its order upper bound traffic. These results imply that if the traffic for

the access node is restricted with k = O(
√

n log n), then the optimal power consumption

for the access node can be attained.

max
P

k

1

2 2

1

2 2

(log )
( )

n
c n

n

2

1
2

(log )
( )

n
c n

n

logn n n n

2

2

(log )
( )

n
kc n

n

Figure 4.3: The Growth of Power as a function of k
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4.5 Conclusion

This chapter presents a closed-form scaling law for the capacity of wireless

ad hoc networks with heterogeneous traffic under physical model. More specifically,

a combination of unicast communications and data gathering has been chosen for this

paper. It is shown that the capacity of such heterogeneous network is Θ( n
Tmax

). Further,

the capacity is equal to Θ
(
√

n
log n

)

for k = O(
√

n log n) and equal to Θ
(

n
k

)

for k =

Ω(
√

n log n). The results confirms our intuition that the capacity of a heterogeneous

network is dominated by the maximum traffic (congestion) in any area of the network.
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Chapter 5

The Capacity of Wireless Ad-hoc

Networks with Heterogeneous Traffic

under Information Theoretical Model

In Chapter 3 and 4, we presented the capacity results of wireless network with

a specific heterogeneous traffic type by using the protocol model and physical model.

However, both of the protocol model and physical model are a simplified version of the

information theoretical model. This means that it is too difficult to solve this problem

by using information theoretical model so we have to seek some other simpler problem

that we can solve. In this chapter, we try to solve the same network capacity problem

as stated in Chapter 3 and 4 but using the original information theoretical approach

without any constraint on the successful transmission condition.

This chapter is organized as follows. In Section 5.1, we will give the assump-
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tions and wireless network model. Then we will give the first important result in this

work in Section 5.2 which is the Separation Theorem. In Section 5.3, the upper bound

of the capacity is calculated. The achievable aggregate throughput of the network will

be computed in Section 5.4. Then we will discuss the result in Section 5.5. This work

is published in [19].

5.1 Wireless Network Model

In this section, we provide the wireless network models. For different trans-

mission schemes, we use the differently popular wireless network models which are the

information theoretical model and the protocol model. We consider a network with

nodes uniformly distributed in a dense network with constant area A. The bandwidth

of the network is assumed to be a constant W . For the data-gathering traffic, a single

node, called the access point or access node, is the destination for k sources in the net-

work. For the rest of the s = n − k nodes in the network, source-destination pairs are

selected randomly and uniformly. This network model is shown in Fig 3.1.

Notice that both s and k can be a function of n.

To get the actual aggregate throughput of the network, we use the informa-

tion theoretical model to study this network which means that the actual information

that can be transmitted in the network is calculated and we do not have any specific

assumptions on the successful transmission condition.

For each source node si, where i = 1, · · · , n, the data rate is denoted by Rsi
(n).
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Similarly, for each destination node dj , where j = 1, · · · , s + 1, the rate is denoted by

Rdj
(n). The capacity of the network is defined as

C(n) = max
Rsi

and Rdj
;i=1,·,n;j=1,·,s+1



min





n
∑

i=1

Rsi
(n),

s+1
∑

j=1

Rdj
(n)







 (5.1)

The total bandwidth in the network is W hertz. Furthermore, the total power for

transmission in the network is assumed to be P . The complex channel gain between

nodes i and k at time m is given by

Hik[m] =

√
G exp(jθik[m])

d
α
2
ik

, (5.2)

where dik is the distance between nodes i and k, θik[m] is the random phase at time

m which is uniformly distributed between [0, 2π]. For all pairs of i and k, θik[m]s are

independent and identically distributed (i.i.d.) random variables. Note that θik[m] and

dik are assumed to be independent. The parameters G and α > 2 are constants. The

channel parameter is always known to the receiver during transmission and the phase

is a fast fading1. The received signal by node i at time m is given by

Yi =
n
∑

k=1

Hik[m]Xk[m] + Zi[m], (5.3)

1Our channel assumption is identical to the one used by Özgür et al. [1] and the reader can read the
detailed justification for this channel model in [1].
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where Xk[m] is the transmitted signal by node k at time m and Zi[m] is white circularly

symmetric Gaussian noise of variance N0. The notations Ki and Ci for any integer i

represent constant values.

5.2 Separation Theorem

We first provide a separation theorem for heterogeneous traffic in wireless net-

works. Then, the achievable rate for this network model is presented.

Theorem 5.1 Separation Theorem for Heterogeneous Traffic in Wireless Networks:

Consider a network with total available bandwidth W in which k1 traffic classes of equal

priority are distributed uniformly in the network with each traffic class utilizing W
k1

band-

width. Separating the traffic classes and using a separate frequency and radio per node

for each traffic class provides the optimum aggregate order capacity for the network.

proof 5.2 Let n be the total number of nodes in the network and for each traffic class

Ti, i = 1, . . . , k1. We prove this theorem by induction.

• First, we assume that the types of traffic classes are Ti, i = 1, . . . , z, where z < k1.

In this case, the optimum order of capacity can be achieved by using the separation

theorem. Then, we will investigate capacity when the number of traffic classes is

z + 1.

Firstly, we consider two different networks each of which only contains one traffic

class. One is the network containing traffic classes Ti, i = 1, . . . , z with bandwidth
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W . By using the separation theorem, we can get the optimum order capacity is

Θ (Cz). The other is the network containing traffic class Tz+1 with bandwidth W ,

by using the optimum transmission scheme, the maximum capacity we can get

is Cz+1. Thus, from the order of the capacity point of view, since the optimum

transmission schemes are used in both of the networks, when we combine the traffic

classes in both networks into one network, which means we consider the network

containing traffic classes Ti, i = 1, . . . , z+1 with bandwidth W , the optimum order

capacity we can get is at most Θ (Cz) + Cz+1.

Secondly, we will use the separation theorem into the network containing the traffic

classes Ti, i = 1, . . . , z+1 with bandwidth W . When the number of traffic classes is

z, the bandwidth for each traffic is Wz = W
z

according to the separation theorem.

When the number of traffic classes is z + 1, the bandwidth for each traffic is

Wz+1 = W
z+1 . We can find that Wz+1 = z

z+1Wz. Because z is a constant unrelated

to n, the order of the bandwidth for each traffic is not changed. Now we separate

the network into two parts. One is the network Nz containing the traffic classes

Ti, i = 1, . . . , z with bandwidth zWz+1 = z2

z+1Wz = z
z+1W . The other is the

network Nz+1 including the traffic classes Tz+1 with bandwidth W
z+1 . By using the

separation theorem, the optimum order capacity for network Nz is Θ (C ′
z) which

is equal to Θ (Cz) since the order of the bandwidth is not changed. By using

the optimum transmission scheme, the optimum capacity for the network Nz+1 is

C ′
z+1 which has the same order as Cz+1 still since the order of the bandwidth is

not changed. Thus, in the network containing all the traffic with bandwidth W ,
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the capacity by using separation theorem is Θ (C ′
z) + C ′

z+1 = Θ (Cz) + Cz+1 which

is the optimum order of the capacity for the network.

• Second, we prove the case that z = 2, which is the simplest case of the network

with heterogeneous traffic. We assume that the two types of traffic are T1 and T2.

Firstly, we consider the network only with traffic T1. In this network, by operating

the optimum transmission scheme, when the available bandwidth is W , we can get

the capacity C1 for this network. When the available bandwidth is W
2 , the capacity

of this network is C ′
1. We can easily get Θ (C1) = Θ (C ′

1). Then, we consider the

network only with traffic T2. Similarly, we can get that, by using the optimum

transmission scheme, when the bandwidth is W , the capacity we can get is C2 and

when the bandwidth is W
2 , the capacity we can get is C ′

2 and Θ (C2) = Θ (C ′
2). Since

C1 and C2 are the capacity for these two different networks with different traffic,

thus the optimum order of the capacity we can get in the network with both types of

traffic is at most Θ (C1)+Θ (C2) = Θ (C1 + C2). If we use the separation scheme,

the capacity we can get is Θ (C ′
1)+Θ (C ′

2) = Θ (C1)+Θ (C2) = Θ (C1 + C2) which

is the optimum order capacity. Thus, we prove that when there are only two types

of traffic in the network, the separation theorem can give us the optimum order of

the capacity.

Thus, from above proof, we can get the separation theorem can give us the

optimum order of the capacity for the network.
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This simple theorem provides a significant result for heterogeneous traffic net-

works. The theorem states that, by utilizing MC-MR systems, the nodes in the network

that are not sources or destinations of a particular traffic class can be used as relays

to improve the capacity of the network. We will show some examples of this intuitive

result in this paper.

Another important implication of the above theorem is the fact that all analysis

for homogeneous traffic can be used for heterogeneous traffic, as long as we allow some

nodes in the network to participate as relays. Then the capacity of the network can be

computed for that particular traffic pattern by changing the number of relays.

5.3 An Upper Bound on The Network Capacity

The information-theoretic upper bound of the aggregate throughput in wireless

networks is derived. This upper bound is compared subsequently with the achievable

lower bound by using MIMO cooperative scheme to demonstrate the effectiveness of the

routing strategies utilized in this paper.

Theorem 5.3 In a wireless network with k sources for the access node and s source-

destination pairs where s + k = n, the capacity is upper bounded by

C(n) ≤ K1(s + 1) log n (5.4)

where K1 is a constant.
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proof 5.4 It is clear from Eq. (6.12) that

C(n) ≤ max
Rdj

;j=1,·,s+1





s+1
∑

j=1

Rdj
(n)



 . (5.5)

For any arbitrary destination j, the network is equivalent to a multiple-input single-

output channel with upper bound given by ( [20], Eq. (5.31))

Rdj
(n) ≤ log



1 +
P

N0

k=n
∑

k=1,k 6=j

G

dα
kj



 . (5.6)

Özgür et al. [1] showed that

Pr

(

dmin <
1

n1+δ

)

≤ n

(

1 −
(

1 − π

n2+2δ

)n−1
)

. (5.7)

This probability goes to zero as n tends to infinity, which means that the distance between

any two nodes is at least 1
n1+δ . Accordingly, Eq. (8.9) becomes

C(n) ≤ (s + 1) log

(

1 +
PG

N0
nα(1+δ)+1

)

= K1(s + 1) log n (5.8)

From Theorem 5.3, we observe that the upper bound of the capacity scales as

Θ((s + 1) log n).
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5.4 Main Results by Using MIMO Cooperative Transmis-

sion Scheme

The following theorem establishes one of the main contributions of this paper,

and the next two sections is dedicated to proving this theorem.

Theorem 5.5 Consider a network with one access node receiving information from k

sources and s different nodes that select random destinations uniformly from all other

nodes in the network. By using the MC-MR scheme, the achievable aggregate throughput
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is given by

R(n)Co =






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


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
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





















































































































































Ω((s + 1) log n), s = O

(

(

n

log n

) 1
2+ε2+ε3

)

,

Ω
( n

s1+ε2+ε3
+ log n

)

, Ω

(

(

n

log n

)
1

2+ε2+ε3

)

= s

= O

(

(

n log n

log log n

)
1

2+ε2+ε3

)

,

Ω

(

s log log s

log s
+ log n

)

, Ω

(

(

n log n

log log n

) 1
2+ε2+ε3

)

= s

= O

(

(

n log n

log log n

)
1
2

)

,

Ω
(n

s
+ log n

)

, Ω

(

(

n log n

log log n

)
1
2

)

= s

= O
(

n
1

2−ε1+ε4

)

,

Ω
(

s1−ε1+ε4 + log n
)

, Ω
(

n
1

2−ε1+ε4

)

= s

= O(n)

(5.9)

where ε1, ε2, ε3, and ε4 are positive small numbers between 0 and 1 and ε4 < ε1.

Note that there are two terms corresponding to unicast and data gathering

communications for each capacity region. For example, in the first capacity region

of Eq. (5.9), the terms s log n and log n are related to unicast and data-gathering

communication, respectively. It can be easily shown that the per-node throughput

capacity of the unicast communication for our technique is always greater than that

of [1], while the total unicast capacity is smaller than that of [1], because there are only
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s < n unicast pairs in our scheme. The reason for this capacity improvement is the

use of relays in our scheme. We also note that in [1] all nodes were participating in

unicast communication, while in [8], there are few unicast sessions and the rest of the

nodes are relays. One of the results in this paper is the computation of the throughput

capacity using MIMO cooperation when the number of relays in the network changes

as a function of n. We also observe that, for the first capacity region, the throughput

capacity is equal to the upper bound capacity that was derived in Section 5.3. This is

the first paper to report per node throughput of log n for unicast communications.

In the following analysis of the achievable throughput for the network with

heterogeneous traffic, we divide the bandwidth into W1 and W2 where W1 + W2 = W

and distribute bandwidth W1 to the network with unicast traffic and W2 to the data-

gathering traffic. Moreover, we assume that the total power in the network is a positive

constant P . we distribute P1 to the network of unicast traffic and P2 to the network

with data-gathering traffic, where P1 + P2 = P .

5.4.1 Capacity Analysis for Unicast Traffic

Based on the separation theorem, it is sufficient to derive the throughput ca-

pacity for each traffic class independently without being concerned about the optimality

of our result. Our main approach for the computation of unicast traffic capacity is based

on the hierarchical MIMO cooperation approach introduced by Özgür et al. [1]. How-

ever, given that we take advantage of relays in this paper, we modify the Three-Phase

scheme in [1] based on the number of relays available in the network in order to maxi-
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mize the achievable capacity. The details of these schemes are described in the rest of

this section.

5.4.1.1 The Case of s = O

(

(

n
log n

) 1
2+ε2+ε3

)

First, we introduce a useful lemma from [7].

Lemma 5.6 Let B(m,n) be the random variable that counts the maximum number of

balls in any bin when we throw m balls independently and uniformly at random into n

bins. Then

B(m,n) =















































































Θ

(

log n

log n
m

)

, if m <
n

log n
,

Θ

(

log n

log n log n
m

)

, if
n

poly log n
≤ m ≪ n log n,

Θ (log n) , if m = c · n log n

for some constant c,

Θ
(m

n

)

, if m ≫ n log n.

(5.10)

By dividing the network into s1+ε2 clusters and using Lemma 5.6, the following

theorem can be proved.

Theorem 5.7 Consider a network with n nodes and s source nodes distributed uni-

formly in the network such that s = nα1 and 0 ≤ α1 < 1
1+ε2+ε3

. If the network is divided

into s1+ε2 clusters, there are at most Θ(1) source nodes and Θ
(

n
s1+ε2

)

nodes w.h.p. in

each cluster. In any circle with radius
√

A

2s
1+ε2+ε3

2

or
√

A

2n
(1+ε2)β1

2

, where 0 < β1 < 1, there

are Θ
(

n
s1+ε2+ε3

)

or Θ
(

n

n(1+ε2)β1

)

nodes, respectively w.h.p.
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The proof of this theorem is given in Appendix 8.1. To simplify the analysis,

we assume that there are exactly K2
n

s1+ε2+ε3
nodes in each circle with radius

√
A

2s
1+ε2+ε3

2

,

K2
n

n(1+ε2)β1
nodes in each circle with radius

√
A

2n
(1+ε2)β1

2

, and K3 source nodes in each

cluster. We now introduce our Three-Phase communication scheme for each capacity

region. Without loss of generality, the source nodes are considered at the center of

each cluster to simplify the analysis. The total transmit power required to transmit all

unicast traffic is P1 Watts and for each phase is P ′
1 = 1

3P1.

Phase 1. Distribution of packets from source to relays in the same

cluster: As in previous work [1], we divide the entire network into smaller cells or

clusters of square shape. If the network area is divided into s1+ε2 clusters, then each

cluster has an area of A
s1+ε2

. In order to avoid interference, the cells are grouped into

K6 non-interfering groups using a TDMA scheme as shown in Fig. 5.1. We divide this

region into two regions of s = O
(

nβ1
)

and Ω
(

nβ1
)

= s = O

(

(

n
log n

) 1
2+ε2+ε3

)

where β1

is an arbitrarily small positive constant number. Note that there are at most K3 sources

in each cluster. When Ω
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, then we let K2
n

s1+ε2+ε3
nodes

in the circle of radius
√

A

2s
1+ε2+ε3

2

help each source in the cluster to transmit information

as shown in Fig. 5.2. For s = O
(

nβ1
)

, it is easy to show that K2
n

s1+ε2
> K2

n

n(1+ε2)β1
.

Therefore, only K2
n

n(1+ε2)β1
relay nodes in the circle of radius

√
A

2n
(1+ε2)β1

2

help each source

in the cluster to transmit information. These nodes operate as relays in the network.

Each source node transmits K2
n

s1+ε2+ε3
(or K2

n

n(1+ε2)β1
)blocks of information based on

the size of s to the relays in its cluster. Each block has a length of L. At the end of

phase 1, each relay in the circle has received a different block of information. The next
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Theorem describes the total aggregate throughput in the network.

T

6K r

r

Figure 5.1: Grouping of interfering clusters in the TDMA scheme. Sn is the length of
each cluster. K6 is the number of non-interfering group. T is a non-interfering group.

Theorem 5.8 Consider a network organized into s1+ε2 clusters. Then by implement-

ing the TDMA scheme described above when s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, the aggregate

throughput for the network is s(K4 log n+K5)
K6

.

The proof of this theorem is given in Appendix 8.2.

When Ω
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, then the transmission time required

to complete this phase is

tPhase 1 =
sK2L

n
s1+ε2+ε3

s(K4 log n+K5)
K6

=
K6K2L

n
s1+ε2+ε3

K4 log n + K5
. (5.11)
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1s
3s

3s

2

1

2

1

2

A

s

r

Figure 5.2: The broadcasting transmission in Phase 1. When Ω
(

nβ1
)

= s =

O

(

(

n
log n

)
1

2+ε2+ε3

)

, the radius r is chosen as
√

A

2s
1+ε2+ε3

2

, and when s = O
(

nβ1
)

, the

radius r is chosen as
√

A

2n
(1+ε2)β1

2

.

When s = O
(

nβ1
)

, then the transmission time required to complete this phase

is

tPhase 1 =
sK2L

n

n(1+ε2)β1

s(K4 log n+K5)
K6

=
K6K2L

n

n(1+ε2)β1

K4 log n + K5
. (5.12)

Phase 2. MIMO Cooperation Transmission: At the beginning of the

second phase, all nodes in the cluster containing the source nodes decode the information

into a finite number of bits. This information is mapped into C1
n

s1+ε2+ε3
(or C1

n

n(1+ε2)β1

when s = O
(

nβ1
)

) symbols, where C1 is a constant. Then the source nodes along

with the relays form a distributed MIMO system to transmit their information to the

destinations and the relays surrounding the destinations in that cluster (see Fig. 5.3).

Given that there are s sources in the network, there are s MIMO transmissions to
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complete this phase.

s

d

Figure 5.3: MIMO Cooperation Transmission. The black nodes represent sources or
destinations. The gray nodes are the relays.

The aggregate throughput for this phase is given by the following lemma.

Lemma 5.9 The aggregate throughput for the MIMO cooperation transmission scheme

is at least K7
n

s1+ǫ2+ǫ3
when Ω

(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

and K7
n

n(1+ε2)β1
when

s = O
(

nβ1
)

for the MIMO quantized channel.

This lemma is proved in [1]. It is easy to show that the total required time for

Phase 2 is tPhase 2 = Θ(s) = C1
K7

s.

Phase 3. Transmission from Relays to Destination: Phase 3 is the

reverse of phase 1 with relays in the destination cluster quantizing the observed in-

formation and transmitting them sequentially to the destination. The transmission

procedure is shown in Fig. 5.4. Using Lemma 6.13 it can be proved [1] that K7
n

s1+ε2+ε3
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(or K7
n

n(1+ε2)β1
for s = O

(

nβ1
)

) throughput can be achieved. Note that the TDMA

scheme for parallel transmissions in clusters is implemented for Phase 3.

r

3d
1d

2d

2

1

2

1

2

A

s

Figure 5.4: The one to one transmission in Phase 3. When Ω
(

nβ1
)

= s =

O

(

(

n
log n

) 1
2+ε2+ε3

)

, the radius r is chosen as
√

A

2s
1+ε2+ε3

2

, and when s = O
(

nβ1
)

, the

radius r is chosen as
√

A

2n
(1+ε2)β1

2

.

From the above discussion, the time requirement for Phase 3, the total time

and the aggregate throughput as the result of three phases can be given as follows.

When Ω
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, then

tPhase 3 =
sC2C3

n
s1+ε2+ε3

s(K5+K4 log n)
K6

=
K6C2C3

n
s1+ε2+ε3

K5 + K4 log n
, (5.13)
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ttotal = tPhase 1 + tPhase 2 + tPhase 3

=
K6K2L

n
s1+ε2+ε3

K4 log n + K5
+

C1s

K7
+

K6C2C3
n

s1+ε2+ε3

K5 + K4 log n
, (5.14)

and

R1(n) =
K2Ls n

s1+ε2+ε3

K6K2L n

s1+ε2+ε3

K4 log n+K5
+ C1s

K7
+

K6C2C3
n

s1+ε2+ε3

K5+K4 log n

≥ K8s log n. (5.15)

The lower bound in (5.15) is correct when s = O

(

(

n
log n

)
1

2+ε2+ε3

)

.

When s = O
(

nβ1
)

, then

tPhase 3 =
sC2C3

n

n(1+ε2)β1

s(K5+K4 log n)
K6

=
K6C2C3

n

n(1+ε2)β1

K5 + K4 log n
, (5.16)

ttotal = tPhase 1 + tPhase 2 + tPhase 3

=
K6K2L

n

n(1+ε2)β1

K4 log n + K5
+

C1s

K7
+

K6C2C3
n

n(1+ε2)β1

K5 + K4 log n
, (5.17)

and

R1(n) =
K2Ls n

n(1+ε2)β1

K6K2L n

n(1+ε2)β1

K4 log n+K5
+ C1s

K7
+

K6C2C3
n

n(1+ε2)β1

K5+K4 log n

≥ K8s log n. (5.18)
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The lower bound in (5.18) is correct when s = O
(

n1−(1+ε2)β1

log n

)

.

For the rest of this section, we use the Three-Phase communication with slight

modifications based on the value of s. Therefore, we only mention the differences be-

tween the cases and the Three-Phase scheme that we described above.

5.4.1.2 The Case of Ω

(

(

n
log n

) 1
2+ε2+ε3

)

= s = O

(

(

n log n
log log n

) 1
2

)

Phase 1: The only differences in this region is the fact that we divide the

network into s clusters which results in Θ
(

log s
log log s

)

sources for each cluster. Similar to

Theorem 5.7, it can be proved that there are Θ
(

n
s

)

nodes in each cluster and all these

nodes will be used as relays unlike previous section that we only used nodes inside a

circle. The transmission scheme in this case is shown in Fig. 5.5 The following theorem

can be proved for this phase.

Theorem 5.10 The link capacity between any two nodes in a cluster under Phase One

and Phase Three of this capacity region is at least Θ(1).

The proof of this theorem is omitted due to page limitations. The aggregate throughput

in this phase is Θ(s) = K11s. Therefore, the time needed in this phase is given by

t′Phase 1 ≤
sK9

log s
log log s

K10L
(

n
s

)

K11s
=

K9K10Ln log s
log log s

K11s
. (5.19)

Phase 2: This phase is also identical to previous one except that the aggregate

throughput is K12

(

n
s

)

for transmitting C4
n
s

symbols, since all nodes in the cluster are

used for the cooperative MIMO transmission as shown in Fig. 5.6. Therefore, the
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1s
3s

3s

s
A

Figure 5.5: The one-to-one transmission in Phase 1, when Ω

(

(

n log n
log log n

) 1
2+ε2+ε3

)

= s =

O (n).
√

As is the length of each cluster and its has different value for different region
of s.

s

d

Figure 5.6: MIMO cooperation transmission in Phase 2, when Ω

(

(

n log n
log log n

) 1
2+ε2+ε3

)

=

s = O (n).
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required time for this phase is

t′Phase 2 =
sC4

(

n
s

)

K12

(

n
s

) =
C4s

K12
. (5.20)

Phase 3: This phase is similar to previous one except that the aggregate

throughput is K11s since all nodes in the cluster are used for deliver the information.

The transmission scheme is shown in Fig. 5.7.

1d3d

3d

s
A

Figure 5.7: The one-to-one transmission in Phase 3, when Ω

(

(

n log n
log log n

) 1
2+ε2+ε3

)

= s =

O (n).
√

As is the length of each cluster and its has different value for different region of
s.

The total required time for this phase can be easily derived as

t′Phase 3 ≤
sK9

log s
log log s

C5C3

(

n
s

)

K11s
=

K9C5C3n
log s

log log s

K11s
. (5.21)
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Therefore, the aggregate throughput in this region of s is

R2(n) ≥ sK10L
(

n
s

)

K9K10Ln
log s

log log s

K11s
+ C4s

K12
+

K9C5C3n
log s

log log s

K11s

.

(5.22)

When s = O

(

(

n log n
log log n

) 1
2

)

, then the first and third terms in the denominator

are the dominant factors. Hence, the rate can be written as

R2(n) ≥ sK10L
(

n
s

)

2

(

K9K10L
log s

log log s

K11
+

K9C5C3
log s

log log s

K11

)

n
s

,

= K13
s log log s

log s
. (5.23)

The Three-Phase approach that was described in Section 5.4.1.1 is optimum

for that region. However if we use this approach for the second capacity region, it will

reduce the capacity from the peak of first capacity region. Now the question is that

if we use Section 5.4.1.1 scheme in this region, at what point the throughput capacity

for the two schemes are equal, i.e. Θ(R1(n)) = Θ(R2(n))? It turns out that when

Ω

(

(

n
log n

)
1

2+ǫ2+ǫ3

)

= s, then R1(n) can be approximated as R1(n) = Θ
(

n
s1+ε2+ε3

)

. For

the same capacity region, it is easy to show that R2(n) = Θ
(

s log log n
log n

)

2. By making the

two rates R1(n) and R2(n) equal, we arrive at s = Θ

(

(

n log n
log log n

) 1
2+ε2+ε3

)

. Therefore

when Ω

(

(

n
log n

) 1
2+ε2+ε3

)

= s = O

(

(

n log n
log log n

) 1
2+ε2+ε3

)

, we use the transmission scheme

2we used the fact that in this region, s = nγ for some constant value of γ.
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shown in Section 5.4.1.1, and for the rest of second capacity region, we utilize the second

Three-Phase approach that we explained here. By doing this, the maximum throughput

capacity is achieved in the second capacity region.

5.4.1.3 The Case of Ω

(

(

n log n
log log n

) 1
2

)

= s = O(n)

For this region, given that the number of source-destination pairs is large, the

original Hierarchical MIMO cooperation scheme of [1] provides the highest throughput

capacity. The main feature of the Hierarchical Cooperation scheme is the fact that

each cluster is further divided into smaller clusters and the distributed MIMO system

is utilized in a hierarchical fashion.

Let As denote an area of a cluster. From Theorem 5.7, it can be shown that

the number of sources in each cluster is Ms = Θ(Ass) = K14Ass and the total number

of nodes in each cluster is Ns = Θ
(

Msn
s

)

= K15

(

Msn
s

)

as long as the following condition

is satisfied.

As = ω

(

A

s

)

(5.24)

Note that the communication scheme for each hierarchy is very similar to that

of the previous section. Due to page limitations, we only state the differences in each

communication phase.

Phase 1: This phase is identical to Phase 1 in the previous section, except that

there are K14Ass source nodes and K15

(

Msn
s

)

nodes in each cluster. The transmission

scheme is shown in Fig. 5.5. Besides, each node transmits K15

(

Msn
s

)

blocks of bits to
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relays and the link throughput is K16M
b
s where b is a constant between zero and one

related to the number of hierarchies. The time required for this phase is

t′′Phase 1 =
Ms · K6K15L

(

Msn
s

)

K16M b
s

. (5.25)

Phase 2: As shown in Fig. 5.6, this phase is also similar to that in the previous

section, except that the total number of transmitted bits in one cluster for each source

is C6

(

Msn
s

)

and the aggregate throughput for the network is K17

(

Msn
s

)

symbols. The

required time to finish this phase is

t′′Phase 2 =
sC6

(

Msn
s

)

K17

(

Msn
s

) =
C6

K17
s. (5.26)

Phase 3: This phase is similar to Phase 3 as shown in Fig. 5.7 in the previous

section with link throughput in the network as K16M
b
s . The required time to complete

this phase is

t′′Phase 3 =
Ms · K6C7C3

(

Msn
s

)

K16M b
s

. (5.27)

Thus, the total required time is

t′′total =
Ms · K6K15L

(

Msn
s

)

K16M b
s

+
C6

K17
s +

Ms · K6C7C3

(

Msn
s

)

K16M b
s

. (5.28)
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Then, the aggregate throughput for the network is

R3(n) =
s · K15L

(

Msn
s

)

t′′total
=

K18Msns

K19M
2−b
s n + K20s2

, (5.29)

where K18 = K15L, K19 = K6K15L
K16

+ K6C7C3
K16

and K20 = C6
K17

.

By computing the derivative of R3(n) with respect to Ms and equating it to

zero, we have

Ms =

(

K20

K19(1 − b)

) 1
2−b
(

s2

n

)
1

2−b

= K21

(

s2

n

)
1

2−b

, (5.30)

where K21 =
(

K20
K19(1−b)

)
1

2−b
.

It can be shown from Eq. (6.21) that the number of sources in each cluster is

at least a constant value when s = ω(
√

n), which guarantees that the number of clusters

is less than the number of sources and fulfills the condition in Eq. (6.24). Therefore,

the aggregate throughput is given by

R3(n) =

K18

(

K21

(

s2

n

) 1
2−b

)

ns

K19

(

K21

(

s2

n

)
1

2−b

)2−b

n + K20s2

,

=
K18K21

K19K
2−b
21 + K20

n
1−b
2−b s

b
2−b

(a)
= K22s

1
2−b

(n

s

)
1−b
2−b

,

= K22s
1

2−b
+logs(n

s )
1−b
2−b

= K22s
( 1

2−b
+ 1−b

2−b
logs(n

s )),

(b)
= K22s

1−ε1+ε4. (5.31)
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Equality (a) in the above equation is derived by defining K22 = K18K21

K19K2−b
21 +K20

and equality (b) is obtained by letting ε1 = 1−b
2−b

and ε4 = 1−b
2−b

logs

(

n
s

)

. It is easy to

show that ε4 ≤ ε1 in all cases. Note that the result from this scheme is similar to that

of [1] when s = n. As in [1], if the capacity in the current hierarchy is K22s
b, then the

capacity in the next hierarchy is K22s
( 1

2−b
+ 1−b

2−b
logs(n

s )), which can be shown to increase

monotonically. Now we investigate the case when the maximum capacity is achieved or

equivalently,

1

2 − b
+

1 − b

2 − b
logs

(n

s

)

= 1. (5.32)

This equality is satisfied when s =
√

n or b = 1. However s =
√

n is not acceptable,

because it violates the condition in Eq. (6.24). In addition, b is always smaller than

one and, therefore, the capacity of phase three cannot reach its maximum of Θ(s).

Now the question is for what value of s we have Θ(R2(n)) = Θ(R3(n)) in

this capacity region. Following a similar procedure as in the previous section, it can

be proved that s = Θ
(

n
1

2−ε1+ε4

)

. Similarly, this capacity region can be divided into

two regions. When Ω

(

(

n log n
log log n

)
1
2

)

= s = O
(

n
1

2−ε1+ε4

)

, then R2(n) provides a higher

throughput capacity of K ′
13

n
s

and for
(

n
1

2−ε1+ε4

)

= s = O(n), R3(n) gives K22s
1−ε1+ε4

throughput capacity.

5.4.2 Capacity Analysis for Data-Gathering Traffic

This section is dedicated to computation of achievable capacity for Many-to-

One Traffic. We assume that a bandwidth of W2 = W − W1 is allocated to this traffic.
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Our analysis is similar to the method used in [9], with the exception that nodes are

uniformly distributed in a square plane in this paper as opposed to sphere in [9]. It can

be proved that the upper bound is also Θ (log n), which is similar to the lower bound.

We adopt a Two-Phase scheme that utilizes η4P2 and (1 − η4)P2 Watts for

power consumption in Phases 1 and 2, respectively.

Phase 1. Broadcasting Transmission: In the first phase, only one of

the source nodes broadcast its information to the nodes of radius r around it. The

transmission is shown in Fig. 5.8.

A

1s3s

2s r

d

Figure 5.8: The broadcasting transmission in Phase 1. In this graph s1, s2 and s3 are
the source nodes and d is the access node. r = n−ε5, where ε5 is a constant between 0
and 1.

If r is small enough, all the nodes in the circle with radius r can decode

the information. The aggregate throughput we can achieve is given by the following

theorem.
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Theorem 5.11 Let r = n−ε5, where ε5 for 0 ≤ ε5 ≤ 1. Then with bandwidth W2 and

total transmit power η4P2, an aggregate throughput of at least K23 log n + K24 can be

achieved.

This theorem is proved in Appendix 8.3.

Phase 2. Cooperative Many-to-One Transmission: As shown in Fig. 5.9,

in the second phase, all the relays within a radius of r transmit the data along with the

source node, thus creating a distributed MISO system.

A

1s
3s

2s r

d

Figure 5.9: The cooperative many to one transmission in Phase 2. In this graph s1, s2

and s3 are the source nodes and d is the access node. r = n−ε5, where ε5 is a constant
between 0 and 1.

The aggregate throughput that can be achieved is given by the following the-

orem.

Theorem 5.12 The aggregate throughput of the cooperative Many-to-One transmission

scheme is at least K25 log n + K26.
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This theorem is proved in Appendix 8.4. Therefore, the total throughput capacity for the

data gathering scheme is RMany-to-One(n) = K27 log n+K28 where K27 = min(K23,K25)

and K28 = min(K24,K26).

The total throughput capacity in the network as a result of these two types of

traffics is the summation of their individual rates, i.e., R(n)Co = R1(n)+RMany-to-One(n).

The result is provided in Theorem 5.5.

5.5 Discussion

The first major contribution of this chapter is the separation theorem for het-

erogeneous traffic. This simple theorem states that when there are multiple classes of

traffic in the network, a simple way to achieve the maximum order throughput capacity

is to allow all nodes in the network to operate on a single traffic class for an assigned

bandwidth. This result implies that multiple-radio multiple-channel systems are order-

optimum for heterogeneous traffic. The main reason for this result is the fact that nodes

that are not part of a specific traffic can be utilized as relays [8], which clearly improve

the throughput capacity of the network.

The second major contribution of these two sections is the computation of the

achievable throughput capacity when the number of relays and source-destination pairs

are changing as a function of n. Gastpar and Vetterli [8] have solved this problem when

there is only one source-destination pair in the network and the rest of the nodes are

relays. We have shown different forwarding strategies when the ratio between relays and
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unicast sessions changes by utilizing an extended version of the three-phase approach

introduced in [1]. Our results also corroborate previous results obtained in [1] when the

number of source-destination pairs is n and in [8] when there are Θ(1) source-destination

pairs in the network.

Note that, in the last capacity region, the achievable capacity is n1−ε1+ε4

instead of capacity of n1−ε1 as reported in [1]. The gain of nε4 for ε4 = 1−b
2−b

logs

(

n
s

)

is

achieved by employing relays to improve the throughput. This gain reduces as s tends

to n, because ε4 → 0.

The unicast capacity for Ω

(

S2 =
(

n log n
log log n

)
1

2+ε2+ε3

)

= s = O

(

S3 =
(

n log n
log log n

)
1
2

)

is Θ
(

s log log s
log s

)

. However, if the number of sources in each cluster is a constant value

instead of a random variable, then it is easy to show that a capacity of Θ(s) can be

achieved.

Fig. 5.10 plots the capacity region that was derived in (6.19). From this figure,

we see that, when the number of unicast sessions is from 1 to Θ

(

S1 =
(

n
log n

) 1
2+ε2+ε3

)

,

the majority of nodes are part of Many-to-One Traffic and we call this region as Many-

to-One Traffic. The achieved capacity in this region is the optimum value. When

Ω (S1) = s = O
(

S4 = n
1

2−ε1+ε4

)

, then the number of nodes for both traffic patterns are

comparable. Hence, we call it Heterogeneous Traffic region. It is not clear whether our

achievable capacity region is optimum for this region. Finally when s = Ω (S4), then

majority of nodes are involved in unicast communication and we call this region Unicast

traffic.

It is worthy of note that the capacity actually decreases in two regions as s
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Figure 5.10: The achievable aggregate throughput.

increases. These two regions require more investigation to find better communication

schemes, which is the subject of future study.

From next section, we will introduce the analysis of the capacity by using

non-cooperative transmission protocol.
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Chapter 6

The Capacity of Wireless Ad-hoc

Networks with Heterogeneous Traffic

under Protocol Model: Part 2

In this Chapter, we provide the analysis of the capacity of the network with

heterogeneous traffic without using cooperative transmission schemes, which means that

we use the simpler and practical multihop relay scheme for the information dissemina-

tion.

By using Theorem 5.1, we still treat the heterogeneous traffic in the network

separately into two different networks with different traffics. One is the network with

unicast relay traffic and containing s source-destination pairs. The other is the network

with data-gathering traffic and containing n − s source nodes. Now the problem is

simplified as calculating of the capacity of these two networks by using multihop relay
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scheme. Same as previous section, we distribute bandwidth W1 to the network with

unicast traffic and bandwidth W2 to the network with data-gathering traffic, where

W1 + W2 = W .

Thanks to the work of [10], we have known the scaling of the capacity of the

network with data-gathering traffic, which is given by the lemma below.

Lemma 6.1 A uniformly deployed network using multi-hop transmission for data gath-

ering communication can achieve per-node throughput R(n)DG ≥ W2
n

πr(n)2−√
ǫ

4πr(n)2+4πr(n)δ+πδ2+
√

ǫ
,

where ǫ and δ are positive constants.

In the network with unicast traffic, the number of source-destination pairs, s,

is a function of the total number of the nodes in the network, n. The transportation

of information from sources to destinations occurs through multiple hops depending on

the distance between each source-destination pairs. We define this network as Multi-

hop Relay Wireless Network (MRWN). Moreover, since most wireless ad hoc networks

such as military networks utilize multihop communications, this study is valuable in

understanding the capacity behavior of these networks.

The rest of this chapter is organized as follows. Section 6.1 provides the main

results of this section. We compute the upper bound in Section 6.2. The achievable

throughput by using multihop transmission scheme is described in Section 6.3. Sec-

tion 6.4 briefly discusses the implications of the results. We will conclude this chapter

in Section 6.5. Part of this work is presented in [21].

For simplicity, the constants Ki (i is a positive constant number) we used in
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the proofs are reused from K1, which means that the constants Ki we used in this

section are different from those of last section but with the same name.

6.1 Main Results without Cooperative Transmission Scheme

This section summarizes the main contributions of this paper. We first describe

the upper bound capacity of the network with heterogeneous traffic using multihop

transmission scheme.

• The Upper Bound:

The upper bound of the capacity of the network with heterogeneous traffic using

multihop transmission scheme is given by the following theorem.

Theorem 6.2 In a wireless network with k sources for the access node and s

source-destination pairs for the unicast traffic section, where s+ k = n, the aggre-

gate throughput of the network under protocol model is upper bounded by

R(n)NCo = O

(

min

{√

n

log n
, s + 1

})

. (6.1)

From Theorem 6.2, to easy to analyze, we can get that the per-destination upper

bound of the capacity is shown below

R(n)NCo per-destination = O



min







√

n
log n

s + 1
, 1









 . (6.2)
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We can see that if the number of sources for unicast communication is larger than

a threshold, i.e., s = Ω
(
√

n
log n

)

, then the per-destination upper bound capacity

is dominated by this value. When s increases in the network while the number

of nodes with data-gathering traffic decreases as n − s, then the per-destination

upper bound capacity decreases monotonically with s. The main reason is the

fact that, from Theorem 5.1, we can view the nodes with data-gathering traffic

as relays for the nodes with unicast communication, then as the number of nodes

with data-gathering traffic decreases, there are not enough relays to facilitate the

transportation of information between all source-destination pairs in the unicast

communication session which contributes more capacity of the network, thus the

lack of relays creates a bottleneck in the network. On the other hand, when s is

smaller than a threshold, i.e., s = O
(
√

n
log n

)

, then there are many relays for the

nodes of unicast traffic to transport information for all source-destination pairs.

Under this condition, it is clear that all source-destination pairs can transmit

their information in parallel and the upper bound is 1. This result also indicates

that when there is a large number of relays in the network, simple point-to-point

communication does not utilize the full capability of the network. Under such

conditions, it may be useful to develop cooperative techniques between nodes such

that the network is able to fully take advantage of the relays in the network. Notice

that when s = Θ (n), the upper bound becomes Θ
(

1√
n log n

)

which is similar to

the result given in [2]. Under this condition, there will be no relay for the unicast

communication and there are n simultaneous unicast sessions in the network.
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• The lower Bound:

The achievable lower bound of the throughput is given by the following theorem.

Theorem 6.3 In a dense network with uniform node distribution, we assume

there are s source-destination pairs having unicast communication and n−s nodes

doing data-gathering traffic. Under protocol model, there exits a routing scheme

which can lead to the following achievable throughput this network as

R(n)NCo =







































Ω (1) , s = Θ (1)

Ω

(

s · log log s

log s
+ 1

)

, Ω (1) = s = O (S1)

Ω

(√

n

log n
+ 1

)

, s(n) = Ω (S1)

(6.3)

where S1 = Θ
(
√

n
log n

log n
log log n

)

1.

The result indicates that for two regions of s = Θ (1) and s = Ω (S1), the achievable

lower bound is the same as the upper bound. However, when Ω (1) = s = O (S1),

there exits a gap between the lower and upper bounds of the capacity. The reason

behind this gap is in the randomness of the node distribution and the random

selection of source-destination pairs.

The results of Theorems 6.2 and 6.3 are shown in Figure 6.1.

1Note that this particular representation of S1 is intentional in order to easier find the common
regions between relay traffic and source-destination traffic in each cell later on for the network with
unicast traffic.
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Figure 6.1: The upper and lower bound of the capacity in the network with het-
erogeneous traffic. The bold line is the upper bound of the capacity and the thin
line is the achievable lower bound of throughput. In the regions of (1,Θ(1)] and

[Θ(S1), n), the upper and lower bounds are tight. In this figure, S1 = Θ
(
√

n
log n

log n
log log n

)

,

S2 = Θ
(
√

n
log n

)

.
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6.2 Upper Bound

In this section, we prove the upper bound of the capacity for the network with

heterogenous traffic by using multihop transmission scheme. For the wireless networks,

we use the concept of sparsity cut, which is defined by Liu et al. [22], instead of min-cut,

to take into account the differences between wired and wireless links.

Definition 6.4 (Sparsity Cut:) A sparsity cut for a random network is defined as a

cut induced by the line segment with the minimum length that separates the region into

two equal area subregions (see Fig 6.2). The cut capacity is defined as the transmission

bandwidth W multiplied by the maximum possible number of simultaneous transmissions

across the cut. This cut capacity is the information rate that the nodes from one side

of the cut can deliver to the nodes at the other side. The cut length lΓ is defined as the

length of the cut line segment in 2-D space. In another word, sparsity cut can be seen

for random geometric graph (RGG) similar to min-cut concept in graph theory.

From [2], we know that the disks centered at each receiver are disjoint and

have radius of ∆r(n)
2 . By assuming the length of the sparsity cut as lΓ, the following

lemma provides the sparsity cut capacity which was originally proved in [22].

Lemma 6.5 The capacity of the cut Γ for a 2D region has an upper bound of K1lΓW
r(n) ,

where K1 = max
{

16
π∆2 ,

√
3

∆

}

, and W is the link rate.

Since the network area is assumed to be 1, we have lΓ = Θ(1). To guarantee the

connectivity [2], r(n) is chosen as K2

√

log n
n

. Thus, the upper bound of the cut capacity
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is CΓ = K1W

K2

√

log n
n

= Θ
(
√

n
log n

)

.

We use Lemma 6.5 to prove Theorem 6.2 as described below.

( )

2

r n

A B

Figure 6.2: Γ is the sparsity cut which separates the network into A and B equal areas.
The figure demonstrates four disjoint disks with radius ∆r(n)

2 across the sparsity cut.

Proof of Theorem 6.2:

proof 6.6 Lemma 6.5 shows the upper bound of the aggregate capacity of the network

is Θ
(
√

n
log n

)

. Since there are only s + 1 destination nodes in the network, it is clear

that this throughput can be divided between these s+1 destination nodes equally. There-

fore as long as s + 1 is larger than Θ
(
√

n
log n

)

, per-destination throughput capacity

is upper bounded as Θ

(
√

n
log n

s+1

)

. However, when the number of destinations is less

than Θ
(
√

n
log n

)

, then there are plenty of capacity in the network such that each source

can continuously transmit its data to destination. Under this condition, the per source

throughput capacity is upper bounded as Θ(1). Thus, the per-destination capacity is
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upper bounded as

R(n)NCo per-destination = O



min







√

n
log n

s + 1
, 1









 . (6.4)

Therefore, the aggregate throughput in the network is given by

R(n)NCo = O

(

min

{√

n

log n
, s + 1

})

. (6.5)

6.3 Lower Bound

By using Theorem 5.1, we have two different networks with different traffic.

We will calculate the capacity for each network and sum them up to get the achievable

lower bound of the throughput for the network with heterogeneous traffic.

From Lemma 6.1, we can get that the lower bound of the capacity for the

network with data-gathering traffic is R(n)DG ≥ W1
n

πr(n)2−√
ǫ

4πr(n)2+4πr(n)δ+πδ2+
√

ǫ
. As n goes

to infinity, we can have

R(n)DG = Ω(1). (6.6)

Then, the proof for the achievable lower bound of the throughput capacity

for the network with unicast traffic is presented in the rest of this section. Since we

only use multihop transmission scheme in this relay network, we call this network as

Multihop Relay Wireless Network (MRWN). The achievable throughput of MRWN is

given below.
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Theorem 6.7 In a dense MRWN with uniform node distribution, we assume there are

s source-destination pairs. There exits a routing scheme which can lead to the following

per-source achievable throughput capacity for MRWN as

R(n)MRWN =















































Ω (1) , s = Θ (1)

Ω

(

log log s(n)

log s

)

, Ω (1) = s = O (S1)

Ω





√

n
log n

s



 , s = Ω (S1)

(6.7)

where S1 = Θ
(
√

n
log n

log n
log log n

)

.

In the rest of this section, we first describe the access scheme in the MRWN,

then we present the ”straight line” routing scheme. In the end, the achievable lower

bound of Theorem 6.3 is proven.

6.3.1 Access Scheme

We first divide the network into cells whose length is sn = K3

√

log n
n

to guar-

antee the connectivity between cells in the the network. The cells are divided into M

groups and in each time slot, only one group of cells are activated as shown in Fig. 5.1.

Notice that we use the letter M instead of K6 in Fig. 5.1. The cell separation is such

that successful communication based on protocol model is guaranteed when the cells

in one group are activated simultaneously. The value of M is derived in the following

lemma which was originally proposed in [16].
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Lemma 6.8 There exits a positive integer M = K4(1 + ∆)2 such that if we divide the

network into M non interfering groups, then all the cells in a group can communicate

every M time slots.

6.3.2 Routing Scheme

The routing scheme is ”straight line” routing that was described originally

in [16]. In this routing scheme, for each source, we randomly and uniformly pick a

location in the network and choose the closest node to this location as the destination

for the source. The routing trajectory is a straight line Li from the source node to this

destination. Then the packets traverse from each source to the destination in a multihop

fashion passing through all the cells that cross Li.

6.3.3 Traffic In Each Cell

• preliminaries

The achievable lower bound capacity is directly related to the number of lines

passing through each cell. This achievable rate is proportional to the inverse of

the number of lines passing through each cell.

There are two types of traffics in a cell. One type of traffic is caused by relays

in the cell and the other one is caused by the sources and destinations in the

cell. Unlike the cases in [2,23] where the traffic is dominated by the latter traffic,

in MRWN this assumption is not correct. In order to compute these two traffic

types in MRWN, we first present the Markov’s and Chebyshev’s inequalities [17]
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without any proof.

Lemma 6.9 Markov Inequality:

If X is any random variable and a > 0, then

Pr (|X| ≥ a) ≤ E (|X|)
a

(6.8)

Lemma 6.10 Chebychev Inequality:

Let X be a random variable with mean and standard deviation of µx and σx

respectively. Then

Pr(|X − µx| ≥ αx) ≤ σ2
x

α2
x

(6.9)

for any any αx > 0.

• The Traffic Caused by Sources and Destinations

The traffic generated by the sources and the destinations in a cell is given by the

following theorem.

Theorem 6.11 In MRWN, the maximum number of traffic TSD caused by the
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sources and destinations in a cell is

TSD =



























































































Θ







log
(

n
log n

)

log
( n

log n

s(n)

)

log s

log log s(n)






, s = O

(

n

log2 n

)

Θ













log
(

n
log n

)

log

(

n
log n

log
(

n
log n

)

s

)

log s

log log s













, Ω

(

n

log2 n

)

= s = o (n)

Θ

(

log

(

n

log n

)

log s

log log s

)

, s = Θ (n)

(6.10)

.

proof 6.12 Let’s denote the number of traffic caused by sources in each cell as TS

and the number of traffic caused by destinations in each cell as TD. Clearly,

TSD ≤ max {TS + TD} ≤ max {TS} + max {TD} (6.11)

Therefore, we need to compute both max {TS} and max {TD}.

– Maximum Traffic Caused by Sources in Each Cell:

In each cell, since one source can only contribute to one flow, the maximum

traffic caused by the sources in one cell is equal to the maximum number of

sources in that cell. Since the side length of each cell is K3

√

log n
n

, the total

number of cells in the network is n
K2

3 log n
. We can apply the classical bin-

ball problem by considering sources as balls and the cells as bins. By using
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Lemma 5.6, w.h.p., the maximum number of sources in each cell is

max {TS} =











































































Θ







log
(

n
log n

)

log
( n

log n

s

)






, s = O

(

n

log2 n

)

Θ













log
(

n
log n

)

log

(

n
log n

log
(

n
log n

)

s

)













, Ω

(

n

log2 n

)

= s = o (n)

Θ

(

log

(

n

log n

))

, s = Θ (n)

(6.12)

In this derivation, the range of s is computed by assuming log n
log n

∼= log n.

– Maximum Traffic Caused by Destinations in Each Cell:

Due to the randomness of the source-destination selection, there may exist

several sources which have the same destination. Now, lets fit this problem

into the bin-ball problem again. The balls and bins represent the sources

and the destinations respectively. From Lemma 5.6, it is clear that there

are at most Θ
(

log s
log log s

)

sources w.h.p. for each destination2. Note that the

maximum number of destinations in each cell is the same as that of sources

or equivalently max {TS} given by (6.12). Thus max {TD} is given by

max {TD} = max {TS} · Θ
(

log s

log log s

)

. (6.13)

2Note that we used the second line in the equation of Lemma 5.6 because the number of sources and
destination is equal to s.
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Therefore, we arrive at

TSD ≤ max {TS} + max {TD} ,

= max {TS} + max {TS}Θ

(

log s

log log s

)

,

= (max {TS} + 1) Θ

(

log s

log log s

)

. (6.14)

By combining (6.12) and (6.14), the theorem follows.

• Traffic Caused by Relays

In this section, we compute the traffic caused by relays. First, we introduce a

lemma from [16].

Lemma 6.13 In a network with uniform distribution of nodes, there exists a

positive constant K5 such that for every line Li and cell Cj ,

Pr (Line Li intersects Cj) ≤ K5

√

log n

n
(6.15)

The maximum traffic caused by relays is given by the following theorem.
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Theorem 6.14 In MRWN, the maximum relay traffic TR in a cell is given by

max {TR} =











































Θ (1) , Ω (1) = s = o

(√

n

log n

)

Θ (f(n)) , s = Θ

(√

n

log n

)

Θ

(

s

√

log n

n

)

, s = ω

(√

n

log n

)

(6.16)

where f(n) can be any function of n that fulfills the condition limn→∞ f(n) = ∞.

proof 6.15 In this proof, we divide s into three regions which are s = Θ(1),

ω(1) = s = O
(
√

n
log n

)

and s = ω
(
√

n
log n

)

.

– Case of s = Θ(1):

In this region, s is a positive constant. Clearly, the traffic caused by relays is

at most equal to s. Thus, max {TR} = Θ(1).

– Case of ω(1) = s = O
(
√

n
log n

)

:

In this region, we will prove that when ω(1) = s = o
(
√

n
log n

)

, then max {TR} =

Θ(1). When s = Θ
(
√

n
log n

)

, then max {TR} = Θ(f(n)), where f(n) is de-

fined above.

We first introduce the following lemma.

Lemma 6.16 In MRWN, when the ”straight line” routing scheme is used
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and k is a positive constant, we have

Pr (k lines intersecting any cell Cj)

≤
(

s

k

)

(

K5

√

log n

n

)k(

1 − K5

√

log n

n

)s−k

(6.17)

This lemma is proved in the Appendix 8.5.

For s = ω(1) in conjunction with Lemma 6.16 and large n, we arrive at

Pr (k lines intersecting any cell Cj)

≤ lim
s→∞

(

s

k

)

(

K5

√

log n

n

)k(

1 − K5

√

log n

n

)s−k

,

= lim
s→∞

(

s

k

)





K5s

√

log n
n

s





k

1 −
K5s

√

log n
n

s





s−k

,

≤

(

K5s

√

log n
n

)k

k!
exp

(

−K5s

√

log n

n

)

. (6.18)

The last line of equation is derived by considering the fact that it is Poisson

distribution. Let’s define K6 as the maximum number of lines passing through

90



each cell, then one can obtain

Pr (k ≤ K6)

=

K6
∑

k=0

(

K5s

√

log n
n

)k

k!
exp

(

−K5s

√

log n

n

)

(a)
=

∑K6
k=0

(

K5s

√

log n
n

)k

k!

∑∞
i=0

(

K5s

√

log n
n

)i

i!

=

∑∞
k=0

(

K5s

√

log n
n

)k

k! −∑∞
k=K6+1

(

K5s

√

log n
n

)k

k!

∑∞
i=0

(

K5s

√

log n
n

)i

i!

= 1 −
∑∞

k=K6+1

(

K5s

√

log n
n

)k

k!

∑∞
i=0

(

K5s

√

log n
n

)i

i!

(b)

≥ 1 −
∑∞

k=K6+1

(

K5s

√

log n
n

)k

K6+1

exp

(

K5s

√

log n
n

)

= 1 −
1

K6+1

(

K5s

√

log n
n

)K6+1

1−K5s

√

log n
n

exp

(

K5s

√

log n
n

)

(6.19)

(a) and (b) are due to the Maclaurin series that exp(x) =
∑∞

n=0
xn

n! . Now

there are two cases with respect to s.

∗ When s = o
(
√

n
log n

)

:
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Since K6 is a constant value and as n tends to infinity, from (6.19) it

can be concluded that

Pr (k ≤ K6) = lim
n→∞

1 −

1
K6+1

(

K5s

√

log n
n

)K6+1

1−K5s

√

log n
n

exp

(

K5s

√

log n
n

)

= 1, (6.20)

which implies that max {TR} ≤ K6.

∗ When s = Θ
(
√

n
log n

)

:

In this case, (6.19) cannot be used any more. However, Markov inequal-

ity in Lemma (6.9) implies that

Pr (TR ≥ K6) ≤
E (TR)

K6
,

=

E

(

K5s

√

log n
n

)

K6
,

=
K7

K6
, (6.21)

where K7 is a positive constant. From (6.21), we can see that if K6 =

f(n) where f(n) is an arbitrary function of n satisfying limn→∞ f(n) =

∞, then as n goes to infinity, we can have

Pr (TR ≥ K6) = 0. (6.22)
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Thus max {TR} ≤ f(n).

– Case of s = ω
(
√

n
log n

)

:

In this region of s, we will show that max {TR} = O

(

s

√

log n
n

)

.

Let’s assume limn→∞ α

sK5

√

log n
n

= ε where ε is a positive constant. By utiliz-

ing Chebychev inequality in Lemma 6.10, it can be shown that

Pr



|TR − sK5

√

log n

n
| ≥

√

αs

√

log n

n





≤
sK5

√

log n
n

(

1 − K5

√

log n
n

)

αsK5

√

log n
n

=
1 − K5

√

log n
n

α
(6.23)

which goes to zero as n tends to infinity and we used the fact that the random

variable has Poisson distribution. Thus max {TR} ≤ sK5

√

log n
n

. Notice that

from this result we can find that when s = n, TR = O
(√

n log n
)

which is

the same as the result in [2]. Note that under this condition, the traffic is

dominated by relays and source or destination traffic in each cell are simply

negligible.

Thus, we finish the proof of Theorem 6.14.
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6.3.4 Achievable Throughput of MRWN

The total traffic in any cell can be obtained by using the results shown above

and that is summarized here.

Ttotal ≤ max {TSD} + max {TR}

=



















































O(1), s(n) = Θ(1)

O







log
(

n
log n

)

log
( n

log n

s

)

log s

log log s






, Ω (1) = s = O (S1)

O

(

s

√

log n

n

)

, s = Ω (S1)

(6.24)

where S1 = Θ
(
√

n
log n

log n
log log n

)

. From Lemma 6.8, we can find that there exists a

transmission scheme such that in every M = K4 (1 + ∆)2 slots, each cell can get one

slot to send packets at a rate W bits/second. Thus, the rate for each cell is W

K4(1+∆)2
.

From Eq.(6.24), each cell can send packets at a rate equal to Ttotal with probability one

as n goes to infinity. Therefore, the maximum achievable throughput CLower for each

source should satisfy

R(n)MRWNTtotal =
W

K4 (1 + ∆)2
. (6.25)

Hence

R(n)MRWN =

W

K4(1+∆)2

Ttotal
≥

W

K4(1+∆)2

max {TSD} + max {TR}
(6.26)

Theorem 6.7 follows immediately. Note that in derivation of second line in
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Theorem 6.7, we ignore the term
log
(

n
log n

)

log

( n
log n

s

) because this term is asymptotically equal

to Θ(1).

6.3.5 The Total Achievable Throughput

By using Theorem 6.7, Lemma 6.1 and Eq. 6.6, we can have that

R(n)NCo = s · R(n)MRWN + R(n)DG

which finish the proof of Theorem 6.3.

6.4 Discussion

In this subsection, we discuss some implication of the result obtained in this

section.

6.4.1 The Comparison of the Results in Chapter 5 and Chapter 6

In this paper, we derived the upper bound of the capacity and achievable aggre-

gate throughput of the network with a specific type of heterogeneous traffic including

unicast communication and data-gathering traffic. For the derivation, we utilize two

transmission models which are information theoretical model and protocol model. In

the information theoretical model, we allow any transmission scheme and the actual

maximum information that can be supported in the network is obtained. While the

protocol model is a more practical more since only the non-cooperative routing scheme
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is allowed. Moreover, the point-to-point communication is constrained to a constant

number. Thus, we can expect that the capacity result for the protocol model is much

smaller than that of information theoretical model. Our analytical results confirmed

this intuitive observation. In our result, the upper bound of the capacity for different

models are shown in Eq. (5.4) and (6.1). Clearly, the upper bound of the capacity

under information theoretical model is much higher than the upper bound of the capac-

ity under protocol model. Similar, from the results of achievable aggregate throughput

under both information theoretical model and protocol as shown in Eq.(5.9) and (6.3)

respectively, we can see that the achievable lower bound under information theoretical

model is much higher than that under protocol model. All of this is mainly due to the

use of cooperative transmission scheme.

6.4.2 The Capacity and Gains from Multihop Relays for MRWN

From the upper bound of the capacity for the network with heterogeneous

traffic as shown in (6.1), we can easily get the per-source capacity of MRWN as shown

below.

R(n)MRWN = O



min







√

n
log n

s
, 1









 (6.27)

From Section 6.3.1, 6.3.2 and 6.3.4, we have the lower bound of the achievable through-

put per node shown as in (6.7). Thus, we have the capacity result of MRWN shown in

Fig 6.3. From Fig 6.3, we can see that in most of the regions of s, the achievable lower

bound of the throughput meets the upper bound of the capacity, however, in the region
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Figure 6.3: The upper and lower bound of the capacity in MRWN along with capacity
of networks with no relays. The bold line is the upper bound of the capacity and the
thin line is the lower bound of the capacity. In the regions of (1,Θ(1)] and [Θ(S1), n),

the upper and lower bounds are tight. In this figure, S1 = Θ
(
√

n
log n

log n
log log n

)

, S2 =

Θ
(
√

n
log n

)

.

97



of [Θ(1), S1], there is a gap between the lower bound and upper bound. We will give

the analysis of this phenomenon in Section 6.4.3. Moreover, form Fig. 6.3, we can see

that achivable throughput of MRWN is much higher than the achievable throughput in

the network without relays, which is shown in the dotted line of Fig. 6.3. Clearly, this

gain from the relays in MRWN. We will give the analysis of the gain from the relays in

the rest of this subsection.

From the definition of the network model, we know that the relays in MRWN

only utilize the decode-and-forward operation to help the source to transmit information

without any cooperation. Even with no cooperation, the network with relays provide

order throughput gain compared to the case of no relays in the network. The throughput

of this type of network with no relay, s source-destination pairs and by only using plain

multihop routing scheme is given in [2], which is Θ
(

1√
s log s

)

3. Therefore, the gains G

from the relays in the network is given by

G =
R(n)MRWN

Θ
(

1√
s log s

) =











































Ω
(

√

s log s
)

, s = Θ (1)

Ω

(

log log s

√

s

log s

)

, ω (1) = s = O (S1)

Ω

(
√

n

s

log s

log n

)

, s = Ω (S1)

(6.28)

The first interesting observation from (6.28) is the fact that by increasing s, the gain

G in some regions increases while in other regions decreases. More specifically, when

s = Ω (S1) then the gain G decreases with the increase of s and when s = O (S1), G

3Note that unlike [2] that considers n source-destination pairs, we assume s source-destination pairs
in order to compare it with our technique
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increases with the increase in s.

When s = Θ (S1), the gain G obtains the maximum value which means in

order to get the optimal gain from relays, we need to make the traffic caused by the

relays be comparable to the traffic caused by the sources and destinations in a cell.

The reason of this interesting result is that in the case that s = Ω (S1), as the increase

of s, the number of relays becomes smaller and smaller, so the gain caused by relays

decreases. While in the case that s = O (S1), s is so small that not all of the relays

can work in parallel, so as the increase of s, more and more relays help in the network

for transportation of information, thus the gain obtained from relays increases with the

increase of s. When all the relays helps sources in delivery of data and s is not too

large, the gain G achieves its optimal value.

We know that in MRWN, the transmission scheme is plain multihop routing

without any cooperative scheme. One important question is ”why do we achieve such

order gains in throughput capacity by using simple routing and relays?” This gain mainly

comes from the increase in the number of concurrent transmissions by increasing the

number of relays. When the total network area is constant and we we increase the

number of relays, the distance between nodes decreases which can result in decrease in

transmission range. By decreasing the transmission range, one can increase the number

of concurrent transmissions in the network which is much larger than the increase in

the number of hops due to reduction in transmission range. Next figure demonstrates

the gain from relays in the networks compared to the case of no relay utilizing multihop

point-to-point communications.
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Figure 6.4: The gain in MRWN compared to that of networks with no relays. In
both schemes, simple point-to-point communication protocol is utilized. In this figure,
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6.4.3 Gap Between Lower and Upper Bounds for MRWN

Another important observation is that, from Fig. 6.1, there is a gap between

the lower and upper bound of the capacity for MRWN in the region of s = [1, S1]. In

the region of s = [S1, n], it is clear that the main restriction of the network is from

the traffic caused by relays, while in the region of s = [1, S1], the main bottleneck of

the network comes from the traffic caused by the sources and destinations in each cell.

From the bin-ball problem, we observe that this gap comes from the combination of

the maximum number of destinations in each cell and the maximum number of sources

for each destination. The upper bound of the traffic in each cell is caused by these two

values. These maximum numbers are much larger than the mean number of destinations

in each cell or mean number of sources for each destination. This large difference is
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caused by the randomness of the network. However, if we let each cell have the same

number of sources and destinations, and the traffic becomes the permutation traffic

which means that each destination only has one source, then this gap will disappear.

This observation gives us a hint that randomness can lead to the loss of the

capacity in the real network. In cells with dominant traffic dictate the throughput

capacity for that network. In order to achieve higher capacity, we should do more

averaging and remove the randomness.

6.5 Conclusion

In this chapter, we give an analysis of the capacity for the wireless network

with heterogeneous traffic. First, we proposed a separation theorem which tells us that

by distributing different radio to different traffic type in the network, the optimum

capacity can be obtained from the order point of view.

Second, we analyzed the capacity of the wireless network with a specific traffic

type which includes a unicast communication session and a data-gathering traffic. Un-

der the separation theorem, we used a cooperative three-phase scheme and two-phase

scheme for the network with unicast communication traffic and with data-gathering

traffic respectively, and obtained a achievable throughput for the network with this het-

erogeneous traffic type. In some regions of our result, the achievable lower bound of

the throughput does not meet the upper bound of the capacity, however, it is the best

result so far as we know. Moreover, it is clearly that the network with unicast traffic
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is large relay network which is not quite well-studied. In the literature, we only know

the results that only a constant number of source-destination pairs or all the nodes

are sources or destinations, in this paper, we give a results that when the number of

source-destination pairs is a function of the number of the total nodes in the network.

Third, under the same heterogeneous traffic assumption, we proposed the scal-

ing laws of the capacity when a more practical protocol model is assumed and a more

practical pure routing scheme is utilized. The results indicate that by using the simpler

routing scheme, both of the upper bound of the capacity and the achievable throughput

in the network is decreased significantly. However, we believe that the delay require-

ments for the pure routing scheme is much less than that of cooperative transmission

scheme. The delay analysis by using both scheme is our topic for future study. More-

over, for the network with unicast communication, since only multihop pure routing

scheme is allowed, we call this network MRWN. By our analysis, we can find that the

network can still get big gains from the relays by only using pure routing scheme and

the the largest gain can be obtained in some value of source-destination pairs in the

network.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, the capacity of wireless ad-hoc networks with heterogeneous

traffic has been studied. Specifically, we studied one particular type of heterogeneous

traffic which is that there are two types of traffic in the network. One is uniform

unicast. The other is data-gathering traffic. However, thanks to the Separation Theorem

introduced in this thesis, we can extend our method to any constant number of traffic in

the network, which is the reality. Under different network configurations, the capacity

of the network with heterogeneous traffic are different.

In this thesis, first, we studied the scaling law of the capacity of the network by

protocol model. In this model, we assume the bandwidth of each node is proportional

to the traffic of the corresponding cell or cluster. Under protocol model, the capacity is

scaled according to the number of nodes performing the data-gathering traffic.
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Second, we studied the similar network model as the first one but under phys-

ical model. In this part, besides the assumption that the bandwidth of each node is

proportional to the traffic of the corresponding cell or nodes, we also assume the power

of each node for the unit bandwidth is a constant number. Thus, we get a same capacity

result as the first part of the thesis.

Third, we released the assumption of the bandwidth and study the same net-

work under information theoretical model. In this chapter, we introduce an important

theorem which is the Separation Theorem stating that as long as we distribute certain

bandwidth to each type of traffic in the network, then we can get the optimum scaling

of the capacity in the network if the number of traffic type is a constant. By using

this theorem, and the so-called Three Phase schemes which are modified Hierarchical

Cooperative MIMO approach first introduced in [1], the aggregate throughput of the

network is obtained and is the optimum results so far.

Fourth, due to the complexity of the Three Phase schemes, we studied the

same problem by under protocol model again and released the bandwidth assumption.

Under Separation Theorem, we have a significant gain comparing to the result with the

bandwidth assumption. This result indicates that the assumption of the bandwidth can

waste the bandwidth significantly.
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7.2 Future Work

The scaling laws of the ad-hoc networks with heterogeneous traffic have been

studied in this work. However, the scaling laws are only asymptotic results which means

that the number of nodes have to go to infinity or a very large number to make the

result reliable. However, in practice, it is not the case. The more valuable result is the

real capacity of the ad-hoc networks not just the scaling laws. Thus, in the future, we

will investigate and study the actual capacity of the wireless ad-hoc networks with or

without heterogeneous properties.
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Chapter 8

Appendix

8.1 Proof of Theorem 5.7

For the number of source nodes in each cluster, we can consider the problem

as bins and balls problem. Here the number of balls is s and the number of bins is s1+ε2.

By using Lemma 5.6, the maximum number of source nodes in each cluster is given by

B(s, s1+ε2) = Θ

(

log s1+ε2

log s1+ε2

s

)

,

= Θ

(

(1 + ε2) log s

ε2 log s

)

= Θ(1). (8.1)

For the number of the nodes in each cluster, we can use Chebychev’s inequality

given in Lemma 6.10. Assume αx =
√

α × n
s1+ε2

where α is defined as a sequence such

that lim n

s1+ε2
→∞

α
n

s1+ε2

= γ1 for any positive value of γ1. Define the random variable

Vn as the number of nodes in each cluster. Because the nodes uniformly distributed
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in the network, then the mean and variance of Vn is given by µx = n
s1+ε2

and σ2
x =

n
s1+ε2

(

1 − 1
s1+ε2

)

respectively. By using Chebychev’s inequality, we arrive at

Pr

(

|Vn − n

s1+ε2
| ≥

√

α × n

s1+ε2

)

≤
n

s1+ε2

(

1 − 1
s1+ε2

)

α × n
s1+ε2

≤ 1

α

(

1 − 1

s1+ε2

)

(8.2)

The second term on the right hand side of (8.2) goes to zero as n
s1+ε2

→ ∞. Thus

with probability close to one |Vn − n
s1+ε2

| ≤
√

α × n
s1+ε2

or equivalently, Vn = Θ
(

n
s1+ε2

)

.

Similarly, it can be proved that in a circle with radius of
√

A

2s
1+ε2+ε3

2

or
√

A

2n
(1+ε2)β1

2

, the

number of nodes is Θ
(

n
s1+ε2+ε3

)

or Θ

(

n

n
(1+ε2)β1

2

)

respectively.

8.2 Proof of Theorem 5.8

To prove Theorem 5.8, we consider two cases. First, we calculate the aggregate

throughput when Ω
(

nβ1
)

= s = O

(

(

n
log n

) 1
2+ε2+ε3

)

. Then, we consider the case when

s = O
(

nβ1
)

.
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8.2.1 When Ω
(

n
β1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

The capacity between a source node k and the relay i is

CCase 1
ki = W1 log



1 +

P ′
1
s
|Hki|2

W1N0 +
∑

j∈T,j 6=k
P ′

1
s
|Hji|2





= W1 log















1 +

P ′
1
s

(√
G

d
α
2
ki

)2

W1N0 +
∑

j∈T,j 6=k
P ′

1
s

(

√
G
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where inequality (a) is derived because when α > 2, then
∑∞
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√
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a constant value and M1 is a positive constant value.

8.2.2 When s = O
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then the achievable rate between nodes k and i is given below.
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(a) is derived by replacing distance for interference with smaller distance and replacing

s in numerator by its maximum value and replace it with 1 in the denominator. Note

that M2 = W1

(

(1+ε2)α(β1−β2)
2 − β1

)

is a positive value given the condition above for

β2.

Thus, the achievable rate between nodes k and i is given by

Rki(n) = min
(

CCase 1
ki , CCase 2

ki

)

,

= min (M1 log n + K5,M2 log n + K5) ,

= min(M1,M2) log n + K5,

= K4 log n + K5 (8.5)

where K4 = min(M1,M2).

Given the TDMA parameter K6, there are on average s
K6

nodes sending their

information. Thus, the aggregate throughput is given by

RPhase1(n) ≥ s(K4 log n + K5)

K6
. (8.6)
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8.3 Proof of Theorem 5.11

Under the Many-to-One transmission model, the capacity between source node

k and the relay node i in the circle with radius r = n−ε5 is given by
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.

8.4 Proof of Theorem 5.12

Similar to Theorem 5.7, we can prove that the number of nodes in the circle

with radius of n−ε5 is Θ
(

n1−2ε5
)

= M4n
1−2ε5. Then the capacity is computed as
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where K25 = 1 − 2ε5 and K26 = W2 log
(

(1−η4)P2M4

W2N0A
α
2

)

.

8.5 The Proof of Lemma 6.16

We assume that Pr (Line Li intersects Cj) = p. Since the events that different

line Li intersects Cj are independent, then

Pr (There are k lines intersecting any cell Cj)

=

(

s

k

)

(p)k (1 − p)s−k (8.9)

By doing the derivative of (8.9), one arrives at the maximum value of (8.9) given by

p = k
s

= p∗. when p < p∗, then this probability increases with increase in p. Let’s assume

K5

√

log n
n

= p†. Since s = O
(
√

n
log n

)

, it is clear that p∗ ≥ kK6

√

log n
n

, where K6 is a

positive constant. By allowing k large enough, we obtain p† ≤ p∗. By using Lemma 6.13,

it is clear that p ≤ p†. Due to monotonic increase of Pr (There are k lines intersecting any cell Cj)

with the increase in p, the result follows.
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