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Abstract

The Capacity of Wireless Ad Hoc Networks

by

Zheng Wang

This thesis studies the fundamental limits on the capacity of wireless ad hoc

networks. First, Multi-Packet Reception (MPR) is proposed to increase the capacity

under both protocol and physical models. By defining power efficiency, it is also shown

that, in order to achieve higher capacity, there is a cost to pay in terms of the network

power consumption efficiency.

Second, unicast traffic patten is extended into a unified framework in which

information is disseminated by means of unicast, multicast, broadcasting, or different

forms of anycast with Single-Packet Reception (SPR) and MPR.

Third, the contribution of Network Coding (NC) is investigated and it is proved

that NC does not contribute to the order capacity of multicast traffic when nodes are

endowed with MPR and Multi-Packet Transmission (MPT) capabilities in the network.

Finally, Opportunistic Interference Management (OIM) scheme is introduced

both in cellular and ad hoc networks. The approach is based on a new multiuser diver-

sity concept that achieves the capacity of Dirty Paper Coding (DPC) asymptotically

in cellular networks and significantly improve the scalability performance in ad hoc

networks.
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Chapter 1

Introduction

1.1 Overview of Wireless Ad Hoc Networks

Wireless ad hoc networks have matured as a viable means to provide ubiq-

uitous untethered communication. In order to enhance network connectivity, a source

communicates with far destinations by using intermediate nodes as relays.

There has been a growing interest to understand the fundamental capacity

limits of wireless ad hoc networks. Results on network capacity are not only important

from a theoretical point of view, but also provide guidelines for protocol design in

wireless networks.

In the seminal work of Gupta and Kumar [1], the per node throughput capacity

of random wireless ad hoc network with multi-pair unicast traffic in protocol model scales

as Θ
(
1/

√
n logn

)
1 with plain multi-hop routing, where n is the number of nodes in

1Given two functions f(n) and g(n). This thesis defines that f = O(g(n)) if supn(f(n)/g(n)) < ∞
and f(n) = Ω(g(n)) if g(n) = O(f(n)). If both f(n) = O(g(n)) and f(n) = Ω(g(n)), then f(n) =
Θ(g(n)).

1



the network. That means wireless ad hoc networks can not scale which leads to more

research and motivate the most of this thesis.

1.2 Research Motivation and Contributions

This thesis is well motivated to study the scalability of wireless ad hoc net-

works. The main contributions of this thesis are the followings:

• Multi-Packet Reception (MPR) is proposed in wireless ad hoc networks, which al-

lows multiple concurrent transmissions. It is shown that Θ (R(n)) and Θ
(
(R(n))(1−2/α)

n1/α

)
bits per second constitute tight bounds for the throughput capacity per node in

random wireless ad hoc networks for protocol and physical models respectively,

where R(n) is the MPR communication range and α is the channel path loss pa-

rameter. MPR achieves higher throughput capacity under physical model than

techniques proposed in [1, 2]. When R(n) = Θ

(√
logn
n

)
, the throughput capac-

ity is tight bounded by Θ

(√
logn
n

)
and Θ

(
(log n)

1
2− 1

α√
n

)
for protocol and physical

models respectively. This is a gain of Θ (log n) and Θ
(
(log n)

α−2
2α

)
compared to

the bound in [1]. A new parameter is introduced to quantify how many bits/sec of

information are transferred across the network per each unit of power. The power

efficiency of some existing techniques [1, 2] are computed and compared with

the power efficiency of MPR. It is shown that MPR provides a tradeoff between

throughput capacity, node decoding complexity, and power efficiency in random

wireless ad hoc networks. It is also shown that achieving higher throughput ca-

2



pacity leads to a lower power efficiency.

• The first unified modeling framework is presented for the computation of the

capacity-delay tradeoff of random wireless ad hoc networks in which receivers per-

form Single-Packet Reception (SPR) and Multi-Packet Reception (MPR). This

framework considers information dissemination by means of unicast routing, multi-

cast routing, broadcasting, or different forms of anycasting. (n,m, k)-casting is de-

fined as a generalization of all forms of one-to-one, one-to-many and many-to-many

information dissemination in wireless networks. In the context of (n,m, k)-casting,

n, m, and k denote the number of nodes in the network, the number of destinations

for each communication group, and the actual number of communication-group

members that receive information optimally2, respectively. More importantly,

capacity-delay tradeoff studies are presented for all kinds of information dissem-

ination as a general function of the transmission range r(n) of SPR and receiver

range R(n) of MPR respectively.

• The real contribution of network coding is addressed in terms of increasing or-

der capacity in multicast application in wireless ad hoc networks. First, when

each multicast group consists of a constant number of sinks, the combination of

NC, MPT and MPR provides a per session throughput capacity of Θ(nT 3(n)),

where T (n) is the communication range. Second, this scaling law represents an

order gain of Θ(n2T 4(n)) over a combination of SPR. The combination of only

2Optimality is defined as the k closest (in terms of Euclidean distance of the tree) destinations to
the source in an (n,m, k)-cast group.

3



MPT and MPR is sufficient to achieve a per-session multicast throughput order

of Θ(nT 3(n)). Consequently, it is proved that NC does not contribute to the

multicast capacity when MPR and MPT are used in the network.

• An Opportunistic Interference Management (OIM) technique is presented for the

downlink of a wireless cellular network with which independent data streams can

be broadcasted to their corresponding mobile stations with single antenna such

that these data streams do not interfere with each other. Unlike all prior tech-

niques that attempt to fight individually fading and interference as impairments in

wireless channels, OIM takes advantage of one of them (fading channel) to reduce

the negative effect of the other one (interference). The result is very effective, and

constitutes a powerful technique that achieves high throughput capacity and yet

requires minimum feedback and simple point-to-point encoding and decoding com-

plexity for each node. Furthermore, it is extended into wireless ad hoc networks

because of no base station challenge. It is shown that the throughput capacity

with OIM in wireless ad hoc networks is Θ
(
log(T (n))√

nT (n)

)
when T (n) = Ω

(√
logn

)
is

the transmission range. The approach provides a gain of Θ (log(T (n))) compared

to the simple multi-hop point-to-point communications under similar network as-

sumptions. The gain ranges from Θ (log logn) to Θ (log n), depending on the

value of the transmission range, while the encoding and decoding complexity of

the new scheme is similar to that of point-to-point communications. The increase

of the capacity is essentially because of the powerful nature of fading in wireless

4



environment.

1.3 Outline of Thesis

The outline of the rest of the thesis is as follows. In Chapter 2, a comprehensive

literature survey is first provided to summarize all the important previous research

works, then this chapter gives the general and basic network model used to derive

capacity in wireless ad hoc networks.

Chapter 3 proposes Multi-Packet Reception (MPR) technique in wireless ad

hoc networks which increases the order capacity of random wireless ad hoc networks

under both protocol and physical models compared to the capacity of point-to-point

communication reported by Gupta and Kumar [1]. The power efficiency η(n) is also

defined as the bits of information transferred per unit time (second) in the network for

each unit power, and show that a lower power efficiency is attained in order to achieve

higher throughput capacity.

Chapter 4 extends the unicast traffic model to (n,m, k)-cast. A unified mod-

eling framework is first proposed for the computation of the capacity-delay tradeoff of

random wireless ad hoc networks. This framework considers information dissemina-

tion by means of unicast routing, multicast routing, broadcasting, or different forms of

anycasting. (n,m, k)-casting is defined as a generalization of all forms of one-to-one,

one-to-many and many-to-many information dissemination in wireless networks. The

capacity-delay tradeoff is described for (n,m, k)-casting in wireless ad hoc networks in

5



which receivers perform Single-Packet Reception (SPR) and Multi-Packet Reception

(MPR).

Chapter 5 studies the contribution of Network Coding (NC) in improving

the multicast capacity of random wireless ad hoc networks when nodes are endowed

with Multi-Packet Transmission (MPT) and Multi-Packet Reception (MPR) capabili-

ties. Surprisingly, an identical order capacity can be achieved when nodes have only

MPR and MPT capabilities. This result proves that NC does not contribute to the

order capacity of multicast traffic in wireless ad hoc networks when MPR and MPT are

used in the network. The result is in sharp contrast to the general belief (conjecture)

that NC improves the order capacity of multicast.

Chapter 6 introduces a new multiuser diversity scheme both in wireless cellu-

lar networks and ad hoc networks. With the new technique, multiple antennas of base

stations and mobile users (cellular case) or transmitter-receiver pairs (ad hoc case) can

communicate without causing significant interference to each other. The new scheme

called Opportunistic Interference Management (OIM) significantly reduces the feedback

required in distributed MIMO systems, and requires an encoding and decoding complex-

ity that is similar to that of point-to-point communications. Hence, OIM provides an

alternative approach to distributed MIMO systems with significantly less feedback re-

quirements among nodes, which makes this approach far more practical than distributed

MIMO systems.

Chapter 7 concludes the thesis, and give future research directions.

6



Chapter 2

Related Works and Network Models

This chapter presents a survey of important literature works in Section 2.1 and

gives an overview of network models with preliminaries of wireless ad hoc network used

throughout the thesis in Section 2.2 respectively.

2.1 Related Works and Literature Reviews

Gupta and Kumar [1] shows that the per-node throughput capacity of ran-

dom wireless ad hoc network with multi-pair unicast traffic in protocol model scales as

Θ
(
1/

√
n log n

)
in protocol model. Under the physical model assumption, [1] showes that

the throughput capacity has lower and upper bounds of Θ(
√

1/n log n) and Θ(
√

1/n),

respectively. Franceschetti et al. [2] closed the gap between these two bounds and

obtained a tight bound of Θ(
√

1/n) using percolation theory. In this approach, all com-

munications are simple point-to-point without any cooperation between senders and

receivers. Since the landmark work by Gupta and Kumar [1] on the scalability of wire-

7



less networks, considerable attention has been devoted to improving or analyzing their

results.

2.1.1 Multi-Packet Reception

One line of research has been the development of techniques aimed at improv-

ing the capacity of wireless networks. Grossglauser and Tse [3] demonstrated that a

non-vanishing capacity can be attained at the price of long delivery latencies by taking

advantage of long-term storage in mobile nodes. El Gamal et al [4] characterized the

fundamental throughput-delay tradeoff for both static and mobile networks. It has also

been shown that, if bandwidth is allowed to increase proportionally to the number of

nodes in the network [5, 6], higher throughput capacity can be attained for static wire-

less networks. Other work demonstrated that changing physical layer assumptions such

as using multiple channels [7] or MIMO cooperation [8] can change the capacity of wire-

less networks. Recently, Ozgur et al. [8] proposed a hierarchical cooperation technique

based on virtual MIMO to achieve linear per source-destination capacity. Unfortunately,

distributed MIMO techniques require significant cooperation and feedback information

among nodes to achieve capacity gains using multiple antenna systems. These chal-

lenges include synchronization during transmission and cooperation for decoding which

makes distributed MIMO systems less practical. Cooperation can be extended to the

simultaneous transmission and reception at the various nodes in the network, which can

result in significant improvement in capacity [9].

The work by Gupta and Kumar [1] demonstrated that wireless ad hoc networks

8



do not scale well for the case of multi-pair unicasts when nodes are able to encode

and decode at most one packet at a time. This has motivated the study of different

approaches to “embrace interference” in order to increase the capacity of wireless ad

hoc networks. Embracing interference consists of increasing the concurrency with which

the channel is accessed.

One approach to embracing interference consists of allowing a receiver node to

decode correctly multiple packets transmitted concurrently from different nodes, which

it is called multi-packet reception (MPR) [10, 11]. In practice, MPR can be achieved

with a variety of techniques, including multiuser detection (MUD) [12], directional an-

tennas [13, 14] or multiple input multiple output (MIMO) techniques.

The analysis related to MPR will be given in Chapter 3.

2.1.2 Unifying Traffic Patten

The other area of research on the capacity of wireless networks has focused on

broadcast and multicast. Tavli [15] was first to show that Θ
(
n−1

)
is a bound on the

per-node broadcast capacity of arbitrary networks. Zheng [16] derived the broadcast

capacity of power-constrained networks, together with another quantity called ”infor-

mation diffusion rate.” The work by Keshavarz et al. [17] is perhaps the most general

case of computing broadcast capacity for any number of sources in the network.

There are prior contributions on the multicast capacity of wireless networks

[18, 19]. Jacquet and Rodolakis [18] proved that the scaling of multicast capacity is

decreased by a factor of O(
√
m) compared to the unicast capacity result by Gupta

9



and Kumar [1] where m is the number of destinations for each source. Li et al. [19]

compute the capacity of wireless ad hoc networks for unicast, multicast, and broadcast

applications.

The analysis related to unifying traffic patten will be addressed in Chapter 4.

2.1.3 Network Coding

A complementary approach to embracing interference consists of increasing

the amount of information sent per channel usage. Network coding (NC), which was

originally proposed by Ahlswede et al. in [20], is one such technique. Unlike traditional

store-and-forward routing, network coding scheme encodes the messages received at in-

termediate nodes, prior to forwarding them to subsequent next-hop neighbors. Network

coding (NC) [20] was introduced and shown to achieve the optimal capacity for single-

source multicast in directed graphs corresponding to wired networks in which nodes are

connected by point-to-point links. Ahlswede et al. [20] showed that network coding

can achieve a multicast flow equal to the min-cut for a single source and under the

assumptions of a directed graph. Since then, many attempts have been made to apply

NC to wireless ad hoc networks, and Liu et al. [21] have shown that NC cannot increase

the order capacity of wireless ad hoc networks for multi-pair unicast traffic. However,

recent work [22, 23, 24, 25] has shown promising results on the advantage of NC in

wireless ad hoc networks subject to multicast traffic. An interesting aspect of these

works is that nodes are also assumed to have MPT and MPR capabilities in addition

to using NC for multicasting. Recently, Katti et al. [22] and Zhang et al. [23] proposed

10



analog network coding (ANC) and physical-layer network coding (PNC) respectively,

as ways to embrace interference. Interestingly, a careful review of ANC and PNC re-

veals that they consist of the integration of NC with a form of MPR, in that receivers

must be allowed to decode successfully concurrent transmissions from multiple senders

by taking advantage of the modulation scheme used at the physical layer (e.g., MSK

modulation in PNC [22]). This and other works in network coding (NC) [26, 27] has

motivated a large number of researchers to investigate the impact of NC in increasing

the throughput capacity of wireless ad hoc networks. However, Liu et al. [21] recently

showed that NC does not increase the order of the throughput capacity for multi-pair

unicast traffic. Nevertheless, a number of efforts (analog network coding [22], physical

network coding [23]) have continued the quest for improving the multicast capacity of

ad-hoc networks by using NC. Despite the claims of throughput improvement by such

studies, the impact of NC on the multicast scaling law has remained uncharacterized.

Li and Li [28] were the first to study the benefits of network coding in undi-

rected networks, where each communication link is bidirectional. Their result [28] shows

that, for a single unicast or broadcast session, there is no improvement with respect to

throughput due to network coding. In the case of a single multicast session, such an

improvement is bounded by a factor of two. Meanwhile, the authors of [24, 25] studied

the throughput capacity of NC in wireless ad hoc networks. However, the authors of

[24, 25] employ network models that are fundamentally inconsistent with the more com-

monly accepted assumptions of ad-hoc networks [1]. Specifically, the model constraints

of [28, 29, 24, 25] differ as follows: All the prior works assume a single source for unicast,

11



multicast or even broadcast. Aly et al. [25] differentiate the total nodes into source set,

relay set and destination set. They do not allow all of the nodes to concurrently serve

as sources, relays or destinations, as allowed in the work by Gupta and Kumar [1].

Furthermore, these results do not consider the impact of interference in wireless ad hoc

networks.

The analysis related to network coding will be addressed in Chapter 5.

2.1.4 Opportunistic Interference Management

Multiuser diversity scheme [30] was introduced as an alternative to more tradi-

tional techniques like time division multiple access (TDMA) to increase the capacity of

wireless cellular networks. The main idea behind this approach is that the base station

selects a mobile station (MS) that has the best channel condition by taking advantage

of the time varying nature of fading channels, thus maximizing the signal-to-noise ra-

tio (SNR). This idea was later extended to mobile wireless ad hoc networks [3] and

opportunistic beamforming [31] networks.

Knopp and Humblet [30] derived the optimum capacity for the uplink of a

wireless cellular network taking advantage of multi-user diversity. They proved that if

the “best” channel (i.e., the channel with the highest SNR in the network) is selected,

then all of the power should be allocated to the specific user with the ”best channel”

instead of using a water-filling power control technique. Tse extended this result into

the broadcast case of a wireless cellular network [32]. Furthermore, Viswanath et al. [31]

used a similar idea for the downlink channel and employed the so called “dumb antennas”
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by taking advantage of opportunistic beamforming. Grossglauser et al. [3] extended

this multi-user diversity concept into mobile ad hoc networks and took advantage of the

mobility of nodes to scale the network capacity.

Interference alignment [33] is another technique to manage interference. The

main idea in this approach is to use part of the degrees of freedom available at a node

to transmit the information signal and the remaining part to transmit the interference.

The drawback of interference alignment is that the system requires full knowledge of

the channel state information (CSI). This condition is very difficult to implement in

practice, and feedback of CSI is MK complex numbers in a K×M interference channel.

The advantage of interference alignment is that there is no minimum number of users

required to implement this technique.

Sharif and Hassibi introduced a new approach [34, 35] to search for the best

SINR in the network. Their approach requires M complex numbers for feedback instead

of complete CSI information, and achieves the same capacity of K log logM similar to

DPC. There are major differences between the approach in this thesis and the design

in [34, 35]. First, the approach in this thesis does not require beamforming, while the

techniques proposed in [34, 35] take advantage of random beamforming. Second, the

feedback requirement in the scheme of this thesis is proportional to the maximum of

K integers while this value is proportional to M complex numbers in [34, 35]. When

M grows, the feedback information in [34, 35] grows linearly, while this complexity is

constant with the number of antennas at the base station in the scheme of this thesis.

The approach of this thesis achieves DPC capacity of K log logM asymptotically in the
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presence of reduced feedback requirement.

The analysis related to opportunistic interference management will be ad-

dressed in Chapter 6.

2.2 Network Models and Preliminaries

There are two types of networks, namely, dense and extended networks. Both

dense and extended wireless ad hoc network are considered throughout the thesis. In

Chapter 3, 4, 5, dense network is considered, where n nodes distributed uniformly in a

square of unit area while in Chapter 6, extended network is considered because fading

needs to be taken account. The area of a dense network is constant independent of the

number of nodes while the area of extended network increases with n. The network

is assumed as static which means that the nodes are not mobile. This assumption is

followed throughout the thesis. The capacity analysis is based on the protocol, phys-

ical models or generalized physical model which is introduced by Gupta and Kumar

[1]. Throughout this thesis, the distribution of nodes in random networks is uniform,

and non-uniform distribution is the topic of future work. All nodes use a common

transmission range r(n) for all their communication.

Definition 2.1 The Protocol Model:

Node i at location Xi can successfully transmit to node j at location Xj if, for any node

Xk, k ̸= i that transmits at the same time as Xi, it is satisfied that |Xi − Xj | ≤ r(n)

and |Xk −Xj | ≥ (1 + ∆)r(n).
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It has been proved [36] that the minimum communication range r(n) in a

random geometric graph to assure connectivity in the network, is given in the following

lemma.

Lemma 2.2 Connectivity criterion for protocol model in dense networks:

For any ϵ > 0 and n → ∞,

Prob(existence of an isolated node) = 1 when r(n) = (1− ϵ)

√
log n

nπ

Prob(existence of an isolated node) = 0 when r(n) = (1 + ϵ)

√
log n

nπ
(2.1)

Thus, to ensure that there is no isolated node in the network, the transmission range

r(n) in random dense networks satisfies

r(n) = Ω
(√

log n/n
)
. (2.2)

Definition 2.3 The Physical Model:

In the physical model [1] of random wireless ad hoc networks, a successful communication

occurs if signal to interference and noise ratio (SINR) of the pair of transmitter i and

receiver j satisfies

SINRi→j =
Pgij

BN0 +
∑n

k ̸=i,k=1 Pgkj
≥ β, (2.3)

where P is the transmit power of a node, gij is the channel between nodes i and j,

and BN0 is the total noise power. The channel attenuation factors gij and gkj are

only functions of the distance under the simple path loss propagation model, i.e., gij =

|Xi − Xj |−α in which α > 2 is the path loss parameter which is the same as [1]. β is

the threshold of successful transmission which is a constant number.
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Definition 2.4 Feasible throughput capacity:

In a wireless ad hoc network with n nodes where each source transmits its packets to

its destinations, a throughput of λ(n) bits per second for each node is feasible if there

is a spatial and temporal scheme for scheduling transmissions, such that, by operating

the network in a multi-hop fashion and buffering at intermediate nodes when awaiting

transmission, every node can send λ(n) bits per second on average to its destination

nodes. That is, there is a T < ∞ such that in every time interval [(i − 1)T, iT ] every

node can send Tλ(n) bits to its corresponding destination nodes.

Definition 2.5 Order of throughput capacity:

λ(n) is said to be of order Θ(f(n)) bits per second if there exist deterministic positive

constants c and c′ such that
lim
n→∞

Prob (λ(n) = cf(n) is feasible) = 1

lim infn→∞ Prob (λ(n) = c′f(n) is feasible) < 1.

(2.4)

Definition 2.6 Euclidean Minimum Spanning Tree (EMST):

Consider a connected undirected graph G = (V,E), where V and E are sets of vertices

and edges in the graph G, respectively. The EMST of G is a spanning tree of G with

the total minimum Euclidean distance between connected vertices of this tree.

In the rest of this thesis, ∥T∥ denotes the total Euclidean distance of a tree T ;

#T is used for the total number of vertices (nodes) in a tree T ; and ∥T∥ denotes the

#T statistical average of that value.

Steele [37] determined a tight bound for ∥EMST∥ for large values of n, which
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is restated in the following lemma.

Lemma 2.7 Let f(x) denote the node probability distribution function in the network

area. Then, for large values of n and d > 1, the ∥EMST∥ is tight bounded as

∥EMST∥ = Θ

(
c(d)n

d−1
d

∫
Rd

f(x)
d−1
d dx

)
, (2.5)

where d is the dimension of the network. Note that both c(d) and the integral are

constants and not functions of n. When d = 2, then ∥EMST∥ = Θ(
√
n).

The distribution of nodes in random networks is uniform. Therefore, if there

are n nodes in a unit square, then the density of nodes equals n. Hence, if |S| denotes

the area of space region S, the expected number of the nodes, E(NS), in this area is

given by E(NS) = n|S|. Let Nj be a random variable defining the number of nodes in

Sj . Then, for the family of variables Nj , the following standard results are known as

the Chernoff bound [38]:

Lemma 2.8 Chernoff bound

• For any δ > 0, P [Nj > (1 + δ)n|Sj |] <
(

eδ

(1+δ)1+δ

)n|Sj |

• For any 0 < δ < 1, P [Nj < (1− δ)n|Sj |] < e−
1
2
n|Sj |δ2

Combining these two inequalities then, for any 0 < δ < 1:

P [|Nj − n|Sj || > δn|Sj |] < e−θn|Sj |, (2.6)

where θ = (1+ δ) ln(1 + δ)− δ in the case of the first bound, and θ = 1
2δ

2 in the case of

the second bound.
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Therefore, for any θ > 0, there exist constants such that deviations from the

mean by more than these constants occur with probability approaching zero as n → ∞.

It follows that, w.h.p. 1, a very sharp concentration on the number of nodes in an area

can be gotten, so the achievable lower bound can be found w.h.p., provided that the

upper bound (mean) is given. In the followings of the thesis, the upper bound is first

derived, and then the Chernoff bound is used to prove the achievable lower bound w.h.p.

with multiple times.

In extended networks, to simplify the analysis, it is assumed that the node

density is equal to unity. Hence, if |S| denotes the area of space region S, the expected

number of the nodes, E(NS), in this area is given by E(NS) = |S|. Let Nj be a random

variable defining the number of nodes in Sj . Then, for the family of variables Nj , the

following standard results is known as the Chernoff bound [38].

P [|Nj − |Sj || > δ|Sj |] < e−θ|Sj |, (2.7)

where θ is some constant value depending δ and δ is a positive arbitrarily small value

close to zero.

Table 2.1 summarizes all the abbreviations that are used in this thesis.

1An event happens with high probability if the probability of this event is greater than 1− 1
n
when

n goes to infinity.
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Table 2.1: Abbreviation Table

EMST Euclidean Minimum Spanning Tree

MEMT Minimum Euclidean multicast Tree

MEMTC Minimum Euclidean multicast Tree Cells

MEMKT Minimum Euclidean (n,m, k)-cast Tree

MEMKTC Minimum Euclidean (n,m, k)-cast Tree Cells

MAMKT Minimum Area (n,m, k)-cast Tree

MAMT Minimum Area multicast Tree

TAA Total Active Area

r(n) Transmission Range in SPR

R(n) Receiver Range in MPR

T (n) Transceiver Range in MPT, MPR or OIM
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Chapter 3

Multi-Packet Reception Increases

Throughput Capacity

In this chapter, the throughput capacity of random dense wireless ad hoc net-

works is computed for multi-pair unicast traffic in which nodes are endowed with multi-

packet reception (MPR) capabilities. This chapter is constructed as follows. Section 3.1

describes the network model used to obtain upper and lower bounds on the throughput

capacity of wireless networks with MPR. Section 3.2 presents the derivation of these

bounds. In Section 3.3, a new parameter is introduced to quantify how many bits per

second of information are transferred across the network per each unit of power. This

metric is called as power efficiency, computed by normalizing the throughput capacity

by the total transmitted power. After the discussion of several possible implications of

this study in Section 3.4, this chapter is concluded in Section 3.5.
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3.1 Network Model

According to the Gupta-Kumar protocol model in Definition 2.1 for point-to-

point communications i.e. Single-Packet Reception (SPR), next the protocol model for

MPR is defined.

In wireless ad hoc networks with MPR capability, the protocol model as-

sumption allows multi-packet reception of nodes as long as they are within a radius

of R(n) from the receiver and all other transmitting nodes have a distance larger than

(1+∆)R(n). The difference is that it is allowed that the receiver node to receive multiple

packets from different nodes within its disk of radius R(n) simultaneously.

Definition 3.1 The Protocol Model with Multi-Packet Reception:

In wireless ad hoc networks with MPR, the protocol model assumption allows MPR

capability at nodes as long as they are within a radius of R(n) from the receiver and all

other transmitting nodes are at a distance larger than (1 + ∆)R(n). The difference is

that it is allowed that the receiver node to receive multiple packets from different nodes

within its disk of radius R(n) simultaneously in MPR scheme.

Note that r(n) in point-to-point communication is a random variable while

R(n) in MPR is a predefined value which depends on the complexity of receivers. The

protocol model of MPR is equivalent of many-to-one communication. It is assumed that

nodes cannot transmit and receive at the same time which is equivalent to half duplex

communications [1]. The data rate for each transmitter-receiver pair is a constant value

of W bits/second and does not depend on n. Given that W does not change the order
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Figure 3.1: MPR protocol model

capacity of the network, its value is normalized to one. The relationship between receiver

range of MPR throughout this proposal and transmission range in [1] is defined as

R(n) = r(n) = Ω

(√
log n

n

)
. (3.1)

R(n) denotes the communication range for MPR model which is a function of

decoding complexity of nodes and node density. r(n) denotes the communication range

for point-to-point communication, and it is a function of nodes density in the network.

Because the distribution of nodes is uniform, these parameters are not a function of

node distribution. However when the node distribution in the network is not uniform,

these parameters will be a function of node distribution. The MPR protocol model is

shown in Fig. 3.1.

Note that this result is independent of the physical layer model used for the

network and it is a characteristic of random geometric graphs [36]. Similar to the re-

sults in [1], the same minimum communication range R(n) have been adopted to assure

connectivity in the network for the protocol model. Note that the successful commu-
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nication in the physical model is based on signal to interference and noise ratio and

not the distance between nodes, therefore the condition of Definition 3.1 for successful

communication in the physical model no longer can be used.

However, in the physical model of MPR, each receiving node has a communi-

cation range such that all the nodes transmitting within this range will be decoded by

the receiver. Consequently, the definition of physical model should incorporate this fact

in order to better represent this new many-to-one communication scheme. The follow-

ing statement describes the decoding procedure for MPR. Note that, with MPR, the

received signal for multiple transmitters can be either decoded jointly using maximum

likelihood (ML) decoding or be decoded sequentially utilizing successive interference

cancelation (SIC). ML decoding is computationally more complex than SIC but it pro-

vides optimal performance. The SIC decoding requires all nodes inside transmission

range to be grouped into several smaller sets with each set satisfying the SINR condi-

tion in Eq. (2.3). Because the channel model is based on path loss propagation model,

the SIC decoding starts from a set of nodes that has the closest distance to the receiver

node. Each set may consist of either a single node or multiple nodes. If a set consists

more than one node, then the decoding of these nodes are performed jointly. Definition

3.2 below describes the successful transmission for MPR under physical model.

Definition 3.2 Physical Model with Multi-Packet Reception:

In the physical model of dense random wireless ad hoc networks [1], the active trans-

missions from all of the transmitters centered around the corresponding receiver j with
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a distance smaller or equal to R(n) occur successfully if the SINR of the transmitter

Z(R(n)) near to the edge of the circle of the receiver satisfies

SINRZ(R(n))→j =
PgZ(R(n))j

BN0 +
∑

k,∀Xk /∈AZ(R(n))
Pgkj

≥ β, (3.2)

where gZ(R(n))j is the channel attenuation factor between nodes Z(R(n)) and j and BN0

is the total noise power. AZ(R(n)) = πR2(n) is the area of the circle centered around the

receiver j, whose radius is R(n).

Any transmission outside the communication range is considered interference

while all the transmissions inside communication range will be decoded jointly or sepa-

rately depending on the location of nodes inside the transmission circle. The decoding

is carried by dividing all the transmitters inside the communication range (circle) into

many subsets. The first set of nodes have the closest distance to the receiver. The

total number of nodes in each set is selected such that if they are decoded jointly by

the receiver, they will satisfy the SINR condition while the remaining nodes inside the

transmission circle are considered as interference. Once this set of nodes are decoded

jointly, they are subtracted from the received signal and then the next set of nodes are

decoded. The selection of nodes for each set depends on the relative locations of nodes

with respect to the receiver node. Note that this approach is suboptimal as compared to

joint decoding of the entire transmitting nodes inside the communication range which

is equivalent to maximum likelihood (ML) decoding. For this reason, the interference

inside area AZ(R(n)) is denoted as constructive interference, because it consists of trans-

missions that will be eventually decoded, while all the transmissions from nodes outside
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of area A are called destructive interference and are not decoded. Note that in the phys-

ical model for the MPR scheme, the communication range R(n) defines the area where

the receiver is capable of decoding, which contrasts with point-to-point communication

[1], for which the transmission range r(n) defines the possible area where the receiver

can decode, given that only one transmission is successful at a receiver.

3.2 Throughput Capacity with Multi-Packet Reception

The capacity of wireless ad hoc networks are computed for both protocol and

physical models.

A cut Γ is a partition of the vertices (i.e. nodes in the wireless networks) of

a graph into two sets. The cut capacity is defined to be the sum of the capacity of

all the active edges crossing the cut that transmit simultaneously and successfully. In

this section, random geometric graph (RGG) is used. An edge is active (communication

link) in RGG if the protocol or physical model is satisfied for successful communications

between the two nodes which is directly a function of distance between nodes. However,

an edge in a general graph is not necessarily an active edge for an RGG. Min-cut is

a cut whose capacity is the minimum value among the capacity of all cuts. For the

wireless networks, the concept of sparsity cut is used, which is defined by Liu et al. [21],

instead of min-cut, to take into account the differences between wired and wireless links.

lΓ is defined as the length of the cut. For the square region illustrated in Fig. 3.2, the

middle line induces a sparsity cut Γ. Because nodes are uniformly deployed in a random
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network, such a sparsity cut captures the traffic bottleneck of these random networks

on average [21]. The sparsity-cut capacity is upper bounded by the maximum number

of simultaneous transmissions across the cut.

G

q

( )T n

( , )x y

xyS

Information flow direction

( )T n( )T n

lG rG

Figure 3.2: For a receiver at location (x, y), all the nodes in the shaded region Sxy can
send a message successfully and simultaneously.

Definition 3.3 Sparsity Cut: A sparsity cut for a random network is defined as a cut

induced by the line segment with the minimum length that separates the region into two

equal area subregions. Note that the definition of sparsity cut does not depend on a

specific realization of a random network, it rather focuses on the asymptotic order of

some spatial-statistical property of the collection of random networks as a whole. The cut

capacity is defined as the transmission bandwidth W multiplied by the maximum possible

number of simultaneous transmissions across the cut. This cut capacity constrains the

26



information rate that the nodes from one side of the cut as a whole can deliver to the

nodes at the other side. The cut length lΓ is defined as the length of the cut line segment

in two dimensional space. Similarly, in 3-D volume, the sparsity cut is a plane, and the

cut plane has an area. In another word, sparsity cut can be seen for random geometric

graph (RGG) similar to min-cut concept in graph theory.

Let R(n) be the radius of the receiver area A, i.e., A = πR2(n). Given that

omnidirectional antennas are assumed for all nodes, the information from any node

inside this area is decode-able while the information from all transmitting nodes outside

of this region are considered as interference.

It is assumed that each disk with radius R(n) centered at any receiver is disjoint

from the other disks centered at the other receivers. It will be shown later that this

assumption is necessary in order to guarantee that the physical model condition, SINR

≥ β, is satisfied.

3.2.1 Upper Bound for Protocol Model

The sparsity cut is first derived for a random wireless ad hoc network under

the protocol model.

Lemma 3.4 The asymptotic throughput capacity of a sparsity cut Γ for a unit square

region has an upper bound of c1lΓnR(n), where, c1 = π/2(2 + ∆).

Proof: The cut capacity is the maximum number of simultaneous transmis-

sions across the cut. Sxy is defined as the area in the left side of the cut Γ that contains
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nodes sending packets to the receiver node located at (x, y) as shown in Fig. 3.2. These

nodes lie in the left side of the cut Γ within an area called Sxy. The assumption is that

all these nodes are sending packets to the right side of the cut Γ.

From the definition of the MPR, for a node at location (x, y), any node in the

disk of radius R(n) can transmit information to this receiver simultaneously and the

node can successfully decode those packets. In order to obtain an upper bound, edges

that cross the cut is only needed to be considered. Let us first consider all possible nodes

in the Sxy region that can transmit to the receiver node. Because nodes are uniformly

distributed, the average number of transmitters located in Sxy is n× Sxy. The number

of nodes that are able to transmit at the same time from left to right is upper bounded

as a function of Sxy. The area of Sxy is Sxy = 1
2R

2(n)(θ−sin θ) whose area is maximized

when θ = π, i.e. max0≤θ≤π[Sxy] =
1
2πR

2(n). The total number of nodes that can send

packets across the cut is upper bounded as

lΓ
(2 + ∆)R(n)

1

2
πR2(n)n = c1lΓnR(n), (3.3)

where c1 = π/2(2 + ∆).

Corollary 3.5 For any arbitrary shape unit area random network, if the minimum cut

length lΓ is not a function of n, then the sparsity cut capacity has an upper bound of

Θ(nR(n)).

Proof: Regardless of the shape of the unit area region, it is clear that the

length of lΓ is Θ(1). because the network area is unity. If lΓ is not a function of n, then

the capacity is always upper bounded as Θ(nR(n)).
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Theorem 3.6 The per-node throughput of MPR scheme in a dense random network

is upper bounded by Θ(R(n)).

Proof: For a sparsity cut Γ in the middle of the unit plain, on average, there

are Θ(n) pairs of source-destination nodes that need to cross Γ in one direction, i.e.,

nΓl,r
= nΓr,l

= Θ(n). Combining this result with Corollary 3.5, this theorem can be

easily proved. Note that nΓl,r
and nΓr,l

are the transmissions from left to right and from

right to left respectively.

3.2.2 Lower Bound for Protocol Model

It will be proved that, when n nodes are distributed uniformly over a unit

square area, there have simultaneously at least lΓ
(2+∆)R(n) circular regions in Fig. 3.2,

each one contains Θ(nR2(n)) nodes. The objective is to find the achievable lower bound

using Chernoff bound such that the distribution of the number of edges across the cut

is sharply concentrated around its mean, and hence in a randomly chosen network, the

actual number of edges crossing the sparsity cut is indeed Θ(nR(n)).

Theorem 3.7 Each area Aj with circular shape contains Θ(nR2(n)) nodes uniformly

for all values of j, 1 ≤ j ≤
⌈

lΓ
(2+∆)R(n)

⌉
, w.h.p.. It can be expressed as

lim
n→∞

P

⌈lΓ/(2+∆)R(n)⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 = 1, (3.4)

where δ is a positive small value arbitrarily close to zero.
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Proof: Since lΓ is not a function of n, using Chernoff bound (Lemma 2.8) and

Eq. (2.6), for any given 0 < δ < 1, θ > 0 can be found such that

P [|Nj −E(Nj)| > δE(Nj)] < e−θE(Nj) = e−θn|Aj |. (3.5)

Thus, it can conclude that the probability that the value of the random variable

Nj deviates by an arbitrarily small constant value from the mean tends to zero as n →

∞. This is a key step in showing that when all the events
∩⌈lΓ/(2+∆)R(n)⌉

j=1 |Nj−E(Nj)| <

δE(Nj) occur simultaneously, then all Nj ’s converge uniformly to their expected values.

Utilizing the union bound, it arrived at

P

⌈lΓ/(2+∆)R(n)⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)


= 1− P

⌈lΓ/(2+∆)R(n)⌉∪
j=1

|Nj −E(Nj)| ≥ δE(Nj)


≥ 1−

⌈lΓ/(2+∆)R(n)⌉∑
j=1

P [|Nj − E(Nj)| ≥ δE(Nj)]

> 1−
⌈

lΓ
(2 + ∆)R(n)

⌉
e−θE(Nj)

= 1−
⌈

lΓ
(2 + ∆)R(n)

⌉
e−

θπnR2(n)
2 . (3.6)

The last term is derived from the fact that E(Nj) = π
2nR

2(n). In order to

guarantee connectivity, R(n) = Ω

(√
logn
n

)
is needed. Thus the following equations

can be gotten as

e−
θπnR2(n)

2

R(n)
= O

(
1

n
θπ
2
− 1

2 logn

)
= O

(
1

n

)
, (3.7)

provided that θ > 3/π. Then

lim
n→∞

P

⌈lΓ/(2+∆)R(n)⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 > 1− 1

n
, (3.8)
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which proves this theorem.

The next theorem demonstrates that this capacity is an achievable lower bound.

Corollary 3.8 The per-node throughput of MPR scheme for a dense random network

has a lower bound of Θ(R(n)).

Proof: It is proved in Theorem 3.7, there are
⌈

lΓ
(2+∆)R(n)

⌉
different circles of

radius R(n) each of them having Θ(nR2(n)) nodes. Therefore, per-node is the multi-

plications of these two values which is divided by the total number of nodes.

⌈
lΓ

(2 + ∆)R(n)

⌉
× nR2(n)

n
= R(n) (3.9)

3.2.3 Upper Bound for Physical Model

The division range D(n) is defined as the minimum distance required between

receiving nodes such that each node can decode all transmitters within the communica-

tion range R(n) successfully. Equivalently, D(n) is the minimum distance that separates

simultaneous active receivers far from each other such that receiver nodes can have suc-

cessful communications. Based on the above, D(n) is a function that depends on n

which is willing to be minimized between two concurrent receivers as shown in Fig. 3.3

such that the physical model constraint is satisfied. It will be proven that D(n) is a

function of R(n).

Lemma 3.9 The asymptotic throughput capacity of a sparsity cut Γ for a unit square

region has an upper bound of πlΓn
R2(n)
D(n) , where, R(n) and D(n) are communication

range and division range of MPR respectively as illustrated in Fig. 3.3.
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Figure 3.3: Upper bound design of the network

Proof: The cut capacity is upper bounded by the maximum number of simul-

taneous transmissions across the cut. Based on the results from section 3.2.1 and the

total number of nodes in each area Sxy, the total information capacity (i.e. the total

capacity) Cj can be computed for one receiver j at the right side of the cut as

Cj =
1

2
πnR2(n). (3.10)

The constraint to guarantee that Eq. (3.10) is true for all of the nodes inside the circle

of radius R(n), is to satisfy SINRi∈Sxy ≥ β. For this reason, the circles in which nodes

are transmitting concurrently must be away from each other far enough to satisfy SINR

criterion.
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Therefore, the total throughput capacity C(n) across the sparsity cut is

C(n) ≤
(⌊

lΓ
D(n)

⌋
+ 1

)
Cj <

πnR2(n)(lΓ +D(n))

2D(n)
. (3.11)

Since lΓ ≥ D(n), then lΓ +D(n) ≤ 2lΓ and the proof follows.

Lemma 3.10 The per-node throughput of MPR scheme in a dense random network is

upper bounded by O
(
R2(n)
D(n)

)
.

Proof: From lemma 3.9, there are ⌈lΓ/D(n)⌉ different circles of radius R(n)

each of them having Θ(nR2(n)) nodes on average. Therefore, the average per node

throughput capacity can be derived as

λ(n) =
C(n)

n
= O

(
R2(n)

D(n)

)
. (3.12)

To derive an upper bound for the throughput capacity, a minimum D(n) need

to be obtained, such that it guarantees SINRZ(R(n)) ≥ β. The decoding is conducted

from the nearest nodes to the farthest nodes by decoding the strongest signals first

and then subtract them from the received signal. So if the SINR of the outmost node

can be decoded, then all of the nodes inside that circle can be decoded successfully

because the nodes closer to the receiver provide higher SINR if they are decoded either

jointly or separately depending on the location of nodes in the network. Based on this

assumption, the SINR of the farthest nodes Z(R(n)) (i.e., at the conjunction edge of the

communication circle) is only needed to be computed to make sure that SINRZ(R(n)) ≥

β. Hence, to obtain the upper bound of the capacity is equivalent to maximize the
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following function.

max
SINRZ(R(n))≥β

λ(n) = max
SINRZ(R(n))≥β

O

(
R2(n)

D(n)

)
(3.13)

Note that the throughput capacity is maximized by minimizing D(n) since

R(n) is a network parameter that is determined in advance. If the value of D(n) is too

small, then Eq. (3.2) will not be satisfied. The aim is to find the optimum value for

D(n) such that both conditions are satisfied. The following theorem and its applications

establish the optimum value that will satisfy Eq. (3.2).

Theorem 3.11 The per-node throughput of MPR scheme in a dense random network

is upper bounded by O
(
(R(n))(1−2/α)

n1/α

)
.

Proof: In order to compute the upper bound, the SINR for the node that is

in a circle close to the edge of the network is derived.

For this receiver node, the Euclidean distances of interfering nodes are at

(iD(n)+R(n)) assuming that all interfering nodes are at the farthest distance from the

receiver node. Then the SINR of the transmitter node that is located at the circumfer-

ence of the communication circle is given by

SINRZ(R(n)) ≤ P/Rα(n)
π
2nR

2(n)
∑⌈lΓ/D(n)⌉

i=1
P

(iD(n)+R(n))α

≤
(
D(n)

R(n)

)α 1
π
2nR

2(n)
∑⌈lΓ/D(n)⌉

i=1
1

(i+ 1
2
)α

. (3.14)

The second inequality above stems from the fact that R(n)
D(n) ≤ 1

2 . Note that ⌈lΓ/D(n)⌉

approaches infinity when n → ∞; therefore, the summation
∑⌈lΓ/D(n)⌉

i=1
1

(i+ 1
2
)α

converges
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to a bounded value when α > 2. This means that there are constant values c3 and c4

such that

c3 ≤
⌈lΓ/D(n)⌉∑

i=1

1

(i+ 1
2)

α
≤

⌈lΓ/D(n)⌉∑
i=1

1

(i)α
≤ c4. (3.15)

Combining (3.14) and (3.15), the SINR constraint can be revised as

β ≤ SINRZ(R(n)) ≤
(
D(n)

R(n)

)α 2

πc3nR2(n)
. (3.16)

Then the relationship between R(n) and D(n) can be expressed as

D(n) ≥
(
c3βπ

2

) 1
α

n
1
α (R(n))(1+2/α). (3.17)

From Eqs. (3.12) and (3.17), the upper bound of the throughput capacity is computed

as

λ(n) = O

(
R2(n)

D(n)

)
= O

(
(R(n))(1−2/α)

n1/α

)
. (3.18)

The above upper bound is derived based on the assumption that the SINR for

the nodes that are located on the circumference of communication circle A of radius

R(n) satisfy the physical model, i.e., SINRZ(R(n)) ≥ β. It will be shown that this upper

bound in Theorem 3.11 is also an achievable capacity.

3.2.4 Lower Bound for Physical Model

Given the upper bound derived in the previous section, the Chernoff Bound is

used to prove the achievable lower bound. It is proven that, when n nodes are distributed

uniformly over a square area, there are simultaneously
⌈

lΓ
D(n)

⌉
circular regions (see fig.

3.2), each one containing Θ(nR2(n)) nodes. The objective is to find the achievable lower
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bound using the Chernoff bound, such that the distribution of the number of edges

across the cut is sharply concentrated around its mean, and hence in a randomly chosen

network, the actual number of edges crossing the sparsity cut is indeed Θ
(
(R(n))(1−2/α)

n(1/α)

)
.

Theorem 3.12 Each area Aj with circular shape of radius R(n) contains Θ(nR2(n))

nodes uniformly and w.h.p. for all values of j, 1 ≤ j ≤
⌈

lΓ
D(n)

⌉
under the condition that

R(n) = Ω

(√
logn
n

)
. Equivalently, this can be expressed as

lim
n→∞

P

⌈lΓ/D(n)⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 = 1, (3.19)

where δ is a positive arbitrarily small value close to zero.

Proof: From Eq. (2.6), for any given 0 < δ < 1, there exists a θ > 0 such that

P [|Nj −E(Nj)| > δE(Nj)] < e−θE(Nj) = e−θn|Aj |. (3.20)

Thus, it can conclude that the probability that the value of the random variable

Nj deviates by an arbitrarily small constant value from the mean tends to zero as

n → ∞. This is a key step in showing that when all the events
∩⌈lΓ/D(n)⌉

j=1 |Nj−E(Nj)| <

δE(Nj) occur simultaneously, then all Njs converge uniformly to their expected values.

Utilizing the same technique as in 3.2.2, it can be obtained that

P

⌈lΓ/D(n)⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)


≥ 1−

⌈lΓ/D(n)⌉∑
j=1

P [|Nj − E(Nj)| ≥ δE(Nj)]

> 1−
⌈

lΓ
D(n)

⌉
e−θE(Nj). (3.21)
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Because E(Nj) =
π
2nR

2(n), the final result is

lim
n→∞

P

⌈lΓ/D(n)⌉∩
j=1

|Nj − E(Nj)| > δE(Nj)


≥ 1−

⌈
lΓ

D(n)

⌉
e−

θπnR2(n)
2

≥ 1−
⌈

lΓ
2R(n)

⌉
e−

θπnR2(n)
2 . (3.22)

If R(n) ≥
√

c5 logn
n and as n → ∞, then e−

θπnR2(n)
2

R(n) → 0, when θ > 1/πc5.

Here, the key constraint of R(n) is given as

R(n) = Ω

(√
log n

n

)
. (3.23)

Eq. (3.23) is equivalent to the connectivity condition in the protocol model

[1]. It is interesting to note that connectivity criterion is not really used in the physical

model, however, it turns out that the minimum distance for the communication range

in MPR model is equivalent to the connectivity constraint in protocol model for random

networks.

The above theorem demonstrates that there are indeed Θ(nR2(n)) nodes in

each communication region with the constraint in Eq. (3.23). The achievable capac-

ity is only feasible when the communication range of each node in MPR scheme is at

least equal to the connectivity criterion of transmission range in point-to-point com-

munication [1]. Combining the result of Eq. (3.18) in Theorem 3.11 and Eq. (3.23) in

Theorem 3.12, the following theorem can be stated for the lower bound of throughput

capacity. It implies that the lower bound order capacity achieves the upper bound in

physical model.

37



Theorem 3.13 The per-node throughput capacity of MPR scheme in a dense wireless

ad hoc network is bounded by Ω
(
(R(n))(1−2/α)

n1/α

)
, provided that R(n) = Ω

(√
logn
n

)
. The

achievable lower bound is Ω

(
(logn)

1
2− 1

α√
n

)
for α > 2.

Proof: It is first proved that Eq. (3.18) is an achievable bound and then by

applying the minimum communication range constraint in Eq. (3.23), the lower bound

for this theorem is derived.

To derive the achievable lower bound, a scheme is designed for separating

decode-able transmitter nodes inside the communication circle and interference, such

that SINRZ(R(n)) ≥ β1. Similar to the derivations in Eq. (3.14) and using Fig. 3.3, it is

clear that the SINR is minimized when the largest value for interference is considered.

This value is achieved when the interference is computed for a receiver node in the

middle of the network and use the closest possible distance to the receiver node1. This

lower bound can be written as

SINRZ(R(n)) ≥
P

Rα(n)

BN0 +
π
2nR

2(n)
∑⌈lΓ/2D(n)⌉

i=1
2P

(iD(n)−R(n))α

. (3.24)

Assume that D(n) satisfies the condition in Eq. (3.17). If the constraint for R(n) is

used in Eq. (3.23), it arrives at

D(n)

R(n)
≥
(
c3βπ

2

) 1
α

n
1
α (R(n))2/α ≥ Θ

(
(log n)

1
α

)
, (3.25)

which illustrates that R(n) can be ignored compared with D(n) for large values of n,

i.e., n → ∞. Now the asymptotic behavior of Eq. (3.24) is evaluated when n → ∞.

1Note that the difference between maximum and minimum value of interference is a constant value.
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Combining Eqs. (3.24) and (3.25), SINRZ(R(n)) can be lower bounded by

lim
n→∞

SINRZ(R(n)) ≥
(
D(n)

R(n)

)α 1

πnR2(n)
∑⌈lΓ/D(n)⌉

i=1
1
iα

≥
(
D(n)

R(n)

)α 1

πc4nR2(n)

≥ c3
2c4

β = β1.

This inequality is derived using Eqs. (3.15) and (3.17), together with the fact that the

second term in the denominator of SINR goes to infinity when n → ∞ and, therefore, the

first term related to the noise can be dropped. Using the same arguments introduced

for the computation of the upper bound, it can be shown that a non-zero value for

SINRZ(R(n)) can be achieved which implies that the throughput capacity can be achieved

asymptotically.

The above theorem demonstrates that a gain of at least Θ
(
(log n)

α−2
2α

)
can

be achieved compared with the results by Gupta and Kumar [1] and Franceschetti et

al. [2]. Combining Theorems 3.11 and 3.13, it arrives at the next major contribution of

this chapter.

Theorem 3.14 The per-node throughput capacity of MPR scheme in a dense wireless

ad hoc network is tight bounded as Θ
(
(R(n))(1−2/α)

n1/α

)
. The communication range is

lower bounded as R(n) = Ω

(√
logn
n

)
, which implies a bound of Θ

(
(logn)

1
2− 1

α√
n

)
.

Note that this result shows that the gap can be closed in the physical model

similar to the results derived by Franceschetti et al. [2] but achieving higher throughput

capacity with MPR.
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3.3 Power Efficiency

Many wireless sensor and ad hoc networks are energy and power limited sys-

tems and it is natural to ask what the price of achieving higher capacities in wireless

ad hoc networks is.

The capacity was originally defined in [1] based on bits per second for random

networks. The definition of bits-per Joule was defined in [39]. To incorporate the effect

of energy consumption for communication in wireless networks, bits per second per

Watts for random networks as power efficiency is defined in the followings. This new

metric is a measure for evaluating the power efficiency of the capacity in wireless sensor

and ad hoc networks. The formal definition is as follows.

Definition 3.15 Power Efficiency: In wireless ad hoc networks with limited energy,

the power efficiency is defined as

η(n) =
λ(n)

P (n)
, (3.26)

where λ(n) is the capacity of the network and P (n) is the total minimum average power

required to achieve λ(n) for each source-destination pair in the network. The metric is

“bits per Joule” or “bits per second per Watts” in random wireless ad hoc networks.”

With this definition of efficiency, the relationship between the capacity and

the power efficiency is computed for the various approaches defined to increase the

throughput capacity of wireless ad hoc networks, including MPR.
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3.3.1 Power efficiency with Single-Packet Reception

In the paper [1] by Gupta and Kumar, it is easy to show that the minimum

transmit power P for each hop to guarantee SINR ≥ β is

min(P ) = Θ(sαn) = Θ

((
log n

n

)α
2

)
, (3.27)

Where, sn = Θ

(√
logn
n

)
. The total average power to transmit this information is

P (n) = min(P )× total number of hops = Θ

((
log n

n

)α
2
− 1

2

)
. (3.28)

The power efficiency for this scheme can be computed by dividing the throughput ca-

pacity by the total average power required to achieve this capacity. This renders

η(n) = Θ

(
n

α
2
−1

(log n)
α
2

)
. (3.29)

3.3.2 Power efficiency with Percolation Theory

The communication in the approach by Franceschetti et al. [2] is based on di-

viding the transfer of packets into four phases. In the first phase, the source transmits a

packet to a relay inside a path that is called ”highway path.” The distance between the

source and highway path is considered a long range communication and is proportional

to Θ( logn√
n
). Inside the highway path in phases two and three, multiple hop commu-

nication occurs horizontally and vertically respectively. The communication range is

of short range and proportional to Θ( 1√
n
). Communication in phase four is similar to

phase one and it is between relay and destination.
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Assume that Ph(n) is the transmit power at the highway path in phases two

and three. Following the definition in [2], the interference from the other cells can be

expressed as

I(d, n) ≤ Ph(n) (sn(d+ 1))−α c6. (3.30)

where c6 is a constant value. The signal power at the receiver is lower bounded as

S(d, n) ≥ Ph(n)
(
sn
√
2(d+ 1)

)−α
. (3.31)

Using the above results, the SINR is derived as

SINR =
S(d, n)

BN0 + I(d, n)
≥

Ph(n)
(√

2
)−α

BN0(sn(d+ 1))α + Ph(n)c6
. (3.32)

In the limit, the minimum required power to guarantee that the SINR satisfies

the physical model when n → ∞ is min(Ph(n)) = Θ((sn(d+ 1))α) = Θ
(
(n)−α/2

)
.

For the long-range communications in the first and fourth phase, there is no

interference. Therefore, the SINR can be expressed as

SINR =
Pu(n)

(
logn√

n

)−α

BN0
. (3.33)

The minimum required power for this case to guarantee the physical model

condition is given by

min(Pu(n)) = Θ

((
(log n)2

n

)α
2

)
. (3.34)

Using the definition of power efficiency, its value for this case can be computed
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as

η(n) = λ(n)/P (n)

=
λ(n)

2min(Pu(n)) +
√
nmin(Ph(n))

= Θ
(
n

α
2
−1
)
. (3.35)

3.3.3 Power Efficiency with Multi-Packet Reception

It is demonstrated that MPR closes the gap between the upper and lower

bounds of the capacity of wireless ad hoc networks by achieving higher throughput

capacity. However, it is important to find out the power efficiency of this approach.

From the derivation of throughput capacity for MPR in Eq. (3.24), the SINR is given

by

SINR ≥ P (R(n))−α

BN0 +
π
2nR

2(n)
∑⌈lΓ/2D(n)⌉

i=1 2P (iD(n)−R(n))−α
(3.36)

The physical model constraint is guaranteed for SINR asymptotically when the mini-

mum transmit power PMPR(n) is

min(PMPR(n)) = Θ (Rα(n)) =

(
log n

n

)α
2

. (3.37)

Eq. (3.37) is derived using Eqs. (3.23) and (3.25) when n → ∞.

The relationship between λ(n) and PMPR(n) can be computed from Theorem

3.14 as

λ(n) = n−1/α (PMPR(n))
α−2
α2 . (3.38)

Because the communication range in MPR is equal to R(n), the total minimum

transmit power from source to destination is equal to PMPR(n)
R(n) .
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The power efficiency of MPR scheme is given by

η(n) =
λ(n)R(n)

PMPR(n)

= λ(n)(R(n))1−α

= n−α−1
α−2λ(n)

−(α−1)2−1
α−2 . (3.39)

3.4 Discussion

The reason for the significant increase in capacity with MPR is that, unlike

point-to-point communication in which nodes compete to access the channel, MPR

embraces (strong) interference by utilizing higher decoding complexity for all nodes. As

it has been pointed out, recent work on network coding [22, 23] implicitly assumes some

form of MPR. These results clearly demonstrate that embracing interference is crucial

to improve the performance of wireless ad hoc networks, and that MPR constitutes an

important component of that.

Another interesting observation is the fact that increasing the communication

range R(n) increases the throughput capacity. This is in sharp contrast with point-to-

point communication in which increasing the communication range actually decreases

the throughput capacity and it is again due to the fact that MPR embraces the inter-

ference.

Fig. 3.4 shows the tradeoff between the total minimum transmit power and

the throughput capacity. From this figure, it is clear that the total transmit power for

the network must be increased in order to increase the per-node throughput capacity
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in random wireless ad hoc networks.
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Figure 3.4: Power and capacity relationship

Fig. 3.5 shows that, by increasing the throughput capacity in wireless ad hoc

networks, the power efficiency of all the schemes analyzed decreases. Many wireless ad

hoc networks are limited in total available energy or power for each node. Therefore,

increasing the throughput capacity may not be feasible if the required power to do so

is not available. This result also shows that the throughput capacity should not be

the only metric used in evaluating and comparing the merits of different schemes. The

power efficiency of these schemes is also very important. Based on different values for

R(n), different throughput capacities can be attained. In general, MPR allows to have

tradeoff between receiver complexity and throughput capacity.

There are certain issues that do not been discussed in this thesis. The anal-

ysis does not include the energy required for increased decoding complexity, which is
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Figure 3.5: Capacity and power efficiency tradeoff

necessary for MPR. The analysis also does not include the additional required overhead

related to cooperation among nodes. Such topics are the subject of future studies.

3.5 Conclusion

This chapter shows that the use of MPR can close the gap for the throughput

capacity in random wireless ad hoc networks under the physical model, while achiev-

ing much higher capacity gain than that of [2]. The tight bounds are Θ(R(n)) and

Θ
(
(R(n))1−2/α

(n(1/α))

)
where R(n) is the communication range in MPR model for protocol

and physical models respectively.

A new definition related to power efficiency is introduced. The results show

that increasing the throughput capacity by means of MPR or any of the other tech-

niques proposed to date [1, 2] results in a reduction of power efficiency in the network.
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Accordingly, there is a tradeoff to be made between increasing capacity and decreasing

power efficiency. Determining what is the optimum tradeoff between capacity and power

efficiency is an open problem.
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Chapter 4

A Unifying Perspective of Throughput

Capacity

In this chapter, the unified modeling framework is presented for the computa-

tion of the capacity-delay tradeoff of random wireless ad hoc networks. This framework

considers information dissemination by means of unicast routing, multicast routing,

broadcasting, or different forms of anycasting. (n,m, k)-casting is defined as a general-

ization of all forms of one-to-one, one-to-many and many-to-many information dissem-

ination in wireless networks. In the context of (n,m, k)-casting, n, m, and k denote

the number of nodes in the network, the number of destinations for each communi-

cation group, and the actual number of communication-group members that receive

information optimally1, respectively. Section 4.1 describes the network model and nec-

essary concepts for the development of the framework. The capacity-delay tradeoff is

1Optimality is defined as the k closest (in terms of Euclidean distance of the tree) destinations to
the source in an (n,m, k)-cast group.
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presented for (n,m, k)-casting in wireless ad hoc networks in which receivers perform

Single-Packet Reception (SPR) in Section 4.2 and Multi-Packet Reception (MPR) in

Section 4.3 respectively. The results are consistent with prior results in wireless net-

works and extend them to the general (n,m, k)-cast case. This chapter is concluded in

Section 4.4.

4.1 Network Model

This chapter studied the case in which all n nodes in the network act as sources

that communicates with a group of m receivers (with m ≤ n) and that k of those re-

ceivers obtain the information reliably. This characterization of information dissemi-

nation from sources to receivers is called as (n,m, k)-casting. This characterization is

useful because it can model all forms of one-to-one, one-to-many and many-to-many

information dissemination in wireless networks.

Definition 4.1 Feasible throughput capacity of (n,m, k)-cast:

A throughput of λ(n) bits per second for each node is feasible if a scheduling transmission

scheme allows each node in the network to transmit λ(n) bits per second on average to

its k out of m destinations.

Definition 4.2 (n,m, k)-cast tree:

An (n,m, k)-cast tree is a set of nodes that connect a source node of an (n,m, k)-cast

with all its intended k receivers out of m, in order for the source to send information to

k of those receivers. It can be shown as unicast (k = m = 1), broadcast (k = m = n),
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multicast (k = m < n), anycast (n = m, k = 1) and all forms of manycast (k ≤ m ≤ n).

The total Euclidean length of an (n,m, k)-cast tree is a function of transmission

range r(n) or receiver range of MPR R(n). Therefore, the optimum (n,m, k)-cast tree

that has the minimum Euclidean distance is a function of r(n) or R(n). For this reason,

changing the transmission or receiver range will change the optimum (n,m, k) tree.

Specifically, a multicast tree is also denoted by an (n,m,m)-cast tree (i.e., when m = k)

which can include the unicast, multicast and broadcast cases.

The construction of (n,m, k)-cast tree starts with connecting the source to m

destinations using minimum number of relays or hops. After constructing this tree, k

out of m nodes is picked in this tree that have minimum total Euclidean distance to

the source. This selection of k nodes is referred as ”optimum” because it results in

maximum throughput capacity for the network. Note that there are
(
m
k

)
choices for

selecting k nodes and in this chapter, the above criterion have been selected for this

selection.

When communicating over a broadcast channel, a transmission from a source or

relay in an (n,m, k)-cast may interfere with other transmissions in the same or different

(n,m, k)-casts. For a given (n,m, k)-cast to succeed, the packet from the source must

reach k of the m receivers in the group reliably at least once. Furthermore, any given

relay forwards a packet only once. Accordingly, one or multiple (n,m, k)-cast trees can

be defined by the set of transmissions that reach each relay and destination of a given

(n,m, k)-cast for the first time. When m = k, the resulting (n,m,m)-cast tree is also
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called a multicast tree. For the case in which k ≤ m, the selection of the subset of k

receivers that correctly receive the packet from the source is such that each of them is

reached through a branch of the (n,m, k)-cast tree.

Given the distribution of nodes in the plane and the protocol model it is

assumed that, the possible (n,m, k)-cast trees needed to consider include only those

that render the minimum number of transmissions for a packet from the source to

reach all the intended receivers (k or m) at least once. Because transmissions occur

over a common broadcast channel, this implies that the (n,m, k)-cast trees in which

this work are interested are those that involve the minimum number of relay nodes

needed to connect the source and intended receivers of an (n,m, k)-cast. That is, it is

focused on (n,m, k)-cast trees built by the aggregation of shortest paths (minimum-hop

paths) between a source and all of its intended destinations. Accordingly, the following

definition for (n,m, k)-cast trees is adopted in the rest of this chapter.

An (n,m, k)-cast tree is a function of the transmission range r(n). Therefore,

the optimum tree that has the minimum Euclidean distance is a function of r(n). For

this reason, changing the transmission range will change the optimum (n,m, k)-cast

tree.

Definition 4.3 Minimum Euclidean (n,m, k)-cast Tree (MEMKT(r(n))):

The MEMKT(r(n)) of an (n,m, k)-cast is an (n,m, k)-cast tree, in which the k desti-

nations receive information from the source among the m receivers of the (n,m, k)-cast,

and have the minimum total Euclidean distance. When k = m for instance, minimum
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Euclidean multicast tree (MEMT (r(n))) is denoted by an (n,m,m)-cast tree with a total

minimum Euclidean distance. MEMKT (R(n)) can be defined similarly when the nodes

in the networks have MPR capabilities.

Definition 4.4 Minimum Area (n,m, k)-cast Tree (MAMKT(r(n))):

The MAMKT(r(n)) in a (n,m, k)-cast tree with k out of m destinations for each source

is a (n,m, k)-cast tree that has minimum total area. The area of a (n,m, k)-cast tree is

defined as the total area covered by the circles centered around each source or relay with

radius r(n).

Note that EMST is spanning tree that consider only the source and destina-

tions, while MEMKT and MAMKT are related to a real routing tree that includes the

relays needed to connect the source with the destinations.

In the delay analysis, it is assumed that the delay associated with packet

transmission is negligible and the delay is essentially proportional to the number of

hops from source to destination. When the packet size is large, then the transmission

delay is considerable and this delay no longer can be ignored. The analysis does not

consider this case and this is the subject of future study.

Definition 4.5 Delay of an (n,m, k)-Cast:

In an (n,m, k)-cast, the delay of a packet in a network is the time it takes the packet to

reach all k destinations after it leaves the source.

The queuing delay at the source is not taken into account, because the interest

is in the network delay. The average packet delay for a network with n nodes, Dm,k(n),
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is obtained by averaging over all packets, all source-destination pairs, and all random

network configurations.

Definition 4.6 Total Active Area (TAA (∆, R(n))):

The TAA(∆, R(n)) is the total area of the network multiplied by the average maximum

number of simultaneous transmissions and receptions inside a communication region of

Θ(R2(n)).

It can be shown that this value has an upper bound of O(1) and O(nR2(n))

for SPR and MPR respectively.

4.2 Capacity of (n,m, k)-cast with Single-Packet Reception

4.2.1 Upper Bound

Note that MEMKT includes intermediate relays while EMST(m) only in-

cludes m destinations. Lemma 2.7 computes the average total Euclidean distance for

EMST(m). To compute the upper bound for (n,m, k)-cast, the relationship between

S(MAMKT) and ∥EMST∥(m) will be first demonstrated.

Lemma 4.7 The average area for MEMKT(r(n)) has the following lower bound.

S (MAMKT(r(n)) =



Ω
(
kr(n)/

√
m
)
,m = O

(
r−2(n)

)
Ω
(
kr2(n)

)
,Ω(k) = r−2(n) = O(m)

Ω (1) , k = Ω
(
r−2(n)

)
(4.1)
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Proof: From Lemma 2.7, if only m destinations is selected (m + 1 nodes

including source and m destinations) out of n nodes to construct an EMST(m), then the

total average Euclidean distance of the EMST(m) is at least Θ(
√
m). Given that there

are m destinations for the tree, then the average Euclidean distance between any two

nodes for this tree is Θ (
√
m/m), so the k closest destinations and the source construct a

tree with average length of Θ (
√
mk/m). If the k destinations is just selected randomly,

then the problem is an (n, k, k)-cast in the formulation and then the distance of that tree

is Θ(
√
k) based on Lemma 2.7. Here, it is assumed to construct m multicast tree first,

and then choose the optimal (smallest length of the tree) ones as the real destinations.

It has been proved [19] that the average area of a tree T with transmission range

r(n) is lower bounded by the multiplication between the length of the tree and transmis-

sion range r(n) when the number of the actual destinations satisfies m = O
(
r−2(n)

)
.

Thus, when the transmission range is not a large value, then the total area in such a tree

is lower bounded by Ω (kr(n)/
√
m). This is the top lower bound in Eq. (4.1). When the

transmission range is larger, given that only the closest k nodes are needed in the set,

then the area of that tree is lower bounded by Ω
(
kr2(n)

)
(πr2(n) is the area covered

by one node). This is the second lower bound in Eq. (4.1). Once k = Ω
(
r−2(n)

)
, then

the MAMKT(r(n)) covers the entire network and Ω(1) can be used as the lower bound,

which is the last value in Eq. (4.1). The threshold for r(n) is derived when the first two

lower bounds are equal, i.e., Θ (kr(n)/
√
m) = Θ

(
kr2(n)

)
. The solution to the value of

mb is mb = Θ
(
r−2(n)

)
. This result means that, when m = O(mb) or m = Ω(mb), the

lower bound of S (MAMKT) is Ω (kr(n)/
√
m) or Θ

(
kr2(n)

)
, respectively.
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Theorem 4.8 The upper bound of the per-node (n,m, k)-cast throughput capacity in

dense wireless ad hoc networks is

Cm,k(n) =



O
(√

m(nkr(n))−1
)
, m = O

(
r−2(n)

)
O
((

nkr2(n)
)−1
)
, Ω(k) = r−2(n) = O(m)

O
(
n−1

)
, k = Ω

(
r−2(n)

)
(4.2)

Proof: The proof is immediate by combining Lemma 4.7 with the fact that

total area for a unit network was ”1”. Using the same argument in [1], the total

throughput capacity is the total area divided by the consumed area for one (n,m, k)-

cast tree. The result is immediate by normalizing the result by n.

Note that S (MAMKT) can have some overlap for different (n,m, k)-cast ses-

sions. The exclusive area for each multicast session is in the same order as the S (MAMKT).

In [1], disks of radius ∆r(n)/2 centered at each receiver are disjoint in order to

guarantee the protocol model. Therefore, the actual minimum exclusive area for each

(n,m, k)-cast session is at least

S (MAMKT)× π

(
∆r(n)

2

)2

× 1

πr2(n)
=

∆2

4
S (MAMKT). (4.3)

The difference is at most ∆2/4 which does not change the order. Hence, the capacity is

the network area divided by the total occupied area of one (n,m, k)-cast tree normalized

by n, which leads to the per-node capacity.

4.2.2 Lower Bound

To derive the achievable lower bound, a TDMA scheme is used for random

dense networks similar to the approach used in [40]. The network area is divided into

55



square cells. Each square cell has an area of r2(n)/2, which makes the diagonal length

of square equal to r(n). Under this condition, connectivity inside all cells is guaranteed

and all nodes inside a cell are within transmission range of each other. A cell graph is

builded over the cells that are occupied with at least one vertex (node). Two cells are

connected if there exist a pair of nodes, one in each cell, which are less than or equal to

r(n) distance apart. Because the whole network is connected when Eq. (2.2) is satisfied,

it follows that the cell graph is connected.

To satisfy the protocol model, cells in groups should be designed such that

simultaneous transmissions within each group do not violate the condition for success-

ful communication in the protocol model. Let L represent the minimum number of

cell separations in each group of cells that communicate simultaneously. Utilizing the

protocol model, L is given as L =
⌊
1 + r(n)+(1+∆)r(n)

r(n)/
√
2

⌋
= ⌊1 +

√
2(2 + ∆)⌋.

If time is divided into L2 time slots and assign each time slot to a single

group of cells, interference is avoided and the protocol model is satisfied. Given that

the parameter L is not a function of n, the TDMA scheme does not change the order

capacity of the network.

Definition 4.9 Minimum Euclidean (n,m, k)-Cast Tree Cells(MEMKTC(r(n))):

The MEMKTC(r(n)) of an (n,m, k)-cast tree is the total cells containing all the nodes

in the (n,m, k)-cast tree.

The following lemma establishes the achievable lower bound for the (n,m, k)-

cast capacity as a function of #MEMKTC(r(n)), the total number of cells that contain
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all the nodes in an (n,m, k)-cast group.

Lemma 4.10 The achievable lower bound of the per-node (n,m, k)-cast throughput ca-

pacity in dense wireless ad hoc networks is given by

Cm,k(n) = Ω
(
1/#MEMKTC(r(n))× 1/nr2(n)

)
, (4.4)

Proof: There are 1
(r(n)/

√
2)2

cells in the unit square network area. From the

definition of #MEMTC(r(n)) and the fact that our TDMA scheme does not change

the order capacity, it is clear that there are at most #MEMTC(r(n)) interfering cells

for any (n,m,m)-cast communications. Therefore, at any given time there can be at

least Ω( 1

#MEMTC(r(n))

1
r2(n)

) simultaneous communications in the network. Accordingly,

the per-node lower bound capacity is given by Ω( 1

#MEMTC(r(n))

1
nr2(n)

), which proves the

lemma.

Lemma 4.11 The average number of cells in MEMKT(r(n)) tree is tight bounded as

#MEMKTC(r(n)) =



Θ
(
k(
√
mr(n))−1

)
, m = O

(
r−2(n)

)
,

Θ(k) , Ω(k) = r−2(n) = O(m),

Θ
(
r−2(n)

)
, k = Ω

(
r−2(n)

)
.

(4.5)

Proof: Because the maximum number of cells in this network is equal to

Θ
(

1
r2(n)

)
, it is clear that one upper bound for #MEMTC(r(n)) is this value. That is,

#MEMTC(r(n)) cannot exceed the total number of cells in the network. On the other

hand, the total Euclidean distance of the (n,m,m)-cast tree was shown earlier to be

Θ(
√
m). Because r(n) is the transmission range of the network, the maximum number
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of cells for this (n,m,m)-cast tree must be at most Θ
(√

m
r(n)

)
, i.e., #MEMTC(r(n)) ≤

Θ
(√

m
r(n)

)
. This upper bound can be achieved only if every two adjacent nodes in the

(n,m,m)-cast tree belong to two different cells in the network. However, in practice, it

is possible that some adjacent nodes in the (n,m,m)-cast tree are located in a single

cell. Consequently, this value is the upper bound. The actual upper bound clearly is

the minimum of these two extreme values in the network, which is a function of the

topology of the network and this proves the lemma.

Theorem 4.12 The achievable lower bound of the (n,m, k)-cast throughput capacity in

dense wireless ad hoc networks is

Cm,k(n) =



Ω
(√

m(nkr(n))−1
)
, m = O

(
r−2(n)

)
Ω
((

nkr2(n)
)−1
)
, Ω(k) = r−2(n) = O(m)

Ω
(
n−1

)
, k = Ω

(
r−2(n)

)
(4.6)

Proof: The proof is immediate by combining Lemmas 4.10 and 4.11.

It is clear that by combining Theorems 4.8 and 4.12, a tight bound for the

capacity of (n,m, k)-cast can be derived.

It is noticed from the above results that there are three distinct capacity regions

for (n,m, k)-casting. These three different regions are achieved based on different values

of transmission range r(n), m, and k. In the first region, the order capacity of wireless ad

hoc networks is similar to that of unicast communication. Therefore, this first capacity

region is referred as unicast region. This unicast capacity region also includes the

capacity for multicasting or any type of anycast communication. Once the number of
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receiver nodes is smaller than Θ
(
r−2(n)

)
, then it enters into a second capacity region,

which is called the multicast capacity region. The last region is defined for the case

when both m and k are larger than Θ
(
r−2(n)

)
. The network capacity in this region

is equivalent to the broadcast capacity of the network, and hence this region is called

the broadcast capacity region. The (n,m, k)-cast tree associated to this region spans

all the elements of the graph and it is equivalent to a connected dominating set for

the entire network. Therefore, regardless of having multicast, broadcast, or any type of

anycast communications, the capacity reaches its minimum possible value for a given

transmission range which is the same as broadcast capacity.

4.2.3 Delay Analysis of (n,m, k)-Cast

In this section, the delay of (n,m, k)-casting and its tradeoff with capacity are

presented. As Definition 4.5 states, the packet delay is proportional to the total number

of hops required from each source to its destinations. In order to compute this delay,

the following lemma is proved.

Lemma 4.13 The delay of (n,m, k)-cast in a random dense wireless ad hoc network

with SPR is

Dm,k(n) = Θ
(
#MEMKTC(r(n))

)
. (4.7)

Proof: From the definition of #MEMKTC(r(n)) and Lemma 4.11, it con-

cludes that #MEMKTC(r(n)) is proportional to the minimum number of hops in which

the information is routed from source to all its destinations. Because a TDMA scheme
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is assumed to achieve the lower bound for the capacity, it is clear that, to transport

the information from one cell to the next adjacent cell, one to two hops are required.

Therefore, #MEMKTC(r(n)) is also in the same order as the total number of hops

needed. Based on the definition of delay, it is clear that #MEMKTC(r(n)) is also the

same order bound as the total delay, which proves the Lemma.

It is clear that a tight bound for delay can be computed in (n,m, k)-cast as a

function of r(n) by combining lemmas 4.11 and 4.13.

Theorem 4.14 The relationship between capacity and delay for (n,m, k)-cast is given

by

Cm,k(n)Dm,k(n) = Θ
((

nr2(n)
)−1
)
. (4.8)

Proof: The results can be easily derived by comparing Theorems 4.12, 4.8

with lemmas 4.11 and 4.13.

4.2.4 Discussion of Results

There is much valuable insight to be gained from modeling the capacity of

unicasting, multicasting, broadcasting and anycasting using the same framework. The

(n,m, k)-cast framework allows us to analyze the throughput capacity of wireless net-

works as a function of the number of receivers of a communication group, which can

range from 1 up to the number of nodes in the network, as well as a function of the

transmission range. Accordingly, the results obtained in all prior work can be derived

from the model by selecting the appropriate values for r(n) and m in the capacity results
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obtained in Sections 4.1. In addition, the framework also provides new insight on the

capacity of information dissemination techniques that are becoming more prevalent with

the availability of in-network storage, namely anycasting, and allows us to reason about

the nature that route signaling should be rendered more scalable wireless networks.

4.2.4.1 Cm,k(n) as Function of Transmission Range r(n) and Group Size m

The relationship between Cm,k(n) and the transmission range r(n) can be

seen in Fig. 4.1. From this figure, it can be shown that maximum capacity can be

attained when the transmission range has its minimum value, i.e., r(n) = Ω
(√

logn/n
)
.

It can conclude that the throughput capacity of dense wireless ad hoc networks is

proportional with the Θ (
√
m/k) and inversely proportional with the transmission range

r(n). Besides, the broadcast threshold mb will be decreased when r(n) increases.
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Figure 4.1: Cm,k(n) as a function of transmission range r(n), real number of destinations
k, and the number of destination group choices m.

Fig. 4.2 shows Cm,k(n) as a function of m. As it was the case for Cm,m(n),

if m varies from 1 to mu = Θ(1), the capacity of the network does not change and

equals Θ
(

1√
n logn

)
. For values of m larger than mu, the (n,m, k)-cast order capacity
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can increase or decrease depending on the value of k. The smallest order capacity

corresponds to the case when k = m, i.e., multicasting (m < n) or broadcasting (m = n),

and the largest order capacity is attained for anycasting (k = 1). The shaded area in the

figure shows the achievable capacity for manycasting (1 < k < m) for different values

of m and k.
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Figure 4.2: Unifying view of throughput capacity

It can be observed that, regardless of the value of k, the capacity of wireless

ad hoc networks becomes constant when m = Ω(n/ log n) and an increase in the value

of m does not change the throughput capacity. This result can be understood by the

fact that, when the number of destinations reaches Θ (n/ log n), this set becomes the

connected dominating set (CDS(r(n))) of the entire network as long as the transmission

range r(n) is chosen such that the network is a connected network. Equivalently, if a

broadcast is made to the entire network, the capacity does not change because all the
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nodes in the network are either inside this set or within one hop from an element in this

set.

Note that the capacity of anycast or manycast is greater than the capacity

of unicast if k = O (
√
m), even if each node requires to transmit its packets to more

than one destination. This result shows that as long as k = O (
√
m), the total number

of hops required to transmit packet to k destinations is always, on average, less than

sending the packet from the same source to a single randomly selected destination in

unicast communications. Equivalently, the total Euclidean distance for a manycast tree

is on average less than the Euclidean distance between any randomly selected source and

destination in unicast communication. However, this Euclidean distances become the

same, on average, when k = Θ(
√
m). As it can be predicted from this figure, the total

Euclidean distance in a manycast tree increases as k increases and for k = Ω(
√
m), the

capacity of manycast becomes less than unicast because of the total Euclidean distance

in the manycast tree.

4.2.4.2 Dm,k(n) as a Function of Transmission Range (r(n)) and Tradeoff

between Dm,k(n) and Cm,k(n)

Figs. 4.3(a), 4.3(b), and 4.3(c) depict the relationship between Dm,k(n) and

Cm,k(n) when SPR is used in a wireless ad hoc network. With the model, the unifying

relationship between capacity and delay can be generalized into multicast and broadcast,

as shown in Figs. 4.3(b) and 4.3(c). In the unicast capacity region, the transmission

range r(n) should be made as small as possible to increase the capacity of the network
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Figure 4.3: The relationship between delay and capacity

and to avoid interference, with the corresponding cost of increasing delay. To decrease

the delay, the transmission range r(n) should be increased, so that the number of hops

required to disseminate information is reduced; however, doing so decreases the capac-

ity of the network by increasing multiple access interference (MAI). In the multicast

capacity region (see Fig. 4.3(b)), it is observed that the transmission range should be

made as small as possible to increase the capacity with no penalty of delay increases.

However for the broadcast capacity region (see Fig. 4.3(c)), increasing the transmission

range decreases the delay in the network with no penalty for capacity. In this region,

maximizing the transmission range should be the strategy.

The above results indicate that there are different tradeoffs between the ca-

pacity Cm,k(n) and the delay Dm,k(n) in terms of transmission range r(n) for the three

capacity regions of wireless ad hoc networks.
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4.3 Capacity of (n,m, k)-Cast with Multi-Packet Reception

This section presents capacity and delay scaling laws for random wireless ad hoc

networks under all information dissemination modalities (unicast, multicast, broadcast,

anycast) when nodes are endowed with multi-packet reception (MPR) capabilities.

4.3.1 Upper Bound

The following Lemma provides an upper bound for the per-session capacity as

a function of TAA(∆, R(n)) and S (MAMKT(R(n))). Essentially, S (MAMKT(R(n)))

equals the minimum area consumed to (n,m, k)-cast a packet to k destinations out of

m choices (see Fig. 4.4), and TAA(∆, R(n)) represents the maximum area which can

be supported when MPR are used.

Sources, relays, or destinations

Routing Route

S

Transmission Range

( )R n

2D

5D

4D

3D

1D

Figure 4.4: Area coverage by one multicast Tree

Lemma 4.15 In random dense wireless ad hoc networks, the per-node throughput ca-
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pacity of (n,m, k)-cast with MPR is given by O
(

1
n × TAA(∆,R(n))

S(MAMKT(R(n)))

)
.

Proof: With MPR, it is observed that S (MAMKT(R(n))) represents the total

area required to transmit information from a multicast source to all its m destinations.

The ratio between average total active area, TAA(∆, R(n)), and S (MAMT(R(n))) rep-

resents the average number of simultaneous (n,m, k)-cast communications that can

occur in the network. Normalizing this ratio by n provides per-node capacity with the

definition of TAA(∆, R(n)) which leads to the Lemma.

Lemma 4.15 provides the upper bound for the (n,m, k)-cast throughput ca-

pacity with MPR as a function of S (MAMKT(R(n))) and TAA(∆, R(n)). In order

to compute the upper bound, the upper bound of TAA(∆, R(n)) and the lower bound

of S (MAMKT(R(n))) are derived. Combining these results provides an upper bound

for the (n,m, k)-cast throughput capacity with MPR. To compute the lower bound for

S (MAMKT(R(n))), the relationship between S (MAMKT(R(n))) and the total length

of Euclidean Minimum Spanning Tree (EMST), ∥EMST∥ is found.

Lemma 4.16 In (n,m, k)-cast applications, the average area of a (n,m, k)-cast tree

with transmission range R(n), S (MAMKT(R(n))) has the following lower bound as

S (MAMKT(R(n))) =



Ω
(
kR(n)/

√
m
)

for m = O
(
R−2(n)

)
Ω
(
kR2(n)

)
for Ω(k) = R−2(n) = O(m)

Ω (1) for k = Ω
(
R−2(n)

)
. (4.9)

Proof: Note that S (MAMKT(R(n))) is the same value for MPR and SPR

and they only depend on the communication range in the network. After substitute the
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r(n) of Lemma 4.7 to R(n), then it completes the proof.

The next lemma states the upper bound for TAA(∆, R(n)) for a network using

MPR.

Lemma 4.17 The average total active area, TAA(∆, R(n)), has the following upper

bound in networks with MPR.

TAA(∆, R(n)) = O
(
nR2(n)

)
(4.10)

Proof: As discussed earlier, the TAA(∆, R(n)) for SPR is equal to 1 since

for each circle of radius R(n), there is only a single pair of transmitter-receiver nodes

(see Fig. 4.5(a)). For the case of MPR, the number of transmitters in a circle of

radius R(n) is upper bounded as O(nR2(n)). The upper bound for TAA(∆, R(n)) is

achieved when the maximum number of transmitters are employed in this circle. Fig.

4.5(b) demonstrates an example that can achieve this upper bound simultaneously for

transmitters. Given the fact that this value also is the maximum possible number of

transmitter and receiver nodes, the result follows immediately.

Lemma 4.17 implies that the total active area with MPR is upper bounded by

Θ
(
nR2(n)

)
. By contrast, for the case of SPR, it is only Θ(1). Combining Lemmas 4.15,

4.16, and 4.17, the upper bound of (n,m, k)-cast capacity for MPR can be computed in

the following theorem.

Theorem 4.18 In wireless ad hoc networks with MPR, the upper bound on the per-node
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Figure 4.5: Upper bound of total available area based on protocol model with MPR

throughput capacity of (n,m, k)-cast is

Cm,k(n) =



O
(
k−1√mR(n)

)
for m = O

(
R−2(n)

)
O
(
k−1

)
for Ω(k) = R−2(n) = O(m)

O
(
R2(n)

)
for k = Ω

(
R−2(n)

)
, (4.11)

4.3.2 Lower Bound

To derive an achievable lower bound, a TDMA scheme is used for random dense

wireless ad hoc networks similar to the approach used in Section 4.2. The difference is

that the transmission range r(n) is changed to receiver range R(n).

To satisfy the MPR protocol model, similarly, let L =
⌈
1 + R(n)+(1+∆)R(n)

R(n)/
√
2

⌉
=

⌈1+
√
2(2+∆)⌉ represent the minimum number of cell separations in each group of cells

that communicate simultaneously. If time is divided into L2 time slots and assign each
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time slot to a single group of cells, interference is avoided and the protocol model is

satisfied. The separation example can be shown for the upper two receiver circles in Fig.

4.6. For the MPR protocol model, the distance between two adjacent receiving nodes is

(2+∆)R(n). Because this distance is smaller than (L−1)R(n), this organization of cells

guarantees that the MPR protocol model is satisfied. Fig. 4.6 represents one of these

groups with a cross sign inside those cells for L = 4. The capacity reduction caused by

the TDMA scheme is a constant factor and does not change the order capacity of the

network.

Next it is proved that, when n nodes are distributed uniformly over a unit

square area, with MPR scheme, there are simultaneously at least
⌈

1
(LR(n)/

√
2)2

⌉
circular

regions (see Fig. 4.6), each one containing Θ(nR2(n)) nodes w.h.p.. The objective is

to find an achievable lower bound using the Chernoff bound, such that the distribution

of the number of edges in this unit space is sharply concentrated around its mean, and

hence the actual number of simultaneous transmissions occurring in the unit space in a

randomly chosen network is indeed Θ(n) w.h.p..

Lemma 4.19 The circular area of radius R(n) corresponding to the receiver range of

a receiver j contains Θ(nR2(n)) nodes w.h.p. for all values of j, 1 ≤ j ≤
⌈

1
(LR(n)/

√
2)2

⌉
.

Proof: The statement of this lemma can be expressed as

lim
n→∞

P


⌈

1
(LR(n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 = 1, (4.12)

where Nj and E (Nj) are the random variables that represent the number of nodes in
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Figure 4.6: Cell construction used to derive a lower bound on capacity

the receiver circle of radius R(n) centered around node j and the expected value of this

random variable respectively, and δ is a positive arbitrarily small value close to zero.

From the Chernoff bound in Eq. (2.6), for any given 0 < δ < 1, θ > 0 can be

found such that P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). Thus, it can conclude that the

probability that the value of the random variable Nj deviates by an arbitrarily small

constant value from the mean tends to zero as n → ∞. This is a key step in showing

that when all the events
∩⌈

1

(LR(n)/
√

2)2

⌉
j=1 |Nj − E(Nj)| < δE(Nj) occur simultaneously,

then all Nj ’s converge uniformly to their expected values. Utilizing the union bound, it
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arrives at

P


⌈

1
(LR(n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)



= 1− P


⌈

1
(LR(n)/

√
2)2

⌉∪
j=1

|Nj − E(Nj)| > δE(Nj)



≥ 1−

⌈
1

(LR(n)/
√
2)2

⌉∑
j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1−
⌈

1

(LR(n)/
√
2)2

⌉
e−θE(Nj). (4.13)

Given that E(Nj) = πnR2(n), then

lim
n→∞

P


⌈

1
(LR(n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 ≥ 1− lim
n→∞

⌈
1

(LR(n)/
√
2)2

⌉
e−θπnR2(n)

(4.14)

Utilizing the connectivity criterion in Eq. (3.1), limn→∞
e−θπnR2(n)

R2(n)
→ 0, which

completes the proof.

The previous lemma proves that, w.h.p., there are indeed Θ(n) simultaneous

transmitters which are in
⌈

1
(LR(n)/

√
2)2

⌉
circles of radius R(n) around the receivers, who

can transmit simultaneously, as shown in Fig. 4.6. With Lemmas 4.19, the preparation

for the following achievable lower bound has been done.

Let us define #MEMKTC(R(n)) as the total number of cells that contain all

the nodes in an (n,m, k)-cast group. Also, #MEMTC(R(n)) is defined as the total

number of cells that contain all the nodes in an (n,m,m)-cast group. The following

lemma establishes the achievable lower bound for the (n,m, k)-cast throughput capacity
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of MPR or MPR as a function of #MEMKTC(R(n)). Note that #MEMKTC(R(n))

only depends on the (n,m, k)-cast network parameters regardless of using MPR tech-

niques. Next Lemma provides a tight bound for #MEMKTC(R(n)).

Lemma 4.20 The average number of cells covered by the nodes in MEMKTC(R(n)),

is tight bounded w.h.p. as follows:

#MEMKTC(R(n)) =



Θ
(
k
(√

mR(n)
)−1
)

for m = O
(
R−2(n)

)
Θ(k) for Ω(k) = R−2(n) = O(m)

Θ
(
R−2(n)

)
for k = Ω

(
R−2(n)

)
(4.15)

Proof: The proof is similar to the Lemma 4.11. The difference is that trans-

mission range r(n) is substituted with receiver range R(n).

Next the routing scheme is discussed to achieve the lower bound capacity which

is similar to the scheme used in [41]. According to the model, each (n,m, k)-cast session

creates a (n,m, k)-cast tree #MEMKT(R(n)) to connect the source and destinations.

The trees are denoted as Tis, where i = 1, 2, · · · , n. The multi-hop routing between

source and destination transfers the packets by using cells that are only intersected by

Ti. There is a bound on the number of trees each cell needs to serve, which means the

probability that the trees will intersect a particular cell is bounded.

Lemma 4.21 For any R(n) = Ω
(√

log n/n
)
,

lim
n→∞

Prob

(
sup
(k,j)

{Number of trees Tis intersecting Sk,j} = O
(
nR2(n)#MEMKTC(R(n))

))
= 1

(4.16)
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Proof: For every tree Ti and cell Sk0,j0 ,

p = Prob{Tree Ti intersects Sk0,j0} = Θ
(
R2(n)#MEMKTC(R(n))

)
(4.17)

First the number of trees served by one particular cell Sk0,j0 is bounded. Define

i.i.d. random variable Ii, i ≤ i ≤ n, as follows:

Ii =


1, if Ti intersects Sk0,j0

0, if not

(4.18)

Then Prob(Ii = 1) = p, ∀i, where p is defined in Eq. (4.17). Denote by Zn

the total number of trees served by Sk0,j0 . Then Zn := I1 + I2 + · · ·+ In. Thus by the

Chernoff Bounds [38], for all positive b and a, Prob(Zn > b) ≤ E[eaZn ]
eab

.

E
[
eaZn

]
= (1+(ea−1)p)n ≤ exp(n(ea−1)p) = Θ

(
exp

(
(ea − 1)nR2(n)#MEMKTC(R(n))

))
(4.19)

Now choosing b = Θ
(
nR2(n)#MEMKTC(R(n))

)
, if a is selected small enough,

Prob
(
Zn = Ω

(
nR−2(n)#MEMKTC(R(n))

))
= O

(
exp

(
−nR2(n)#MEMKTC(R(n))

))
.

(4.20)

Thus by the union bound,

Prob
(
Some cell intersects Ω(nR2(n)#MEMKTC(R(n))) trees

)
≤

∑
k,j

Prob (Cell Sjk intersectsΩ(nR(n)) trees )

= O

(
1

R2(n)
exp

(
−nR2(n)#MEMKTC(R(n))

))
(4.21)

The right hand side tends to zero for R(n) = Ω
(√

log n/n
)

as n goes to

infinity for all three different regions of #MEMKTC(R(n)) from Eq. (4.15).
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There exists a transmitting schedule such that in every L2 (L is constant)

slots, each cell transmits at rate W bits/second with maximum transmission distance

R(n). Therefore, the rate for each cell is Θ
(
nR2(n)

)
W/L2. From Lemma 4.21, each

cell needs to transmit at rate O
(
Cm,k(n)nR

2(n)#MEMKTC(R(n))
)
, with probability

approaching one. In order to accommodate this requirement by all cells, it needs

Cm,k(n)nR
2(n)#MEMKTC(R(n)) = Ω

((
nR2(n)

)
W/L2

)
(4.22)

Thus the achievable throughput have been proven for Lemma 4.22 in order to

guarantee each cell can support this capacity.

Lemma 4.22 The achievable lower bound for the (n,m, k)-cast capacity is given by

Cm,k(n) = Ω

((
#MEMKTC(R(n))

)−1
)
. (4.23)

Proof: There are (R(n)/
√
2)−2 cells in the unit square network area. With

the Lemma 4.21 and the fact that the TDMA scheme does not change the order ca-

pacity, it is clear that there are at most in the order of #MEMKTC(R(n)) interfer-

ing cells for any (n,m, k)-cast communication. For each cell, the order of nodes in

each cell is Θ
(
πR2(n)n

)
. Accordingly, the total lower bound capacity is given by

Ω

(
(R(n)/

√
2)−2 ×

(
πR2(n)n

)
×
(
#MEMKTC(R(n))

)−1
)
. Normalizing this value by

total number of nodes in the network, n, proves the lemma.

Combining Lemmas 4.20 and 4.22, it arrives at the achievable lower bound of

the (n,m, k)-cast throughput capacity in dense random wireless ad hoc networks with

MPR.
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Theorem 4.23 The achievable lower bound of the (n,m, k)-cast throughput capacity

with MPR is

Cm,k(n) =



Ω
(
k−1√mR(n)

)
for m = O

(
R−2(n)

)
,

Ω
(
k−1

)
for Ω(k) = R−2(n) = O(m)

Ω
(
R2(n)

)
for k = Ω

(
R−2(n)

)
, (4.24)

Proof: There are (R(n)/
√
2)−2 cells in the unit square network area and only

(LR(n)/
√
2)−2 of these cells can communicate simultaneously because of the TDMA

scheme which is described earlier. From the definition of #MEMKTC(R(n)), it is clear

that there are in the order of #MEMKTC(R(n)) transmissions required in order to

transfer a packet from source to all its destinations in any (n,m, k)-cast communica-

tion scheme. It is clear from Lemma 4.19 that for each of (LR(n)/
√
2)−2 simulta-

neous transmitting cells, there are Θ
(
πR2(n)n

)
nodes transmitting packets to their

respected receiver nodes using MPR. Since each one of (n,m, k)-cast group requires

#MEMKTC(R(n)) transmissions, the total throughput capacity lower bound for the

network is equal to Ω
(
(R(n)/

√
2)−2×(πR2(n)n)

#MEMKTC(R(n))

)
. If this value is divided by the total num-

ber of nodes in the network, n, and substitute #MEMKTC(R(n)) with the results from

Lemma 4.20, then the theorem will be proved.

It has been proved there is no congestion in relay nodes. Furthermore, it will

be proved there is not any congestion in destination. Suppose each source selects a

destination randomly and in dependently. Then it will be proved with high probability,

a node can be destination for at most 3 logn
log log n sources. This problem is similar to the “

bins and balls problems” in [42].
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Lemma 4.24 The probability of a particular destination having k sources selected is

lim
n→∞

Prob[destination i has at least k sources] ≤
( e
k

)k
(4.25)

Proof: Look at any subset of sources of size k, then the probability that the

subset of sources select destination i is ( 1n)
k. Then a union bound of these probabilities

over all
(
n
k

)
subsets of size k is taken. The events are being summed over, though, are not

disjoint. Therefore, it can be only shown that the probability of a destination having at

least k balls is at most
(
n
k

)(
n
1

)k
. Using Stirling’s approximation limn→∞

n!√
2πn(n

e )
n = 1,

lim
n→∞

(
n
k

)(
n
1

)k(
e
k

)k = 1, (4.26)

which proved the lemma.

Lemma 4.25 With high probability, i.e. with probability greater than 1− 1
n , there exist

at most 3 logn
log logn sources for each destination.

Proof: Let k = 3 logn
log log n . From Lemma 4.24,

lim
n→∞

Prob[destination i has at least k sources]

≤
( e
k

)k
=

(
e log log n

3 log n

) 3 logn
log logn

≤ exp

(
3 log n

log logn
(log log log n− log log n)

)
= exp

(
−3 log n+

3 log n log log log n

log log n

)
≤ exp(−2 log n) =

1

n2
(4.27)

Using Union Bound, limn→∞ Prob[any destination has at least k sources] ≤

n 1
n2 = 1

n , which implies that limn→∞ Prob[all destinations have at most k sources] ≥

1− 1
n It proved the lemma.
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For MPR (n,m, k)-cast, it is required that for all destinations, there does not

exist any one whose traffic load congestion is larger than the total throughput it can

support. It means that the maximum throughput for each destination should always be

greater than the total traffic load. In MPR case, the total throughput of each destination

is nR2(n). The traffic load congestion for each destination is the multiplication of

throughput per node of Cm,k(n) and the maximum possible sources that select a node,

i.e. 3 logn
log logn . Hence,

nR2(n) ≥ Cm,k(n)
3 log n

log log n
, (4.28)

As long as R(n) = Ω

(√
logn
n

)
, it can easily verified for three different regions, Cm,k(n)

can achieve the lower bound of Theorem 4.23.

4.3.3 Capacity-Delay Tradeoff with Multi-Packet Reception

4.3.3.1 Capacity of (n,m, k)-Cast with MPR

From Theorems 4.18 and 4.23, the tight bound throughput capacity is provided

for the (n,m, k)-cast when the nodes have MPR capability in dense random wireless ad

hoc networks as follows.

Theorem 4.26 The throughput capacity of (n,m, k)-cast in a random dense wireless

ad hoc network with MPR is

Cm,k(n) =



Θ
(
k−1√mR(n)

)
for m = O

(
R−2(n)

)
Θ
(
k−1

)
for Ω(k) = R−2(n) = O(m)

Θ
(
R2(n)

)
for k = Ω

(
R−2(n)

)
. (4.29)
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The receiver range of MPR should satisfy R(n) = Ω
(√

log n/n
)
. Note that the thresh-

olds for different values for m and k provide various capacities for (n,m, k)-cast in

MPR.

The throughput capacity of (n,m, k)-cast in a random dense wireless ad hoc

network with SPR is derived and there are two major different between SPR and MPR.

First, for SPR, the receiver range R(n) must be changed into the transmission range

r(n). Second, in SPR, there can be at most a single successful transmission inside a

circle of radius of r(n) centered around each receiver node.

4.3.3.2 Delay of (n,m, k)-Cast with MPR and its Relationship with Capacity

In this section, the result is presented regarding the tradeoff between delay

and capacity. As defined delay earlier, packet delay is proportional to the total number

of hops required from each source to its destinations. In order to compute this delay,

the following lemma is first proved.

Lemma 4.27 The delay of (n,m, k)-cast in a random dense wireless ad hoc network

with MPR is

Dm,k(n) = Θ
(
#MEMKTC(R(n))

)
(4.30)

Proof: From the definition of #MEMKTC(R(n)) and Lemma 4.20, it con-

cludes that #MEMKTC(R(n)) is proportional to the minimum number of hops in which

the information is routed from source to all its destinations. Since TDMA scheme is

used to achieve the lower bound for the capacity, it is clear that in order to transport
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the information from one cell to the next adjacent cell, one to two hops is needed (see

Fig. 4.6). Therefore, #MEMKTC(R(n)) is also in the same order as the total number

of hops. Based on the definition of delay, it is clear that #MEMKTC(R(n)) is also the

same order bound as the total delay which proves the Lemma.

Theorem 4.28 The relationship between capacity and delay for (n,m, k)-cast with MPR

is given below

Cm,k(n)Dm,k(n) = Θ(1) (4.31)

Proof: The results can be easily derived by comparing Theorem 4.26 with

Lemmas 4.27.

The relationship between capacity and delay in (n,m, k)-cast with SPR is given

below. The capacity-delay tradeoff in [4] is a special case of the results for m = k = 1

which can be shown as D1,1(n) = Θ(nC1,1(n)).

4.3.4 Discussion of Results

Theorems 4.26 provides capacity information for MPR whose fundamental

difference from the SPR is due to the fact that the MPR scheme embraces interference,

while SPR is based on avoiding interference by limiting transmission range. The details

are given as follow aspects.

4.3.4.1 Cm,k(n) as a Function of Group Size (m)

Comparing the capacities attained with MPR and SPR for unicast traffic (see

Fig. 4.7), the ratio is equal to Θ
(
R(n)

√
n log n

)
. The same ratio is equal to Θ

(
R2(n)n

)
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for the case of broadcasting. If a larger value is chosen for the communication range

for MPR, i.e., R(n) = Ω
(√

log n/n
)
, then it is easy to show that the capacity gain for

MPR compared to SPR is larger in broadcast communication than for unicasting. The

larger gains attained with MPR for broadcast communication are a consequence of the

fact that, as the number of broadcast destinations increases, more copies of the same

packets must be sent to a larger number of nodes. In a network using MPR, concurrent

broadcast transmissions can be decoded by the receivers while at most one broadcast

transmission can succeed at a time when SPR is assumed.
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Figure 4.7: Order throughput capacity of (n, m, m)-cast with SPR and MPR as a
function of number of destinations m and receiver range R(n)

Fig. 4.8 compares the throughput capacity of MPR to that of SPR. Comparing

the results for both cases when the number of destinations for each session is smaller

than Θ
(
R−2(n)

)
, it appears that they both have the same term as

√
m/k. However,

for MPR this term is multiplied by R(n), while for SPR this term is divided by r(n).

If R(n) = r(n) is assumed, it appears that increasing the receiver range increases the

capacity for the MPR scheme, while it decreases the capacity for SPR. This fundamental
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difference is due to the fact that the MPR scheme embraces interference, while SPR is

based on avoiding it by limiting transmissions around receivers.
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Figure 4.8: Order throughput capacity of (n, m, k)-cast with SPR and MPR

Note that the capacity of anycast or manycast is greater than the capacity

of unicast if k = O (
√
m), even if each node requires to transmit its packets to more

than one destination. This result shows that, as long as k = O (
√
m), the total number

of hops required to transmit packet to k destinations is always, on average, less than

sending the packet from the same source to a single randomly selected destination in

unicast communications. Equivalently, the total Euclidean distance for a manycast tree

is on average less than the Euclidean distance between any randomly selected source and

destination in unicast communication. However, these Euclidean distances become the

same, on average, when k = Θ(
√
m). As it can be predicted from this figure, the total

Euclidean distance in a manycast tree increases as k increase and for k = Ω(
√
m), the

capacity of manycast becomes less than unicast because of the total Euclidean distance

in the manycast tree.
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4.3.4.2 Cm,k(n) as a Function of Receiver Range (R(n))

Eq. (4.29) show that the throughput capacity of wireless ad hoc networks do

increase with the increase in the receiver range R(n) when the receivers decode more

than one packet at a time. This result is in sharp contrast to results attained with SPR,

with which increasing the communication range decreases the capacity. In networks with

MPR, by increasing the receiver range in the network, the total number of simultaneous

transmissions is actually increased at a given time! In contrast, for networks with SPR,

a larger transmission range leads to increased interference at larger number of nodes,

which forces these nodes to be silent during a communication session.

Clearly, the capacity of the network is maximized if the number of simultaneous

transmissions is maximized in the network. Ideally, if the receiver range can be made

Θ(1), then a network using MPR can scale linearly with n. Obviously, the receiver range

is restricted in practice by the complexity of the nodes. However, even the receiver range

is assumed to have the minimum value, which is the connectivity criterion in Eq. (3.1),

MPR still renders a capacity gain compared to SPR. Furthermore, this gain is still an

order gain equal to Θ(logn) compared to the capacity attained with SPR for (n,m, k)-

casting.

4.3.4.3 Capacity Delay Tradeoff

Theorems 4.26 provide capacity information for MPR. There are three different

capacity regions depending on the values of k and m in (n,m, k)-cast. Figs. 4.9(a),

4.9(b) and 4.9(c) compare the tradeoff between throughput capacity and delay for MPR
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Figure 4.9: The tradeoff between capacity and delay with MPR

and SPR for all these three regions of capacity. By observing the capacity for MPR and

SPR, it is noticed that the receiver range R(n) is multiplied for capacity computation

in MPR in two regions in Eq. (4.29) and in one region is independent of R(n) while

the transmission range r(n) is divided for capacity computation in SPR in the first two

regions of capacity. These behaviors are shown in Figs. 4.9(a), 4.9(b) and 4.9(c). This

fundamental difference is due to the fact that the MPR scheme embraces interference,

while SPR is based on avoiding interference by limiting transmission range.

The above result indicates that large capacity increases can be attained by

embracing interference with MPR and embracing opportunism by appropriate use of

in-network storage and information dissemination from the nearest site(s) of a com-

munication group, rather than from pre-defined origins hosting the content. If the

communication group is the entire network (m = n), information flows from the closest

neighbor(s) to each node and the maximum capacity gain is attained. If the group size
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is independent of the size of the network (m = Θ(1)), the order capacity is the same as

for unicast.

Fig. 4.9(a) is the first region in capacity for MPR. Interesting observation is

the fact that unlike SPR that increasing capacity results in increasing delay, capacity can

be increased and delay can be decreased simultaneously with MPR. This is a significant

advantage of using MPR and stems from the fact that MPR embraces interference

and consequently, it does not need to sacrifice capacity or delay to improve the other

parameter.

Fig. 4.9(b) shows the capacity-delay tradeoff in the second capacity region.

For the case of MPR, the capacity or delay is not a function of R(n) and therefore,

there is no tradeoff. For this case in SPR, increasing r(n) decreases capacity but has

no effect on the delay.

Fig. 4.9(c) is the third region of capacity for MPR. This is the broadcasting

region of capacity and it is clear that SPR does not provide any tradeoff. In general,

by increasing the transmission range delay can be decreased while the capacity remains

constant. The reason for this behavior is the fact that all nodes in broadcasting region

are receiving the packet and increasing transmission range does not create any interfer-

ence. On the other hand, when MPR is used and the receiver range is increased, again

both capacity and delay are improved similar to the first case. Clearly, the capacity

of the network with MPR is maximized if the number of simultaneous transmissions

is maximized in the network. Ideally, if the receiver range can be made Θ(1), then a

network using MPR can scale linearly with n. Obviously, the receiver range is restricted
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in practice by the complexity of the receivers. However, even with the minimum value

for the receiver range, which is the connectivity criterion, MPR still renders a capacity

gain compared to SPR. Furthermore, this gain is still an order gain equal to Θ(logn)

compared to the capacity attained with SPR for (n,m, k)-casting.

In summary, the tradeoff between capacity Cm,k(n) and delay Dm,k(n) with

MPR is in sharp contrast to SPR. The results in this chapter provide new directions

and opportunities for future research activities in wireless ad hoc networks. Another

important aspect that it is not discussed in this chapter is related to practical limitations

and decoding complexity that can have with MPR scheme. This aspect is important

and its investigation is the subject of future studies.

4.4 Conclusion

A unifying framework is introduced for the modeling of the order capacity

of wireless networks subject to different types of information dissemination. To do

so, (n,m, k)-casting is defined as a generalization of all forms of one-to-one, one-to-

many and many-to-many information dissemination in wireless networks. The modeling

framework provides a unique perspective to the understanding of the capacity of wireless

ad hoc networks. The approach unifies existing results on the order capacity of wireless

networks subject to unicasting , multicasting, or broadcasting and provides new capacity

and delay results for anycasting and manycasting.
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Chapter 5

Network Coding Does Not Increase the

Order Capacity

This chapter studies the contribution of NC in improving the multicast capacity

of random wireless ad hoc networks when nodes are endowed with MPT and MPR

capabilities. This chapter is constructed as follows. Section 5.1 describes the network

model used. Sections 5.2 and 5.3 present the capacity of MPT plus MPR and NC plus

MPT plus MPR respectively. Section 5.4 concludes this chapter.

5.1 Network Model

The following extensions is made to account for MPT and MPR capabilities

at the transmitters and receivers, respectively. In wireless ad hoc networks with MPT

(MPR) capability, any transmitter (receiver) node can transmit (receive) different infor-

mation simultaneously to (from) multiple nodes within the circle whose radius is T (n).
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For the rest of this chapter, it is assumed that T (n) = r(n) for simplicity. The possi-

bility to achieve ideal MPT and MPR is assumed. In an non-ideal scenario, realization

of MPT or MPR leads to a loss in the rate provided to an individual receiver. Certain

special cases in the rate region can also be expressed as reduction in transmission range,

i.e. T (n) ≤ r(n). In idealized conditions r(n) = T (n). It is further assumed that

nodes cannot transmit and receive at the same time, which is equivalent to half-duplex

communications [1]. From system point of view, MPT and MPR are dual if the source

and destination duality is considered.

In [20] it was proved that the max-flow min-cut is equal to multicast capacity

of a directed graph with single source. The directed graph model is more applicable for

wired networks. However, this chapter wishes to study the utility of NC in a wireless

environment where links are bidirectional [24, 25].

In a single-source network, the cut capacity is equal to the maximum flow.

Thus [25] provides an upper bound on the multicast capacity of a network with single

source and NC+MPT+MPR capability. However, in [24, 25], the source, relays and des-

tinations are strictly different and information can not be transmitted directly towards

the destinations. These two assumptions will be eventually relaxed in this chapter.

Before analyzing the scaling law of throughput capacity with NC, MPT and

MPR in wireless ad hoc networks, one example is illustrated to claim the consequences

of MPT and MPR as Fig. 5.1. From this figure, it is observed that combination of

MPT, MPR and NC can increase the information flow and the gain is equivalent to

only combining MPT and MPR. Intuitively, it can be conjectured that the gain of NC
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Figure 5.1: One example for SPR, MPT, MPR and NC

is given actually by MPT and/or MPR which will be proved in the following sections.

In Section 5.2 and 5.3, it will be proved that the scaling law of MPT and MPR abilities

without and with NC respectively, and then show they are the same order.

5.2 The Throughput Capacity with MPT and MPR

In this section, the scaling laws in random geometric graphs is computed when

nodes are endowed with MPR and MPT capabilities. The approach is based on the

results for SPR and extending it to MPR and MPT cases.

5.2.1 Upper Bound

The following Lemma provides an upper bound for the per-session capacity

as a function of TAA(∆, T (n)) and S (MAMT(T (n))). Essentially, S (MAMT(T (n)))

equals the minimum area consumed to multicast a packet to m destinations (see Fig.

4.4), and TAA(∆, T (n)) represents the maximum area which can be supported when
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MPT and MPR are used.

Lemma 5.1 In random dense wireless ad hoc networks, the per-node throughput capac-

ity of multicast with MPT and MPR is given by O
(

1
n × TAA(∆,T (n))

S(MAMT(T (n)))

)
.

Proof: With MPT and MPR, it is observed that S (MAMT(T (n))) repre-

sents the total area required to transmit information from a multicast source to all

its m destinations. The ratio between average total active area, TAA(∆, T (n)), and

S (MAMT(T (n))) represents the average number of simultaneous multicast communi-

cations that can occur in the network. Normalizing this ratio by n provides per-node

capacity.

Lemma 5.1 provides the upper bound for the multicast throughput capacity

with MPT and MPR as a function of S (MAMT(T (n))) and TAA(∆, T (n)). In order

to compute the upper bound, the upper bound of TAA(∆, T (n)) and the lower bound

of S (MAMT(T (n))) are derived. Combining these results provides an upper bound for

the multicast throughput capacity with MPT and MPR.

Lemma 5.2 The average area of a multicast tree with transmission range T (n), S (MAMT(T (n)))

is lower bounded by Ω(T (n)), when m is a constant value.

Proof: From [19], it can be deduced that S (MAMT(T (n))) is lower bounded

as Ω
(
∥EMST∥ × T (n)

)
. Even for the case of the minimum value for T (n) to assure

connectivity, this upper bound is guaranteed for constant values of m. Lemma 2.7 states

that ∥EMST∥ = Θ(
√
m) = Θ(1)∗. The proof follows immediately.

∗m is a constant value.
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Lemma 5.3 The average total active area, TAA(∆, T (n)), has the following upper

bound in networks with MPT and MPR.

TAA(∆, T (n)) = O
(
n2T 4(n)

)
(5.1)

Proof: As discussed earlier, the TAA(∆, T (n)) for SPR is equal to 1 since

for each circle of radius T (n), there is only a single pair of transmitter-receiver nodes

(see Fig. 5.2(a)). For the case of MPR and MPT, the number of nodes in a circle of

radius T (n) is upper bounded as O(nT 2(n)). This is also upper bound for the number of

transmitters or receivers in this region. The upper bound for TAA(∆, T (n)) is achieved

when the maximum number of transmitters and receivers are employed in this circle.

Fig. 5.2(b) demonstrates an example that can achieve this upper bound simultaneously

for transmitters and receivers. Let a circle of radius T (n)
2 located at the center of

another circle of radius T (n). Note that with this construction, any two nodes inside

the small circle are connected. If half of the nodes is randomly assigned inside the small

circle as transmitters and the other half as receiver nodes, then the average number of

transmitters and receivers in this circle are proportional to Θ(nT 2(n)). Given the fact

that this value also is the maximum possible number of transmitter and receiver nodes,

the result follows immediately.

Combining Lemmas 5.1, 5.2 and 5.3, the upper bound for multicast capacity

of MPT and MPR can be computed.

Theorem 5.4 In wireless ad hoc networks with MPT and MPR, the upper bound on
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Figure 5.2: Upper bound of total available area based on protocol model with SPR and
MPT plus MPR

the per-node throughput capacity of multicast with constant number of destinations is

Cm(n) = O
(
nT 3(n)

)
(5.2)

5.2.2 Lower Bound

To derive an achievable lower bound, a TDMA scheme is used for random

dense wireless ad hoc networks similar to the approach used in [40, 43].

The network area is divided into square cells. Each square cell has an area of

T 2(n)/2, which makes the diagonal length of square equal to T (n), as shown in Fig. 5.3.

Under this condition, connectivity inside all cells is guaranteed and all nodes inside a

cell are within communication range of each other. A cell graph is builded over the cells

that are occupied with at least one vertex (node). Two cells are connected if there exist

a pair of nodes, one in each cell, that are less than or equal to T (n) distance apart.

Because the whole network is connected when T (n) = r(n) = Ω
(√

log n/n
)
, it follows
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Figure 5.3: Cell construction used to derive a lower bound on capacity

that the cell graph is connected [40, 43].

To satisfy the MPT and MPR protocol model, cells are organized in groups so

that simultaneous transmissions within each group does not violate the conditions for

successful communication in the MPT and MPR protocol model. Let L represent the

minimum number of cell separations in each group of cells that communicate simulta-

neously. Utilizing the protocol model, L satisfies the following condition:

L =

⌈
1 +

T (n) + (1 + ∆)T (n)

T (n)/
√
2

⌉
= ⌈1 +

√
2(2 + ∆)⌉ (5.3)

If time is divided into L2 time slots and assign each time slot to a single group

of cells, interference is avoided and the protocol model is satisfied. The separation

example can be shown for the upper two receiver circles in Fig. 5.3. For the MPT and
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MPR protocol model, the distance between two adjacent receiving nodes is (2+∆)T (n).

Because this distance is smaller than (L− 1)T (n), this organization of cells guarantees

that the MPT and MPR protocol model is satisfied. Fig. 5.3 represents one of these

groups with a cross sign inside those cells for L = 4. An achievable multicast capacity

for MPT and MPR can be derived by taking advantage of this cell arrangement and

TDMA scheme. The capacity reduction caused by the TDMA scheme is a constant

factor and does not change the order capacity of the network.

Next the objective is to find an achievable lower bound using the Chernoff

bound, such that the distribution of the number of edges in this unit space is sharply

concentrated around its mean, and hence the actual number of simultaneous transmis-

sions occurring in the unit space in a randomly chosen network is indeed Θ(n2T 2(n))

w.h.p..

Lemma 5.5 The circular area of radius T (n) corresponding to the transceiver range

of any node j in the cross area in Fig. 5.3 contains Θ(nT 2(n)) nodes w.h.p., and is

uniformly distributed for all values of j, 1 ≤ j ≤ 1
(LT (n)/

√
2)2

.

Proof: The statement of this lemma can be expressed as

lim
n→∞

P


1

(LT (n)/
√

2)2∩
j=1

|Nj − E(Nj)| < δE(Nj)

 = 1, (5.4)

whereNj and E (Nj) are the random variables that represent the number of transmitters

in the receiver circle of radius T (n) centered by the receiver j and the expected value
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of this random variable respectively, and δ is a positive arbitrarily small value close to

zero.

From the Chernoff bound in Eq. (2.6), for any given 0 < δ < 1, θ > 0 can be

found such that P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). Thus, it can conclude that the

probability that the value of the random variable Nj deviates by an arbitrarily small

constant value from the mean tends to zero as n → ∞. This is a key step in showing that

when all the events
∩ 1

(LT (n)/
√

2)2

j=1 |Nj − E(Nj)| < δE(Nj) occur simultaneously, then all

Nj ’s converge uniformly to their expected values. Utilizing the union bound, it arrives

at

P


1

(LT (n)/
√

2)2∩
j=1

|Nj − E(Nj)| < δE(Nj)

 ≥ 1−

1
(LT (n)/

√
2)2∑

j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1− 1

(LT (n)/
√
2)2

e−θE(Nj). (5.5)

Given that E(Nj) = πnT 2(n), then

lim
n→∞

P


1

(LT (n)/
√

2)2∩
j=1

|Nj − E(Nj)| < δE(Nj)

 ≥ 1− lim
n→∞

1

(LT (n)/
√
2)2

e−θπnT 2(n) (5.6)

Utilizing the connectivity criterion, limn→∞
e−θπnT2(n)

T 2(n)
→ 0, which finishes the

proof.

Furthermore, all of the nodes can be arranged in the left side of the corre-

sponding transceiver circle be the transmitters, and all of the nodes in the right side of

the corresponding transceiver circle be the receivers. Thus, the following lemma arrives

at
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Lemma 5.6 In the unit square area for a wireless ad hoc network shown in Fig. 5.3, the

total number of transmitter-receiver links (simultaneous transmissions) is Ω
(
n2T 2(n)

)
.

Proof: From Lemma 5.5, for any node in the cross cell in the whole network

shown in Fig. 5.3, there are Θ(nT 2(n)) nodes in the transceiver circle. the total nodes

are divided into two categories, transmitters in the left of the transceiver circles and

receivers in the right of the transceiver circles. To guarantee all of the transmitters and

receivers are in the transceiver range, only the nodes in the circle with radius T (n)/2

are considered. Because of the MPT and MPR capabilities, so that every transmitter in

the left of the transceiver circle with T (n)/2 radius can transmit successfully to every

receiver in the right, then the total number of successful transmissions is π2n2T 4(n)/16

which is the achievable lower bound. The actual number of the transmissions can be

much larger than this because only T (n)/2 is considered instead of T (n). Using the

Chernoff Bound in Eq. 2.6 and Lemma 5.5, it can be shown that the total number of

successful transmissions is

Ω

(
1(

LT (n)/
√
2
)2 × π2n2T 4(n)

16

)
= Ω

(
n2T 2(n)

)
. (5.7)

The above results enables us to obtain the following achievable lower bound.

Let us define #MEMTC(T (n)) as the total number of cells that contain all

the nodes in a multicast group. Note that #MEMTC(T (n)) also represents the average

number of channel uses required to transport a packet from a source to itsm destinations

in a multicast tree. The following lemma establishes the achievable lower bound for the

multicast throughput capacity of MPT and MPR as a function of #MEMTC(T (n)).
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Lemma 5.7 The achievable lower bound of the multicast capacity is given by

Cm(n) = Ω

(
nT 2(n)

#MEMTC(T (n))

)
. (5.8)

Proof: There are (T (n)/
√
2)−2 cells in the unit square network area. From the defini-

tion of #MEMTC(T (n)) and the fact that the TDMA scheme does not change the

order capacity, it is clear that there are at most in the order of #MEMTC(T (n))

interfering cells for multicast communication. Hence, from Lemma 5.6, there are a

total of Θ
(
n2T 2(n)

)
nodes transmitting simultaneously, which are distributed over

all the (T (n)/
√
2)−2 cells. Accordingly, the total lower bound capacity is given by

Ω

((
n2T 2(n)

)
×
(
#MEMTC(T (n))

)−1
)

which is the ratio between the total number

of active links at any time divided by the number of channel uses required to complete

a multicast communication group. Normalizing this value by total number of nodes in

the network, n, proves the lemma.

Given the above lemma, to express the lower bound of Cm(n) as a function of

network parameters, the upper bound of #MEMTC(T (n)) need to be computed.

Lemma 5.8 The average number of cells covered by a multicast tree, MEMTC(T (n)),

is upper bounded as

#MEMTC(T (n)) = O

( √
m

T (n)

)
= O

(
1

T (n)

)
. (5.9)

Proof: Because T (n) is the transceiver range of the network, the maximum

number of cells for this multicast tree must be O
(√

mT−1(n)
)
, i.e., #MEMTC(T (n)) =

O
(√

mT−1(n)
)
. This upper bound can be achieved only if every two adjacent nodes in
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the multicast tree belong to two different cells in the network. However, in practice, it is

possible that some adjacent nodes in multicast tree locate in a single cell. Consequently,

this value is upper bound as described in (5.9). Note that the optimum multicast tree

in wireless ad hoc network, may not necessarily cover the same route. However, since

the intention is to derive the achievable lower bound, a scheme that follows the MEMT

routing can be designed, so that each relay in that real routing tree is in the cells

which is crossed by MEMT or the neighbor cell of MEMT. Therefore, all of those cells

including those real relays as MEMTC are counted (see Fig. 5.4). Since as described

later, this technique will provide the same order bound for the capacity as the upper

bound, clearly the optimum multicast tree cannot achieve lower order bound.
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Combining Lemmas 5.7 and 5.8, it arrives at the achievable lower bound of

the multicast throughput capacity in dense random wireless ad hoc networks with MPT

and MPR.

Theorem 5.9 When the number of the destinations m is a constant, the achievable

lower bound of the multicast throughput capacity with MPT and MPR is

Cm(n) = Ω
(
nT 3(n)

)
. (5.10)

Next the routing scheme is discussed to achieve the lower bound capacity which

is similar to the scheme used in [41]. According to our model, each multicast session

creates a multicast tree #MEMT(T (n)) to connect the source and destinations. The

trees are denoted as Tis, where i = 1, 2, · · · , n. The routing scheme between source and

destination is such that packets are forwarded by using cells that are intersected only

by Ti. There is a bound on the number of trees that each cell needs to serve, which

means that the probability that the trees intersects a particular cell can be bounded.

The following lemma with MPT and MPR case for multicast communications

will be proved in the follows.

Lemma 5.10 There has, for any T (n) = Ω
(√

log n/n
)
,

lim
n→∞

Prob

(
sup
(k,j)

{Number of trees Tis intersecting Sk,j}

= O (nT (n))
)
= 1 (5.11)
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Proof: For every tree Ti and cell Sk0,j0 , with Lemma 4.20,

p = Prob{Tree Ti intersects Sk0,j0}

= Θ
(
T 2(n)#MEMTC(T (n))

)
= O(T (n)) (5.12)

First, the number of trees served by one particular cell Sk0,j0 is bounded. Define

i.i.d. random variables Ii, 1 ≤ i ≤ n, as follows:

Ii =


1, if Ti intersects Sk0,j0

0, if not

(5.13)

Then Prob(Ii = 1) = p, ∀i, where p is defined in Eq. (5.12). Denote by Zn

the total number of trees served by Sk0,j0 . Then Zn := I1 + I2 + · · ·+ In. Thus by the

Chernoff Bounds Eq. (2.6), for all positive b and a, Prob(Zn > b) ≤ E[eaZn ]
eab

. Because

of 1 + x ≤ ex, there has

E[eaZn ] = (1 + (ea − 1)p)n ≤ exp(n(ea − 1)p) (5.14)

= O(exp(ea − 1)nT (n)) (5.15)

Now choosing b = Θ(nT (n)), it gets Prob(Zn = Ω(nT (n))) = O(exp(nT (n))).

Thus by the union bound, it has

Prob (Some cell intersects Ω(nT (n)) trees )

≤
∑
k,j

Prob (Cell Sjk intersects more than Ω(nT (n)) trees )

= O

(
1

T 2(n)
exp (−nT (n))

)
(5.16)
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The right hand side tends to zero for T (n) = Ω
(√

log n/n
)

as n goes to

infinity.

It is known that there exists a transmitting schedule such that in every L2 (L is

constant) slots, each cell transmits at rate W bits/second with maximum transmission

distance T (n). Therefore, the rate for each cell is Θ
(
n2T 4(n)

)
W/L2. From Lemma

5.10, each cell needs to transmit at rate O (Cm(n)nT (n)), with probability approaching

one. In order to accommodate this requirement by all cells, it is needed that

Cm(n)nT (n) = Ω
((
n2T 4(n)

)
W/L2

)
(5.17)

Thus it have been proven that the achievable throughput for Theorem 4.23 in

order to guarantee each cell can support this capacity. It can be written as

Cm(n) = Ω
(
nT 3(n)

)
(5.18)

It has been proved that there is no congestion in relay nodes. Furthermore,

it will be proved that there is not any congestion in destination. Suppose each source

selects a destination randomly and in dependently. Then it will be proved with high

probability, a node can be destination for at most 3 logn
log log n sources. This problem is

similar to the “ bins and balls problems” in [42].

Lemma 5.11 The probability of a particular destination having k sources selected is

lim
n→∞

Prob[destination i has at least k sources] ≤
( e
k

)k
(5.19)

Proof: If observing any subset of sources of size k, then the probability that

the subset of sources select destination i is ( 1k )
k. Then a union bound of these probabil-
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ities is taken over all
(
n
k

)
subsets of size k. The events are summed over, though, are not

disjoint. Therefore, we can only show that the probability of a destination having at

least k balls is at most
(
n
k

)(
n
1

)k
. Using Stirling’s approximation limn→∞

n!√
2πn(n

e )
n = 1,

it has

lim
n→∞

(
n
k

)(
n
1

)k(
e
k

)k = 1, (5.20)

which proved the lemma.

Lemma 5.12 With high probability, i.e. with probability greater than 1− 1
n , there exist

at most 3 logn
log logn sources for each destination.

Proof: Let k = 3 logn
log log n . From Lemma 5.11, it has

lim
n→∞

Prob[destination i has at least k sources]

≤
( e
k

)k
=

(
e log log n

3 log n

) 3 logn
log logn

≤ exp

(
3 log n

log logn
(log log log n− log log n)

)
= exp

(
−3 log n+

3 log n log log log n

log log n

)
≤ exp(−2 log n) =

1

n2
(5.21)

Using Union Bound, it has

lim
n→∞

Prob[any destination has at least k sources]

≤ n
1

n2
=

1

n
(5.22)

which implies that

lim
n→∞

Prob[all destinations have at most k sources] ≥ 1− 1

n
(5.23)
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It proved the lemma.

For MPTR unicast, it is required that for all destinations, there does not exist

any one whose traffic load congestion is larger than the total throughput it can support.

It means that the maximum throughput for each destination should always be greater

than the total traffic load. In MPTR case, the total throughput of each destination

is nT 2(n). The traffic load congestion for each destination is the multiplication of

throughput per node of nT 3(n) and the maximum possible sources that select a node,

i.e. 3 logn
log logn . Hence,

nT 2(n) > nT 3(n)
3 log n

log log n
, (5.24)

which is

T (n) = O

(
log log n

log n

)
. (5.25)

Therefore, T (n) is bounded as

Ω

(√
log n

n

)
= T (n) = O

(
log log n

log n

)
. (5.26)

The left side is the connectivity constraint and the right side is the traffic load

constraint to guarantee that C(n) = nT 3(n) can be achieved.

5.2.3 Tight Bound and Comparison with SPR

From Theorems 5.4 and 5.9, a tight bound throughput capacity can be provided

for multicasting when nodes have MPT and MPR capabilities in dense random wireless

ad hoc networks as follows.
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Theorem 5.13 The throughput capacity of multicast with constant number m destina-

tions (i.e., m is not a function of n) in a random dense wireless ad hoc network with

MPT and MPR is

CMPT+MPR
m (n) = Θ

(
nT 3(n)

)
. (5.27)

The transceiver range of MPT and MPR should satisfy Ω

(√
logn
n

)
= T (n) = O

(
log log n
logn

)
.

Following similar proof procedure, the tight capacity for MPT or MPR only

can be derived in the following theorem.

Theorem 5.14 The throughput capacity of multicast with constant m number of des-

tinations in a random dense wireless ad hoc network with MPT or MPR is given by

CMPT
m (n) = CMPR

m (n) = Θ (T (n)) . (5.28)

The transceiver range of MPT and MPR should satisfy Ω

(√
logn
n

)
= T (n) = O

(
log log n
logn

)
.

The multicast throughput capacity with SPR is given by the following lemma.

Lemma 5.15 In multicast with a constant m number of destinations, without MPR or

MPR ability, the capacity is

CPTP
m (n) = Θ

(
1

nr(n)

)
(5.29)

where, r(n) = Ω
(√

log n/n
)
, and PTP means SPR. When r(n) = Θ

(√
log n/n

)
for

the minimum transmission range to guarantee the connectivity, then the maximum ca-

pacity is obtained as CPTP-Max
m (n) = Θ

(
1√

n logn

)
.
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Combining Theorem 5.13 with Lemma 5.15, the gain of throughput capacity

with MPT and MPR capability in wireless ad hoc networks can be stated as follows.

Theorem 5.16 In multicast with a constant m number of destinations, with MPT and

MPR ability, the gain of per-node throughput capacity compared with SPR is Θ
(
n2T 4(n)

)
(with only MPT or MPR, the gain is Θ

(
nT 2(n)

)
), where, Ω

(√
logn
n

)
= T (n) = r(n) =

O
(
log logn
logn

)
. When T (n) = Θ

(√
log n/n

)
, the gain of per-node capacity is at least

Θ
(
log2 n

)
(with only MPT or MPR, the gain is Θ(log n)).

5.3 Capacity with NC, MPT and MPR with Finite m

This section studies the multi-source multicast capacity of a wireless network

when nodes use NC, MPT and MPR. The results presented serve as an upper-bound for

what can be achieved by combining NC, MPT and MPR in the presence of interference.

The arguments are generic and can be used to deduce upper bounds for the multicast

capacity of other interesting cases where NC is used along with only one of MPT or

MPR, or even the scenario where NC is used with traditional SPR.

In the proof, the characteristic of network coding is used which does not change

the capacity information flow across the sparsity cut and has been widely used in [21].

The bounds for the case of multi-source multicasting is deduced by reducing

it to a suitable unicast routing problem. Under the reduction, an upper bound for the

unicast problem also serves for the original multicast routing problem. Thus consider

the following simple yet powerful lemma.
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Lemma 5.17 Consider a network with n nodes V = {a1, . . . , an} and k multicast ses-

sions. Each session consists of one of the n nodes acting as a source with an arbitrary

finite subset of V acting as the set of destinations. Let si be the source of the ith session

and let Di = {di1, . . . , dimi} be the set of mi destinations. Let λ = [λ1, . . . λk] be a

feasible rate vector, i.e. there exists a joint routing-coding-scheduling scheme that can

realize a throughput of λi for the ith session. Then λ is also a feasible vector for any

unicast routing problem in the same network such that the traffic consists of k unicast

sessions with si being the source of the ith session and the destination di is any arbitrary

element of the set Di.

If a multicast capacity from a source to multiple destinations is feasible, then

clearly it is feasible to achieve the same capacity to any one arbitrarily chosen node

from this set of destinations.

Lemma 5.18 Consider a random geometric network with n nodes distributed uniformly

in a unit square. Consider a decomposition of the unit-square into two disjoint regions

R and Rc such that the area of each region is of order Θ(1). Now consider a multicast

traffic scenario consisting of n sessions with each node being the source of a session

and m randomly chosen nodes being the destination of the session. A source satisfies

property P if the source belongs to region R and at least one of its destination belongs

to Rc OR if the source belongs to region Rc and at least one of its destination belongs

to R. It can be easily shown that the number of sources satisfying property P are Θ(n).

Since nodes are uniformly deployed in a random network, a sparsity cut cap-
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tures the traffic bottleneck of these random networks. The cut capacity represents the

information rate that the nodes from one side of the cut as a whole can deliver to

the nodes at the other side. This is the maximum information (bits per second) that

can be transmitted across the cut from left to right (or from right to left). The spar-

sity cut capacity is upper bounded by deriving the maximum number of simultaneous

transmissions across the cut.

Lemma 5.19 The capacity of a sparsity cut Γ for a unit region has an upper bound of

O
(
T−1(n)

)
, O (nT (n)), and O

(
n2T 3(n)

)
for SPR with network coding, MPT or MPR

with network coding and MPT+MPR with network coding respectively.

Proof: The capacity for SPR with network coding has been derived in [21] as

O
(
T−1(n)

)
. According to the protocol model of [1], the disks of radius T (n) centered

at each receiver are disjoint. This fact has been utilized in [21]. However, [1] does not

consider many-to-one (or one-to-many) communications, which is the case for MPR (or

MPT) scheme. Hence, some additional arguments are needed to prove the remaining

claims.

Let us consider the combination of only MPR with NC. The cut capacity is

upper bounded by the maximum number of simultaneous transmissions across the cut.

It is easy to see in Fig. 3.2 that all the nodes located in the shaded area Sxy can send

their packets to the receiver node located at (x, y). These nodes lie in the left side of the

cut Γ within an area called Sxy and the assumption is that all these nodes are sending

packets to the right side of the cut Γ. For a node at location (x, y), any node in the disk
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of radius T (n) can transmit information to this receiver simultaneously and the node

can successfully decode those packets. In order to obtain an upper bound, only edges

that cross the cut need to be considered. Let’s first consider all possible nodes that can

transmit to the receiver node in the Sxy region. The average number of transmitters

located in Sxy is n × Sxy. The number of nodes that are able to transmit at the same

time from left to right is upper bounded as a function of Sxy.

The area of Sxy is computed as

Sxy =
θ

2π
πT 2(n)− T 2(n) sin

(
θ

2

)
cos

(
θ

2

)
=

1

2
T 2(n)(θ − sin θ). (5.30)

This area is maximized when θ = π.

max
0≤θ≤π

[Sxy] =
1

2
πT 2(n) (5.31)

For the case of MPR (or MPT) with network coding, the disk with radius T (n)

centered at any receiver(transmitter) should be disjoint from the other disks centered

at the other receivers[21]. Thus, the total number of nodes that can send packets across

the cut is upper bounded as

lΓ
(2 + ∆)T (n)

1

2
πT 2(n)n = c1lΓnT (n), (5.32)

where c1 = π/2(2+∆). Similar arguments can be used to bound the cut-capacity when

only MPT is combined with NC.

Now, the case of combining MPT+MPR with network coding is considered.

Note that each node has a maximum of Θ
(
nT 2(n)

)
neighbors, which implies that each

node can simultaneously receive packets from a maximum of Θ
(
nT 2(n)

)
transmitters.
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Moreover, any node that receives transmission from across the cut Γ has to lie in the

region enclosed by the dotted line Γr on the right side in Fig. 3.2, where Γr is at a T (n)

from Γ. Thus, the rectangular region enclosed by Γ and Γr has an area of Θ(T (n)).

Hence, an average of Θ(nT (n)) nodes can receive packets from across the cut. Therefore

the total number of transmissions across the cut are bounded by

O
(
nT (n) ∗ nT 2(n)

)
= O

(
n2T 3(n)

)
(5.33)

Theorem 5.20 In a wireless ad hoc network formed by n nodes distributed randomly

in a unit square with traffic formed by each node acting as source for a multicast ses-

sions with m = Θ(1) randomly chosen nodes as destinations, the per-session multicast

capacities are

CNC+PTP
m = O

(
1

nT (n)

)
,

CNC+MPT
m = CNC+MPR

m = O (T (n)) ,

CNC+MPT+MPR
m = O

(
nT 3(n)

)
, (5.34)

where NC + PTP denotes the use of NC with SPR (no MPT or MPR), i.e., a node can

only transmit or receive at most one packet at a time.

Proof: For any sparsity cut of the unit area, lemmas 5.18 and 5.17 tell us that

a unicast routing problem can be constructed satisfying the property that any rate for

the unicast problem is feasible for the original multicast problem and there are Θ(n)

source-destination pairs across the cut. Thus, the capacity of the sparsity cut provides a

bound for the unicast problem, which can in turn be used to provide an upper bound for
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the multicast problem. From Lemma 5.19, finally, such arguments can be extended to

show that the combination of NC+MPT (or NC+MPR) and NC+MPT+MPR allows

us to simultaneously transmit a maximum of O (nT (n)) and O
(
n2T 3(n)

)
packets across

the cut respectively. The result of the theorem then follows from the fact that the cut

capacity has to be divided among the Θ(n) source-destination pairs across the cut.

Finally, because multicast capacity must be upper bounded by the unicast capacity

which finishes the proof.

5.4 Conclusion

By combining the results from theorems 5.13 and 5.20, the main contribution

of this chapter is stated in the following theorem.

Theorem 5.21 In wireless ad hoc networks with multi-pair multicast sessions and with

a finite number of m destinations for each source, the throughput capacity utilizing

NC, MPT and MPR capabilities for all nodes is the same order as when the nodes are

endowed only with MPT and/or MPR.

CMPT+NC
m (n) = CMPT

m (n)

CMPR+NC
m (n) = CMPR

m (n)

CMPT+MPR+NC
m (n) = CMPT+MPR

m (n) (5.35)

Proof: Because from Theorems 5.13 and 5.4, it is realized that the multicast

capacity of NC with MPT and MPR is tightly bounded by the tight bound of multicast
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capacity of MPT and MPR without NC, so the multicast capacity of MPT and MPR

with or without NC are the same.

It is also important to emphasize that, as Theorem 5.20 shows, NC does not

provide any order capacity gain for multi-source multicasting when the size of receiver

groups is m = Θ(1) and nodes use SPR. Hence, the result in Theorem 5.21 implies

that NC does not provide an order capacity gain when MPT or MPR or combination

of MPR and MPT is used, and that MPT and MPR are the real contributing factors

for order capacity increases in wireless ad hoc networks.
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Chapter 6

Opportunistic Interference Management

In this chapter, a new multiuser diversity scheme is introduced in cellular

networks which allows parallel communication in the network without any cooperation

among mobile stations. If the network does not have enough mobile stations, then some

of the users need to jointly decode their corresponding data streams. The result suggests

the existence of a tradeoff between multiuser diversity and cooperation in the downlink

of cellular networks. The opportunistic interference management (OIM) approach is

based on a new multiuser diversity concept that achieves the capacity of dirty paper

coding (DPC) asymptotically. Surprisingly, this gain is achieved without requiring full

channel state information (CSI) and only number of antennas CSI are fed back from

mobile stations to the base station. An additional advantage of this scheme is the fact

that the encoding and decoding of signals for this distributed MIMO system is based

on simple point-to-point communications. Furthermore, OIM has been extended in to

wireless ad hoc networks, which increased the capacity significantly.
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This chapter is constructed as follows. Sections 6.1 and 6.2 present the capacity

of wireless cellular and ad hoc networks respectively. Section 6.3 concludes this chapter.

6.1 OIM in Wireless Cellular Networks

The problem of optimal transmission is investigated in the downlink of a cel-

lular networks when the base station has independent messages for the mobile stations

in the network.

6.1.1 Wireless Cellular Network Model

The problem of optimal transmission in the downlink of a cellular network is

investigated when the base station has independent messages for the mobile stations in

the network. Clearly if the base station has only K antennas, it can transmit at most

K independent data streams at any given time. It is assumed that all mobile stations

have a single antenna for communication. The channel between the base station and

mobile stations H is a M ×K matrix with elements hji, where i ∈ [1, 2, . . . ,K] is the

antenna index of the base station and j ∈ [1, 2, . . . ,M ] is the mobile user index. Block

fading model is considered where the channel coefficients are constant during coherence

interval of T . Then the received signal YM×1 is expressed as

Y = Hx+ n, (6.1)

where x is the transmit K × 1 signal vector and n is the M × 1 noise vector. The noise

at each of the receive antennas is i.i.d. with CN (0, σ2
n) distribution.

112



6.1.2 Scheduling protocol

During the first phase of communication, the base-station antennas sequen-

tially transmit K pilot signals. In this period, all the mobile stations listen to these

known messages. After the last pilot signal is transmitted, mobile stations evaluate

the SNR for each antenna. If the SNR satisfies certain conditions for a mobile node,

that particular mobile station will be selected by the base station. The mobile station

is selected when the SNR for one transmit antenna is greater than a pre-determined

threshold SNRtr and below another pre-determined threshold of INRtr for the remain-

ing K − 1 antennas.

In the second phase of communication, the mobile stations that satisfy SNR

criteria will notify the base station that they have the required condition to receive

packets during the remaining time period of T . It will not be discussed that the channel

access protocol required for these mobile stations to contact the base station or the case

when two mobile stations satisfy OIM condition for the same base station antenna. It

is assumed that this will be resolved by some handshake between the mobile stations

and the base station. Note that, if appropriate values for SNRtr and INRtr is chosen

such that SNRtr ≫ INRtr, then the base station can simultaneously transmit different

packets from its antennas to different mobile stations. The mobile stations only receive

their respective packets with a strong signal and can treat the rest of the packets as

noise. The value of SNRtr (or INRtr) can be selected as high (or low) as required for a

given system, as long as M is large enough.
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In general, there is a relationship between average number of antennas with

OIM condition, D = E(d), and number of mobile stations, M . Clearly, OIM decreases

the encoding and decoding complexity of MIMO broadcasting channel significantly1 at

the expense of the presence of large number of mobile stations. Fig. 6.1 demonstrates

the system that is used here. Without loss of generality, it is assumed that the user

i for i ∈ [1, 2, . . . , d] is assigned to antenna i in the base station. In this figure, solid

and dotted lines represent strong and weak channels between an antenna at the base

station and a mobile station respectively. Note that if there is no line between the base

station and mobile stations, then it means the channel is a random parameter based on

the channel probability distribution function. For simplicity, Fig. 6.1 only illustrates

the strong channel case.

Base Station (K antennas totally)

…...User 1 User 2 User K

…...
User M

[ ]M K´
H

D

User D

…... …...

K-D

…... …...

…...User D+1

Figure 6.1: Wireless cellular network model

1For OIM technique, the encoding and decoding of multiple antennas reduces to simple point-to-point
communication because the channels are decoupled from each other and no longer interfere significantly
with each other.
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6.1.3 Theoretical Analysis and Numerical Results

Let’s define SNRji as the signal-to-noise ratio when antenna j is transmitting

packet to mobile station i in the downlink. Further denote INRji as the interference-

to-noise ratio between transmit antenna j and receiver i. The objective of OIM is to

identify d mobile stations out of M choices to satisfy the following criteria

SNRii ≥ SNRtr, 1 ≤ i ≤ d,

INRji ≤ INRtr, 1 ≤ j ≤ K, 1 ≤ i ≤ d, j ̸= i (6.2)

The above condition in (6.2) states that each one of the d mobile stations has

a very good channel to a single antenna of the base station and strong fading to the

other K − 1 antennas of base station as shown in Fig. 6.1. After all the mobile users

with OIM condition return their feedback to the base station, then the base station will

select those mobile stations to participate in the communication phase such that the

maximum multiplexing gain is achieved. Note that it is possible that two mobile users

satisfy OIM condition for the same base station antenna.

The sum rate in the downlink of wireless cellular channel can be written as

Rproposed =

d∑
i=1

log (1 + SINRii)

=

d∑
i=1

log

(
1 +

SNRii∑d−1
j=1,j ̸=i INRji + 1

)

≥ d log

(
1 +

SNRtr

(K − 1)INRtr + 1

)
= d log(1 + SINRtr) (6.3)
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where SINRii and SINRtr are defined as

SINRii =
SNRii∑d−1

j=1,j ̸=i INRji + 1
,∀i = 1, 2, · · · , d (6.4)

and

SINRtr =
SNRtr

(K − 1)INRtr + 1
, (6.5)

respectively.

First, the mean value of multiplexing gain d is derived. Then, it will be proved

that for any value of SINRtr, there exists a minimum value of M that satisfies Eq.

(6.3). Finally, it is proved that our approach achieves the optimum capacity of DPC

asymptotically.

For the rest of paper, the channel distribution is considered to be Rayleigh

fading but OIM can be implemented for other time-varying channel distributions. Note

that for an i.i.d. Rayleigh fading channel H, the probability distribution function (pdf)

of SNR (or INR) is given by [44]

p(z) =


1

σ
exp

(
− z

σ

)
, z > 0

0, z ≤ 0

(6.6)

where z is the SNR (or INR) value and EH(z) = σ, VarH(z) = σ2. Equivalently,
√

σ/2

is the parameter for Rayleigh fading distribution which shows the strength of the fading

channel.
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6.1.3.1 Exact Analysis

Let’s define event A for any mobile station that satisfies the condition in Eq.

(6.2). Since the channels between the base station and the mobile stations are i.i.d.,

then the probabilities of these two events can be derived as

Pr(A) =

(
K

1

)∫ ∞

SNRtr

p(z)dz

(∫ INRtr

0
p(z)dz

)K−1

=

(
K

1

)
e−

SNRtr
σ

(
1− e−

INRtr
σ

)K−1

(6.7)

Our objective is to maximize this probability based on network parameters.

Maximizing Pr(A) will minimize the number of required mobile stations M as will be

proved later. Note that among all network parameters K, SNRtr, INRtr, and σ, the

values of K and σ are really related to the physical properties of the network and are

not design parameters. Further, the parameters SNRtr and INRtr can be replaced with

a single parameter SINRtr using Eq. (6.5).

Let X be the random variable related to the number of mobile stations satis-

fying the OIM condition for Eq. (6.2). Note that it is possible that two mobile stations

satisfy OIM condition for the same base-station antenna. The probability of X = x is

computed as

Pr(X = x) =

(
M

x

)
(Pr(A))x (1− Pr(A))M−x . (6.8)

It is planed to solve this problem by formulating it as “bins and balls” problem.

Note that there are x balls that satisfy the OIM condition. The probability distribution

of x is given in Eq. (6.8). Let’s define the conditional probability of choosing y base-

station antennas (or bins) when there are x mobile stations (or balls) satisfying the OIM
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condition and denote it as PrB(d = y|X = x). Note that this probability includes the

possibility that some of y antennas are not associated to any of x mobile stations and

some correspond to more than one mobile station, i.e., some bins are empty and some

bins have more than one ball in them. This conditional probability is equal to

PrB(d = y|X = x) =
( y

K

)x
, y ≤ K (6.9)

Let’s define PrC(d = y|X = x) the probability that all of x mobile stations

are associated to y base-station antennas and there is no antenna in this set that is not

associated to at least one of the x mobile stations. Then, this conditional probability

can be derived as

PrC(d = y|X = x) =



PrB(d = 1|X = x), y = 1

PrB(d = y|X = x)−
y−1∑
j=1

(
y

j

)

· (PrC(d = j|X = x)), 1 < y ≤ min(x,K)

0. y > min(x,K)

(6.10)

This equation is derived iteratively and in order to initialize it for y = 1, PrB(d = 1|X =

x) is utilized. Since PrC(d = y|X = x) represents the probability of selecting a specific

combination of y antennas, the total possible choices can be derived as

PrD(d = y|X = x) =

(
K

y

)
PrC(d = y|X = x). (6.11)
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Finally, the expected value of d is derived using law of total probability.

D = E(d) =

K∑
y=1

M∑
x=1

yPrD(d = y|X = x)Pr(X = x)

=

M∑
x=1

E(d|X = x)Pr(X = x)

=
M∑
x=1

E(d|X = x)

(
M

x

)
(Pr(A))x (1− Pr(A))M−x (6.12)

where E(d|X = x) is defined as

E(d|X = x) =

K∑
y=1

yPrD(d = y|X = x). (6.13)

6.1.3.2 Numerical Results

Our simulation results are based on exact analysis of interference management

technique. Fig. 6.2 illustrates the minimum required value for M when D varies and for

k = 3 or 5 and σ = 100. As it can be seed from this result, when the SINRtr requirement

increases, the number of mobile stations required to implement this technique increases

significantly. Therefore, using capacity approaching techniques such as Turbo code or

LDPC that requires very low SINRtr will help to implement this technique with modest

number of MS users. Besides, from this figure it is noticed that there is a tradeoff

between the total number of the mobile stations M and the number of the nodes K−D

needed to do cooperative communication utilizing technique such as distributed MIMO.

For example when K = 3, the capacity of the network increases twofold with only 100

mobile stations in the network.

Fig. 6.3 demonstrates the relationship between the minimum number of mobile
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Figure 6.2: Simulation results for different values of SINR

stations required for different channel fading conditions. The result clearly shows that

as the fading of the channel increases, the minimum required number for M decreases.

As it is mentioned earlier, the new multiuser diversity scheme performs better when

the fading strength in channel increases to take advantage of both strong and weak

channels. Note that the original multiuser diversity concept performs better by only

taking advantage of strong channels.

In order to reduce the minimum required number of mobile users further, each

mobile user can be allowed to utilize two antennas and try to select one of the antennas

that satisfies OIM condition. However, such increase in the number of antennas does

not require space-time encoding or decoding. From base station point of view, the

additional antenna for each mobile user is equivalent of increasing the number of mobile

users twofold or equivalently, the actual minimum number of mobile users required to

achieve a multiplexing gain is reduced by a factor of 2.
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Figure 6.3: Simulation results for different fading channel environments and total num-
ber of mobile stations M required

6.1.3.3 Scaling Law Analysis

In this subsection, it will be proved that the sum-rate of the proposed scheme

under OIM condition achieves the optimum asymptotic DPC capacity, i.e. K log logM .

Let’s define x as the number of mobile stations that satisfy Eq. (6.2). The probability

that the first user associated to any of the antennas at the base station is Pr(A), and

this probability for the second user is K−1
K Pr(A) and this probability can be similarly

computed for all other users. The probability for the last (dth) user to satisfy Eq. (6.2)

is K−d+1
K Pr(A) > 1

KPr(A). From this argument, it is clear that these probabilities are

lower bounded as 1
KPr(A).

The lower bound for the expected value of d is given by

D = E(d) ≥ M

K
Pr(A). (6.14)

It is noteworthy to mention again that the number of mobile stations that satisfy OIM

condition is a random variable andD is simply the average value of this random variable.
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Thus,

M ≤ DK(Pr(A))−1. (6.15)

Note that M is upper bounded by the inverse of Pr(A). Therefore, in order to

minimize M , it is necessary to minimize (Pr(A))−1 such that the SINRtr condition in

Eq. (6.5) is satisfied.

minimize (Pr(A))−1 (6.16)

subject to SINRtr =
SNRtr

(K − 1)INRtr + 1
(6.17)

This optimization problem can be rewritten as

minEq.(6.17)

(
(Pr(A))−1

)
= 1

K minEq.(6.17)

 e
SNRtr

σ(
1−e−

INRtr
σ

)K−1

 ,

(a)
= 1

K e
SINRtr

σ minINRtr

 e(K−1)
SINRtrINRtr

σ(
1−e−

INRtr
σ

)K−1

 ,

(b)
= 1

K e
SINRtr

σ σK−1minINRtr

(
e(K−1)

SINRtrINRtr
σ

(INRtr)
K−1

)
. (6.18)

The equality (a) is derived by replacing SNRtr with INRtr and SINRtr using Eq.

(6.5). Since in practice a successful communication occurs when there is a predetermined

minimum value for SINR, therefore the value of SINRtr is fixed and attempt to optimize

the above equation based on INRtr. The limitation in (b) is derived by assuming INRtr
σ →

0 and the fact that limx→0 (1− exp(−x)) = x. Note that the unique characteristic of this

new scheme is to take advantage of strong fading and clearly, under that circumstance

the value of INRtr
σ is small.
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The minimum value of

(
e
(K−1)SINRtr

σ INRtr

INRK−1
tr

)
can be derived by taking its first

derivative with respect to INRtr and making it equal to zero.

e
(K−1)SINRtr

σ
INRtr ×(

(K − 1)SINRtr

σ
INRK−1

tr − (K − 1)INRK−2
tr

)
= 0 (6.19)

Note that SINRtr is usually a pre-determined variable for most applications

and it is needed to optimize this equation with respect to INR∗
tr. The solution for INR∗

tr

is

INR∗
tr =

σ

SINRtr
. (6.20)

Then the optimum value for (Pr(A))−1 is given by

M∗ ≤ DK(P ∗(A))−1 = De
SINRtr

σ (SINRtre)
K−1 . (6.21)

Now the asymptotic behavior of the network (i.e. M → ∞) is investigated

and the maximum achievable capacity and scaling laws for this scheme are tried to

be computed. When M tends to infinity, SINRtr goes to infinity too. Note that the

property that limx→∞
xc

ex = 0 is used, where c is a constant, then

lim
SINRtr→∞

e
SINRtr

σ (SINRtr)
K−1 = O

(
e2

SINRtr
σ

)
. (6.22)

Therefore, the value of (Pr(A))−1 is asymptotically derived as

Ω

(
M

DK

)
= lim

M→∞
(Pr(A))−1∗ =

1

K
eK−1e

SINRtr
σ (SINRtr)

K−1 = O

(
1

K
eK−1 · e2

SINRtr
σ

)
.

(6.23)
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The lower bound of SINRtr is asymptotically computed as

lim
M→∞

SINRmax
tr = Ω

(
σ

2
log

(
1

D

(
1

e

)K−1

M

))
= Ω(logM). (6.24)

Thus, the SINRmax
tr scales at least with Ω(logM). If it is assumed that SINRtr =

Θ
(
σ
4 logM

)
= Θ

(
σ
2 logM

1/2
)
. and with Eq. (6.23), because D ≤ K, then there is

M1/2 = O
(
DeK

)
= O

(
KeK

)
= O

(
e2K

)
. This result implies that K = Ω(logM) is

achievable. Then the scaling laws of OIM scheme is

Rproposed = Ω(K log logM). (6.25)

It have been proved that OIM achieves DPC asymptotic capacity.

lim
M→∞

ROIM = RDPC = Θ(K log logM) (6.26)

This result implies that

lim
M→∞

SINRtr = Θ(logM). (6.27)

Our objective is to show, via simulation, that when SINRtr grows proportional to

Θ(logM), the maximum multiplexing gain of k can be achieved when M tends to

infinity. Let’s define SINRtr as

SINRtr =
σ

c0
log

((
1

e

)K−1

M

)
. (6.28)

where c0 is a constant value. In practical cellular systems, it is possible that the mini-

mum number of mobile users may not be available in a cell. Note that it is easy to show

that for any value of K, M and σ, the designer can select the appropriate value for
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SINRtr such that the maximum multiplexing gain is achieved at the expense of reduced

rate for each individual mobile user, i.e., D = K.

Fig. 6.4 confirms that when SINRtr grows logarithmically with M , this ap-

proach achieves the maximum multiplexing gain for different values of co based on Eq.

(6.28).
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Figure 6.4: Simulation results demonstrate DPC capacity and maximum multiplexing
gain are achieved simultaneously.

It is noteworthy to point out that when the value of σ is small or equivalently,

if the channel fading is not strong, then OIM cannot converge to the maximum multi-

plexing gain of K rapidly. In the new multiuser diversity scheme that is introduced in

this paper, both strong and weak channels are important. When the fading coefficient

σ is stronger, then this technique performs better. Fig. 6.5 illustrates this important

point.

When K = 1, then our approach is similar to that of [30]. Moreover if M → ∞

and D = K, then our scheme has the same asymptotic scaling laws capacity result as
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Figure 6.5: Simulation results demonstrate relationship between fading strength and
multiplexing gain.

that of [34]. The cost of the proposed scheme is the need for a minimum number of

mobile stations, M . In most practical cellular systems, in any given frequency and time

inside a cell, there is only one assigned mobile station while this technique suggests that

there can be up to the number of base-station antennas utilizing the same spectrum at

the same time with no bandwidth expansion. Clearly, this approach can increase the

capacity of wireless cellular networks significantly. This gain is achieved with modest

feedback requirement which is proportional to the number of antennas at the base

station.

6.1.3.4 Feedback requirements

A natural question regarding our OIM scheme is what the number of MS

users is that satisfies the interference management criterion. Clearly, this number is a

random variable, which is denoted by X. It will be proved that this value is at most
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K with probability arbitrarily close to one if the network parameters are appropriately

selected. More specifically, the probability that X ≤ K MS users satisfy the interference

management criteria denoted as η can be arbitrarily close to 1 if proper SINRtr is selected

based on network parameters such as fading parameter σ and M .

For any MS, the probability that it satisfies the interference management con-

dition is K × Pr(A), i.e., the MS has a very strong channel with a single BS antenna

and a very weak channel (deep fade) with all other BS antennas. The number of the

MSs satisfying the interference management criteria is a random variable X satisfying

binomial distribution whose probability density function (pdf) is given by Eq. (6.8).

Therefore, the cumulative distribution function can be expressed as

Pr(X ≤ K) =
K∑
i=0

(
M

i

)
(Pr(A))i(1− Pr(A))M−i ≥ η, (6.29)

where 0 < η < 1 can be arbitrarily close to 1 , i.e., η = 99%.

It will be shown that the number of mobile usersX (which is a random variable)

with OIM constraint is always smaller than K with probability arbitrarily close to 1

with the correct choice of network parameters. Note that, for any value of K, M and σ,

the designer can select the appropriate value for SINRtr such that with probability close

to 1 the value of random variable X is less than K as numerically shown in Fig. 6.6.

Given that the number of active MSs in a cell is known to the BS, the BS can adjust the

SINRtr value such that the number of MS users qualifying the OIM condition does not

increase significantly. This is a significant improvement compared to the dirty paper

coding or techniques introduced in [34, 35], which require K ×M and M CSI feedback
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information respectively. When M increases, the feedback information also increases

accordingly. However, OIM requires Θ(K) CSI feedback regardless of the number of

mobile stations with probability arbitrarily close to 1 as long as the SINRtr is adjusted

appropriately. For any values of K, M and σ, the designer can select the appropriate

value for SINRtr such that with probability close to 1 the value of random variable X

is less than K as shown in Fig. 6.6.
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Figure 6.6: The feedback is at most K with almost sure

6.1.4 Practical Related Issues

There are still two important issues with OIM scheme. One is the fact that

in current cellular systems, the assignment of users is based on pre-determined schemes

such as time-division. The other issue is the fairness problem which is important so

that all users have minimum access to the channel. For example, some mobile users

may be close to the base station for a long period of time with line of sight. In the
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following section, an approach is provided to incorporate OIM scheme into existing

TDMA systems to assure fairness in terms of accessing the channel for all users. The

extension of this approach to other standards such as CDMA is straightforward.

6.1.4.1 Fairness under TDMA Scheme

In this section, one practical approach is proposed for existing GSM cellular

systems to guarantee the fairness and Quality of Service (QoS) for TDMA users while

allowing other users to take advantage of OIM scheme without interrupting the main

user. For any TDMA user, the received signal vector can be written as

RT
TDMA = ST

TDMAhTDMA +

d∑
i=1

SihiV
T + nT, (6.30)

where RTDMA and STDMA are the TDMA signal vectors received by a mobile user

and transmitted by an antenna in the base station respectively, provided that this

antenna does not participate in OIM scheme, i.e., d < K. The superscript T represents

transpose of a vector, Si and V T are the signal transmitted by the antenna that is

utilizing OIM scheme and a vector with unit weight that will be multiplied by each

signal Si respectively. n is the additive Gaussian noise vector with zero mean i.i.d.

elements and variance of σn. hTDMA and hi are the CSI between base station and

mobile users that are participating in TDMA and OIM scheme respectively.

At the receiver, the received vector is multiplied by a vector U. This vector is
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orthonormal to V, i.e., UVT = 0. Thus, the received signal will be equal to

URT
TDMA = UST

TDMAhTDMA +

d∑
i=1

sihiUVT +UnT

= UST
TDMAhTDMA + n′ (6.31)

Note that the signals transmitted utilizing OIM scheme are now multiplied by

this new vector V. Even though the TDMA user does not have the OIM capability and

therefore other users are interfering with this user, but when the orthogonal vector U

is multiplied by the received vector, these interfering signals can be get rid of. Further,

the vector V does not have any relationship with CSI and any of beamforming scheme

is not really used. The criterion for selecting this vector will be later described. For

block fading channel, this vector only requires to be of length 2. It is noticed that by

the new transmission policy, the actual rate of signals participating in OIM scheme have

been reduced by a factor proportional to the length of vector V. However, the rate of

TDMA signal is still one symbol per channel use.

If the wireless channel is block fading, then U = [u1, u2] and V = [v1, v2]

are enough for implementation. However, for fast fading the implementation of this

technique is more complicated and it is omitted here. For the rest of the paper, it is

assumed that the QPSK signals are used for transmission. Since the TDMA vector

signal is multiplied by U as shown in Eq. (6.31), then our criterion for designing this

signal is based on the condition that the combination of multiple QPSK signals results

in optimum separation of points in the two-dimensional space. This condition will help

in decoding performance of the received signal. Note that again this vector is not really

130



a function of channel matrix as it is common in beamforming techniques.

For a combination of two QPSK signals, an appropriate choice would be a

16-QAM signal. It has been shown in [45] that any combination of QPSK signals can

be mapped into M-QAM signals. For the specific case of 16-QAM, there is

16-QAM =

1∑
i=0

2i

(√
2

2

)
(jxi) exp

(
πj

4

)
(6.32)

where xi ∈ Z4 = {0, 1, 2, 3}. The QPSK constellation can be realized as QPSK = jxi .

Thus, one can use shift and rotation operation to create M-QAM constellations from

QPSK symbols. It is easy from Eq. (6.32) to show that the normalized values of vectors

U and V are

U =

√
2

5
exp

(
πj

4

)[√
2

2
,
√
2

]
(6.33)

and

V =

√
2

5

[
√
2,−

√
2

2

]
(6.34)

respectively. Since the vector U is normalized, then the variance of Gaussian noise

remains the same.

Note that with this signalling at the base station, the Quality of Service (QoS)

and fairness for all users are guaranteed in a time-division approach while other users

can utilize the spectrum taking advantage of OIM scheme.

6.1.4.2 Signaling requirement

One of the main advantages of this technique is the fact that, by taking ad-

vantage of multiuser diversity, a distributed MIMO system in the downlink of wireless

131



cellular networks is reduced into a group of parallel single-input single output (SISO)

systems. For this reason, all challenges and complexities related to space-time sig-

nal processing design can be replaced by simple point-to-point communications while

achieving maximum capacity as long as the number of mobile stations is adequate.

This significant simplification of the signalling in the cellular systems is an additional

advantage of our OIM scheme.

6.2 OIM in Wireless Ad Hoc Networks

In this section, OIM scheme is extended for cellular networks to distributed

version in wireless ad hoc networks. Surprisingly, by fully taking advantage of fad-

ing channels in multiuser environments, the feedback requirement is proportional to a

small value, while the encoding and decoding scheme is very simple and similar to the

point-to-point communications. The original multiuser diversity concept was based on

looking for the best channels, while the interference management approach is based on

searching simultaneously for the best and worse channels. The increase of the capacity

is essentially because of the powerful nature of fading in wireless environment.

6.2.1 Wireless Ad Hoc Network Model

The extend network has been assumed in this section. It is assumed that the

movement of nodes causes fading. However, this is a restricted movement such that any

node only moves within its transmission range and the network topology and routing

does not change with time. If the nodes have unrestricted mobility in the entire network,
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it is assumed that the time duration that causes the topology of the network to change

is always smaller than the duration for transporting information from each source to its

destination. Therefore, at any snapshot during packet transmission from any source to

its destination in the network, the topology is static.

Let Xi and XR(i) denote the locations of node i and its receiving node R(i)

respectively. Let PiR(i) be the received signal power at node R(i). The wireless channel

is subject to fading as described below. P is defined as the transmit power at node i

and |Xi −XR(i)| as the Euclidean distance between nodes i and R(i). PiR(i) is modeled

as

PiR(i) = |HiR(i)|2
P

(|Xi −XR(i)|)α
(6.35)

where HiR(i) is a random variable that incorporates the channel fading and α is the

path-loss exponent whose typical values are between 2 and 6. Under Rayleigh fading

model, HiR(i) and |HiR(i)|2 have Rayleigh and exponential distributions respectively.

Definition 6.1 Generalized Physical Model

In this analysis, the data rate between the transmitter-receiver pair i and R(i) in bits/second

is defined as

CiR(i) = W log
(
1 + SINRiR(i)

)
, (6.36)

where W is the bandwidth and SINRiR(i) between the transmitting node Xi and the

receiving node XR(i) is defined as

SINRiR(i) =

P
(|Xi−XR(i)|)α

|HiR(i)|2

N +
∑

k ̸=i
P

(|Xk−XR(i)|)α
|HkR(i)|2

, (6.37)
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where N is the ambient noise power and Xk’s(k ̸= i) are the interfering nodes. Note

that the channel model consists of large scale fluctuation |Xi−XR(i)|−α and small scale

fluctuation |HkR(i)|2.

6.2.2 Scheduling Protocol

Fig. 6.7 illustrates the system involved in OIM. Without loss of generality, it

is assumed that the receiver R(i) = i for i ∈ [1, 2, . . . ,K] in Fig. 6.7. In this figure,

solid line and dotted line represent a strong and weak channel between transmitters and

receivers respectively.

…...

Receiver 1

…...

[ ]( )m K K- ´
H

…...

Transmitter 1 Transmitter 2 Transmitter K

Receiver 2 Receiver x Node m-K

…...
Transmitter x

…...

Figure 6.7: Opportunistic interference management system model

It is assumed that, for each node, there is always some traffic demand to any

other neighbor node at any time slot. Each packet is either destined for a particular

neighbor node or is relayed through a route that need the node to relay.

For any time slot T, there are x potential transmitters out of K that satisfy

the OIM condition, where x is a random variable with mean value of D = E(x). The

probability distribution function of x and the relationship between D, K and the rest
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of the nodes m−K will be defined subsequently. In practice, K transmitter nodes are

selected who are close by in order to make coordination easier. During the first phase

of communication, the K transmitters sequentially transmit K pilot signals. In this

period, all the other m−K nodes listen to these known messages. After the last pilot

signal is transmitted, all of the other nodes evaluate the SNR for each transmitter. If

the SNR for only one transmitter is greater than a pre-determined threshold SNRtr and

below another pre-determined threshold of INRtr for the remaining K − 1 transmit-

ters, that particular receiver selects that particular transmitter. In the second phase

of communication, these receivers notify the transmitters that they have the required

criterion to receive packets during the remaining time period of T. If appropriate values

for SNRtr and INRtr are chosen, such that SNRtr ≫ INRtr, then the transmitters can

transmit different packets to different receivers concurrently. The receivers only receive

their perspective packets with strong signal and can treat the rest of packets as noise.

The value of SNRtr (or INRtr) can be selected as high (or low) as required for a given

system as long as m is large enough. Their relationship will be shown in details later.

6.2.3 Theoretical Analysis and Numerical Results

Let’s define SNRiR(i) and INRjR(i) as the signal-to-noise ratio and interference-

to-noise ratio between transmitter i, other transmitter j, j ̸= i and i’s corresponding

receiver R(i) respectively. Note that only fading (small scale fluctuation of channel)

is considered for the analysis of OIM as explained earlier. The objective of OIM is to

find x receiver nodes out of m−K choices to satisfy the following criteria. Since x is a
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random variable, the average value of x receiver that satisfies OIM requirement is used,

i.e., D = E(x). Then for any associate transmitter i, i ∈ 1, 2, · · · ,K, i’s corresponding

receiver R(i) and other transmitter j, j ∈ 1, 2, · · ·K, j ̸= i, there has

SNRiR(i) ≥ SNRtr, i ∈, 1, 2, · · · ,K,R(i) ∈ 1, 2, · · · , x

INRjR(i) ≤ INRtr, j ∈ 1, 2, · · · ,K, j ̸= i (6.38)

The above condition states that each one of the x receiver nodes has a very

good channel to a single transmitter node and weak channel (strong fading) to the other

K − 1 receiver nodes as shown in Fig. 6.7.

Then, SINRiR(i) is defined as

SINRiR(i) =
SNRiR(i)∑K−1

j=1,j ̸=i INRjR(i) + 1
, (6.39)

and SINRtr as

SINRtr =
SNRtr

(K − 1)INRtr + 1
. (6.40)

respectively.

Hence, supposing D = E(x) transmitter-receiver pairs satisfying Eq. (6.38),

then the sum rate can be written as

Cproposed =
D∑
i=1

log
(
1 + SINRiR(i)

)
,

=

D∑
i=1

log

(
1 +

SNRiR(i)∑K−1
j=1,j ̸=i INRjR(i) + 1

)
,

≥ D log

(
1 +

SNRtr

(K − 1)INRtr + 1

)
,

= D log(1 + SINRtr) (6.41)
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In the following, it will be proved that for any given value of SINRtr, there exists

a relationship between m and D that will satisfy Eq. (6.41). To prove the existence of

this algorithm, it needs to be proved that there are D = E(x) transmitter-receiver pairs

that satisfy Eq. (6.38) on average.

To prove the condition in Eq. (6.41), it is assumed that the channel distribution

is Rayleigh fading channel which has been defined as Eq. 6.6.

Assuming the probability distribution function, expected value and variance

of x are Pr(x), D = E(x) and ∆2 = Var(x) respectively. Note that by selecting the

average value of x, in practice the actual number of nodes satisfying OIM is either

larger or smaller than this average value. Therefore, a constant value is chosen such

that with a probability arbitrarily close to zero, the actual number of nodes satisfying

OIM criterion is always smaller than this value. By utilizing Chebyshev’s inequality,

Pr (|x−D| ≥ c0∆) ≤ 1

c20
. (6.42)

This equation implies that for any given c0, the value of x is smaller than D+ c0∆ with

probability greater than 1− 1
c20
. Clearly this probability can be selected arbitrarily close

to one. The practical price is increase in transmission of pilot signals during the first

phase of communications. In the followings, D = Θ(K) will be proved.

6.2.4 Throughput Capacity Analysis

The achievable bound for the capacity analysis is based on the TDMA scheme

that was originally introduced in [43]. In this approach, the network is divided into
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Figure 6.8: The cell construction in extended wireless ad hoc network

smaller square cells each one with an area such that all the nodes inside each cell

are connected. Therefore, each square cell has an area of T 2(n)/2 which makes the

diagonal length of square equal to T (n) as shown in Fig. 6.8. Under this condition,

if the transmission range is at most T (n) for each hop, then all nodes inside a cell are

within cooperation range of each other. A cell graph is built over the network that are

occupied with at least one vertex (node) [43]. Cells are organized into groups such that

simultaneous transmissions within each group does not violate the OIM condition for

successful communication. Let L represent the minimum number of cell separations in

each group of cells that communicate simultaneously. In every 1/L2 time slots, each cell

receives one time slot to communicate. In an active cell, each transmitter node either

sends a packet to one of the nodes inside the cell or a node in adjacent cells. Fig. 4.6

shows a group of active cells with cross symbol inside the cells. Note that the distance
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between interfering cells is at least qT (n)L/
√
2 − T (n)/

√
2 for q = 1, 2, · · · , centered

around any active cell.

The analysis is based on computing SINR for two cases of interference within

a cell and interference from outside the cell. The former one is denoted as SINRinner

and the latter as SINRouter. Note that in general, the SNR can be computed as

SNRiR(i) =

P
|Xi−XR(i)|α

|HiR(i)|2

N
≥ SNRtr. (6.43)

The lower bound is derived based on the OIM condition. If |HiR(i)|2 ≥ c3 is assumed,

then c3 can be selected as c3 = SNRtrN
|Xi−XR(i)|α

P . To compute the lower bound for

SINRouter, note thatE[|HkR(i)|2] = σ andVar[|HkR(i)|2] = σ2 because of the characteris-

tic of exponential distribution |HkR(i)|2 for any k in Eq. (6.6). Due to |Xi−XR(i)| ≤ T (n)

for neighbor cell, then

SINRouter =

P
|Xi−XR(i)|α

|HiR(i)|2

N +
∑

k ̸=i
P

|Xk−XR(i)|α
|HkR(i)|2

≥
c3P

(T (n))α

N +
∑∞

q=1 8q
P

(qT (n)L/
√
2−T (n)/

√
2)α

|HqR(i)|2

=

c3P
(
√
2)α

N
(
T (n)√

2

)α
+ 8P

Lα

∑∞
q=1

q
(q− 1

L
)α
|HqR(i)|2

(6.44)

where, the second term of denominator needs to be proved bounded provided that P

increases with T (n) in extended networks. Sq = q

(q− 1
L
)α

is defined. The sum S =
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∑∞
q=1 Sq is bounded by a constant c4 as follows

S =

∞∑
q=1

1

(q − 1
L)

α−1
+

1

L

∞∑
q=1

1

(q − 1
L)

α

≤ 1

(1− 1
L)

α−1
+

∫ ∞

1− 1
L

1

xα−1
dx

+
1

L

(
1(

1− 1
L

)α +

∫ ∞

1− 1
L

1

xα
dx

)

=
1(

1− 1
L

)α−1 +

(
1− 1

L

)−(α−2)

α− 2

+
1

L

1(
1− 1

L

)α +
1

L

(
1− 1

L

)−(α−1)

α− 1

= c4

as [41] when α > 2. When L is selected sufficiently large, then the effect of interference

from outside cells can be reduced to any desired value based on Eq. (6.44). Next it

needs to proved that S =
∑∞

q=1 Sq|HqR(i)|2 is bounded. Because |HqR(i)|2 is a random

variable, then Pr
(∑∞

q=1 Sq|HqR(i)|2 → ∞
)
= 0 should be proved.

Let’s define E
[
|HqR(i)|2

]
= σ, then

µ = E

 ∞∑
q=1

Sq|HqR(i)|2
 =

∞∑
q=1

SqE[|HqR(i)|2] ≤ c4σ. (6.45)

From Chebyshev’s inequality,

Pr

∣∣∣∣∣∣
∞∑
q=1

Sq|HqR(i)|2 − µ

∣∣∣∣∣∣ ≥ α

 ≤ V 2

α2
(6.46)

where, V = Var
[∑∞

q=1 Sq|HqR(i)|2
]
. Because of S2

q ≤ Sq,∀q, then

V =
∑∞

q=1 S
2
qVar

[
|HqR(i)|2

]
≤ c4σ

2 provided that |HqR(i)| are i.i.d for different values
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of q. Clearly, if α → ∞, then

Pr

 ∞∑
q=1

Sq|HkR(i)|2 → ∞

 = 0 (6.47)

Thus, the Eq. (6.44) is bounded as

SINRouter ≥ SINRtr(outer) (6.48)

where, SINRtr(outer) is a constant term derived from Eq. (6.44) that is defined based

on the communication requirements for each node. From Eq. (6.40), the lower bound

for SINRinner is given by

SINRinner ≥ SINRtr = SINRtr(inner). (6.49)

Combining Eq. (6.48) and Eq. (6.49), SINR is given by

SINRiR(i) =
Signal

N + Interferenceouter + Interferenceinner
,

≥ Signal

N + Signal
SINRtr(outer)

−N + Signal
SINRtr(inner)

−N
,

≥ 1
1

SINRtr(outer)
+ 1

SINRtr(inner)

,

=
SINRtr(inner)SINRtr(outer)

SINRtr(inner) + SINRtr(outer)
,

= SINRtr(total) (6.50)

Next, the relationship between D = E(x), K and m = Θ(T 2(n)) is derived in

order to compute the throughput capacity for each cell. Based on Eq. (6.41), the order

capacity for each cell can be computed.

Let’s define event A is for a receiver node that satisfies the condition in Eq.

(6.38), and that the channels between the transmitter and receiver nodes are i.i.d., then
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this probability can be derived as Eq. (6.7). The following derivation is similar with

the one in Section 6.1. The event that y = d receiver nodes satisfy the OIM constraint

satisfies binomial distribution as follows:

Pr(y = d) =

(
m−K

d

)
(Pr(A))d (1− Pr(A))m−K−d . (6.51)

The lower bound for the expected value of x is given by

D = E(x) ≥ m−K

K
Pr(A). (6.52)

It is noteworthy to mention again that the number of receivers that satisfy

OIM condition x is a random variable and D is simply the average value of this random

variable. Thus,

m ≤ K(D (Pr(A))−1 + 1). (6.53)

Follow the same derivation in as Section 6.1, with optimum value for (Pr(A))−1 using

Eq. (6.18), the optimum m is derived from Eq. (6.53) as

m ≤ K +De
SINRtr

σ (SINRtre)
K−1 . (6.54)

This value is derived by replacing the optimum value of INR∗
tr into Eq. (6.18) and using

the limitation (b) in this equation.

Now the asymptotic behavior of the network (i.e. m → ∞) is investigated

and the maximum achievable capacity and scaling laws is computed for this scheme.

Note that σ represents the strength of fading channel and as this parameter increases

or equivalently the channel experience more severe fade, then the value of D increases.

The main reason is the fact that fading environment helps to combat interference.
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From Eq. (6.54), if D = Θ(K) is selected, then

m = O
(
DeK

)
= O

(
KeK

)
= O

(
e2K

)
(6.55)

Thus, when m = Θ
(
T 2(n)

)
,

D = Θ(K) = Θ(logm) = Θ(log T (n)) (6.56)

Then by utilizing Eq. (6.41), the scaling laws of OIM scheme for each cell is

E (Cproposed) = Θ (D log (1 + SINRtr))

= Θ (log T (n)) (6.57)

It is worthy to point out that when σ tends to zero, this technique cannot

achieve the optimum value of K. Equivalently, this condition occur when the channel

fading is not strong. This is contrary to the current belief for point-to-point communi-

cations that fading reduces the network capacity. In a multi-user environment, fading

actually is very helpful. The proposed multi-user diversity scheme also is different from

the original scheme that requires the transmitter to search for the node with the best

channel condition. As it has been shown, fading is very important and when the channel

fading strength increases, it can achieve better capacity performance in the network.

Next it is proved that when n nodes are distributed uniformly over a square

area, each cell contains Θ(T 2(n)) nodes w.h.p.. The objective is to find an achievable

bound using the Chernoff bound, such that the distribution of the number of nodes in

each cell space is sharply concentrated around its mean.
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Lemma 6.2 The square cells of side length T (n)/
√
2 for concurrent transmission con-

tains Θ(T 2(n)) nodes w.h.p., and is uniformly distributed for all j cells, 1 ≤ j ≤⌈
n

(LT (n)/
√
2)2

⌉
, when T (n) = Ω

(√
log n

)
.

Proof The statement of this lemma can be expressed as

lim
n→∞

P


⌈

n
(LT (n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)

 = 1, (6.58)

where Nj and E (Nj) are the random variables that represent the number of nodes in

the square cell with diagonal distance of T (n) centered around cell j and the expected

value of this random variable respectively, and δ is a positive arbitrarily small value

close to zero.

From the Chernoff bound in Eq. (2.7), for any given 0 < δ < 1, θ > 0 can

be found depending δ such that P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). Thus, it can

conclude that the probability that the value of the random variable Nj deviates by an

arbitrarily small constant value from the mean tends to zero as n → ∞. This is a key

step in showing that when all the events
∩⌈

n

(LT (n)/
√
2)2

⌉
j=1 |Nj − E(Nj)| < δE(Nj) occur

simultaneously, then all Nj ’s converge uniformly to their expected values. Utilizing the

144



union bound, it arrives at

P


⌈

n
(LT (n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)



= 1− P


⌈

n
(LT (n)/

√
2)2

⌉∪
j=1

|Nj − E(Nj)| > δE(Nj)



≥ 1−

⌈
n

(LT (n)/
√

2)2

⌉∑
j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1−
⌈

n

(LT (n)/
√
2)2

⌉
e−θE(Nj). (6.59)

Given that E(Nj) =
T 2(n)

2 , then

lim
n→∞

P


⌈

n
(LT (n)/

√
2)2

⌉∩
j=1

|Nj − E(Nj)| < δE(Nj)


≥ 1− lim

n→∞

⌈
n

(LT (n)/
√
2)2

⌉
e−θT 2(n)/2 (6.60)

If T (n) ≥
√

2 log n/θ, limn→∞
ne−θT2(n)/2

T 2(n)
→ 0, which completes the proof.

Next the routing scheme is discussed to achieve the achievable lower bound ca-

pacity which is similar with the routing scheme in [41]. This routing scheme is extended

from the dense-network model into the extended-network model to accommodate fad-

ing. According to the model, each node i, 1 ≤ i ≤ n, generates data packets at a rate

C(n) with each destination chosen as the node nearest to a randomly chosen location

Yi. Denote by Xdest(i) the node nearest to Yi, and by Li the straight-line segment con-

necting Xi and Yi (see Fig. 6.9). The packets generated by Xi are forwarded toward

Xdest(i) in a multi-hop fashion, from cell to cell in the order that they are intersected
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by Li. In each hop, the packet is transmitted from one cell to the next cell intersecting

Li. Any node in the cell can be chosen as a receiver. Finally, after reaching the cell

containing Yi, the packet will be forwarded to Xdest(i) in the next active slot for that

cell. This can be done because Xdest(i) is within a range of T (n) to any node in that

cell. There is a bound on the number of routes each cell needs to serve, which means

the probability that a line will intersect a particular cell is bounded.

dx

n

Figure 6.9: Routing scheme proof

For completeness, the following two lemmas are presented for the extended

network.

Lemma 6.3 For every line Li and cell Sk0,j0,

Pr{Line Li intersects Sk0,j0} = p = O

(
T (n)√

n

)
(6.61)

Proof Sk0,j0 is defined as the cell which is contained in a disk of radius T (n)/2
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centered at D as shown in Fig. 6.9. Suppose Xi is at distance x from the disk. The two

tangent lines originating from Xi equally are extended such that |XiA| = |XiB| and

|XiC| =
√
2n, where C is the mid-point of AB.

Then Li intersects Sk0,j0 only if Yi is in the shaded area. Its area is less than

the minimum of n and the area of the triangle, which is
√
2n×

√
2n

T (n)
2√

(x+T (n)/2)2−(T (n)/2)2
<

nT (n)/x.

The location of Xi is uniformly distributed, therefore, the probability den-

sity function that Xi is at distance x from the disk is a ring that is bounded by

O
(
x+T (n)/2

n dx
)
. Hence,

Pr{Line Li intersects Sk0,j0},

= O

(
1

n

∫ √
2n

T (n)/2
(min(nT (n)/x, n))

(
x+ T (n)/2

n

)
dx

)
,

= O

(
T (n)√

n

)
. (6.62)

Based on the above lemma, it can arrive the following uniform bound on the

number of routes served by each cell.

Lemma 6.4 It can be proved that

lim
n→∞

Pr

(
sup
(k,j)

{Number of lines Li intersecting Sk,j}

= O
(√

nT (n)
) )

= 1. (6.63)

Proof First the bound for the number of routes served by one particular cell
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Sk0,j0 is derived. Define i.i.d. random variable Ii, i ≤ i ≤ n, as follows.

Ii =


1, if Li intersects Sk0,j0

0, if not

(6.64)

Let Pr(Ii = 1) = p ∀i, where p is defined in Lemma 6.3. Denote Zn the total

number of routes served by Sk0,j0 . Then Zn := I1+I2+ · · ·+In. Using Chernoff bound,

for all positive values of b and a, Pr(Zn > b) ≤ E[eaZn ]
eab

. Since 1 + x ≤ ex,

E[eaZn ] = (1 + (ea − 1)p)n ≤ exp(n(ea − 1)p),

= O(exp((ea − 1)
√
nT (n))). (6.65)

Now by choosing b = c
√
nT (n)) for any constant c > 1, Pr(Zn = Ω(

√
nT (n))) =

O(exp(−
√
nT (n))) if a is small enough.

Thus by the union bound,

Pr
(
Some cell intersects Ω(

√
nT (n)) lines

)
≤

∑
k,j

Pr (Cell Sjk intersects Ω(nT (n)) lines )

= O

(
n

T 2(n)
exp

(
−
√
nT (n)

))
(6.66)

The right hand side tends to zero for any value of T (n).

From earlier discussion, it is known that there exists a transmission schedule

such that in every L2 (L is a constant) time slots, each cell receives one time slot to

transmit at rate CproposedW bits/second as shown in Eq. (6.57) with maximum trans-

mission distance T (n). So the rate at which each cell can transmit is log (T (n))W/L2.
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From Lemma 6.4, each cell needs to transmit at rate O (C(n)
√
nT (n)) where C(n) is

the throughput capacity of the network. This can be accommodated by all cells if

C(n)
√
nT (n) = Θ

(
log (T (n))W/L2

)
(6.67)

Note that in each cell, the traffic passing through that cell can be handled by

any designated node in that cell. The following theorem describes the main result of

this chapter.

Theorem 6.5 In extended wireless ad hoc networks, the unicast throughput capacity in

multipath fading environment with multi-hop communication when nodes utilize OIM is

C(n) = Θ

(
log (T (n))√

nT (n)

)
, (6.68)

where T (n) = Ω
(√

log n
)
.

Next theorem presents the throughput capacity of this network in the absence

of OIM.

Theorem 6.6 In extended wireless ad hoc networks, the unicast throughput capacity

with multi-hop point-to-point communication is

C(n) = Θ

(
1√

nT (n)

)
, (6.69)

where T (n) = Ω
(√

log n
)
.

The proof procedure for this theorem is very similar to that of Theorem 6.5

except that the OIM effect is not considered in Eq. (6.38). Also note that because there

is no OIM, there is only a single transmission in each cell.
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When T (n) = Ω
(√

log n
)
, C(n) = Θ

(
log logn√
n logn

)
for fading channel utiliz-

ing OIM with Θ(log logn) gain compared to point-to-point communications and when

T (n) = Θ (
√
n), C(n) = Ω

(
logn
n

)
for fading channel utilizing OIM with Θ(logn) gain

compared to point-to-point communications. The capacity of these two schemes are

illustrated in Fig. 6.10.
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Figure 6.10: The throughput capacity with and without OIM in extended wireless ad
hoc network with fading channel

Next figure demonstrates theoretical and simulation results for the capacity

of wireless ad hoc networks with and without OIM. The results clearly show that the

theoretical results matches simulation results. The simulation has been done with 104

nodes in the network. Note that by increasing σ, or by decreasing SINRtr or transmission

range T (n), the throughput capacity increases as predicted by the analysis.
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Figure 6.11: The throughput capacity simulation with and without OIM as a function
of σ, SINRtr, and T (n).

6.3 Conclusion

This chapter proposes an opportunistic interference management technique

that takes advantage of the fading in the channel to minimize the negative effect of

interference both in wireless cellular and ad hoc networks. This technique reduces the

encoding and decoding complexity for the downlink of wireless cellular networks to that

of point-to-point communications, which is much simpler than proposed MIMO sys-

tems in literature. Finally, it is proved that it is not necessary to perform cooperative

communication in a multiuser environment, which requires significant feedback between

cooperating nodes. It is also proved that increasing fading actually enhances the per-

formance of the OIM scheme and increases the capacity of wireless ad hoc networks

significantly compared to simple point-to-point communications.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this thesis, the capacity of wireless ad hoc networks has been studied. The

work related to this research has been studied and new designs and analysis are proposed

for wireless networks to improve its overall behavior.

First, Multi-Packet Reception (MPR) technique is proposed in wireless ad hoc

networks which increases the order capacity of random wireless ad hoc networks under

both protocol and physical models. The power efficiency η(n) is also defined as the bits

of information transferred per unit time (second) in the network for each unit power,

and show that a lower power efficiency is attained in order to achieve higher throughput

capacity.

Then a unifying framework is introduced for the modeling of the order ca-

pacity of wireless networks subject to different types of information dissemination with
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SPR and MPR respetively. To do so, (n,m, k)-casting is defined as a generalization of

all forms of one-to-one, one-to-many and many-to-many information dissemination in

wireless networks. The modeling framework provides a unique perspective to the un-

derstanding of the capacity of wireless ad hoc networks. The approach unifies existing

results on the order capacity of wireless networks subject to unicasting , multicast-

ing, or broadcasting and provides new capacity and delay results for anycasting and

manycasting.

Another important contribution of this thesis is to prove the following state-

ment. In wireless ad hoc networks with multi-pair multicast sessions and with a finite

number of destinations for each source, the throughput capacity utilizing NC, MPT and

MPR capabilities for all nodes is the same order as when the nodes are endowed only

with MPT and MPR.

Finally, this thesis proposes an opportunistic interference management tech-

nique that takes advantage of the fading in the channel to minimize the negative effect

of interference in both wireless cellular and ad hoc networks. This technique reduces

the encoding and decoding complexity to that of point-to-point communications, which

is much simpler than proposed MIMO systems in literature. Finally, it is proved that

it is not necessary to perform cooperative communication in a multiuser environment,

which requires significant feedback between cooperating nodes.
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7.2 Future Research

First, this thesis discusses homogeneous networks where the distribution of

nodes is uniform and all nodes have the same communication range. However in many

practical applications, the distribution of nodes is not uniform and nodes may have dif-

ferent communication range. The impact of non-uniform node distribution and asym-

metric transmission ranges on the throughput capacity, delay and power efficiency is

the subject of future study.

Second, the multicast throughput and delay has been investigated recently for

mobile environments [46]. Future studies should investigate the (n,m, k)-cast for mobile

ad hoc networks.

Third, it has been known that there is still no order gain in multicast commu-

nications when only NC is used in SPR scenario and the number of destinations in a

multicast group is a function of n [47], but it is still not clear what the constant gain is.

This problem is important and will be the subject of future investigation in identifying

the actual capacity contribution of NC in wireless ad hoc networks. It is also important

to note that NC provides many other advantages in random wireless ad hoc networks

for different applications such as secrecy that are not investigated in this thesis.

Finally, the real implementation of opportunistic interference management

technique in wireless ad hoc networks and its application is still worth being studied.
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