
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

CODED CACHING IN WIRELESS NETWORKS AND STORAGE
SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Mohsen Karimzadeh Kiskani

September 2017

The Dissertation of Mohsen Karimzadeh
Kiskani
is approved:

Professor Hamid R. Sadjadpour, Chair

Professor Donald Wiberg

Reza Rahimi, Ph.D.

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Mohsen Karimzadeh Kiskani

2017

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication xi

Acknowledgments xii

1 Introduction 1

2 Index Coding Based Caching in Information-Centric Networks 5
2.1 Motivation and related works . 6
2.2 Model and problem formulation . 8

2.2.1 Modified Index Coding (MIC) . 8
2.2.2 Hybrid Caching . 10

2.3 Proposed ICN Architecture . 12
2.4 ICN Capcity Improvement using MIC 16
2.5 Simulations . 24

3 Index Coding Based Caching in Cellular Networks 28
3.1 Motivation . 29
3.2 Related work . 33
3.3 Network Model . 34
3.4 Order optimal capacity gain . 41
3.5 Heuristics acheiving order optimal capacity 51
3.6 Simulations . 55

4 Fountain Coding Based Caching in Cellular Networks 60
4.1 Motivation . 61
4.2 Related Work . 63

iii

4.3 Network Model . 66
4.4 Decentralized Uncoded Content Caching 71
4.5 Decentralized Coded Content Caching 74

4.5.1 Coded cache placement . 74
4.5.2 Coded file reconstruction . 75

4.6 Capacity of networks with Zipfian content request distribution 84
4.7 Simulations . 87
4.8 Discussion . 90

5 Fountain Coding Based Caching in Wireless Ad Hoc Networks 92
5.1 Motivation . 93
5.2 Related Work . 95
5.3 Preliminaries . 98

5.3.1 Network Model . 98
5.3.2 Decentralized Coded Cache Placement 101
5.3.3 Content Reconstruction . 102
5.3.4 Prior Results . 103

5.4 Capacity . 104
5.4.1 Capacity of proactive routing approach 106
5.4.2 Capacity of reactive routing approach 107

5.5 Security . 110
5.6 Cache Hit Probability . 117

5.6.1 Uncoded Caching . 117
5.6.2 Coded caching . 118

5.7 Cache Update Algorithm . 119
5.8 Simulation . 120
5.9 Discussion . 123

6 Fountain Coding Based Storage in Distributed Cloud Systems 126
6.1 Motivation . 127
6.2 Related Works . 129
6.3 Problem Formulation . 131

6.3.1 RLF Coding-Based Storage . 131
6.3.2 Reconstruction Groups (RG) . 132
6.3.3 Content Retrieval . 133

6.4 Security . 134
6.5 Private Information Retrieval . 137

6.5.1 Random Query Generation . 138
6.5.2 Responding to Queries . 147
6.5.3 Trade-off Between Communication Cost and Privacy Level . . . 150
6.5.4 Full Size Servers . 151

6.6 Simulation . 152

iv

7 Conclusions 154

Bibliography 158

v

List of Figures

2.1 An example of Multihop Index Coding (MIC) problem. 7
2.2 Example of application of MIC in ICN. 13
2.3 Probability of requesting a content that is already available in the edge

router cache. 25
2.4 Average number of packets transmitted in each time slot when using MIC. 27

3.1 Pertentage of UTs not covered versus the maximum number of hops trav-
eled. 36

3.2 Example of a wireless multihop network being served by the helper H. . 38
3.3 Example of a dependency graph on n = 8 nodes with maximum possible

number of vertex disjoint cycles n/2 = 4. 48
3.4 Average number of contents transmitted in each time slot when using

index coding. 58
3.5 Comparing our proposed and baseline solution on average number of re-

quests satisfied per time slot per helper versus the content request prob-
ability. 59

4.1 UT0 is requesting a content which is available in another UT l hops away
along the path toward helper H. 74

4.2 Each requested content by UT0 is constructed by a linear combinations
of the contents in q + 1 UTs caches on the path between the helper and
UT0. 76

4.3 The state space of the Markov chain used in proof of Lemma 4.5.1. . . . 77
4.4 Simulation results for a helper serving 1000 UTs in a cell of radius 2000

meters with a D2D transmission range of 10 meters and a total of 100
popular contents. 88

4.5 Network throughput capacity comparison of the decentralized coded con-
tent caching and decentralized uncoded content caching schemes. 89

5.1 Each local group with side length sg(n) contains many square-lets of side
length c1s(n). Each square-let has one randomly selected anchor node. 99

vi

5.2 When a node N0 requests a file, it starts gathering the coded files from
all the nodes in the local group. Once it gathers all these files, it adds its
own coded files to it to create its desired file. 101

5.3 Capacity for coded and uncoded caching using proactive and reactive
routing algorithms. 110

5.4 Simulation results show that the proposed coded caching approach can
significantly reduce the traveresed number of hops when a node wants to
access the contents. 122

5.5 Cache hit probability for any desired content when m = 100. 124

6.1 Multiple RGs respond to queries sent from the user. This allows the user
to privately download its desired content while a significant number of
colluding servers can achieve no information about the downloaded content.148

6.2 As the maximum number of colluding RGs increases, the average required
communication Price of Privacy (cPoP) to maintain privacy increases. . 152

6.3 Probability of the event that at least one base exists in the span of any
subset of l = bδmc random vectors. 153

vii

List of Tables

viii

Abstract

Coded Caching in Wireless Networks and Storage Systems

by

Mohsen Karimzadeh Kiskani

Coded caching in wireless networks and storage systems is studied. Caching based on

two types of codes, index codes and fountain codes, is investigated in terms of network

throughput and security. It is shown that index coding can significantly increase the

multicast transmission rate in Information Centric Networks (ICN). Also, it is proved

that index codes can be efficiently used to increase the multicasting transmission rate

in cellular networks. It is proved that a simple graph coloring-based algorithm for

index coding achieves order optimal capacity gains both for cellular and ICN networks.

A new decentralized caching scheme based on Random Linear Fountain (RLF) codes

is then introduced and it is shown that RLF-based coded caching performs close to

optimal in terms of reducing the average number of transmission hops in wireless ad

hoc and cellular networks. Therefore, considerable capacity gains can be achieved using

RLF-based coded caching in wireless networks. It is shown that the RLF codes can

significantly reduce the overcaching in wireless networks. Further, it is shown that

using coded caching based on RLF codes we can achieve asymptotic perfect secrecy.

In the limiting case of large number of coded files, the conditions of Shannon secrecy

theorem are met and the problem can be modelled by a Shannon cipher system which is

perfectly secure. Finally, a new storage policy based on RLF codes for storage systems

ix

along with a Private Information Retrieval (PIR) scheme for these systems is proposed

and it is proved that perfect privacy and secrecy is achievable in these systems.

x

To my parents and my wife,

for their love, and support.

xi

Acknowledgments

There are many individuals who helped me to make this dissertation possible. This

work is not just the result of my efforts but also reflects the mentoring and support I

have received.

First and foremost, I want to thank my adviser Prof. Hamid Sadjadpour, for

his great ideas, wise comments, and generous support and guidance through my long

graduate school journey. His enthusiasm and true knowledge influenced me to be a

better researcher.

I also thank my committee members, Prof. Donald Wiberg and Dr. Reza

Rahimi, for their encouragement and invaluable comments and suggestions. Their

thoughtful insights as well as their sincerity motivated me and taught me how to stay

positive.

I lastly thank our Lab members for helpful discussions and support. I especially

want to acknowledge Bita Azimdoost for her helpful collaboration, and Jose Armando

Oviedo for his support and encouragement.

xii

Chapter 1

Introduction

Caching has been a major area of research in recent years after the seminal

work of Maddah-Ali et. al. in [72]. Many researchers have tried to extend the results

in [72] for different scenarios in broadcast channels [38,49,73,80]. In all of these papers

during the cache placement phase, only uncoded contents or uncoded parts of contents

are stored in the caches. Later during the content delivery phase, the base station

broadcasts coded contents (linear combination of multiple contents) to users such that

they can decode their files simultaneously. In our work, we propose coding techniques to

boost the performance of caching. Therefore, our proposed coded caching techniques are

fundamentally different from the notion of coded caching in references like [38,49,73,80].

In our work, we used index coding and fountain coding as the main coding techniques

to apply in caching systems.

In chapter 2 we propose a new architecture for Information Centric Networks

(ICN) which takes advantage of index coding to increase the multicast transmission

1

rates. Index coding [9, 10] focuses on broadcast channels in which the transmitter

utilizes coding in order to reduce the number of transmissions. ICN focuses on the

content delivery without any considerations on where the content is obtained. We show

that a significant number of transmissions can be saved through the use of index codes in

ICNs. This is mainly due to the Zipfian-like web content request popularity distribution

in ICN [15]. This content popularity distribution implies that few popular contents are

widely requested by the network users. We assume that users store their requested

contents and therefore, routers can multicast multiple requests by taking advantage of

coding to reduce the total number of transmissions.

In chapter 3 we will show the benefits of index coding in wireless cellular

networks which are based on the idea of femtocaching proposed by Golrezaei et. al. in

[37]. The proposed technique in [37] requires deployment of large number of femtocaches

in order to cache the contents locally and retrieve them when needed. We propose to use

a multihop transmission scheme which significantly reduces the femtocache deployment

costs compared to [37]. Further, we show that significant capacity gains can be achieved

through the use of index codes. The optimal index coding solution is an NP-Hard

problem [64]. We propose a simple heuristic to perform the task of index coding and we

will show that this heuristic which is based on graph coloring is asymptotically capable

of achieving maximum index coding capacity.

In chapter 4, we proposed a novel decentralized coded caching scheme based

on Random Linear Fountain (RLF) codes. In this technique, each user independently

caches a random combination of all the other files in a decentralized manner. Re-

2

dundant caching is avoided by storing a random bitwise XOR combination of popular

contents. This approach increases the network throughput capacity and does not suf-

fer from over-caching problem of uncoded caching. We propose that during the cache

placement phase, the contents are randomly combined and cached in network nodes. We

show that this coded caching approach performs near optimal in terms of the average

number of hops to retrieve a content and hence, it can significantly increase the network

throughput capacity. This makes the proposed coded cache placement very suitable in

practical systems where UTs have small storage capability compared to the total num-

ber of contents in the network. We prove that the proposed decentralized coded content

caching increases the capacity of cellular networks by a factor of (log(n))2 compared to

decentralized uncoded caching.

In chapter 5, we extend the proposed decentralized coded caching technique to

wireless ad hoc networks. We will prove the significant capacity gain of this approach

in wireless ad hoc networks for reactive routing scenarios compared to uncoded caching

and further we prove that this coding technique is very efficient in providing security

in wireless ad hoc networks. We will show that when the number of cached files is very

large this technique satisfies in the perfect secrecy conditions proposed by Shannon

in [88] and therefore this technique is capable of achieving asymptotic perfect secrecy

in wireless ad hoc networks. This provides an information theoretically secure solution

for caching proprietary contents in wireless networks which is immune to attackers in

time as opposed to computationally security which may be broken with time. We also

compute the cache hit probability and we will show that this solution results in a much

3

higher cache hit probability compared to uncoded caching. We will also propose a secure

caching update algorithm in the end of this chapter.

In chapter 6, we extend the idea of RLF coding to storage systems. These

codes due to their intrinsic randomness can provide significant security gains. Hence,

they could be potentially very useful in sensitive cloud storage application which should

be information theoreticly secure and immune to attackers in time. Also, in many

distributed storage applications like Peer-to-Peer (P2P) distributed storage systems or

distributed storage systems in which some of the servers are under the control of an

oppressive government, a user wants to download a content from a pool of distributed

servers in a way that the servers cannot determine which content is requested by the

user. This is widely known as Private Information Retrieval (PIR) problem. We will

introduce a new PIR scheme based on random query vectors and we will show that

this PIR technique is robust against many colluding servers. These random queries

are designed in a way that they can be used to retrieve any desired content while

prevent any malicious agent with the knowledge of up to half of the random queries

to gain information about the requested content. This is an important feature of the

proposed technique that provides privacy in the presence of many colluding servers.

Such a feature has not been presented in prior information theoretic PIR approaches

for coded storage systems. Our proposed Secure And Private Information Retrieval

(SAPIR) scheme provides both security and privacy for information retrieval in storage

and cloud systems.

4

Chapter 2

Index Coding Based Caching in

Information-Centric Networks

In this chapter we introduce a new method of caching based on index coding for

Information Centric Networks (ICN). The index coding problem relates to transmission

policies when the source node broadcasts encoded data to users with side information. In

this chapter we extend the index coding problem to cases when the source node can reach

users through multihop communications. This approach is called Modified Index Coding

(MIC) which can be applied to both wireless and wired networks. We demonstrate

the benefits of our approach by applying MIC to Information-Centric Networks (ICN).

We show that the combination of ICN and MIC requires a hybrid caching scheme

that includes both central and distributed caching to support two different goals. The

approach results in a combination of conventional caching in ICN and a new distributed

caching scheme across nodes in the network. Our analysis demonstrates that capacity

5

improvement can be achieved by the new architecture. Simulation results compare

the capacity improvement to traditional ICN architecture. The results studied in this

chapter are published in [51].

2.1 Motivation and related works

Index Coding (IC) [9, 10] focuses on wireless architectures in which the trans-

mitter utilizes coding in order to take advantage of broadcast nature of the wireless

channel. For example in satellite communications, combination of coding at the trans-

mitter side with caching at the receivers achieves higher capacity gains compared to

traditional schemes. The original IC problem was based on the assumption that the

channel is a broadcast channel and the source can reach all the nodes in one trans-

mission. We will modify this concept to accommodate other classes of channels such as

wired or multihop wireless networks. Figure 2.1 demonstrates an example of IC problem

with source having six messages and each node N1 to N6 needs one message and has

a subset of all messages. For example, node N4 needs message m4 while it has prior

side information m5 and m6. The objective is to find an optimal encoding scheme that

allows all nodes to receive their required messages with minimum number of transmis-

sions. In this figure, the source node can either broadcast to all the nodes (IC problem)

or communicate with nodes using multihop communications (MIC problem). If all the

nodes in figure 2.1 are within transmission range of the source, then the source can send

only two encoded messages of m1 + m2 + m3 and m4 + m5 + m6 to allow all nodes to

6

]),[,(5466 mmmN]),[,(6455 mmmN

]),[,(6544 mmmN

]),,[,(62133 mmmmN

]),,[,(63211 mmmmN]),,[,(63122 mmmmN

),,,,,(Source 654321 mmmmmm

Figure 2.1: An example of Multihop Index Coding (MIC) problem.

retrieve their requested messages instead of six transmissions. For example, node N4

can add m5 and m6 to encoded message m4 +m5 +m6 in order to recover m4.

Information Centric Network (ICN) architectures [1, 2, 5, 6, 81, 83] were intro-

duced based on the premise that in most Internet applications, users are interested in

accessing the content regardless of the location of delivery as long as the information

is secure. ICN focuses on the content delivery without any consideration on where the

content is obtained. The key question that ICN attempts to address is how to securely

deliver huge amount of contents that are distributed in different locations and requested

by many users. ICN addresses this question by utilizing a naming architecture where the

7

content is retrieved by its name and defining a naming taxonomy that makes the content

independent of its source or location. Further, it allows the contents to be cached in

the network, preferably close to the destinations. This unique content recovery requires

content-based routing in order to find the content in the network using appropriate name

resolution infrastructure to map a name to one copy of the content. This new approach

has provided significant benefits for content delivery in the network at the expense of

additional overhead to keep track of content locations in different caches. A natural

question that we intend to address is that ”how can we take advantage of caching in

ICN and modify IC concept in order to increase the overall throughput capacity of the

network?”

In the following parts of this chapter, in Section 2.2, we focus on defining

the modified index coding (MIC) and the new hybrid caching schemes. Section 2.3

describes the proposed ICN architecture. In section 2.4, we prove that MIC can be

efficiently utilized to increase the capacity of the ICN. Simulation results in section 2.5

demonstrate the throughput capacity improvement by combining MIC with ICN.

2.2 Model and problem formulation

2.2.1 Modified Index Coding (MIC)

The IC problem [9,10] was originally formulated for wireless broadcast channels

such as satellite communication applications. We assume the source node can access

the receiver nodes through multihop communications. The new scheme, called Modified

8

Index Coding (MIC) [85] technique, can be applied to different types of networks such as

wireless multihop communication network, wired network or a hybrid network consisting

of both wired and wireless channels. For example, in a corporate environment, we can

have information transported in a wired medium while the last hop is a wireless access

point with nodes connected to the infrastructure through a wireless modem. Such

scenarios are becoming more common in medium and large size corporate campuses.

Definition 2.2.1. A Modified Index Code MIC(M,N) consists of a set of k messages

M = {m1, . . . ,mk} and a set of receiver nodes N. Each node Ni stores a subset of

messages called Li ⊆ M and requests one message1 mi that node Ni does not have,

i.e., mi ∈ M and Li ⊆ M \ {mi}. Each message can be divided into n packets, i.e.,

mi = {mi1, . . . ,min}. Each packet also belongs to an alphabet taken from a q-ary

finite Field Γ. Therefore, we have mi = {mi1, . . . ,min} ∈ Γn. We further define

ℵ = {m11, . . . ,m1n, . . . ,mk1, . . . ,mkn} ∈ Γnk. At any given time, k1 ≤ k receiver nodes

are requesting some messages. The source defines groups of receiver nodes k1
1, . . . , k

p
1,

where k1
1+. . .+kp1 = k1. Modified index code for MIC(M,N) is a function fi : Γnk → Γ`i,

for an integer value of `i and groups of nodes ki1 that satisfies for each receiver node

Ni = (mi,Li) ∈ N within this group ki1 a function Φi : Γ`i+n|Li| → Γn such that the

desired message can be decoded for that particular node, i.e., Φi(fi(ℵ),Li) = mi, ∀ℵ ∈

Γnk.

Note that in this new definition, we multicast different coded messages to these

p groups, each one consists of ki1 receiver nodes where 1 ≤ i ≤ p. IC definition subsumes

1Extension of this definition to multiple requests is straightforward.

9

MIC since broadcast is a special case of multicast when the set of receiver nodes include

the entire network. Under the new definition, we can apply MIC for both wireless and

wired networks. MIC is utilized to design a new ICN architecture.

Figure 2.1 can be used for an example of MIC. Solid lines represent one hop

and dotted lines represent multiple hops. Suppose that any two nodes can communicate

only when there is an arrow between them. For instance, the source node in Figure

2.1 can only communicate with nodes N1 and N2. In this example, p = 2 and k1
1 =

{N1, N2, N3} and k2
1 = {N4, N5, N6}. The source node multicasts two encoded messages

of m1 +m2 +m3 and m4 +m5 +m6 to k1
1 and k2

1 groups respectively. These two encoded

messages are the minimum number of transmissions (optimum) that will achieve the

desired outcome. However, in general the problem of finding the best encoding strategy

is an NP-hard problem.

2.2.2 Hybrid Caching

One of the main features of ICN is the ability of the network to cache the

requested contents in the network at different locations in order to serve the users

with lower latency and improve the throughput capacity in the process by bringing the

contents closer to the users. This feature seems to be very attractive in separating the

content from any unique source node in order to find the nearest content to the client

node. However, this by itself creates certain challenges for network designers. One major

challenge is how to locate the closest cached content in the network? Another challenge

is to design a caching policy that will increase the throughput capacity while reducing

10

the latency. We introduce a new hybrid caching technique that requires minimum

overhead related to locating stored cache contents.

In our architecture, we use caching for two different purposes. We cache the

contents in some locations in the network in order to provide it to users similar to the

original approach in ICN. However, most users have significant storage capacity that is

not used. For example, it is now common for a laptop to have Terabyte of storage not

utilized by majority of the users. We use this enormous distributed storage capacity for

improving the data distribution in ICN architecture. We propose that each user shall

keep any data object that is requesting from the network. Therefore, each user allocates

a predefined portion of its storage to keep the data objects that it has already obtained.

By the discussion that we had in the previous section related to MIC, it should be

clear that the data stored by different users throughout the network will be used to

extract the desired message when the node receives a combination of multiple messages.

The encoded message is multicasted by the local cache system that is serving these

nodes. The contents that are cached by the nodes will not be used for transmission to

other requesting nodes unlike current ICN architectures. The problem with distributed

caching is the significant overhead associated to this approach. We suggest that the

requested contents by different users should always come from the local cache system or

from source node that has the content. In our proposed architecture, caching are used

for two different purposes as described above.

Note that by taking advantage of the MIC, we need one multicast session

to replace ki1 unicast sessions. It is easy to see [100] that one multicast session always

11

consumes less channel bandwidth in the network than ki1 unicast sessions. This reduction

in network resource usage can be very helpful specially when the size of contents are

large. Another advantage of this architecture is the fact that since the local router that

caches the contents knows what contents each node has stored before, there is no need

to update each cache (node) information in the network. As long as the local router can

keep track of the cached contents in different nodes, then the overhead is very small.

Note that since each node receives the requested content via this local router, then that

information is already available to the local router.

2.3 Proposed ICN Architecture

In this section, we will describe how to take advantage of the MIC concept

in order to derive a new architecture for ICN. We assume each group of nodes in the

network is served by a unique router that also caches the information. In this context,

if a node requests a content, this request will be directed toward that particular router.

The router either sends the information directly to the node or finds the source for the

requested content. Further, we assume when a node receives a content, it will keep this

content in its cache. In Figure 2.2, all the routers that are shaded are responsible for

serving different groups of nodes. The selection of these routers is based on the number

of nodes that are connected to that router either directly or through multiple hops. In

general, there is a trade-off between latency, speed of router and the maximum number

of nodes assigned to a router.

12

Figure 2.2: Example of application of MIC in ICN.

13

When a content is delivered to a node, the node will keep a copy of this content

in its cache. Now let’s assume each node has a subset of contents in its cache (see figure

2.2). When some of these nodes request different2 contents from the local router, this

router network encodes [104] the requested contents by utilizing modified index coding

technique to minimize the total number of transmissions to serve all these nodes. The

optimum encoding selection is an NP-hard problem. We will introduce some sub-optimal

approach for the encoding scheme.

If the content is not available in the serving router, then the router will request

the content from the source (or another router on the way toward the source). Once

it receives the content, it will encode the received content along with other requested

contents and multicast it to the requesting nodes. This router also keeps one copy

of the content in its cache. As we can see, under the new architecture, we do not

use an aggressive caching approach that each router or node caches the contents but

rather a subset of the routers cache the contents. The assumption here is that most

of the contents that are being requested by a node in each group of nodes, will likely

be requested by another node in that group. This is particularly true since most of

the content request popularity are heavy-tailed and have a distribution close to Zipf

distribution. Prior studies [8,101] have shown that multiple layer caching or cooperative

caching does not provide significant improvement for Zipfian distribution. Recent study

[35] has suggested caching scheme that takes advantage of this distribution and caches at

the edges of the network. Our approach has some similarities to the technique proposed

2Some nodes can request the same content.

14

in [35] by suggesting that it is sufficient to cache in a subset of routers at the edges of

the network.

Figure 2.2 demonstrates an example for our proposed ICN architecture. Router

R5 serves nodes N1 and N2 and router R2 serves nodes N3 and N4. Let nodes N1 and

N2 request messages m10 and m8 respectively. Both these nodes are served by router

R5. When these nodes send request to this router, the router will multicast m10 + m8

to these two nodes. Node N1 can add the received encoded message with m8 to obtain

m10 and node N2 can similarly obtain m8. Nodes N3 and N4 are served by router R2

via routers R6 and R7 respectively. R2 multicasts m6 +m9 and each node can retrieve

its requested data. All these operations are carried in Galois Field. It is quite possible

that more complicated combinations of messages are sent by routers in order for nodes

to decode their requested messages.

As long as the caching policies of the users are known by the router, the router

knows for each user which contents are being stored and which contents are evicted after

the user reaches its maximum caching capacity. This clearly requires additional process-

ing power for each router that is involved in caching but it also reduces the overhead.

There exists another overhead associated to a node requesting a content. Since each

user has an assigned local router to serve that user, the request is always directed toward

that router. Clearly, the overhead associated to finding the content in the network by

the local router is similar to the current network architectures. Therefore, our proposed

architecture simplifies the overhead and content routing challenges in ICN systems.

15

2.4 ICN Capcity Improvement using MIC

In this section, we study the problem of capacity improvement in the proposed

combination of ICN architecture and MIC. We assume the content popularity follows

a Zipfian-like distribution which is supported by many studies [15, 18]. MIC provides

additional capacity gain when a subset of contents have higher popularity among nodes

such as in Zipfian-like distribution.

In the remainder of this section, we assume that the network is a hybrid net-

work with the last hop is between a wireless router (like 802.11) and mobile users.

Similar to many studies on index coding (IC) [10, 21, 32] that demonstrate dependency

graph is a useful tool for analysis of these networks, we take advantage of this concept

in this paper.

Definition 2.4.1. (Dependency Graph): Given an instance of index coding problem,

the dependency graph G(V,E) is defined as follows:

• Each client Ni corresponds to a vertex in V , Ni ∈ V .

• There is a directed edge in E from Ni to Nj if and only if the client Ni is requesting

a content that is already cached in Nj.

It is known from [21] that if we choose the right encoding vectors, for any

vertex disjoint cycle in the dependency graph we can save at least one transmission.

Therefore, the number of vertex-disjoint cycles in the dependency graph can serve as a

lower bound for the number of saved transmissions in any IC problem. The same result

16

also holds for an MIC problem since MIC is similar to the IC problem and a dependency

graph can be defined for each subnetwork.

Assume that we have an ICN system that is utilizing MIC. Let’s assume the

set of contents available in the entire network as M = {m1,m2, ...,mk} with m1 being

the most popular content and mk being the least popular content in the network3. Also,

assume that the users N = {N1, N2, ..., Nl} are being served by a specific router R and

user Ni is requesting content with popularity index ri in the current time instant. For

the sake of simplicity of calculations, let’s assume that each user has a cache of fixed

size δ in which, the contents with indices Ci = {ci1, ..., ciδ} are stored.

As suggested by [14,15,18], we can assume a Zipfian distribution with parame-

ter s for content popularity distribution in the network. This means that the probability

that Ni requests any content with popularity index ri at any time instant is

Pr[Ni requests content with index ri] =
ri
−s

Hk,s
, (2.1)

where Hk,s is the kth generalized harmonic number with parameter s defined as

Hk,s =
k∑
j=1

1

js
. (2.2)

Lemma 2.4.2. When s > 1, for every 0 < ε < 1, there exists an integer h = Θ(1) with

respect to k such that for every i,

Pr[ri ≤ h] ≥ 1− ε. (2.3)

3Popularity decreases with index number.

17

Proof. Based on the Zipfian distribution assumption, this probability is equal to

Pr[ri ≤ h] =
Hh,s

Hn,s
. (2.4)

If s > 1, we have Hn,s < H∞,s = ζ(s) where ζ(.) denotes the Reimann Zeta function.

If we choose h to be the first integer such that Hh,s ≥ ζ(s)(1 − ε), we are guaranteed

to have Pr[ri ≤ h] ≥ 1 − ε. Notice that h can be chosen independently of n, i.e.,

h = Θ(1).

Remark 2.4.3. If 0 ≤ s ≤ 1, to make sure that Pr[ri ≤ h] ≥ 1 − ε, the value of h

should grow with n but the growth rate is so slow that we can still treat h as a constant

number with respect to n and use Lemma 2.4.2 for practical purposes.

Therefore, based on Lemma 2.4.2 and Remark 2.4.3, if h is chosen a sufficiently

large integer, with probability close to one, all users are requesting contents with max-

imum popularity index h. Before going further, we will bring up the following Lemma

from [33].

Lemma 2.4.4. Let dc > 1 and l ≥ 24dc, then any graph Glf(l,dc)
with l nodes and at

least f(l, dc) = (2dc − 1)l− 2d2
c + dc edges contains dc disjoint cycles or 2dc − 1 vertices

of degree l − 1 (its structure is then uniquely determined). 4

Proof. The proof is in [33].

The fact that there are strong correlation between cached contents and new

requests due to Zipfian distribution of contents, it is clear that MIC will provide some

4Clearly, the theorem is valid when the number of edges is more than f(l, dc).

18

capacity improvement. We will now demonstrate the efficiency of applying MIC to ICN

in the following theorem.

Theorem 2.4.5. For large values of h and l, using MIC in ICN can save on average

Ω(lp0) transmissions for any router serving l nodes in any time slot where

p0 =
h−s

Hk,s
. (2.5)

Proof. The dependency graphG(V,E) in our problem is composed of l verticesN1, N2, ..., Nl

which corresponds to the l nodes served by a local router. Note that the existence of

an edge in dependency graph depends on the probability that a node is requesting a

content that another node has already cached. Therefore, this is a non-deterministic

graph with some probability for the existence of each edge between any two vertices. In

this non-deterministic dependency graph, the probability of existence of edge (Ni, Nj)

in E is equal to the probability that the content ri requested by Ni is cached in node

Nj . If we assume these two probabilities are independent, then the probability of a

directed edge (Ni, Nj) in E is at least

Pr[(Ni, Nj) ∈ E] ≥
r−si
Hk,s

. (2.6)

Using lemma 2.4.2 and remark 2.4.3, when the value of h is large enough, the probability

that ri is less than h is very close to one. This means that with a probability close to one,

the edge presence probability in equation (2.6) can be lower bounded by p0. Therefore,

the maximum number of vertex-disjoint cycles in G(V,E) can be lower bounded by the

maximum number of vertex-disjoint cycles in an Erdős-Réyni random graph G′(l, p0)

19

with l nodes and edge presence probability p0. Now we can use lemma 2.4.4 to find a

lower bound on the number of vertex disjoint cycles in G′(l, p0). This in turn will give

us a lower bound on the number of vertex-disjoint cycles in G(V,E).

Notice that G′(l, p0) is an Erdős-Réyni random graph and it can have a max-

imum of l(l − 1) directed edges. However, since every edge in this graph exists with a

probability of p0, the expected value of the number of edges is l(l − 1)p0. This means

that if dc is chosen to be an integer such that

l(l − 1)p0 ≥ (2dc − 1)l − 2d2
c + dc, (2.7)

then on average, G′(l, p0) will have dc disjoint cycles. We can easily verify that dc = lp0
2

satisfies (2.7). Therefore, with a probability close to one (for large enough values of h),

the dependency graph G(V,E), on average has at least Ω(lp0) vertex disjoint cycles.

This can be directly applied to prove the theorem.

Theorem 2.4.6. The acheived lower bound in theorem 2.4.5 is a tight order bound of

Θ(l).

Proof. Notice that the maximum number of vertex-disjoint cycles in any graph with

l vertices is l
2 . However, theorem 2.4.5 proves that the maximum number of vertex-

disjoint cycles in our graph is lower bounded by Ω(lp0). This suggests that this is

indeed a tight order bound.

We can further prove that many properties of the dependency graph are in-

dependent of the number of contents in the network. This implies that the properties

20

of the dependency graph are mainly dominated by the most popular contents in the

network. As an example of these properties, we can consider the problem of finding a

clique of size k1 in the dependency graph. A clique of size k1 in the dependency graph

has an interesting interpretation since such a clique means that there exist a set of k1

users Nb = {Nb1 , Nb2 , ..., Nbk1
} such that for every 1 ≤ i ≤ k1 and every 1 ≤ j ≤ k1

when j 6= i, we have rbi ∈ Cbj . This means that a simple linear index code
∑k1

i=1mbi

can be used by the local router to send the content mbi to user Nbi for all 1 ≤ i ≤ k1

in just one transmission. Each user will then be able to decode the requested message

using its cached contents. The following theorem proves that the existence of a clique

of size k1 is independent of the total number of contents in the network k and only

depends on the popularity index s.

Theorem 2.4.7. Let’s define the content index requested by node i in jth cache space

as ci,j ∈ Ci. We assume the content request probability follows a Zipfian distribution

and the users request independent contents in different time slots5. Then the probability

of finding a set of k1 users Nb = {Nb1 , Nb2 , ..., Nbk1
} ⊆ N for which a single index code

can be used to transmit the requested content mbi with index number rbi to Nbi for

1 ≤ i ≤ k1 is independent of the total number of contents in the network.

Proof. The probability that a specific set of users {Nb1 , Nb2 , ..., Nbk1
} form a clique of

size k1 is given by

Pb1,b2,...,bk1 = Pr[rbi ∈ Cbj for 1 ≤ ∀i, j ≤ k1, j 6= i], (2.8)

5A user will not request a content that it has already cached.

21

where Cbj is the set representing the contents that node Nbj caches. Assuming that

the users are requesting contents independently of each other, this probability can be

simplified as

Pb1,b2,...,bk1 =

k1∏
i=1

k1∏
j=1,j 6=i

Pr[rbi ∈ Cbj]. (2.9)

Since the contents that are requested by each user in different time slots are independent

of each other, in the steady state when the caches of all nodes are filled we have

Pr[rbi ∈ Cbj] = 1− Pr[rbi /∈ Cbj] = 1−
δ∏

u=1

Pr[rbi 6= cbj ,u]. (2.10)

Notice that we assume a Zipfian distribution for the content request in the ICN network,

therefore, Pr[rbi = cbj ,u] will be equal to the probability that user Nbj requests content

with index rbi in uth cache space. Hence

Pr[rbi = cbj ,u] =
rbi
−s

Hn,s
(2.11)

Therefore, combining equations (2.11) and (2.10), we arrive at

Pr[rbi ∈ Cbj] = 1−
(

1− rbi
−s

Hn,s

)δ
. (2.12)

Equation (2.9) can be simplified as

Pb1,b2,...,bk1 =

k1∏
i=1

(
1−

(
1− rbi

−s

Hn,s

)δ)k1−1

. (2.13)

In order to have a clique of size k1, we need to include the possibility over all groups of

k1 users. Therefore, the probability of having a clique of size k1 (which we denote by

P) should be summed up over all of these choices.

P =
∑

b1,b2,...,bk1⊆N
Pb1,b2,...,bk1

22

=
∑

b1,b2,...,bk1⊆N

k1∏
i=1

(
1−

(
1− rbi

−s

Hn,s

)δ)k1−1

(2.14)

Note that for any 0 ≤ x ≤ 1 and positive integer δ we have

1− (1− x)δ ≥ x. (2.15)

Hence,

P ≥
∑

b1,b2,...,bk1⊆N

k1∏
i=1

(
rbi
−s

Hn,s

)k1−1

,

=

∑
b1,b2,...,bk1⊆N

∏k1
i=1 r

−s(k1−1)
bi

H
k1(k1−1)
n,s

. (2.16)

In order to simplify this expression, we use the elementary symmetric polynomial nota-

tion. If we have a vector Vl = (v1, v2, ..., vl) of length l, then the k1-th degree elementary

symmetric polynomial of these variables is denoted as

σk1(Vl) = σk1(v1, ..., vl) =
∑

1≤i1<i2<..<ik1≤l
vi1 ...vik1 . (2.17)

Using this notation and by defining Yl = (r
−s(k−1)
1 , r

−s(k−1)
2 , ..., r

−s(k−1)
l), we can write

P ≥ σk1(Yl)

H
k1(k1−1)
n,s

. (2.18)

Notice that since the content request probability follows a Zipfian distribution, we have

Pr[rj ≤ h] =
Hh,s

Hn,s
. (2.19)

Therefore, for a specific group of users Nb1 , Nb2 , ..., Nbk1
, the probability that they all

request contents from the top h most popular contents is given by

Pr[rb1 ≤ h, ..., rbk1 ≤ h] =

k1∏
j=1

Pr[rbj ≤ h] =

(
Hh,s

Hn,s

)k1
. (2.20)

23

Using lemma 2.4.2, we can verify that for values of h = Θ(1) with respect to n, the ratio

Hh,s
Hn,s

can be very close to one. This, along with the fact that l can possibly be much

larger than k1, means that with a very high probability, there exists for each set of users

{Nb1 , Nb2 , ..., Nbk1
} that the requests come only from the h most popular contents. This

implies that with a very high probability, σk1(Yl) ≥ h−k1s(k1−1). Also, notice that

Hn,s < H∞,s = ζ(s) <∞. (2.21)

Therefore, the lower bound of (2.18) is obtained as

P ≥
(
h−s

ζ(s)

)k1(k1−1)

. (2.22)

This lower bound does not depend on the total number of contents in the network (k),

and only depends on l, h, s and k1. The results means that regardless of the amount of

contents in the network, there is always a constant lower bound for the probability of

finding a clique of size k1. This implies that MIC can actually be very practical in large

networks. The result also indicates that the probability of a clique tends exponentially

to zero as k1 increases. In practice, it is usually sufficient to look for cliques of sizes 2,

3, and 4.

2.5 Simulations

In this section, we demonstrate the performance of the new architecture com-

pared to the original ICN without using MIC. Figure 2.3 shows the probability that a

specific content that the users are requesting be available in the endpoint router. In

24

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zipfian parameter s

P
ro

b
a
b
ili

ty

Probability of content availability in endpoint router versus the Zipfian parameter s

R=20,U=5,l=10,k=10000

R=20,U=5,l=50,k=10000

R=60,U=5,l=50,k=10000

R=20,U=5,l=50,k=1000

R=120,U=5,l=50,k=10000

Figure 2.3: Probability of requesting a content that is already available in the edge
router cache.

this figure, R denotes the size of local router cache, U is the size of user’s cache, l is the

number of users served by the router and k is the total number of contents in the net-

work. As this plot suggests, the probability of content availability in the endpoint router

approaches one as the Zipfian parameter is increased. Notice that this probability goes

to one regardless of the number of available contents in the network, number of users

and other factors. However, figure 2.3 suggests that this probability is slightly higher

when the number of contents is smaller and/or the router has a larger cache size. The

fact that many requested contents have been already cached in the router implies that

some nodes also store them in their caches. Therefore, we predict that the introduction

of MIC to ICN architecture will be very useful. For these simulations, R denotes the

size of endpoint router cache and U denotes the size of user’s cache.

Figure 2.4, shows the simulation results for four different sets of parameters. In

25

this figure, we have plotted the effective average number of packets sent per transmission.

The baseline is ICN with no MIC which is equivalent of one content per transmission.

In this figure, R denotes the size of local router cache, U is the size of user’s cache, l

is the number of users served by the router and k is the total number of contents in

the network. Note that one transmission can contain more than one package as it may

serve multiple users. We have assumed that the users are requesting contents based on

a Poisson distribution. In each time slot, the local router updates the dependency graph

based on the received requests from users and also removes some of the edges for the

contents that it has transmitted. The algorithm is a simple heuristic approach that at

each time slot, the local router first searches for a clique in the dependency graph. If we

can find a clique of size k1 in the dependency graph, we can save k1 − 1 transmissions

by transmitting a simple index code to all the users in the clique. If there is no clique in

the dependency graph, then we will search for cycles. As mentioned before, each cycle

can save one transmission per cycle. Note that this is a simple heuristic suboptimal

approach and finding the best solution is beyond the scope of this paper. In fact, to

find the actual benefit that we can achieve by using MIC, we need to find the optimal

rate for the index coding problem. Note that finding a clique of maximum size in the

dependency graph or the optimal index coding rate is an NP-hard problem. For our

simulation, we have searched for cliques and cycles of maximum size four. Even with

this simple algorithm, we were able to show that the MIC can close to double the average

number of packets per transmission in each time slot for certain values of the Zipfian

parameter. Clearly, the optimal MIC rate is larger than the results obtained by our

26

0 0.5 1 1.5 2 2.5 3 3.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Zipfian parameter s

P
a
c
k
e

ts
 s

e
n
t
p
e
r

tr
a
n
s
m

is
s
io

n

Number of packets sent per transmission versus the Zipfian parameter s

k=1000,U=20,l=50,R=20

k=1000,U=5,l=50,R=20

k=10000,U=5,l=50,R=20

k=10000,U=5,l=50,R=100

Figure 2.4: Average number of packets transmitted in each time slot when using MIC.

simple algorithm. Note that the users are using Least Recently Used (LRU) caching

policy for eviction of overflow contents.

When s is a small value, then the distribution of content request is close to

uniform distribution. Under this condition, the dependency graph is very sparse because

there is a small probability that a user requests a content that is already cached by

another user. Clearly, there is no benefit for using MIC in this case. Similarly, when

s is a very large number, most users are asking for the same content and therefore,

the router broadcasts the content to all of them which is equivalent of average of one

content per transmission. The main benefit of MIC happens for medium values of s

between 0.5 and 2 which is usually the case in practical networks. Note that an ICN

with no MIC, will have always one content per transmission which is the baseline.

27

Chapter 3

Index Coding Based Caching in Cellular

Networks

In this chapter we study the benefits of using index coding for caching in the

next generation of cellular networks which are deploying wireless distributed femto-

caching infrastructure proposed by Golrezaei et. al. By taking advantage of multihop

communications in each cell, the number of required femtocaching helpers is significantly

reduced. This reduction is achieved by using the underutilized storage and communica-

tion capabilities in the User Terminals (UTs), which results in reducing the deployment

costs of distributed femtocaches.

A multihop index coding technique is proposed to code the cached contents in

helpers to achieve order optimal capacity gains. As an example, we consider a wireless

cellular system in which contents have a popularity distribution and demonstrate that

our approach can replace many unicast communications with multicast communication.

28

We will prove that simple heuristic linear index code algorithms based on graph coloring

can achieve order optimal capacity under Zipfian content popularity distribution. The

results studied in this chapter are published in [53].

3.1 Motivation

With the recent pervasive surge in using wireless devices for video and high

speed data transfer, it seems eminent that the current wireless cellular networks cannot

be a robust solution to the ever-increasing wireless bandwidth utilization demand. Re-

searchers have been recently focused on laying down the fundamental grounds for future

cellular networks to overcome such problems.

Deploying home size base stations is proposed as a solution in [20]. The so-

lution in [20] is based on the idea of femtocells in which many small cells are deployed

throughout the network to cover the entire network. Deploying many small cells in the

network with reliable backhaul links requires significant capital investment. Therefore,

Golrezaei et. al. [37] proposed femtocaching as an alterante solution to overcome this

problem. In this approach, in every cell along with the main base station, smaller base

stations with low-bandwidth backhaul links and high storage capabilities are deployed

to create a wireless distributed caching infrastructure. These small base stations which

are called caching helpers (or simply helpers), will store popular contents in their caches

and use their caches to serve User Terminal (UT) requests. Therefore, in networks with

high content reuse, the backhaul utilization will be significantly reduced using this ap-

29

proach. If the requested content is not available in the helper’s cache, UTs can still

download the content from their low-bandwidth backhaul links to the base station. The

proposed technique in [37] requires deployment of large number of femtocaches in order

to cover all the nodes in the network.

On the other hand, it is well-known that web content request popularity follows

Zipfian-like distributions [15]. This content popularity distribution implies that few

popular contents are widely requested by the network UTs. We assume UTs store their

requested contents and therefore, helpers can multicast multiple requests by taking

advantage of coding to reduce the total number of transmissions.

In this chapter, we propose to use index coding to code the contents in helpers

before transmission. As mentioned before, index coding is a source coding technique

proposed in [7] which takes advantage of UTs’ side information in broadcast channels to

minimize the required number of transmissions. In index coding, the source (e.g. base

station) designs codes based on the side information stored in requesting nodes. The

coded information is broadcasted to the UTs that use the information together with

their cached contents to decode the desired content. Index coding improves bandwidth

utilization by minimizing the number of required transmissions. We propose to extend

index coding approach from broadcast one-hop communication to multihop scenarios

which will be explained in details.

Our main motivation to use index coding is the high storage availability in UTs

to improve the achievable throughput of the future wireless cellular networks. Current

improvements in high density storage systems has made it possible to have personal

30

devices with Terabytes of storage capability. This ever-increasing trend provides future

personal wireless devices with huge under-utilized storage capabilities. Future wireless

devices can use their storage capability to store the contents that they have already

requested. In an index coding setting, many UTs that are requesting different contents

can receive a coded file which is multicasted to them and then each UT uses the infor-

mation in its cache to decode its requested content from the received coded file. There is

an important equivalence between index coding and network coding as stated in [31,32]

and therefore, the results in this chapter can also be stated based on a network coding

terminology.

We will prove that index coding can be efficiently used to encode the contents

by helpers under a Zipfian distribution model. The encoded contents can be relayed

through multiple hops to all the UTs being served by that helper.

The optimal index coding solution is an NP-Hard problem [64]. However, we

will show that even using linear index codes can result in order optimal capacity gains

in these networks. We believe that this coding technique can serve as a complement to

the solution proposed in [37]. As clearly articulated in [72], in any caching problem we

are faced with two phases of cache placement and cache delivery. While [37] proposes

efficient cache placement algorithms, we will be focusing on efficient delivery methods

for their solution. We will show that the problem of delivery in [37] can be efficiently

addressed by using index coding in the helpers.

Recent discussions on standards for future 5G cellular networks are focused

on providing high bandwidth for Device-to-Device communications (D2D). Examples of

31

such approaches are the IEEE 802.11ad standard (up to 60GHz [4]) and the millimeter-

wave proposal which can potentially enable up to 300GHz of bandwidth for D2D com-

munications [3, 12]. This potential abundant D2D bandwidth can be utilized to relay

the coded contents inside an ad hoc network which is being served by a helper. It is

indeed such excessive storage and bandwidth capabilities of future wireless systems that

make our solution feasible.

Deploying many femtocaching helpers is not economically efficent. On the

other hand, since UTs have significant D2D capabilities, they can efficiently participate

in content delivery through multihop D2D communications. In our proposal, we suggest

to deploy few helpers which can deliver the contents to neighboring UTs through mul-

tihop D2D communications. This can reduce the network deployment and maintenance

costs.

The rest of this chapter is organized as follows. Section 3.2 reviews the related

works and section 3.3 describes the proposed network model that is similar to [37] with

the addition of using multihop communications and index coding. In section 3.4, we

will explain the scaling laws of capacity improvement using index coding and relaying.

Section 3.5 demonstrates that index coding algorithms can achieve order optimal gains.

Section 3.6 describes the simulation results.

32

3.2 Related work

The problem of caching when a server is transmitting contents to clients was

studied in [72] from an information theoretic point of view. The authors introduced two

phases of cache placement and content delivery. For a femtocaching solution, efficient

cache placement algorithms are proposed in [37]. In this chapter, we focus on efficient

content delivery algorithms through index coding and multihop D2D communications

for a femtocaching solution.

There has been significant research on index coding since it was proposed in [7].

The practical implementation of index coding for wireless applications was proposed

in [21] by proposing cycle counting methods. A dynamic index coding solution for

wireless broadcast channels is proposed in [78]. In [78], a wireless broadcast station is

considered and a simple set of codes based on cycles in the dependency graph is provided.

They show the optimality of these codes for a class of broadcast relay problems. In this

chapter, we prove that codes based on cycles can acheive order optimal capacity gains

in networks with Zipfian content request distribution.

Approximating index coding solution is proved [7] to be an NP-Hard problem.

However, efficient heuristics has been proposed in [22] which are based on well-known

graph coloring algorithms. Other references like [32] and [31] have studied the connec-

tions and equivalence between index coding and network coding. Tran et al. [93] studied

a single hop wireless link from a network coding approach and showed similar results to

index coding. Ji et al. [47] studied theoretical limits of caching in D2D communication

33

networks.

Study of coding techniques in networks with high content reuse has recently

attracted the attention of researchers. Montpetit et al. [74] studied the applications of

network coding in Information-Centric Networks (ICN). Wu et al. [102] studied network

coding in Content Centric Networks (CCN) which is an implementation of ICN. Leong

et al. [66] proposed a linear programming formulation to deliver contents optimally

in today’s IP based Content Delivery Networks (CDN) using network coding. Llorca

et at. [68] proposed a network-coded caching-aided multicasting technique for efficient

content delivery in CDNs. This paper extends Index Coding to multihop communication

and shows that linear codes can achieve order optimal capacity gains in such networks.

3.3 Network Model

We assume a network model for future wireless cellular networks in which

femtocaching helpers with significant storage capabilities are deployed throughout the

network to assist the efficient delivery of contents to UTs through reliable D2D com-

munications. Such helpers are characterized with low rate backhaul links which can be

wired or wireless. They will also have localized, high-bandwidth communication capa-

bilities. With their significant storage capacity, in a network with high content reuse,

many of the content requests for the UTs inside a cell can be satisfied directly by the

helpers.

Each helper is serving a wireless ad-hoc network in which the UTs are utilizing

34

high bandwidth D2D communication techniques such as millimeter wave and IEEE

802.11ad technologies. This high bandwidth D2D communication enables the UTs to

relay data from a nearby helper to all the UTs that are within transmission range.

We assume that the path lifetime between the helper and UTs is longer than the time

required to transmit the content. For large files and when UTs are moving fast, one

solution is to divide the content into smaller files and treat each file separately. We

assume that the network is connected which can be justified by the large number of

UTs that will be available in the future wireless cellular networks.

Further, we take advantage of index coding and the side information cached in

UTs to significantly reduce the required number of helpers and consequently, reduce the

infrastructure maintenance and deployment costs. To demonstrate the effectiveness of

using multihop communications, we consider similar assumptions as [37] with a macro

base station placed in the center of a cell with radius 400 meters serving 1000 UTs and

a transmission range of 100 meters [3] for D2D communication. As shown in Figure 3.1,

with only 4 helpers uniformly located in the cell, 100% and 80% of nodes are covered

with 3 and 2 hop communications respectively. Covering all the UTs in the same cell

with only one hop communication requires up to 27 helpers [37]. The simulation in

Figure 3.1 is carried over a cell with radius 400 meters and with a communication range

of 100 meters. Clearly, for a vehicle or a mobile UT operating in the cell, the handover

probability will be significantly reduced if the number of helpers shrinks from 27 to 4.

We assume that n UTs denoted by N = {N1, N2, ..., Nn} are being served by

a helper. There are m contents M = {M1,M2, ...,Mm} available with M1 as the most

35

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hops

P
e
rc

e
n
ta

g
e

 o
f
U

T
s
 n

o
t

c
o

v
e
re

d

Percentage of UTs which cannot be served by helpers

1 helper

2 helpers

3 helpers

4 helpers

5 helpers

Figure 3.1: Pertentage of UTs not covered versus the maximum number of hops traveled.

popular content and Mm as the least popular content in the network . Let’s assume UT

Ni requests a content with popularity index ri in the current time interval. Each UT

has a cache of fixed size δ in which contents with indices Ci = {ci1, ..., ciδ} are stored.

Therefore, we assume that UT Ni caches contents Mci1 ,Mci2 , . . . ,Mciδ and the set of

cached content indices in Ni is represented by Ci. Therefore, if we denote the set of

cached contents in UT Ni by Mi, then we have Mi = {Mj | j ∈ Ci}. The requested

content index is shown by ri.

Let’s assume that we have n UTs each with a set of side informationMi. The

formal definition of index code described in [7] is given below.

Definition 3.3.1. An index code on a set of n UTs each with a side information set

Mi ⊆ M, and a requesting content Mri ∈ M for i = 1, 2, . . . , n is defined as a set of

codewords in {0, 1}l toghether with

36

1. An encoding function E mapping inputs in {0, 1}m to codewords and

2. A set of decoding functions D1,D2, . . . ,Dn such that Di(E(M),Mi) = Mri for

i = 1, 2, . . . , n.

In the above definition, the length of the index code l denotes the number of

required transmissions to satisfy all the content requests of the n UTs. The encoding

function E is applied to the contents by the helper and the decoding functions Dis are

applied individually by UTs to decode their desired contents from the encoded content

using their cached information.

Figure 3.2 shows a helper H serving 6 UTs N1, N2, N3, N4, N5, and N6. Each

arrow represents a link with high bandwidth D2D communication capability. Let’s

assume UTs N1, N2 and N5 request contents M3,M1 and M4 while storing {M1,M4},

{M3,M4} and {M1,M3} respectively. Using index coding requires 3 channel usages

while without index coding, we need 5 channel usages. This is true since using index

coding, the helper creates the XOR combination of contents M1,M3 and M4 as M1 ⊕

M3 ⊕ M4 and broadcasts this coded content to its neighboring UTs. Either of N1

and N2 can immediately reconstruct their requested content from this coded content.

For instance, N1 which is requesting M3 can decode its requested content by using it’s

cached information and XOR operation on the encoded message to retrieve the requested

content M3, i.e., (M1 ⊕M3 ⊕M4)⊕M1 ⊕M4 = M3. After N2 receives M1 ⊕M3 ⊕M4,

it relays it to node N4 which simply broadcasts it to N5. UT N5 will again use XOR

operation to decode it’s desired content M4 by adding it’s cached contents to the coded

37

H

N1

N3

N2
N4

N5

N6

Figure 3.2: Example of a wireless multihop network being served by the helper H.

content that it has received, i.e., (M1 ⊕M3 ⊕M4)⊕M1 ⊕M3 = M4. Therefore, only 3

transmissions are needed.

To satisfy the content requests through multihop D2D without index coding,

5 transmissions are needed as the helper should transmit M3 to N1, M1 to N2, M4 to

N2, and N2 relays M4 to N4 and N4 relays it to N5.

We assume a Zipfian distribution with parameter s > 1 for content popularity

distribution in the network. This means that the probability that UT Ni requests any

content with index ri at any time instant is given by

Pr[Ni requests content with index ri] =
r−si
Hm,s

, (3.1)

where Hm,s =
∑m

j=1
1
js denotes the mth generalized harmonic number with parameter

s.

Remark 3.3.2. In this chapter we only focus on Zipfian content request probability

with parameter s > 1 which is a non-heavy-tailed probability distribution. Our results

are correct for any type of non-heavy-tailed probability distribution and the extension

to heavy-tailed probability distribution is the subject of future work.

Dependency graph is a useful analytical tool [7, 21, 32] that is widely used in

index coding literature. A formal definiton of dependency graph is brought in 2.4.1 in

38

chapter 2. Notice that the dependency graph does not represent the actual physical

links between UTs in the network. This is a virtual graph in which each edge represents

the connection between a UT that is requesting a content and a UT that caches this

content. As discussed in [21, 78], every cycle in the dependency graph is representative

of a connection between UTs and it can save one transmission. For every clique in the

dependency graph, all the requesting UTs in the clique can be satisfied by a simple linear

XOR index code. The complement of dependency graph is called conflict graph. This

graph is of significant interest since any clique in the dependency graph gives rise to an

independent set1 in the conflict graph. Therefore, well-known graph coloring algorithms

over conflict graph can be used to find simple linear XOR index codes. The dependency

and conflict graphs in our network are random directed graphs. In the next section, we

will use the properties of these graphs to find the capacity gains and propose simple

index coding solutions.

To prove our results, we have used Least Recently Used (LRU) or Least Fre-

quently Used (LFU) cache policies. Similar results can be produced for other caching

policies. LRU caching policy assumes that most recently requested contents are kept in

the cache. In LRU caching, in each time slot the content that is requested in the previ-

ous time slot is stored in the first cache location. If this content was already available

in the cache, it is moved from that location to the first cache location. If the content

was not available, then the content that is least recently used is discarded and the most

recently requested content is cached in the first cache location. Any other content is

1An independent set is a set of vertices in a graph for which none of the vertices are connected by
an edge.

39

relocated to a new cache location such that the contents appear in the order that they

have been requested.

In LFU caching policy, the contents are cached based on their request fre-

quency. Highly popular contents are stored in the first locations of the cache and

contents with lower request frequency are cached in the bottom locations of the cache.

Computing the probability of having content with index ri in cache Cj , Pr[ri ∈

Cj], turns out to be complicated for LRU or LFU caching policies. A simple lower bound

on this probability for LRU can be found by noticing that Pr[ri ∈ Cj] is greater than

the probability that UT Nj have requested the content with index ri in the most recent

time slot and therefore it is located at the top of the cache. This lower bound can be

derived using equation (3.1).

Pr[ri ∈ Cj] = Pr[cj1 = ri] +

δ∑
l=2

Pr[cjl = ri]

≥ Pr[cj1 = ri] =
r−si
Hm,s

. (3.2)

To prove that the same lower bound holds for LFU, notice that Pr[ri ∈ Cj] is larger

than the same probability when the cache size is M = 1. Therefore,

Pr[ri ∈ Cj] ≥ Pr[ri ∈ Cj | M = 1] = Pr[cj1 = ri] =
r−si
Hm,s

. (3.3)

In the subsequent sections, we will use these lower bounds to prove our results.

We will state our results in terms of order bounds. To avoid any confusion, we

use the following order notations [59]. We denote f(n) = O(g(n)) if there exist c > 0

and n0 > 0 such that f(n) ≤ cg(n) for all n ≥ n0, f(n) = Ω(g(n)) if g(n) = O(f(n)),

and f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

40

3.4 Order optimal capacity gain

In this section, we will prove that index coding can significantly decrease the

number of transmissions in the network. We will specifically use the Zipfian content

distribution in the underlying content distribution network. To do so, we will first state

and prove the following lemma.

Lemma 3.4.1. Let’s consider a Zipfian content distribution with parameter s > 1 and

parameter hε = ε
1

1−s where 0 < ε < 1. For every i with popularity index ri that is less

than hε, the request probability is at least 1− ε.

Proof. Based on the Zipfian distribution assumption and equation (3.1), the probability

that the requested content has a popularity of at most hε is equal to

Pr[rj ≤ hε] =
Hhε,s

Hm,s
. (3.4)

In order to satisfy Pr[rj ≤ hε] ≥ 1− ε, we should have

ε ≥ 1− Pr[rj ≤ hε] = 1−
Hhε,s

Hm,s
=

1

Hm,s

m∑
j=hε+1

j−s

=
1

Hm,s

bm
hε
c−1∑

i=1

(i+1)hε∑
j=ihε+1

j−s +
1

Hm,s

m∑
j=bm

hε
chε+1

j−s. (3.5)

If we have

ε ≥ 1

Hm,s

bm
hε
c∑

i=1

(i+1)hε∑
j=ihε+1

j−s, (3.6)

then the inequality in (3.5) will certainly hold since the right hand side in (3.6) is larger

than the right hand side in (3.5). Note that, for ihε + 1 ≤ j ≤ (i + 1)hε we have

41

j−s < (ihε)
−s. Hence,

(i+1)hε∑
j=ihε+1

j−s <

(i+1)hε∑
j=ihε+1

(ihε)
−s = hε(ihε)

−s = i−sh1−s
ε (3.7)

This means that if

ε ≥ h1−s
ε

1

Hm,s

bm
hε
c∑

i=1

i−s, (3.8)

then (3.6) holds since the right hand side of inequality (3.6) is smaller than the right

hand side of inequality (3.8) as shown by (3.7). Notice that since,

1

Hm,s

bm
hε
c∑

i=1

i−s =

∑bm
hε
c

i=1 i−s∑bm
hε
c

i=1 i−s +
∑m
bm
hε
c+1 i

−s
< 1,

if hε is chosen such that

ε ≥ h1−s
ε , (3.9)

then all of the inequalities in equations (3.5), (3.6), (3.7) and (3.8) will be valid and

hence Pr[rj ≤ hε] ≥ 1− ε. Therefore, in order to have Pr[rj ≤ hε] ≥ 1− ε, it is enough

to choose hε such that (3.9) is valid. Hence, if hε is chosen to be at least equal to

hε = ε
1

1−s , (3.10)

then we have Pr[rj ≤ hε] ≥ 1− ε. Notice that the choice of hε in (3.10) is such that it

only depends on ε and is independent of m.

For instance for s = 2 and ε = 0.01, hε can be chosen as 100 (regardless of the

size of m). This implies that for a Zipfian distribution with s = 2, 100 highly popular

contents among any large number of contents would account for 99% of the total content

42

requests. Therefore, if hε is chosen as in equation (3.10), with a probability of at least

1− ε all content requests have popularity index of at most hε. Now define pε as

pε ,
h−sε
Hm,s

=
ε−

s
1−s

Hm,s
. (3.11)

Based on above discussion, in our instance of index coding dependency graph, with a

probability of at least 1− ε edges are present with a probability of at least pε. We will

discuss this in more details later in the proof for Theorem 3.4.2. Notice that for large

values of m, pε is also independent of m since in that case Hm,s ≈ ζ(s) and pε only

depends on ε and s.

As stated in [21], if we choose the right encoding vectors for any index cod-

ing problem, for any vertex disjoint cycle in the dependency graph we can save one

transmission. Therefore, the number of vertex-disjoint cycles2 in the dependency graph

can serve as a lower bound for the number of saved transmissions in any index coding

problem. Number of vertex disjoint cycles is also used in [78] as a way of finding the

lower bound for index coding gain. To count the number of vertex-disjoint cycles in our

random dependency graph, we will use Lemma 2.4.4 in chapter 2 which is originally

proved as Theorem 1 in [33].

Note that the dependency graph is a directed graph and in order to use Lemma

2.4.4, we need to construct an undirected graph. Let’s denote the directed and undi-

rected random graphs on n vertices and edge presence probability pε by
−→
G(n, pε) and

G(n, pε), respectively. In a directed graph
−→
G(n, pε), the probability that two vertices are

connected by two opposite directed edges is p2
ε . Therefore, we can build an undirected

2These are the cylces that do not have any common vertex.

43

graph G(n, p2
ε) with the same number of vertices and an edge between two vertices if

there are two opposite directed edges in the directed graph
−→
G(n, pε) between these two

UTs. Hence,
−→
G(n, pε) essentially contains a copy of G(n, p2

ε). Note that there are some

edges between UTs in
−→
G(n, pε) that do not appear in G(n, p2

ε). This fact was also ob-

served in [41]. Therefore, a lower bound on the number of disjoint cycles for G(n, p2
ε)

implies a lower bound on the number of disjoint cycles for
−→
G(n, pε).

In the following theorems, we will use Lemma 2.4.4 to prove that using index

coding to code the contents can be very efficient.

Theorem 3.4.2. Assume all UTs are utilizing LRU or LFU caching policies for a

Zipfian content request distribution with parameter s > 1. Index coding can save

Ω(np2
ε) transmissions for any helper serving n UTs with a probability of at least 1 − ε

for any 0 < ε < 1.

Proof. Consider a Zipfian distribution with parameter s > 1 and let 0 < ε < 1 be fixed.

The dependency graph
−→
G(V,E) in our problem is composed of n vertices N1, N2, . . . , Nn

which correspond to the n UTs that are served by a helper. Note that the existence of an

edge in dependency graph depends on the probability that a UT is requesting a content

and another UT has already cached that content3. Therefore, this is a non-deterministic

graph with some probability for the existence of each edge between the two vertices. In

this non-deterministic dependency graph, the probability of existence of edge (Ni, Nj)

in E is equal to the probability that content ri requested by Ni, is already cached in

Nj . Therefore, with LRU or LFU caching policy assumption and using equations (3.2)

3This edge has no relationship with the actual physical link between two UTs.

44

and (3.3), we arrive at

Pr[(Ni, Nj) ∈ E] = Pr[ri ∈ Cj] ≥
r−si
Hm,s

. (3.12)

Using Lemma 3.4.1 for any 0 < ε < 1, if hε is chosen as hε = ε
1

1−s , then with a

probability of at least 1 − ε, any requested content has a popularity index ri less than

hε. This means that with a probability of at least 1− ε, the edge presence probability

in equation (3.12) can be lower bounded by pε. Therefore, with a probability of at

least 1−ε, maximum number of vertex-disjoint cycles in our directed dependency graph

−→
G(V,E) can be lower bounded by the maximum number of vertex-disjoint cycles in an

Erdős-Réyni random graph
−→
G(n, pε) with n vertices and edge presence probability pε.

Now we can use Lemma 2.4.4 and undirected graph G(n, p2
ε) to find a lower bound on

the number of vertex disjoint cycles in
−→
G(n, pε). This in turn, will give us a lower bound

on the number of vertex-disjoint cycles in
−→
G(V,E).

Note that G(n, p2
ε) is an undirected Erdős-Réyni random graph on n vertices

and edge presence probability p2
ε . This graph has a maximum of n(n − 1) undirected

edges. However, since every undirected edge in this graph exists with a probability of

p2
ε , the expected value of the number of edges in graph G(n, p2

ε) is n(n − 1)p2
ε . This

means that if d in Lemma 2.4.4 with v = n is chosen to be an integer such that

n(n− 1)p2
ε ≥ (2d− 1)n− 2d2 + d, (3.13)

then on average, G(n, p2
ε) will have either d disjoint cycles or 2d − 1 vertices of degree

n− 1. For the purpose of our paper we can easily verify that for large enough values of

n, d? = bnp
2
ε

24 c satisfies equation (3.13) (Notice that the condition 24d? ≤ n in Lemma

45

2.4.4 is also met). Therefore based on Lemma 2.4.4, the graph G(n, p2
ε) either has at

least d? = bnp
2
ε

24 c disjoint cycles or 2d? − 1 = 2bnp
2
ε

24 c − 1 vertices with degree n − 1.

As mentioned before,
−→
G(n, pε) essentially contains a copy of G(n, p2

ε). Consequently,

−→
G(n, pε) either has at least d? = bnp

2
ε

24 c disjoint cycles or 2d? − 1 = 2bnp
2
ε

24 c − 1 vertices

with degree n− 1. The number of vertices in graph
−→
G(n, pε) is n. Therefore, the latter

case gives rise to a situation where there are 2d? − 1 = 2bnp
2
ε

24 c − 1 vertices which are

connected to any other vertex in
−→
G(n, pε) through undirected edges. This condition

results in having a clique of size 2bnp
2
ε

24 c − 1 in
−→
G(n, pε).

In summary,
−→
G(n, pε) has either d? disjoint cycles or it contains a clique of size

2d? − 1. Hence, with a probability of at least 1− ε, the dependency graph
−→
G(V,E) on

average has either d? disjoint cycles or it contains a clique of size 2d? − 1. In either of

these cases d? = bnp
2
ε

24 c transmissions can be saved using index coding. This proves the

theorem.

Theorem 3.4.3. Index coding through cycle counting and clique partitioning can save

Θ(n) transmissions in a network with n UTs and Zipfian content request distribution

with parameter s > 1.

Proof. In Theorem 3.4.2, we proved that in a network with Zipfian content request

distribution and for a fixed 0 < ε < 1, with a probability of at least 1 − ε, the index

coding dependency graph either has d? = bnp
2
ε

24 c disjoint cycles or it contains a clique of

size 2d? − 1 = 2bnp
2
ε

24 c − 1. Consider the following situations,

1. The dependency graph has d? = bnp
2
ε

24 c disjoint cycles. In this case, for a fixed ε,

46

pε is a constant which does not depend on n. Hence, cycle counting can result in

at least d? = bnp
2
ε

24 c = Ω(n) transmission savings. This is a lower bound on the

number of transmission savings.

On the other hand, notice that the maximum number of vertex-disjoint cycles

in any graph with n vertices cannot be greater than n
2 as shown in Figure 3.3.

Therefore, the maximum number of transmission savings using cycle counting is

n
2 = O(n). This is an upper bound on the number of saved transmissions. Since

the order of upper and lower bounds are the same, it can be concluded that the

number of saved transmissions scales as Θ(n).

2. The dependency graph contains a clique of size k? = 2d?−1 = 2bnp
2
ε

24 c−1. Through

clique partitioning we will be able to save at least k?− 1 transmissions by sending

only one transmission. Hence, through clique partitioning, we will be able to save

at least k? − 1 = Ω(np
2
ε

12) = Ω(n) transmissions by sending only one transmission

to the UTs forming that specific clique. This is a lower bound on the number of

saved transmissions.

On the other hand, if the dependency graph is a perfectly complete graph on n

nodes which means that every requested content is available in all other UTs’

caches, then all the requested transmissions can be satisfied by one transmission

which is a linear XOR combination of all requested contents.

Hence, the number of transmission savings is equal to n − 1 = O(n). Notice

that this is the maximum number of transmission savings since we at least need

47

Figure 3.3: Example of a dependency graph on n = 8 nodes with maximum possible
number of vertex disjoint cycles n/2 = 4.

1 transmission to satisfy all content requests. This means that the number of

transmission savings is upper bounded by O
(
n
)
. Since the upper and lower order

bounds are the same, we conclude that the transmission saving scales as Θ(n).

We can further prove that many properties of the dependency graph are inde-

pendent of the total number of contents and only depends on the most popular contents

in the network. As an example of these properties, we can consider the problem of

finding a clique of size k in the dependency graph. A clique of size k in the dependency

graph has an interesting interpretation since all the requests in this clique can be satis-

fied with one multicast transmission. The following theorem proves that the probability

of existence of a clique of size k is lower bounded by a value which is independent of the

total number of contents in the network, m, and only depends on the popularity index

s.

Theorem 3.4.4. If LRU or LFU caching policy is used and the content request prob-

ability is Zipfian distribution, then the probability of finding a set of k UTs Nb =

{Nb1 , Nb2 , ..., Nbk} ⊆ N for which a single linear index code (XOR operation) can be

used to transmit the requested content rbi to Nbi for 1 ≤ i ≤ k can be lower bounded

48

by a value that with a probability close to one is independent of the total number of

contents in the network.

Proof. The probability that a specific set of UTs {Nb1 , Nb2 , ..., Nbk} form a clique of size

k is

Pb1,b2,...,bk = Pr[rbi ∈ Cbj for 1 ≤ ∀i, j ≤ k, j 6= i]. (3.14)

Assuming that the UTs are requesting contents independently of each other, this prob-

ability can be simplified as

Pb1,b2,...,bk =

k∏
i=1

k∏
j=1,j 6=i

Pr[rbi ∈ Cbj]. (3.15)

Using equations (3.2) and (3.3), we arrive at

Pr[rbi ∈ Cbj] ≥
rbi
−s

Hm,s
. (3.16)

Equation (3.15) can be lower bounded as

Pb1,b2,...,bk ≥
k∏
i=1

(
rbi
−s

Hm,s

)k−1

. (3.17)

The probability to have a clique of size k is computed by considering all
(
n
k

)
groups of

k UTs. Hence, the probability of having a clique of size k denoted by Pk is given by

Pk =
∑

b1,b2,...,bk⊆N
Pb1,b2,...,bk ≥

∑
b1,b2,...,bk⊆N

k∏
i=1

(
rbi
−s

Hm,s

)k−1

=

∑
b1,b2,...,bk⊆N

∏k
i=1 r

−s(k−1)
bi

Hk−1
m,s

. (3.18)

In order to simplify this expression, we use the elementary symmetric polynomial nota-

tion. If we have a vector Vn = (v1, v2, ..., vn) of length n, then the k-th degree elementary

49

symmetric polynomial of these variables is denoted as

σk(Vn) = σk(v1, ..., vn) =
∑

1≤i1<i2<..<ik≤n
vi1 ...vik . (3.19)

Using this notation and by defining Yn , (r
−s(k−1)
1 , r

−s(k−1)
2 , ..., r

−s(k−1)
n), we have

Pk ≥ σk(Yn)

Hk−1
m,s

. Since the content request probability follows a Zipfian distribution, we

have Pr[rj ≤ hε] =
Hhε,s
Hm,s

. Therefore, for a specific group of UTs Nb1 , Nb2 , ..., Nbk , the

probability that they all request contents from the top hε most popular contents is given

by

Pr[rb1 ≤ h, ..., rbk ≤ hε] =

k∏
j=1

Pr[rbj ≤ hε] =

(
Hhε,s

Hm,s

)k
. (3.20)

We have already proved in Lemma 3.4.1 that for large values of m and hε = ε
1

1−s , the

ratio
Hhε,s
Hm,s

is greater than 1− ε. Besides this, the fact that n is most likely much larger

than k, means that with a very high probability, for each set of UTs {Nb1 , Nb2 , ..., Nbk},

the requests come only from the hε most popular contents. This implies that with a

high probability, σk(Yn) ≥
(
n
k

)
h
−ks(k−1)
ε . Also, notice that Hm,s < ζ(s) <∞. Therefore,

with a probability close to one, Pk can be lower bounded as

Pk ≥
(
h−ksε

ζ(s)

)k−1

. (3.21)

This lower bound does not depend on m and only depends on n, ε, s and k.

Theorem 3.4.4 states that regardless of the number of contents in the network,

there is always a constant lower bound for the probability of finding a clique of size k.

The result hints the potential use of linear index coding in these networks. In the next

50

section, we will prove that linear index coding can indeed be very useful and can be

used to construct codes acheiving order optimal capacity gains.

Remark 3.4.5. The above capacity improvement is found for a traditional single hop

index coding scenario. For our proposed multihop setup, similar gains still hold. In our

proposed setting, we consider communications for a small number of hops and therefore

multihop communication can only affect the capacity gain by a constant factor and the

order bound results will not be affected.

3.5 Heuristics acheiving order optimal capacity

Both optimal and approximate solutions [7, 64] for the general index coding

problem are NP-hard problems. Some efficient heuristic algorithms for the index coding

problem were proposed [22] which can provide near optimal solutions. In some of these

heuristic algorithms, the authors reduce the index coding problem to the graph coloring

problem.

Notice that every clique in the dependency graph of a specific index coding

problem, can be satisfied with only one transmission which is a linear combination of all

contents requested by the UTs corresponding to the clique. Therefore, solving the clique

partitioning problem, which is the problem of finding a clique cover of minimum size

for a graph [36], yields a simple linear index coding solution. The minimum number of

cliques required to cover a graph can be regarded as an upper bound on the minimum

number of index codes required to satisfy the UTs. Index coding rate is defined as

51

the minimum number of required index codes to satisfy all the UTs. Since lower index

coding rates translate into higher values of transmission savings (or index coding gains)4

as discussed in [21], the number of transmission savings found in the clique partitioning

problem is in fact a lower bound on the total number of transmission savings found from

the optimal index coding scheme (or the optimal index coding gain).

On the other hand, solving the clique partitioning problem for any graph

G(V,E) is equivalent to solving the graph coloring problem for the complement graph

Ḡ(V, Ē) which is a graph on the same set of vertices V but containing only the edges

that are not present in E. This is true because every clique in the dependency graph,

gives rise to an independent set in the complement graph. Therefore, if we have a clique

partitioning of size χ in the dependency graph, we have χ distinct independent sets in

the complement graph. In other words, the chromatic number of the complement graph

is χ.

The above argument allows us to use the rich literature on the chromatic

number of graphs to study the index coding problem. In fact, any graph coloring

algorithm running over the conflict graph can be directly used to obtain an achievable

index coding rate. If running such an algorithm over the conflict graph results in a

coloring of size χ, this coloring gives rise to a clique cover of size χ in the dependency

graph and an index coding of rate χ with index coding gain of n − χ which is a lower

bound for the total number of transmission savings using the optimal index code5.

4In a dependency graph of n UTs with the index coding rate of χ, the number of saved transmissions,
n− χ, is called the index coding gain.

5Notice that since the optimal index coding rate is upper bounded by the size of the minimum clique
cover (which is equal to the chromatic number of the conflict graph), the value of transmission savings

52

Therefore, considering the chromatic number of the conflict graph, we can find a lower

bound on the asymptotic index coding gain. To do so, we use the following theorem

from [13],

Theorem 3.5.1. For a fixed probability p, 0 < p < 1, almost every random graph

G(n, p) (a graph with n UTs and the edge presence probability of p) has chromatic

number,

χG(n,p) = −
(

1

2
+ o(1)

)
log(1− p) n

log n
(3.22)

We will now use Theorem 3.5.1 and the designed undirected graph G(n, p2
ε) to

find the number of transmission savings using a graph coloring based heuristic in our

network.

Theorem 3.5.2. Using a graph coloring algorithm, in a network with n UTs almost

surely gives us a linear index code with gain

l = Θ

(
n+

(
1

2
+ o(1)

)
n

log n
log p2

ε

)
. (3.23)

Proof. Assume that a helper is serving n UTs where n is a large number. As discussed in

Theorem 3.5.1, the index coding gain is lower bounded by n−χ where χ is the chromatic

number of the conflict graph. However, notice that on average the chromatic number of

our non-deterministic conflict graph is upper bounded by the chromatic number of an

that we can achieve using the optimal index code is lower bounded by n− χ.

53

undirected random graph with edge existence probability of 1−p2
ε . To prove this, notice

that in the dependency graph, the probability of edge existence between two vertices

is at least pε which implies that the number of edges in the dependency graph is on

average greater than or equal to the number of edges in a directed Erdos-Reyni random

graph
−→
G(n, pε). However, we know that the number of edges in

−→
G(n, pε) is at least

equal to the number of edges in an undirected Erdos-Reyni random graph G(n, p2
ε).

Therefore, the conflict graph which is the complement of dependency graph, on average

has less edges compared to a random graph with edge existence probability of 1 − p2
ε

and consequently, its chromatic number cannot be greater than the chromatic number of

G(n, 1−p2
ε). Given these facts, the index coding gain is lower bounded by n−χG(n,1−p2ε).

Since 1 − p2
ε is fixed, Theorem 3.5.1 implies that the chromatic number of the conflict

graph is equal to

χG(n,1−p2ε) = −
(

1

2
+ o(1)

)
log p2

ε

n

log n
(3.24)

This proves that the index coding gain is lower bounded by Ω(n×{1+
(

1
2 + o(1)

)
1

logn log p2
ε})

which asymptotically tends to n. However, the maximum index coding gain of n UTs

is also n. Therefore, this coding gain is also a tight bound.

Remark 3.5.3. Theorem 3.5.2 presents the index coding gain using a graph coloring

algorithm which only counts the number of cliques in the dependency graph. The gain in

Theorem 3.4.2 counts the number of disjoint cycles in the dependency graph. Theorem

3.4.3 proves that index coding gain in Theorem 3.4.2 is Θ(n) which means that it is order

optimal. Theorem 3.5.2 is also proving the same result. Therefore, a graph coloring

54

algorithm can acheive order optimal capacity gains.

Remark 3.5.4. We have shown our proposed algorithm in pseudo-code in Algorithm

1. As we mentioned earlier, in our solution we only focus on content delivery. For cache

placement, we assume that the greedy approximate algorithm proposed in [37] is used to

populate helper caches. For helper assignment, the greedy algorithm is used. In other

words, we suggest that the closest helper which has the content in its cache be assigned

to the UT. During the content delivery phase, we use our proposed heuristic for index

coding. We use a graph coloring heuristic for the conflict graph and find independent sets

in the dependency graph. Then for each independent set only one multicast transmission

is needed which will be sent by the helper. Our main contribution is to propose better

content delivery algorithm compared to the baseline. In the decoding phase, UTs use

their cached contents and the received content to decode their desired contents.

3.6 Simulations

In this section, we will show our simulation results. To show the performance

of our coding technique, we have plotted the simulation results for five different sets of

parameters in Figure 3.4. In this simulation, we assume that index coding is done in

the packet level. We plotted the average packets sent in each transmission. We have

assumed that the UTs are requesting contents based on a Poisson distribution with an

average rate of 1
n . This way we can assure that the average total request rate is one

and we are efficiently using the time resource without generating unstable queues. The

55

Algorithm 1 Multihop Caching-Aided Coded Multicasting

1: procedure Cache Placement

2: Use greedy cache placement algorithm in [37]

to populate helper caches.

3: procedure Helper Assignment

4: Use a greedy algorithm to assign the closest helper

which has the requested content, to the UT.

5: procedure Content Delivery

6: Form the dependency graph and conflict graph.

7: Color the conflict graph by a graph coloring

heuristic to find independent sets in dependency graph.

8: for every independet set S found do

9: Helper multicasts coded XOR of requested

contents ⊕k∈S Mrk .

10: procedure Content Decoding

11: UT j XORs some of it’s cached contents with the

received coded content ⊕k∈S Mrk to decode Mrj

56

optimum solution is an NP-hard problem. However, we used a very simple heuristic

algorithm to count the number of cliques and cycles of maximum size 4. Even with this

simple algorithm, we were able to show that the index coding can double the average

number of packets per transmission in each time slot for certain values of the Zipfian

parameter. Clearly, optimal index coding or more sophisticated algorithms can achieve

better results compared to what we obtained by our simple algorithm.

For small values of s, the content request distribution is close to uniform, the

dependency graph is very sparse and there is little benefit of using index coding. For

large values of s, most UTs are requesting similar contents which results in broadcasting

the same content to all nodes which is equal to one content per transmission. The main

benefit of index coding happens for values of s between 0.5 and 2 which is usually the

case in practical networks. Note that a wireless distributed caching system with no

index coding, will always have one content per transmission.

Figure 3.5 compares the average number of requests satisfied per time slot by

a helper between our proposed scheme and the baseline approach. For this simulation,

a Zipfian content request distribution with parameter s = 2 is assumed. The cell radius

is 400 meters, D2D transmission range is assumed to be 100 meters and 1000 UTs are

considered in this figure similar to the simulations in [37] and Figure 3.1. Notice that

with the baseline approach at least 27 helpers are required to cover the entire network

and 24, 20, 14 and 10 helpers can cover 97%, 93%, 78% and 62% of the network,

respectively. Using multihop D2D communications with a maximum of three hops,

4 helpers can cover the entire network while 3 helpers can cover 95% of the network

57

0 0.5 1 1.5 2 2.5 3 3.5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Zipfian parameter s

C
o

n
te

n
ts

 s
e

n
t

p
e

r
tr

a
n
s
m

is
s
io

n

Number of contents sent per transmission versus the Zipfian parameter s

m=10000,U=5,n=10,R=20

m=10000,U=5,n=50,R=100

m=10000,U=5,n=50,R=20

m=1000,U=20,n=50,R=20

m=1000,U=5,n=50,R=20

Figure 3.4: Average number of contents transmitted in each time slot when using index
coding.

nodes. We have shown that even with our very simple heuristic algorithm, multihop D2D

can significantly improve the helper utilization ratio. Note that in baseline approach,

each helper can at most transmit one content per transmission, however, our approach

can satisfy more than one request per transmission by taking advantage of the side

information that is stored in nodes’ caches. As the number of requests per user increases,

there are more possibilities of creation of cliques of large size which results in increasing

the efficiency of helper nodes. The simulation is carried for content request probability

of up to 0.3 since realistically, no more than one third of nodes at any given time, request

contents in the network.

58

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6
Average number of requests satisfied per helper per time slot

Content request probability

A
v
e
ra

g
e
 r

e
q
u
e
s
ts

 s
a
ti
s
fi
e
d
 p

e
r

h
e
lp

e
r

p
e

r
ti
m

e
 s

lo
t

Baseline (10 helpers, coverage = 62%)

Baseline (14 helpers, coverage = 78%)

Baseline (20 helpers, coverage = 93%)

Baseline (24 helpers, coverage = 97%)

Baseline (27 helpers, coverage = 100%)

Multihop D2D (3 helpers, coverage = 95%)

Multihop D2D (4 helpers, coverage = 100%)

Figure 3.5: Comparing our proposed and baseline solution on average number of requests
satisfied per time slot per helper versus the content request probability.

59

Chapter 4

Fountain Coding Based Caching in

Cellular Networks

In this chapter, the idea of decentralized coded content caching for next gen-

eration cellular networks is studied. The contents are linearly combined and cached in

under-utilized caches of User Terminals (UTs) and its throughput capacity is compared

with decentralized uncoded content caching. In both scenarios, we consider multihop

Device-to-Device (D2D) communications and the use of femtocaches in the network. It

is shown that decentralized coded content caching can increase the network throughput

capacity compared to decentralized uncoded caching by reducing the number of hops

needed to deliver the desired content. Further, the throughput capacity for Zipfian

content request distribution is computed and it is shown that the decentralized coded

content cache placement can increase the throughput capacity of cellular networks by a

factor of (log(n))2 where n is the number of nodes served by a femtocache. The results

60

in this chapter are published in [52] and [57].

4.1 Motivation

Recent advances in storage technology have made it possible for many con-

sumer and user electronic products with Terabyte of storage capability. Many re-

searchers are investigating the possibility of reusing this under-utilized storage capa-

bility to cache popular contents in order to improve the content delivery in cellular

networks.

In recent years, the problem of caching has been extensively studied. The

fundamental limits of caching in broadcast channels is studied in [72]. Other researchers

[38, 49, 73, 80] extended the results in [72] for different scenarios in broadcast channels.

The common features of all these studies are the assumptions that contents are cached

without any coding and it is one hop communications. The authors in [44,45] analyzed

the capacity of multihop networks but they still assumed contents are cached without

any coding, i.e., uncoded caching. Further, these studies [44, 45] focus on wireless ad

hoc networks and there is no extension of the work to cellular networks.

In this chapter, we propose a radically different cache placement approach.

While in our proposed algorithm each UT caches independently of all other UTs in a

decentralized manner, redundant caching is avoided by storing a random bitwise XOR

combination of popular contents. We call this method decentralized coded content cache

placement algorithm. This approach increases the network throughput capacity and

61

does not suffer from over-caching problem of uncoded caching.

The proposed coded caching is fundamentally different from the notion of coded

caching in references like [38, 49, 73, 80]. In such papers, during the cache placement

phase, only uncoded contents or uncoded parts of contents are stored in the caches.

Later during the content delivery phase, the base station broadcasts coded contents

(linear combination of multiple contents) to UTs such that they can decode their files

simultaneously. We instead propose that during the cache placement phase, the contents

are randomly combined and cached in UTs. It is shown that this coded caching approach

performs near optimal in terms of the average number of hops to retrieve a content and

hence, it can significantly increase the network throughput capacity. This makes the

proposed coded cache placement very suitable in practical systems where UTs have

small storage capability compared to the total number of contents in the network.

Many studies propose to utilize high bandwidth D2D communications for UTs.

Current IEEE 802.11ad standard [4] and the millimeter-wave proposal for future 5G

networks [12, 84] are examples of such high bandwidth D2D communications. Authors

in [53] extended the solution in [37] to deliver the contents from the helpers to the UTs

using multihop D2D communications. However, [53] only considers uncoded caching.

We study our approach within the framework of future cellular networks that

use femtocaches (or helpers) [37]. In such networks, several helpers with high storage

capabilities are deployed in each cell to create a distributed wireless caching infrastruc-

ture. Each helper is serving a wireless ad hoc network of UTs through multihop D2D

communications. We assume that helpers are connected to the base station through a

62

high bandwidth backhaul infrastructure. For simplicity of our analysis, we assume that

the contents have equal sizes. Our results are valid for contents with different sizes since

in practice each content can be divided into equal chunks. We prove that the proposed

decentralized coded content caching increases the capacity of cellular networks by a fac-

tor of (log(n))2 compared to decentralized uncoded caching. As far as we know, work is

the first work to propose the idea of decentralized coded content caching and to prove

that coded cache placement can increase the network capacity.

The rest of this chapter is organized as follows. In section 4.2, the related

work is discussed and section 4.3 describes the network model considered in this chap-

ter. Section 4.4 focuses on the computation of the throughput capacity of wireless

cellular networks operating under a decentralized uncoded cache placement algorithm

and section 4.5 reports the capacity of coded cache placement algorithm. In section

4.6, we compute the capacity of networks operating under a Zipfian content request

distribution. Simulation results are shown in section 4.7. Section 4.8 compares this

work with other coding schemes.

4.2 Related Work

The original femtocache network model [37, 87] was focused on delivery of

contents from femtocaches to UTs using single hop communications. The authors in [53]

considered a femtocaching network with multihop D2D relaying of information from the

helper to the UTs. A solution based on index coding was proposed in which the helper

63

utilizes the side information in the UTs to create index codes which are then multicasted

to the UTs. The approach reduces bandwidth utilization by grouping multiple unicast

transmissions into multicast transmission. While [53] proposed a solution for the helpers

to efficiently multicast the contents to the UTs, this chapter assumes that the helper

only unicasts the contents to the UTs. The UTs cache uncoded contents in [53] while

in this chapter a decentralized coded content caching solution for UTs is proposed.

Caching has been a subject of interest to many researchers. The fundamental

information theoretical limits of caching is studied in [72] where the authors studied

the problem of caching in broadcast channels with a central uncoded cache placement

algorithm. The authors in [73] extended the work of [72] to distributed uncoded cache

placement approach and then broadcasting coded contents during the delivery phase

over the shared link. They [73] proposed to break the contents into parts and then the

UTs randomly cache the content parts during placement phase. In the delivery phase,

coded contents are broadcasted from the server such that the UTs can decode their

desired contents optimally. In this chapter we propose to randomly and independently

combine contents and store them during cache placement phase. During the delivery

phase, a linear combination of encoded files is used to retrieve the requested content.

The notion of coded caching in [72] and all the papers that followed [38,49,79,80] refers

to broadcasting coded contents during the delivery phase and it is not a cache placement

technique. All prior works [38, 49, 72, 73, 79, 80] are fundamentally different from this

work as they are studying the information theoretic bounds of caching of a single server

connected to users through a shared link while our work studies the scaling behavior of

64

networks in which the UTs retrieve requested contents through multiple hops.

Other works [44–47] studied the problem of caching in wireless and D2D net-

works. Authors in [46] discussed the fundamental capacity of D2D communication.

In [47], a single hop D2D caching system is studied from an information theoretic point

of view. The authors in [44,45] have studied the capacity of multihop wireless D2D ad

hoc networks with uncoded caching in certain regimes. However, our work is essentially

different from [44,45] in the sense that the UTs in our work always request the contents

from the helper while in [44, 45], a wireless ad hoc network is considered. Clearly, such

network model requires higher overhead to locate the route to the requested content

while in our approach, the request always is sent toward the helper. They find the

capacity for specific regimes where the cache size is relatively very large compared to

the number of UTs. In this chapter, we prove that even constant cache size provides

considerable capacity gain. Another major difference between our work and the refer-

ences [44–47] is the introduction of decentralized coded content caching which has not

been studied in these works.

Caching coded contents has been previously suggested [23, 65] as an efficient

caching technique for devices with small storage capacity. In [65], the problem of index

coding with coded side information is studied and [23] proposed a coded caching strategy

for systems with small storage capacity. Our results demonstrate that apart from the

practical importance of coded caching benefits for small storage devices, it can also

increase the throughput capacity of cellular networks.

65

4.3 Network Model

In this chapter, we study the capacity of cellular networks utilizing a dis-

tributed femtocaching infrastructure as proposed in [37]. We assume several helpers

with high storage capabilities are deployed throughout the network to assist in deliver-

ing the contents through multiple hops to UTs.

For capacity analysis, we use the deterministic routing approach proposed

in [62]. Without loss of generality, it is assumed that the UTs are distributed on a

square of area one and the helper is located at the center serving n UTs which are

randomly distributed on a square. The square is divided into many square-lets of side

length c1s(n) where s(n) ,
√

log(n)
n . It is proved [82] that this network is connected if

nodes have a transmission range of Θ (s(n)). When a UT requests a content from the

helper, the content is routed [62] from the helper to the UT in a sequence of horizontal

and vertical straight lines through square-lets which connect the helper to the UT.

A Protocol Model is considered [103] for successful communication between

UTs. According to this model, if the UT i is located at Yi, then a transmission from

i to UT j is successful if |Yi − Yj | < s(n) and for any other UT k transmitting on the

same frequency band, |Yk − Yj | > (1 + ∆)s(n) for a fixed guard zone factor ∆. A Time

Division Multiple Access (TDMA) scheme is assumed for the transmission between

the square-lets. With the assumption of Protocol Model, then the square-lets with a

distance of c2 = 2+∆
c1

square-lets apart can transmit simultaneously without significant

interference [62].

66

The results are computed in terms of scaling laws. We use [59] the following

order notations. Denote f(n) = O(g(n)) if there exist c > 0 and n0 > 0 such that

f(n) ≤ cg(n) for all n ≥ n0, f(n) = Ω(g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) if

f(n) = O(g(n)) and g(n) = O(f(n)).

The contents in the network are represented by a set X = {x1, x2, . . . , xm} and

the set of their indices by ξ = {1, 2, . . . ,m}. Without loss of generality, we assume that

the contents with lower indices are more popular than the ones with higher indices. The

contents are categorized into two groups of popular and less popular contents.

Definition 4.3.1. Define the set of h most popular contents as Xh = {x1, x2, . . . , xh} ⊆

X where ξh = {1, 2, . . . , h} ⊆ ξ denotes the set of indices of the most popular contents.

The number of cached popular contents during the cache placement phase, h, is

decided by the cellular network designer based on different parameters and specifications

of the network. The selection of h is critical in the frequency of broadcast of unpopular

contents by the base station. Typically h is chosen large enough such that with a very

low probability contents are broadcasted from the base station. We assume that m and

h grow polynomially with n similar to [44, 45]. Since h is a small fraction of m, we

assume that h is growing with n in a much slower rate compared to m. Section 4.6

describes the necessary growth rate of h to guarantee that the probability of requesting

a content with index larger than h decays polynomially with n with a decay rate of

ρ. The results are general in nature because by allowing h and m scale with n with

67

different values of exponents, all possible values of h and m are considered.

The UTs have the same cache size of M and M < h1. There is no restriction

on the cache size M and M is a constant or a function of n as in [44, 45]. During the

cache placement phase, UT caches are filled independently of other UTs.

Helpers are assumed to store all the popular contents in Xh. The popular

content requests are served by D2D multihop communications and the less popular

content requests are served by the base station through the low bandwidth shared link.

The achievable throughput and network capacity are defined as follows.

Definition 4.3.2. A network throughput of λ(n) contents per second for each UT is

achievable if there is a scheme for scheduling transmissions in the D2D multihop network,

such that every popular content request from Xh by every UT at a rate of λ(n) can be

served by the D2D multihop network.

Definition 4.3.3. The throughput capacity of the network is lower bounded by Ω(g(n))

contents per second if a deterministic constant c3 > 0 exists such that

lim
n→∞

P[λ(n) = c3g(n) is achievable] = 1. (4.1)

The network throughput capacity is upper bounded by O(g(n)) contents per second if

a deterministic constant c4 < +∞ exists such that

lim inf
n→∞

P[λ(n) = c4g(n) is achievable] < 1. (4.2)

The network throughput capacity is of order Θ(g(n)) contents per second if it is lower

bounded by Ω(g(n)) and upper bounded by O(g(n)).

1Otherwise, the maximum throughput capacity is trivially achievable by caching all the popular
contents in each UT.

68

We assumes that the cache placement is already done and we want to study the

throughput capacity during the content delivery phase. If the content can be decoded

using the cached information in the intermediate relaying UT caches, then the UT does

not need to receive the content from the helper. However, if the content cannot be

decoded using the intermediate relays, then the content is received from the helper.

To simplify the analysis, all contents are assumed of equal size with each having

Q bits. This is a reasonable assumption since in practice the contents are divided into

equal-sized chunks. The minimum number of hops required to successfully decode any

content is denoted by Y with the average value of Y taken over all possible content

requests denoted by E[Y]. If the maximum achievable network throughput is λ(n), then

the network can deliver nλ(n) contents per second or equivalently, UTs can transmit

nλ(n)E[Y]Q bits per second. There are exactly 1
(c2c1s(n))2

square-lets at any time slot

available for transmission. The maximum number of bits that the network can deliver

is equal to W
(c2c1s(n))2

where W is the total available bandwidth. Therefore,

λ(n) =
W

nE[Y]Q(c2c1s(n))2
= Θ

(
1

E[Y] log n

)
. (4.3)

Hence, to compute the maximum achievable network throughput, it is enough [50] to

find the average number of transmission hops needed to deliver the popular contents.

Let’s denote the requested content index by r, the probability of requesting ithcontent

by f(i) = P[r = i] and the cumulative probability function by F (i) = P[r ≤ i]. This

implies that

P[r ∈ ξh] = P[r ≤ h] = F (h). (4.4)

69

With uncoded caching, if a UT U requests a content, the content is delivered to U either

by the helper or by a relay that caches the content and is located on the routing path

between U and the helper. With coded caching, if a group of coded contents can be

used to decode the content are available along the routing path between U and the

helper, then the helper informs the UTs the decoding instructions. If sufficient coded

files do not exist in the caches of the UTs between U and helper to decode the desired

content, then the content is routed to U from the helper. Since the helper only stores

the popular contents in ξh and the less popular contents are downloaded from the base

station, then the average number of traveled D2D hops in the network can be written

as

E[Y] = E[Y |r ∈ ξh]P[r ∈ ξh] = E[Y |r ∈ ξh]F (h). (4.5)

For many web applications [14, 15], the content request popularity follows

Zipfian-like distributions. Although we express our results in general form, we will

later compute explicit capacity results assuming a Zipfian content popularity distribu-

tion. Our main result in proving the gain of coded caching over uncoded caching is

independent of the content popularity distribution.

For Zipfian popularity distribution with parameter s, the probability of re-

questing a content with popularity index i is

f(i) = P[r = i] =
i−s∑m
j=1 j

−s =
i−s

Hm,s
, (4.6)

where Hm,s represents the generalized harmonic number with parameter s. The rest

of this chapter is dedicated to computing the throughput capacity of both decentral-

70

ized uncoded and coded content caching including for special case of Zipfian content

popularity distribution.

4.4 Decentralized Uncoded Content Caching

This section focuses on throughput analysis in cellular networks when each

UT cache M popular contents drawn uniformly at random independently of all other

UTs. The uniform distribution of cache placement is different from the content request

distribution by UTs. We will study the network throughput assuming a fixed cache

placement.

Lemma 4.4.1. If a content is requested independently and uniformly at random from

h most popular contents in Xh, then the average required number of requests to have

at least one copy of each content is equal to

Ecoupon collector = h
h∑
i=1

1

i
= hHh = Θ(h log(h)), (4.7)

where Hh = Θ(log(h)) is the hth harmonic number.

Proof. This is known as the coupon collector problem [34].

Lemma 4.4.2. If each UT caches M different contents uniformly at random during

cache placement phase, then the average number of UTs required to have at least one

copy of each content in the network is

hHh

d(h,M)
≤ Euncoded ≤ 1 +

hHh

d(h,M)
, (4.8)

71

where

d(h,M) ,
M−1∑
j=0

h

h− j
. (4.9)

Proof. This is the extension of the coupon collector problem because the cached contents

in each UT are different. To compute the average number of UTs in this case, we start

from a classic coupon collector problem. Assume that contents are chosen uniformly at

random and as soon as M different contents are found, they are cached in the first UT.

Then the same process starts over for the next UT and after finding M different contents,

the contents are placed in the UT’s cache. Assume that this process is repeated until

one copy of each content is cached in at least one UT’s cache. Since this is a geometric

distribution, on average we need d(h,M) content requests to fill up one UTs cache with

M different contents. Based on Lemma 4.4.1, after an average of hHh content requests,

we have requested one copy of all contents. Hence, the average number of UTs required

to have one copy of each content in at least one UT cache is between
hHh

d(h,M)
and

1 +
hHh

d(h,M)
.

Theorem 4.4.3. If h log(h) = O(Ms(n)−1)2, then the average number of transmission

hops to receive the contents in uncoded caching is equal to

E[Y |r ∈ ξh] = Θ

(
h log(h)

M

)
. (4.10)

2This condition means that the average number of hops needed to find the content is less than the
number of hops to the helper. If this condition does not hold, then the content is sent by the helper to
the requesting UT.

72

Proof. Lemma 4.4.2 shows that the average number of UTs needed so that all of the

requests can be satisfied is

hHh

d(h,M)
≤ E[Y |r ∈ ξh] ≤ 1 +

hHh

d(h,M)
. (4.11)

Therefore, for large values of h, the average number of UTs required for finding any

content scales as

E[Y |r ∈ ξh] = Θ

(
hHh

d(h,M)

)
. (4.12)

To find a bound for d(h,M), notice that the series in the right hand side of equation

(4.9) has M terms and the maximum and minimum values are h
h−M+1 and 1 respectively.

Therefore, d(h,M) lower and upper bounds are

M ≤ d(h,M) ≤ Mh

h−M + 1
. (4.13)

Using equations (4.12) and (4.13) we can find upper and lower bounds on E[Y |r ∈ ξh]

as

E[Y |r ∈ ξh] = O

(
h log(h)

M

)
, (4.14)

E[Y |r ∈ ξh] = Ω

(
h log(h)(h−M + 1)

Mh

)
. (4.15)

Assuming h >> M , we have h −M + 1 ≈ h and the lower bound in (4.15) becomes

equal to the upper bound (4.14) which proves the theorem.

Figure 4.1 shows that, each request can be satisfied by another UT on average

Θ(h log(h)/M) hops away provided that h log(h) = O(Ms(n)−1). Theorem 4.4.3 and

Equations (4.3) and (4.5) can be used to prove the following corollary.

73

H UTl UTl−1 UT0UT2 UT1

Figure 4.1: UT0 is requesting a content which is available in another UT l hops away
along the path toward helper H.

Corollary 4.4.4. The throughput capacity of the decentralized uncoded content caching

network with h log(h) = O(Ms(n)−1) is upper bounded by

λuncoded(n) = O

(
M

h log(h)F (h) log n

)
. (4.16)

The throughput capacity in equation (4.16) is an upper bound and cannot be achieved

because of congestion. The achievable throughput capacity will be computed in the

following section.

4.5 Decentralized Coded Content Caching

The throughput capacity of decentralized coded content caching is computed

in this section. We propose a random coding strategy and prove that the throughput

capacity of the network is increased compared to uncoded caching strategy.

4.5.1 Coded cache placement

We assume the files are binary and all operations are in GF(2). For each

encoded file, the helper randomly selects each one of the contents from the set Xh with

probability 1
2 and then combines all the selected contents (XOR) to create one encoded

file. The encoded cached content at the jth cache location of UT i can be represented

74

as

f ij =
h∑
k=1

aijk xk = vijX, (4.17)

where X = [x1 x2 . . . xh]T is a column vector containing all popular contents of set

Xh and vij is a uniformly distributed encoding vector with binary elements and the

summation is carried over GF(2). For a UT with cache size M , the helper creates M

such encoded files. Therefore, each one of the contents in Xh has been used on average

M
2 times to create the M coded files. We will represent the coded contents in caches as

vectors belonging to Fh2 .

4.5.2 Coded file reconstruction

The UT sends the request for a content to the helper. The helper then decides

to send the file through a routing path as proposed in [62]. However, it is highly possible

that the content can be reconstructed using a linear combination of some coded files

in the caches of UTs between the requesting UT and the helper along the routing

path. If these encoded files contain h linearly independent encoded vectors, they can

span the entire message space. As depicted in Figure 4.2, UTi in the routing path

can contribute up to M linearly independent vectors vi1,v
i
2, . . . ,v

i
M for decoding of a

content. Therefore, UTi which is at most q hops away from UT0 on the routing path

applies gain bij ∈ GF(2) to its j-th cache content and then passes it down to the next hop

closer to UT0. This process of relaying and clever use of the caching contents continues

hop by hop until the file reaches the requesting UT. After the requesting UT receives

(
∑q

i=1

∑M
j=1 b

i
jv

i
j)X, it can reconstruct its desired content by applying its own coding

75

gains to construct (
∑q

i=0

∑M
j=1 b

i
jv

i
j) = ek where ek is a vector with all elements equal

to zero except the kth element, i.e., xk is reconstructed.

In this distributed decoding scheme, each relay UT adds some encoded files to

the received file and relay it to the next hop. The coefficients bij ∈ {0, 1} are selected

such that the linear combinations of encoded files produce the desired requested content.

Each relay UT that participates in this distributed decoding operation, receives M bits

from helper in order to combine its cached encoded files. The computational complexity

for each UT is modest since it only involves XOR operation. The following lemma

computes the average number of vectors vij to create h linearly independent vectors.

H UTq UTq−1 UT0UT2 UT1

Figure 4.2: Each requested content by UT0 is constructed by a linear combinations of
the contents in q + 1 UTs caches on the path between the helper and UT0.

Lemma 4.5.1. Let vij be a random vector belonging to Fh2 with binary elements with

uniform distribution. The average number of vectors vij to span the whole space of Fh2

equals

Ev = h+

h∑
i=1

1

2i − 1
= h+ γ, (4.18)

where γ asymptotically approaches the Erdős–Borwein constant (≈ 1.6067)3.

Proof. We use a Markov chain to model the problem. The states of this Markov chain are

equal to the dimension of the space spanned by vectors4 v1, v2, . . . , vl. Let kl (kl ≤ h)

3In our problem, h is large enough that we can approximate the summation in (4.18) with asymptotic
value.

4For the rest of lemma, we drop superscript from notations where it is obvious.

76

kl = 0 kl = 1 kl = 2 kl = 3 kl = h

1
2h

1− 1
2h

2
2h

1− 2
2h

22

2h

1− 22

2h

23

2h 1

Figure 4.3: The state space of the Markov chain used in proof of Lemma 4.5.1.

denote the dimension of the space spanned by these vectors. Therefore, the Markov

chain will have kl + 1 distinct states. Assuming that we are in state kl, we want to find

the probability that adding a new vector will change the state to kl + 1. When we are

in state kl, 2kl vectors out of 2h possible vectors will not change the dimension while

adding any one of 2h − 2kl new vectors will change the dimension to kl + 1. Therefore,

the Markov chain can be represented by the one in Figure 4.3. The state transition

matrix for this Markov chain is

P =

1
2h

1− 1
2h

0 · · · 0 0

0 2
2h

1− 2
2h
· · · 0 0

0 0 22

2h
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1− 2h−2

2h
0

0 0 0 · · · 2h−1

2h
1− 2h−1

2h

0 0 0 · · · 0 1

,

77

which can be written in the form of a discrete phase-type distribution as

P =

T T0

0 1

 , (4.19)

where

T =

1
2h

1− 1
2h

0 · · · 0 0

0 2
2h

1− 2
2h
· · · 0 0

0 0 4
2h

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2h−2

2h
1− 2h−2

2h

0 0 0 · · · 0 2h−1

2h

, (4.20)

and

T0 =

0

...

0

1− 2h−1

2h

. (4.21)

If e denotes all one vector of size h, since P is a probability distribution we have

P

e
1

 =

e
1

 . (4.22)

This implies that Te + T0 = e, hence T0 = (I − T)e. Therefore, it is easy to show by

78

induction that the state transition matrix in l steps can be written as

P l =

T l (I − T l)e

0 1

 . (4.23)

This equation implies that if we define the absorption time5 as

ta = inf{l ≥ 1 | kl = h}, (4.24)

and if l is strictly less than the absorption time, the probability of transitioning from

state i to state j by having l new vectors can be computed from T l. In other words,

Pli[kl = j, l < ta] = (T l)ij . (4.25)

Therefore, starting from state i, if tij denotes the number of vectors (i.e., encoded files

for our problem) to transition from state j before absorption, tij can be written as

tij =

ta−1∑
l=0

1{kl = j}. (4.26)

The average value of tij is

E[tij] = E

[
ta−1∑
l=0

1{kl = j}

]
=

ta−1∑
l=0

E [1{kl = j}] . (4.27)

Since E [1{kl = j}] = Pli(kl = j, l ≤ ta − 1), we have

E[tij] =

ta−1∑
l=0

Pli(kl = j, l ≤ ta − 1)

a
=

∞∑
l=0

Pli(kl = j, l < ta)

5In our problem, absorption time is actually the total number of required vectors in relays to span
the h-dimensional space.

79

b
=

∞∑
l=0

(T l)ij . (4.28)

Equality (a) is correct because the probability is nonzero up to l = ta− 1 terms and (b)

is derived from equation (4.25). If we denote matrix U = (E[tij])ij , by using equation

(4.27) and matrix algebra, we have

U =

∞∑
i=0

T i = (I − T)−1. (4.29)

It is not difficult to verify that

U = (I − T)−1 =

2h

2h−1
2h−1

2h−1−1
2h−2

2h−2−1
· · · 2

0 2h−1

2h−1−1
2h−2

2h−2−1
· · · 2

0 0 2h−2

2h−2−1
· · · 2

...
...

...
. . .

...

0 0 0 · · · 2

.

We are interested in computing the average number of vectors (ta) to get to absorption

starting from kl = 0. Hence,

Ev = E[ta] =

[
1 0 · · · 0

]
Ue

=

[
1 0 · · · 0

]
(I − T)−1e

=

h∑
i=1

2i

2i − 1
= h+

h∑
i=1

1

2i − 1
(4.30)

This proves the lemma.

Remark 4.5.2. The optimal number of linearly independent vectors to span the vector

space is h. Our decentralized coded content caching strategy only requires h+ γ coded

80

contents to span the vector space. Since γ is considerably smaller than h, then our

approach provides close to optimal performance in terms of the minimum required

number of caches.

Lemma 4.5.1 suggests that each UT’s request can be satisfied in a smaller

number of hops compared to an uncoded caching strategy. This shows that our pro-

posed decentralized coded content caching scheme is capable of removing the inherent

over-caching problem in decentralized uncoded content caching. The following theorem

formalizes the result.

Theorem 4.5.3. If the number of popular contents is upper bounded by Ms(n)−1 i.e.

if h = O(Ms(n)−1), then our proposed decentralized coded content caching technique

reduces the average number of hops for decoding a content to

E[Y |r ∈ ξh] = Θ

(
h

M

)
. (4.31)

Proof. Lemma 4.5.1 shows that in order to decode a requested content, on average Θ(h)

coded contents are required. Since each UT has a cache of size M , Lemma 4.5.1 shows

that on average we need Θ(hM) UTs (hops) to be able to decode the desired content.

Notice that each individual UT does not need to separately send their coded content to

the requesting UT. Each UT combines its encoded files with a file that it receives from

previous hop and forwards it to the next hop.

Using the results of theorem 4.5.3 and equations (4.3) and (4.5), the throughput

capacity of coded caching can be upper bounded as follows.

81

Corollary 4.5.4. If h = O(Ms(n)−1), the throughput capacity of a decentralized coded

content caching network is upper bounded by

λcoded(n) = O

(
M

hF (h) log n

)
. (4.32)

The throughput in the right hand side of equation (4.32) may not be achievable due to

network congestion. In the following we will find achievable network throughputs.

Theorem 4.5.5. The decentralized uncoded and coded content caching strategies have

the order throughput capacity of

λuncoded(n) = Θ

(
1

F (h) log n

(
M

h log(h)

)2
)
, (4.33)

λcoded(n) = Θ

(
1

F (h) log n

(
M

h

)2
)
, (4.34)

respectively when h log(h) = O(Ms(n)−1).

Proof. Clearly, the square-lets that are closer to the helper are more prone to traffic

congestion. Hence, if the achievable throughput capacity of the square-let that contains

the helper is computed, this capacity is also achievable in other square-lets. This square-

let must respond to all requests which are located on average within a radius of Θ(h/M)

hops away from it (or Θ(h log(h)/M) hops in uncoded caching case). Therefore, it should

be able to serve on average Θ(log n(h/M)2) (or Θ(log n(h log(h)/M)2)) requests. The

probability that the popular contents are requested by UTs is F (h). Thus, the average

number of popular content requests from this square-let is Θ(log n(h/M)2F (h)) (or

Θ(log n(h log(h)/M)2F (h))).

82

Therefore, for the case of coded caching, this square-let should be able to deliver

Θ(λcoded(n) (h/M)2F (h) log n) contents per second and Θ(λuncoded(n)(h log(h)/M)2F (h) log n)

contents per second for uncoded caching. Since the network has a bandwidth of W and

we use TDMA scheme, each square-let can only deliver Θ(1) contents per second. There-

fore, both λcoded(n)(h/M)2F (h) log n and λuncoded(n) (h log(h)/M)2F (h) log n should

scale as Θ(1). This proves the theorem.

Since the throughput capacity in (4.33) (or (4.34)) is achievable throughput

and less than equation (4.16) (or (4.32)), then equation (4.16) (or (4.32)) cannot be

achieved and is only an upper bound.

Remark 4.5.6. Theorem 4.5.5 shows that coded caching increases the throughput

capacity of the multihop femtocaching D2D network by a factor of Θ((log(h))2). Since

h can be a function of n (as will be shown in the next section), it can be concluded

that coded caching can increase the throughput capacity of the network up to a factor

of Θ((log n)2).

Remark 4.5.7. In general, majority of the contents can be retrieved from other UTs.

However, if a content cannot be retrieved from UTs on the path between the helper

and the requesting UT, then the helper directly sends this content through multihop

communication to the requesting UT. This can happen both in coded and uncoded

caching schemes and it happens when the requesting UT is very close to the helper

node.

83

4.6 Capacity of networks with Zipfian content request dis-

tribution

In this section, we compute the throughput capacity of Zipfian distribution by

utilizing the results in sections 4.4 and 4.5. To proceed, we first prove the following

lemma.

Lemma 4.6.1. Let µ and η be constants such that µ > η > 0 and let a(n) and b(n) be

two functions that scale as Θ(nη) and Θ(nµ) respectively. Then, for s > 1 we have

b(n)∑
i=a(n)+1

i−s = Θ(n−η(s−1)). (4.35)

Proof. Let d(n) , b b(n)
a(n)c. We have,

b(n)∑
i=a(n)+1

i−s =

d(n)−1∑
j=1

(j+1)a(n)∑
i=ja(n)+1

i−s +

b(n)∑
i=d(n)a(n)+1

i−s

≤
d(n)−1∑
j=1

(j+1)a(n)∑
i=ja(n)+1

i−s. (4.36)

Since for ja(n) + 1 ≤ i ≤ (j + 1)a(n) we have ja(n) < i, then

(j+1)a(n)∑
i=ja(n)+1

i−s <

(j+1)a(n)∑
i=ja(n)+1

(ja(n))−s = a(n)(ja(n))−s. (4.37)

Combining (4.36) and (4.37), we arrive at

b(n)∑
i=a(n)+1

i−s < a(n)−s+1
d(n)−1∑
j=1

j−s < a(n)−s+1ζ(s), (4.38)

84

where ζ(s) =
∑∞

i=1 i
−s denotes the Reimann zeta function and it is a constant value for

s > 1. Therefore, the upper bound is given by

b(n)∑
i=a(n)+1

i−s = O(a(n)−s+1) = O(n−η(s−1)). (4.39)

For the lower bound of this summation, we will use an integral approximation to derive

the results.

b(n)∑
i=a(n)+1

i−s ≥
∫ b(n)

a(n)+1
x−sdx

=
(a(n) + 1)−s+1 − b(n)−s+1

s− 1
(4.40)

Since, a(n) scales as Θ(nη) and b(n) scales as Θ(nµ) and µ > η, then the first term in

the right hand side of equation (4.40) is dominant and we have

b(n)∑
i=a(n)+1

i−s = Ω(n−η(s−1)). (4.41)

This proves the lemma.

As mentioned in section 4.3, we assume that m is growing polynomially with

n. Lets assume that h which is a tiny fraction of m also grows polynomially with n.

We will now find the necessary growth rate of h with n to guarantee that the request

probability for non-popular contents decays polynomially with n with a decay rate of

ρ > 0. In other words, we want to find the necessary growth rate for hρ such that for

constants c6 and n1 and for any n > n1 we have

P[r > hρ] ≤ c6n
−ρ. (4.42)

85

Assuming that the necessary growth rate for hρ is τ , i.e.hρ= Θ(nτ), using Lemma 4.6.1,

we have

m∑
i=hρ+1

i−s = Θ(n−τ(s−1)). (4.43)

This means that there exist constant c7 and n2 such that for any n > n2 we have

m∑
i=hρ+1

i−s ≤ c7n
−τ(s−1). (4.44)

Since Hm,s ≥ 1, we arrive at

P[r > hρ] = 1− F (hρ) =
m∑

i=hρ+1

i−s

Hm,s
≤ c7n

−τ(s−1). (4.45)

Therefore, to ensure that equation (4.42) remains valid, it is enough to choose c7 equal

to c6 and τ = ρ
s−1 . Hence, to guarantee that (4.42) holds, hρ should scale as

hρ = Θ(n
ρ
s−1). (4.46)

Therefore, in a network where m grows polynomially with n with a rate of α > ρ
s−1 , if

hρ grows as (4.46), the request probability for non-popular contents decays faster than

Θ(n−ρ). For the rest of this section, we assume that ρ is a design parameter and the

helper caches contents from among the hρ = Θ(n
ρ
s−1) most popular contents.

Remark 4.6.2. If we choose hρ based on equation (4.46) such that it satisfies hρ log(hρ) =

O(Ms(n)−1), equations (4.33) and (4.34) can be rewritten as

λρuncoded(n) = Θ

(
1

log n

(
M

hρ log(hρ)

)2
)
, (4.47)

λρcoded(n) = Θ

(
1

log n

(
M

hρ

)2
)
. (4.48)

86

Equations (4.47) and (4.48) show that coded caching can increase the throughput capac-

ity of Zipfian networks by a factor of (log(hρ))
2 which from equation (4.46), it implies

a factor of (log n)2 increase in throughput capacity.

Theorem 4.6.3. For a network with non-heavy tailed Zipfian content request distri-

bution (s > 1) such that the probability of content request from the base station decays

polynomially with n with a rate of ρ and hρ log(hρ) = O(Ms(n)−1), then the following

throughputs are achievable for the D2D network.

λZipf,ρ
uncoded(n) = Θ

(
n−

2ρ
s−1

(log n)3
M2

)
(4.49)

λZipf,ρ
coded(n) = Θ

(
n−

2ρ
s−1

log n
M2

)
(4.50)

Proof. As mentioned earlier, in a Zipfian content request distribution with s > 1 to

ensure that the probability of requesting non-popular contents decays polynomially

with n with a rate of ρ, it is enough to choose hρ as in equation (4.46). If we use this

value for hρ and plug it in equations (4.47) and (4.48), we will arrive at equations (4.49)

and (4.50).

4.7 Simulations

The simulation results compare the performance of proposed decentralized

coded content caching with decentralized uncoded content caching. The helper serves

n = 1000 UTs in the network with Zipfian content request probability with parameter

87

s = 2. In this network, h = 100 highly popular contents account for more than 99%

of the total content requests. Our simulations are carried over a cell with radius 2000

meters and for a D2D transmission range of 10 meters. Figure 4.4 shows the simu-

lation results comparing the average number of hops required to decode the contents

in both decentralized coded and uncoded content caching schemes. The simulation

results clearly demonstrate that decentralized coded cache placement outperforms un-

coded case particularly when the cache size is small which is the usual operating regime.

For instance, with decentralized coded content caching, a cache of size 20 only requires

less than 5 hops while decentralized uncoded content caching needs around 22 hops for

successful content retreival. This makes coded content caching much more practical

compared to uncoded content caching. Note that capacity is inversely proportional to

the average hop counts.

10 20 30 40 50 60 70 80 90 100

Cache size (M)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

Average number of hops versus cache size

Proposed decentralized coded caching

Decentralized uncoded Caching

Figure 4.4: Simulation results for a helper serving 1000 UTs in a cell of radius 2000
meters with a D2D transmission range of 10 meters and a total of 100 popular contents.

88

As can be seen from Figure 4.4, for small cache sizes, coded cache placement

significantly reduces the number of hops required to decode the contents. This property

is important for systems with small storage capability for UTs since large number of

hops can impose excessive delay and low quality of service.

Figure 4.5 compares throughput capacity of coded content caching with un-

coded content caching. The content popularity request distribution is Zipfian with

parameter s = 2.5. The results demonstrate significant capacity gain for decentralized

coded content cache placement. The parameter ρ = 0.75 suggests that h scales as

Θ(
√
n) in this plot (equation (4.46)). Notice that in this plot, m can scale as Θ(nα)

where α > 0.5 can potentially be a large number. As can be seen from Figure 4.5, for

only 100 UTs and a constant cache size, throughput capacity of coded caching is 20

times higher than the throughput capacity of uncoded caching.

10
2

10
3

10
4

10
5

10
6

n

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

N
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t

Throughput of a Network with Zipfian content request distribution with s=2.5

uncoded caching (ρ = 0.75)

proposed coded caching (ρ = 0.75)

Figure 4.5: Network throughput capacity comparison of the decentralized coded content
caching and decentralized uncoded content caching schemes.

89

4.8 Discussion

Decentralized coded caching uses uniform random vectors in Fh2 . This approach

can be considered as special case of LT-codes [90]. In fact, coded caching is a random LT-

code with parameters (h,Ω(x)) where Ω(x) = 1
2h

(1+x)h is the generator polynomial [69].

LT-codes are a practical realization of fountain codes which are proven to be very useful

in erasure channels and storage systems. The uniform random LT-code in our work is

using all the possible random vectors in Fh2 for encoding. This allows the receiver UT

to decode any content by accessing h + 1.6067 cache locations (on average) which is

very close to the optimal value of h. Using other types of LT-codes, the decoding cost

can be reduced but they increase the number of required cache locations to decode the

contents and therefore decrease the capacity compared to uniform random LT-codes.

On the other hand, Raptor codes [90] which are another class of fountain codes can be

used to perform the decoding in constant time with slightly fewer number of required

cache locations (greater than or equal to h). However, if h is large, then the achieved

throughput capacity with raptor codes is very close to our proposed technique.

The proposed approach is similar to Random Linear Network Coding (RLNC)

[42]. In RLNC, each content is divided into chunks and those chunks are randomly

coded and distributed in the network. In order for the user to decode the content, it

must receive enough innovative packets such that it can decode those chunks. In our

approach, we linearly combine different contents and only are interested in one of the

contents. Therefore, in our decoding approach, we don’t transmit all encoded files to

90

the receiver. Instead, the encoding information is sent hop by hop from the helper to

the UTs. Each UT needs to use that encoding information to uniquely combine its

cached files with the received file from previous hop and transmit it to the next hop for

more processing. One can use coded content caching to store files and then use network

coding to transfer these coded contents in the network instead of simply transmitting

the entire encoded files.

91

Chapter 5

Fountain Coding Based Caching in

Wireless Ad Hoc Networks

In this chapter we will propose a new caching technique for wireless ad hoc

networks. Network caching aims to temporarily store data in some nodes within the net-

work to be able to get the contents in shorter time periods. However, caching networks

did not always consider secure storage (due to the compromise between time perfor-

mance and security). In this chapter, a novel decentralized coded caching approach is

proposed. In this solution, nodes only transmit coded files to avoid eavesdropper wire-

tappings and to protect the user contents. In this technique random vectors are used to

combine the contents using XOR operation. We modelled the proposed coded caching

scheme by a Shannon cipher system to show that coded caching achieves asymptotic

perfect secrecy. The proposed coded caching scheme significantly simplifies the routing

protocol in cached networks while it reduces overcaching and achieves a higher through-

92

put capacity compared to uncoded caching in reactive routing. It is shown that with

the proposed coded caching scheme, any content can be retrieved by selecting a ran-

dom path while achieving asymptotic optimum solution. We also study the cache hit

probability and show that the coded cache hit probability is significantly higher than

uncoded caching. A secure caching update algorithm is also presented. The results in

this chapter are published in [56] and [55].

5.1 Motivation

Significant advances in wireless and mobile technologies over the past decades

have made it possible for mobile users to stream high quality videos and to download

large-sized contents. Video streaming applications like Netflix, Hulu and Amazon have

become increasingly popular among mobile users. Close to half of all video plays were

on mobile devices like tablets and smartphones1 during the fourth quarter of 2015.

In parallel, storage capacity of mobile devices has significantly increased with-

out being fully utilized. Efficient use of this under-utilized storage is specially important

for video streaming applications that account for a large portion of the overall internet

traffic.

On the other hand, proprietary content as opposed to user-generated content

is the most important asset of many content sharing companies including Netflix, Hulu

and Amazon. These companies use extreme measures to protect their data and therefore

they are hesitant to let the end users cache their contents locally. One possible solution

1http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-Global-Video-Index-Q4-2015.pdf

93

is to encrypt each content before caching it locally. Encryption algorithms reduce the

content sharing rate. Further, such algorithms are only computationally secure and an

adversary is able to break them with time. For instance, Data Encryption Standard

(DES) which was once the official Federal Information Processing Standard (FIPS)

in US is not considered secure anymore. In this chapter, we propose an information

theoretically secure solution for caching proprietary contents which cannot be decoded

with time.

Physical layer security in wireless networks has been the subject of many recent

research papers. With a focus on physical layer security in wireless ad hoc networks,

we propose a novel decentralized coded caching approach in which random vectors

are used to combine the contents using XOR operation. Nodes only transmit coded

files and therefore an eavesdropper with a noiseless channel cannot decode the desired

contents. Our technique in achieving physical layer security is quite different from

techniques which exploit wireless channel dynamics to achieve physical layer security.

We demonstrate that coded caching technique is similar to Shannon cipher [88] problem

and it can achieve asymptotic perfect secrecy during file transmissions by using a secure

low bandwidth channel to exchange the decoding gains. The main contributions of this

chapter are as follows.

• Introducing decentralized coded caching for wireless ad hoc networks.

• Computing capacity of coded caching for proactive and reactive routing strategies2

2Notice that the notion of proactive (or reactive) routing that we study is the extreme case when
complete (or no) network knowledge is available.

94

and comparing the results with uncoded caching.

• Proving asymptotic perfect secrecy for coded caching scheme.

• Computing the cache hit probability for coded caching and comparing it with

uncoded caching.

• Introducing coded caching update algorithm.

The rest of the chapter is organized as follows. In section 5.2, the related works

are described. In section 5.3, the network model, proposed encoding and decoding and

earlier results on coded caching are described. Section 5.4 focuses on the network

capacity, while the security aspect of coded caching is studied in section 5.5. Cache hit

probability for both coded and uncoded caching approaches is studied in section 5.6.

In section 5.7, an efficient caching update algorithm is proposed. Simulation results are

studied in section 5.8. We have discussed some of the implementation details of our

approach in section 5.9.

5.2 Related Work

Many researchers have investigated the problem of caching in recent years.

The fundamental limits of caching over a shared link is studied in [72]. The authors

in [72] suggested to store uncoded contents or uncoded segments of the contents in the

caches during the cache placement phase. Later on, during the content delivery phase,

they proposed to broadcast coded files to the users which resulted in significant coded

95

multicasting gain. Such a gain is achievable by taking advantage of content overlap at

the various caches in the network, created by a central coordinating server. This work

was later extended in [73] to scenarios with decentralized uncoded cache placement and

there are many other related works that followed the same set of assumptions. While

references [72, 73] study the problem of caching in broadcast channels, we study the

problem of caching in wireless ad hoc networks using multihop communications.

The authors in [45] studied the problem of caching in multihop networks.

They assumed that during the cache placement phase, uncoded contents are stored

in the caches independently in a decentralized fashion. They studied the throughput

capacity of wireless ad hoc networks. In this chapter, we introduce decentralized coded

caching for wireless ad hoc networks and compare our results with uncoded caching

results in [45].

In decentralized uncoded caching scheme that we have considered in this chap-

ter, we assumed that different contents are selected uniformly at random and placed

in the caches during the cache placement phase. We can therefore model the uncoded

caching strategy as a coupon collector problem with group drawings as studied in [91]

and [48]. Similar to the classical coupon collector problem, it is proved in [48] that uni-

form selection of cached contents results in the minimum possible value for the average

number of required hops. Hence, in this chapter we have studied the case of uniform

cache placement which is the best possible scenario in terms of network capacity.

In the proposed decentralized coded caching scheme in this chapter, we have

used random uniform LT codes [69,71,90] to encode the contents during cache placement.

96

In LT coding-based cache placement, an LT code is chosen and then the contents are

encoded using the selected LT code. Then such encoded files are stored in the nodes.

In random binary uniform LT codes [71] a random code of length m is chosen

from Fm2 such that any of its elements is either equal to zero or one. Such a random

code can be represented by a random vector of length m in Fm2 . In our proposed coded

caching approach, contents with indices corresponding to one in the random vector are

added together and the encoded files are cached in the nodes.

Physical layer security has attracted many researchers in recent years. A survey

of recent progress in this field can be found in [11,89]. Security aspects of network coding

is studied in references like [16,67,95]. In this chapter, we will study the security of LT

coding-based caching technique. We specifically investigate the last hop communication

security which is the most vulnerable transmission link. We prove that for a certain

regime of caching sizes in the network, asymptotic perfect secrecy is achievable for the

last hop3. Further, a secure caching update algorithm is proposed.

Our proposed decentralized caching scheme can be used to create a distributed

network coding based storage system. The concept of network coding for distributed

storage was originally studied in [27, 29] where files are divided into packets and nodes

need to collect all the packets to be able to reconstruct their desired contents. In our

proposed distributed caching scheme, the requesting node needs to decode only one

content. The authors in [27, 29] study the repair problem which is the problem of

recovering data when some nodes fail. Further, while they address the repair problem

3Security investigation for other hops remains as future work.

97

using MDS codes, our proposed coded caching technique is based on LT codes [69]. This

chapter focuses on the scaling capacity and security of a network with decentralized

coded caching which is not studied in previous references [27,29].

LT coding based storage is studied in references like [17, 99]. Reference [17]

investigates the repair problem of LT codes in cloud services and [99] proposes new

types of LT codes for storage systems. Use of fountain codes and Raptor codes [90] has

also been studied in [28, 40, 61, 96, 97]. None of these references have studied capacity,

cache hit probabilities, cache update algorithms and security of LT code based storage

in wireless ad hoc networks.

5.3 Preliminaries

5.3.1 Network Model

We consider a dense wireless ad hoc network in which n nodes are uniformly

distributed over a square of unit area as depicted in Figure 5.1. These nodes use

multihop communications to request one of m contents from a set labeled as F =

{F1, F2, . . . , Fm}. The requested content is denoted by Fr and the minimum number

of nodes to decode Fr by Nr. The minimum number of nodes to decode any requested

content is denoted by N . We also assume that each node can cache M files of equal size

each containing Q bits. In practice, the contents are divided into equal-sized chunks and

the chunks are cached. Such an assumption is common in many references including

[53,72,73].

98

c1s(n)

sg(n)

c2c1s(n)

anchor
node
requesting
nodes

Figure 5.1: Each local group with side length sg(n) contains many square-lets of side
length c1s(n). Each square-let has one randomly selected anchor node.

The unit square area in Figure 5.1 is divided into many square-lets each with

a side length of c1s(n) where s(n) =
√

log(n)/n. It is shown [62] that each square-let

contains Θ(log(n)) nodes with probability 1. To avoid multiple access interference, a

Protocol Model [103] is considered for successful communication between nodes. A Time

Division Multiple Access (TDMA) scheme is assumed for the transmission between the

square-lets. With the assumption of Protocol Model, if each square-let has a side length

of c1s(n) for a constant c1, then the square-lets with a distance of c2 = 2+∆
c1

square-lets

apart can transmit simultaneously without significant interference [62] for a constant

value ∆.

For our proactive routing analysis, we assume that one of the nodes in each

square-let is randomly chosen which is called anchor node. This node collects all the

information in the square-let and combines them and relays the coded information to

99

the next hop toward the requesting node. It is known that a minimum transmission

range of Θ

(√
log(n)
n

)
ensures network connectivity [50] in such a dense network.

For the case of uncoded caching with proactive routing, [45] proposes a solution

in which groups of neighboring square-lets will cooperate together to form a local group.

It is proved [45] that for a square local group with side length sg(n) = Θ
(√

m
nM

)
,

any requested content is available in at least one node in the local group. A routing

protocol [62] within the local group connects the source to destination through a series

of horizontal and vertical square-lets. In this approach, it is assumed that a global

knowledge of cached contents within each local group is known to all the nodes in that

local group. Such an assumption results in significant overhead which requires allocating

part of network capacity to the exchange of this information [75]. Further, exchange of

this information poses significant security threat and allows an eavesdropper to find out

which contents are cached in the local group.

In this paper, we propose a decentralized coded caching approach based on ran-

dom vectors. In this technique the contents are randomly and independently combined

and stored in caches. When a node requests a content, a unique linear combination of

coded files can reconstruct the requested content. Therefore, each node first combines

its encoded files and then transmits it to the anchor node (yellow circles in Figure 5.1).

The anchor node also adds some information from its cache and forwards the newly

updated file to the next anchor node closer to the requesting node as shown in the lower

left local group in Figure 5.1. This process continues until the requesting node receives

all the required coded files for decoding as shown in Figure 5.2. For reactive routing

100

approach, a random direction in the network is selected. Using the cached information

in this random direction, the desired content can be obtained as shown in the upper

left corner of Figure 5.1. Interestingly, we prove selecting a random direction is optimal

in terms of number of hops traversed to retrieve the content. In both cases, perfect

communication secrecy is achievable.

N1 N2 N4N0 N3 N5

N6 N7
N8

N9N10

Figure 5.2: When a node N0 requests a file, it starts gathering the coded files from all
the nodes in the local group. Once it gathers all these files, it adds its own coded files
to it to create its desired file.

5.3.2 Decentralized Coded Cache Placement

In our proposed coded cache placement approach, a randomly encoded file rij

is created and placed in the jth cache location of node i. This randomly encoded file is

a bit-wise summation of random contents from F . In other words,

rij =
m∑
l=1

ai,jl Fl = vijF, (5.1)

where F = [F1 F2 . . . Fm]T represents the contents vector and vij = [ai,j1 ai,j2 . . . ai,jm]T ∈

Fm2 is a random row vector with each element equal to 0 or 1 and the summation is carried

over Galois Field GF(2). This process is repeated independently for all cache locations

of all nodes4. Notice that based on this construction, each vector vij is uniformly selected

4In practice, each node chooses M linearly independent random vectors during cache placement
phase. However, to simplify the analysis, we drop the independence assumption for different cache

101

from the set of all vectors in Fm2 . Notice that this specific choice of fountain codes is

known as Random Linear Fountain (RLF) codes [71] or Random Uniform LT codes [90].

5.3.3 Content Reconstruction

In order to decode any of the contents, nodes need to find m linearly inde-

pendent vectors vij to span the m-dimensional space. For each requested content Fr, a

unique combination of these encoded files will generate Fr. In both routing scenarios,

the computation of appropriate gains for the combination of coded files is carried by

the requesting node and this information is relayed to the neighboring nodes.

As depicted in Figure 5.2, node Ni in the routing path can contribute up to

M linearly independent row vectors vi1,v
i
2, . . . ,v

i
M to span the entire space. Node Ni

applies gain bij ∈ {0, 1} to its jth cached file rij and then adds (in binary field)
∑M

j=1 b
i
jr
i
j

to the file it has received from previous hop and passes the newly constructed file to the

next hop toward requesting node N0. After a total of Nr transmissions, the requesting

node receives (
∑Nr

i=1

∑M
j=1 b

i
jv

i
j)F. It will then applies decoding coefficients to its own

cached files and adds it to the received file to reconstruct the desired content. Note

that each relay node adds some encoded files to the received file and relays it forward.

The coefficients bij ∈ {0, 1} are selected such that the linear combination of encoded files

produce the desired requested content.

locations of a node. Therefore, analytical capacity results found in this paper are pessimistic and in
practice the network capacity will increase.

102

5.3.4 Prior Results

The coded caching was originally introduced in [52] and [57] for cellular net-

works. Lemma 4.5.1 proved in [52] and [57] shows that the average number of cached

files to reconstruct any content is equal to m+c3 which is very close to m for large values

of m. This shows that random uniform vectors perform close to optimal in terms of

minimizing the number of cache locations. Based on Lemma 4.5.1, we have the following

corollary.

Corollary 5.3.1. If random uniform vectors are used to create encoded files and then

these files are independently cached in node caches, then on average E[N] = (m +

c3)/M = Θ(m/M) nodes are required to decode any requested content.

Theorem 5.3.2. In the proposed coded caching scheme, selecting a random direction is

asymptotically optimal in terms of minimizing the number of hops required to retrieve

all the contents.

Proof. In the proposed coded caching scheme, random vectors in Fm2 are used for en-

coding the contents. In Lemma 4.5.1 which is proved in our earlier publications [52]

and [57], we have shown that on average m + c3 (where c3 ≈ 1.6067) random vectors

are needed to span the whole m-dimensional space of Fm2 . Therefore, with the proposed

decentralized coded caching scheme on average E[N] = d(m+c3)/Me nodes are required

to decode any requested content. Therefore, no matter which routing direction is chosen

for content retrieval, if on average E[N] = d(m+c3)/Me hops are traversed, any content

can be reconstructed.

103

On the other hand, to be able to retrieve all the contents, at least m cache

locations are necessary. This means that at least dm/Me nodes are required for content

retrieval in any caching scheme. Since m + c3 is very close to m for large values of m,

then Θ(d(m+c3)/Me) = Θ(dm/Me) = Θ(m/M), this proves that selecting any random

direction is asymptotically optimal in terms of the minimum required number of hops

for content retrieval.

Notice that Theorem 5.3.2 is intuitively valid since we have used completely

random vectors and this means that all of the contents are equally distributed in all

directions.

5.4 Capacity

This section is dedicated to computation of network throughput capacity of

decentralized coded and uncoded caching schemes for proactive and reactive routing

techniques. First, we define the precise notions of achievable throughput and network

throughput capacity as follows.

Definition 5.4.1. A network throughput of λ(n) contents per second for each node is

achievable if there is a scheme for scheduling transmissions in the network, such that

every content request by each node can be served by a rate of λ(n) contents per second.

Whether a particular network throughput is achievable depends on the specific

cache placement and node locations in the network. Since the location of the nodes and

104

the cache placement in nodes is random, we will define the network capacity as the

maximum asymptotic network throughput achievable with probability 1.

Definition 5.4.2. We say that the throughput capacity of the network is lower bounded

by Ω(g(n)) contents per second if a deterministic constant c5 > 0 exists such that

lim
n→∞

P[λ(n) = c5g(n) is achievable] = 1. (5.2)

We say thet the network throughput capacity is upper bounded by O(g(n)) contents

per second if a deterministic constant c6 < +∞ exists such that

lim inf
n→∞

P[λ(n) = c6g(n) is achievable] < 1. (5.3)

We say that the network throughput capacity is of order Θ(g(n)) contents per second

if it is lower bounded by Ω(g(n)) and upper bounded by O(g(n)).

In this chapter, we study the throughput capacity after the cache placement

phase and during the content delivery phase. In the following, we will describe the

necessary size of the local group to decode all the contents in proactive routing approach.

Remark 5.4.3. Corollary 5.3.1 suggests that for decentralized coded caching on average

Θ(m/M) nodes are needed to decode any desired content. Since any local group in

proactive routing on average has Θ(nsg(n)2) nodes, then the average local group side

length of sg(n) = Θ
(√

m
nM

)
will be enough to decode all the contents. Notice that

similar local group side length is found in [45] for the case of uncoded caching.

105

5.4.1 Capacity of proactive routing approach

In this section we assume that any node in each local group is completely

aware of all the files cached in its local group. Nodes in local groups are cooperating

with each other to transfer a requested content. In uncoded caching scenario it has

been proved [45] that if M ≤ m < nM , a capacity of Θ
(√

M/m
)

is achievable. Our

proposed decentralized coded caching approach achieves a capacity of Θ (M/(m log(n)))

while providing perfect secrecy as will be proved subsequently.

Theorem 5.4.4. In decentralized coded caching with a proactive routing scheme the

following network throughput capacity is achievable

λ(n) = Θ

(
M

m log(n)

)
. (5.4)

Proof. Corollary 5.3.1 shows that on average E[N] = Θ(m/M) nodes are required to

reconstruct all the contents in decentralized coded caching. Remark 5.4.3 shows that

each local group of side length Θ
(√

m
nM

)
contains this many nodes. As shown in Figure

5.1, all these nodes cooperate to transmit the content to the requesting node. Since

there are Θ(log(n)) nodes in each square-let, the total number of transmissions for one

request in a local group is equal to Θ

(
log(n)

(
sg(n)
s(n)

)2
)

. Therefore, the total number

of file transmissions to satisfy all content requests in each local group has the order of

Θ

(
log(n)

(
sg(n)
s(n)

)2
m
M

)
. On the other hand, in each local group we can have Θ

(
sg(n)
s(n)

)2

106

simultaneous transmissions. This implies that a network throughput of

λ(n) = Θ

(
sg(n)
s(n)

)2

log(n)
(
sg(n)
s(n)

)2
m
M

 = Θ

(
M

m log(n)

)
(5.5)

is achievable.

5.4.2 Capacity of reactive routing approach

Reactive routing usually requires less overhead but incurs higher delays in

content delivery. However, one of the advantages of our proposed coded caching is

that we can select any random direction and decode the desired content with the same

optimum number of nodes. Such a scenario is depicted in the upper left corner of Figure

5.1.

For simplicity of our capacity analysis, we assume that all contents are of

equal size with each having Q bits. This is a reasonable assumption since in practice

the contents are divided into equal-sized chunks. Many references including [53, 72, 73]

have assumed that the files are divided into equal chunks to be used during the cache

placement phase. Assume that λ(n) is the maximum achievable network throughput.

This implies that with a probability close to one, the network can deliver nλ(n) contents

per second. Therefore, with a probability close to one, network nodes can transmit

nλ(n)E[N]Q bits per second. There are exactly 1
(c2c1s(n))2

square-lets at any time slot

available for transmission. Hence, the total number of bits that the network is capable

of delivering is equal to W
(c2c1s(n))2

where W is the total available bandwidth. Therefore,

λ(n) =
W

nE[N]Q(c2c1s(n))2
= Θ

(
1

E[N] log n

)
, (5.6)

107

where W and Q are the total available bandwidth and total number of bits for each con-

tent respectively. This suggests that to find the maximum achievable network through-

put, it is enough to find the average number of transmission hops needed to deliver the

contents.

Theorem 5.4.5. In decentralized coded caching with reactive routing, the network

capacity is

λ(n) = Θ

(
M

m log(n)

)
. (5.7)

Proof. Using Lemma 4.5.1, on average E[N] = Θ(mM) nodes (or equivalently hops) are

required to decode a content in decentralized coded caching. This along with equation

(5.6) proves the theorem.

In decentralized uncoded caching strategy, nodes cache contents with uniform

distribution. We use Lemma 4.4.2 to find the average number of traveled hops in this

case.

Theorem 5.4.6. If m >> M , the capacity of the network using decentralized uncoded

caching is equal to

λ = Θ

(
M

m log(m) log(n)

)
. (5.8)

Proof. Lemma 4.4.2 shows that in case of uncoded caching the average number of nodes

108

needed so that all of the requests can be satisfied is between

mHm

d(m,M)
≤ E[N] ≤ 1 +

mHm

d(m,M)
. (5.9)

Therefore, for large values of m, the average number of nodes for decoding scales as

E[N] = Θ

(
mHm

d(m,M)

)
. (5.10)

To find a bound for d(m,M), notice that the series in the right hand side of equation

(4.9) has M terms and the maximum term m
m−M+1 corresponds to the case when j =

M − 1 and the minimum term 1 corresponds to the case when j = 0. A lower bound

and an upper bound on d(m,M) can be found by using the minimum and maximum

terms respectively. Therefore,

M ≤ d(m,M) ≤ Mm

m−M + 1
. (5.11)

When m >> M , then the lower and upper bounds of equation (5.11) converge to the

same value of M .

E[N] = Θ

(
m log(m)

M

)
(5.12)

Combining (5.12) and (5.6) proves the theorem.

Remark 5.4.7. Theorems 4.5.3 and 5.4.6 show that decentralized coded caching strat-

egy can improve the network capacity by a factor of log(m) in reactive routing.

Figure 5.3 compares the capacity of coded caching with uncoded caching for

both proactive and reactive routing algorithms. To plot this figure, we assumed that the

109

number of contents m, grows polynomially with the number of nodes n. Coded caching

provides perfect secrecy as will be discussed later while it performs better (worse) than

uncoded caching for reactive (proactive) routing algorithm.

10 2 10 3 10 4 10 5 10 6

n

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
C

a
p
a
c
it
y

Theoretical comparison of capacity

uncoded caching, proactive routing

uncoded caching, reactive routing

coded caching (reactive/proactive)

Figure 5.3: Capacity for coded and uncoded caching using proactive and reactive routing
algorithms.

5.5 Security

This section evaluates the security of coded caching strategy. Note that un-

coded caching allows an adversary with a noiseless wiretap channel to perfectly receive

the transmitted files. We prove that such an eavesdropper will not be able to reduce

its equivocation about the transmitted files in coded caching approach when there is

a large number of files. Therefore, asymptotic perfect secrecy can be achieved. This

problem was originally studied by Shannon [88].

110

Our secrecy proof is applicable to both proactive and reactive routing schemes.

As described earlier, each node combines its encoded files as xi =
∑M

j=1 b
i
jr
i
j =

∑M
j=1 b

i
jv

i
jF

and adds it to the previously received file and forwards it to the next hop. Therefore,

the aggregate received file by the requesting node N0 is

Sr =

Nr∑
i=1

xi =

Nr∑
i=1

M∑
j=1

bijr
i
j . (5.13)

We assume that the encoding vectors vij of the neighboring nodes are transmitted to the

requesting node N0 through a secure low bandwidth channel. When enough number of

such vectors are gathered, N0 computes the decoding coefficients bij in order to generate

the desired file Fr. Then, it sends back the bij coefficients through the low bandwidth

secure channel to its neighboring nodes. The secure channel is used only to transmit

the encoding and decoding information. Transmitting the large encoded files through

secure channel would be undesirable due to low bandwidth constraint. However, the

encoding vectors vij and the decoding gains bij have much smaller sizes and they can be

securely transmitted over the low bandwidth secure channel.

If content Fr is used in the encoding of at least one of the coded cached files

in N0 (i.e. a0,j
r = 1 for some 1 ≤ j ≤M), then the requesting node N0 can generate the

file

x0
r =

M∑
j=1

b0jr
0
j =

M∑
j=1

b0jv
0
jF = Fr +

M∑
j=1

b
′0
j v0

jF (5.14)

from its own encoded cached files. Note that vreq =
∑M

j=1 b
′0
j v0

j is a coding vector in

m-dimensional space. Node N0 only needs to receive Sr = vreqF and add Sr to x0
r

in GF(2) to retrieve Fr. The requesting node N0 uses the secure channel to collect

111

enough number of encoding vectors in order to span vreq. Then the requesting node

N0 finds the appropriate decoding coefficients bij to span vreq and sends these decoding

coefficients back to the neighboring nodes through the secure channel. The neighboring

nodes collaboratively create the right decoding file Sr and transmit it to N0.

The second possibility which is less likely to happen for large values of M is

that none of the encoded files in N0 contains Fr (i.e. a0,j
r = 0 for all 1 ≤ j ≤ M). In

that case, N0 generates a unique combination of its encoded files as x0
r =

∑M
j=1 b

0
jv

0
jF.

In order to decode Fr, node N0 needs to receive Sr = Fr + x0
r . Hence, it uses the secure

channel to collect enough number of encoding vectors vij to be able to construct Sr. After

solving the linear equation in GF(2), it sends the decoding gains back to the neighboring

nodes such that they can collaboratively create the encoded file Sr = Fr + x0
r . When

N0 receives Sr, it can add it to x0
r to decode Fr.

We claim asymptotic perfect secrecy for this approach is achievable as long as

for each requested file Fr, the requesting node generates a different encoded combination

x0
r which acts similar to key and hence, the transmitted signal is in fact an encrypted

version of the message Fr. The intended receiver is indeed capable of decrypting the

message by adding its secret key x0
r to it. Notice that for each requested file Fr, a

different key x0
r is generated using the encoded cached files in the requesting nodes. No

other eavesdropper will be able to decode the message as they do not have the secret

key x0
r . The main advantage of the legitimate receiver is the information stored in its

cache which allows it to create a unique key x0
r for each requested file Fr. This is similar

to Shannon cipher problem [88].

112

In [88], Shannon introduced the Shannon cipher system in which an encoding

function e : M × K → C is mapping a message M from the set of all messages M and

a key K from a set of keys K to a codeword C from the set of codewords C. In our

problem, for each requested content by a user, the legitimate receiver uses a unique

key K to recover the message M. Even when a different user requests the same file, it

uses a different key because each user caches different encoded files. The unique key for

each user depends on the coded files that the node is storing and the coded files from

neighboring nodes used for decoding the requested file. Shannon proved that if a coding

scheme for Shannon’s cipher system achieves perfect secrecy, then H(K) ≥ H(M) where

H(.) denotes the entropy. He proved that at least one secret key bit should be used for

each message bit to achieve perfect secrecy. If the sizes of messages, keys and codewords

are the same, there are necessary and sufficient conditions [11] to obtain perfect secrecy

presented in the following theorem.

Theorem 5.5.1. If |M| = |K| = |C|, a coding scheme achieves perfect secrecy if and

only if

• For each pair (M,C) ∈ (M × C), there exists a unique key K ∈ K such that

C = e(M,K).

• The key K is uniformly distributed in K.

Proof. The proof can be found in section 3.1 of [11].

We will use Theorem 5.5.1 to prove that our approach can achieve asymptotic

113

perfect secrecy. In either of the cases, the requesting node N0 receives a codeword5

Sr = Fr + x0
r from the last node adjacent to N0. Node N0 uses XOR operation to

decode Fr from Sr using it’s secret key x0
r . Therefore, we have a Shannon cipher system

in which M = Fr,K = x0
r ,C = Sr and e denotes the XOR operation. To use this

theorem, first we prove that for large enough values of m, the key x0
r is uniformly

distributed.

Lemma 5.5.2. The asymptotic distribution of bits of coded files in caches tend to

uniform.

Proof. We assume that all files have Q bits and they may have a distribution different

from uniform. We will prove that each coded cache file will be uniformly distributed

for large values of m. Let us denote the kth bit of file Fl by fkl where 1 ≤ k ≤ Q and

1 ≤ l ≤ m. Assume that Pr(fkl = 1) = pkl = 1 − Pr(fkl = 0). Further, we assume

that the bits of files (fkl) are independent. The kth bit of the coded file in the jth cache

location of node i can be represented as

rki,j =

m∑
l=1

ai,jl f
k
l , (5.15)

where ai,jl is a binary value with uniform distribution and independent of all other

bits. Using regular summation (not over GF(2)) and denoting hi,j,kl , ai,jl f
k
l , we define

H i,j,k ,
∑m

l=1 h
i,j,k
l . Therefore, Pr[rki,j = 0] = Pr[H i,j,k 2≡ 0]. Therefore, the kth bit

of the coded file is equal to 0 if an even number of terms in H i,j,k is equal to 1. The

probability distribution of H i,j,k can be computed using probability generating functions.

5This is true for both scenarios because all the operations are in GF(2).

114

Since hi,j,kl is a Bernoulli random variable with probability 1
2p
k
l , its probability generating

function is equal to

Gi,j,kl (z) = (1− 1

2
pkl) +

1

2
pkl z. (5.16)

Since ai,jl and fkl are independent random variables, hi,j,kl will become independent

random variables. Therefore, the probability generating function of H i,j,k denoted by

Gi,j,kH (z) is the product of all probability generating functions.

Gi,j,kH (z) =

m∏
l=1

(
(1− 1

2
pkl) +

1

2
pkl z

)
. (5.17)

Denoting the probability distribution of H i,j,k as h(.), the probability of H i,j,k being

even is

Pr[H i,j,k 2≡ 0] =

bm
2
c∑

u=0

h(2u) =

bm
2
c∑

u=0

h(2u)z2u

∣∣∣∣
z=1

=
1

2

[
m∑
u=0

h(u)zu +

m∑
u=0

h(u)(−z)u
]
z=1

=
1

2
Gi,j,kH (1) +

1

2
Gi,j,kH (−1) =

1

2

m∏
l=1

(
(1− 1

2
pkl) +

1

2
pkl

)

+
1

2

m∏
l=1

(
(1− 1

2
pkl)−

1

2
pkl

)
=

1

2

(
1 +

m∏
l=1

(
1− pkl

))

Therefore,

lim
m→∞

Pr[rki,j = 0] = lim
m→∞

1

2

(
1 +

m∏
l=1

(
1− pkl

))
=

1

2
+

1

2
lim
m→∞

m∏
l=1

(
1− pkl

)
=

1

2
+

1

2
lim
m→∞

(
1− inf{pkl }

)m
=

1

2
.

This proves the lemma.

This lemma paves the way to prove the following theorem.

115

Theorem 5.5.3. The proposed coded caching strategy provides asymptotic perfect

secrecy for the last hop if m is large and m < 2M .

Proof. To formulate this as a Shannon cipher problem, we assume that M = Fr, K = x0
r ,

and C = Sr. The condition m < 2M ensures that a unique key exists for each requested

message since at most 2M possible random keys can be built from M cached files. The

encoding function is XOR operation. For any pair (m,C) ∈ (M,C), a unique key K ∈ K

exists such that C = m + K which guarantees that |M| = |K| = |C|.

Notice that the key K = x0
r belongs to the set of all possible bit strings with Q

bits. Lemma 5.5.2 proves that each coded cached content is uniformly distributed among

all Q-bit strings. Hence each key which is a unique summation of cached encoded files

is uniformly distributed among the set of all Q-bit strings. In other words, regardless

of the distribution of the bits in files, x0
r can be any bit string with equal probability

for large values of m. Therefore, conditions of Theorem 5.5.1 are met and asymptotic

perfect secrecy is achieved.

Remark 5.5.4. In this chapter, we only studied the security of last hop communica-

tions in our approach and proved that even in the most vulnerable (last) link, secure

communications is possible. A more general security study for all links remains as future

work. Also, the study of the security of this approach against cooperative eavesdroppers

remains as future work.

116

5.6 Cache Hit Probability

This section is dedicated to computation of cache hit probability when a node

N0 can access u other nodes N1, . . . ,Nu or equivalently, l = uM cache locations. We

compute the event thatN0 can decode any desired file in the set F with this information.

First, let’s define the cache hit probability.

Definition 5.6.1. The cache hit probability for all contents is defined as the probability

that any content can be retrieved using the cached information in nodes N1, . . . ,Nu.

We will first study uncoded cache hit probability.

5.6.1 Uncoded Caching

In uncoded caching, each node is randomly choosing M different contents from

the set of m contents. This can be modeled as a coupon collector problem with group

drawings in which a coupon collector is collecting a number of different coupons in each

time and wants to find the probability that after u group collections, all the contents

are collected. This problem is well-studied in [48, 91] and summarized in the following

theorem.

Theorem 5.6.2. Assume that a coupon collector collects m different coupons. Each

time a bundle of M different coupons are drawn uniformly at random. If u bundles are

collected, then the probability that all the coupons are collected is equal to

Pall collected =

m−M∑
j=0

(−1)j
(
m

j

)((m−j
M

)(
m
M

))u (5.18)

117

Proof. The proof can be found in [91] (a special case of Theorem 1) and also in page

164 of [48].

Result of Theorem 5.6.2 is the cache hit probability for collecting all contents

when uncoded caching is used.

5.6.2 Coded caching

In coded caching, we want to compute the probability that there exists m

linearly independent vectors within l = uM random encoding vectors. If m > l = uM ,

this probability is clearly zero. Therefore, without loss of generality, we compute this

probability for when l = uM ≥ m. This problem has been studied in the literature [60]

and the results are summarized below.

Theorem 5.6.3. Let l ≥ m ≥ 1 and s be positive integers and r = l −m. If A = [aij]

is an l × m matrix whose elements are independent binary uniform random variables

and ρm(l) is the rank of matrix A in GF(2), then if m→∞ we have

P[ρm(l) = m− s]→ 2−s(s+r)
∞∏

i=s+1

(
1− 1

2i

)

×
r+s∏
j=1

(
1− 1

2j

)−1

, (5.19)

where the last product equals 1 for s+ r = 0.

Proof. This is Theorem 3.2.1 in page 126 of [60].

Corollary 5.6.4. Let l ≥ m and A = [aij] be an l × m matrix whose elements are

independent binary uniform random variables and ρm(l) be the rank of matrix A in

118

GF(2). If m→∞, then

P[ρm(l) = m]→
∞∏

i=l−m+1

(
1− 1

2i

)
. (5.20)

Equation (5.20) is the cache hit probability for coded caching approach.

Remark 5.6.5. The cache hit probability for coded caching very quickly approaches 1

if l is slightly larger than m. In fact, there is a very sharp transitioning of the probability

from 0 to 1 in coded caching around the point l = m. However, in uncoded caching, l

should be much larger than m in order for the cache hit probability to get close to 1

(see Figure 5.5).

Remark 5.6.6. This result demonstrates that coded caching scheme utilizes the cache

space efficiently and avoids over-caching unlike uncoded caching approach.

5.7 Cache Update Algorithm

In this section, a caching update algorithm is described. Let’s assume a new

content Fnew should replace another content Fk based on some replacement policy such

as Least Recently Used (LRU) or Least Frequently Used (LFU) policy. The network

controller uses a bit scrambling technique to create a file F
′
new with uniform bit distri-

bution from Fnew. Such bit scrambling techniques are widely used in communication

systems to give the transmitted data useful engineering properties [43]. Notice that the

bit scrambling technique makes F
′
new equivalent of temporary secret key with uniform

119

distribution. The network controller then generates Fk + F
′
new and broadcasts this file

to the network nodes. When node Ni receives Fk + F
′
new, it will add Fk + F

′
new to all

of its cached encoded files rij which contain Fk, i.e., all rij ’s for which ai,jk = 1. In other

words, if in the jth location of node i we have

rij = Fk +

m∑
l=1
l 6=k

ai,jl Fl, (5.21)

then Fk +F
′
new will be added to rij . This replaces Fk with F

′
new in all encoded files that

contains Fk. If some cached encoded files does not contain Fk, then no action is required

for those encoded files. Nodes can then decode F
′
new using the same decoding gains as

for Fk without any additional overhead. When F
′
new is decoded, then a de-scrambling

algorithm can be used to recover Fnew from F
′
new. A pseudocode representation of our

caching update protocol is shown in Algorithm 2.

Notice that during the caching update phase none of the actual contents is

transmitted and any eavesdropper would only receive encoded version of the files. There-

fore, with this caching update technique, the cached contents can be updated securely.

5.8 Simulation

This section describes simulation results to verify that the proposed decentral-

ized coded caching scheme can significantly reduce the average number of traveresed

hops to retrieve the contents. We will also show through simulations that selecting a

random direction for content retreival is optimal. Further, in this section we will use

simulations to show that the cache hit probability of coded scheme is much higher than

120

Algorithm 2 Cache Update Algorithm

1: procedure Cache Update

2: Find the content Fk that should be replaced.

3: Scramble Fnew to get F
′
new with uniform bits.

4: Encode the new content F
′
new with Fk as F

′
new ⊕ Fk.

5: Broadcast F
′
new ⊕ Fk to all the nodes.

6: for the jth cache location of node i do

7: if Fk is used in encoding rij (i.e. ai,jk = 1) then

8: Update the jth cache location of node i with

F
′
new ⊕ Fk ⊕ rij .

that of uncoded caching.

The simulation results in Figure 5.4 compare the performance of the proposed

decentralized coded caching scheme with decentralized uncoded caching. We considered

a wireless ad hoc network of n = 1000 nodes with m = 100 contents. In this figure,

the average number of hops required to decode the contents in both decentralized coded

and uncoded caching schemes are compared. The simulation results clearly demonstrate

that decentralized coded caching outperforms uncoded case particularly when the cache

size is small which is the usual operating regime. For instance, with decentralized coded

content caching, a cache of size 25 only requires less than 5 hops while decentralized

uncoded content caching needs around 20 hops for successful content retreival. This

makes coded content caching much more practical compared to uncoded content caching.

121

10 20 30 40 50 60 70 80 90 100

Cache size (M)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

Average number of hops versus cache size

Coded Caching (North Direction)

Coded Caching (South Direction)

Coded Caching (West Direction)

Coded Caching (East Direction)

Uncoded Caching

Figure 5.4: Simulation results show that the proposed coded caching approach can
significantly reduce the traveresed number of hops when a node wants to access the
contents.

Note that capacity is inversely proportional to the average hop counts. As can be seen

from Figure 5.4, for small cache sizes, coded caching significantly reduces the number

of hops required to decode the contents. This property is important for nodes with

small storage capability since large number of hops can impose excessive delay and low

quality of service.

Figure 5.4 on the other hand proves another important result that content

retreival can be optimally done in any random direction. In this plot, we have used ran-

dom directions of east, west, south and north for content retreival using coded caching

and we have shown that the average number of hops in any of these random directions

is the same. The four plots corresponding to these four directions is so close that it is

hard to notice them at first sight.

122

Figure 5.5 shows the simulation results for different values of M when m = 100.

The cache hit probability is plotted as a function of the number of cached contents l

and for different cache sizes M . However, for each fixed value of l, the number of

nodes µ = l
M will be different depending on M . For instance, at l = 400, M and µ

are 25 and 16 respectively. The simulation results are validating the theoretical results

in Theorem 5.6.2 and Corollary 5.6.4. As can be seen from this figure, the cache hit

probability for coded caching is much higher than that of uncoded caching. Also, it is

clear from this plot that the cache hit probability of coded caching approaches 1 rapidly

when l starts to increase from m. For uncoded caching, specially when m is large, the

receiver should access a much larger number of cached contents such that the cache hit

probability approaches 1. Therefore, in networks with a large number of contents our

coded caching approach will quickly achieve a cache hit probability of close to one with

a much smaller number of cache locations. This is a significant benefit of our technique

in reducing the overcaching.

5.9 Discussion

While in this chapter we considered a static network in which the location of

nodes does not change, our results can be extended to dynamic mobile or vehicular

networks in which the transmission time is much smaller than the required time to

change the location of the vehicles. In future vehicular wireless networks where vehicles

use millimeter waves to communicate, bandwidths of up to 60 GHz and data rates

123

100 150 200 250 300 350 400 450 500

Number of cached contents

-0.2

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
d
e
c
o
d
in

g
 a

n
y
 d

e
s
ir
e
d
 c

o
n
te

n
t

Probability of decoding versus the number of cached contents

Coded caching, m = 100, all M, (Simulation)

Coded caching, m = 100, all M, (Theory)

Uncoded caching, m = 100, (Simulation)

Uncoded caching, m = 100, (Theory)

M=25

M=20

M=10

M=5

Figure 5.5: Cache hit probability for any desired content when m = 100.

of up to 700 Mpbs are achievable [94]. Large chunks of files can be downloaded in a

very short time before the vehicles can move relative to each other in such networks.

Further, the size of the file chunks can be adjusted based on the network dynamism. An

adaptive file segementation algorithm can choose a low file chunk size for high changing

network environments while it can choose a much larger file chunk size for slow changing

networks.

Our goal in this chapter was to prove that we can achieve better security, cache

hit probability and capacity results with coded caching. We considered the case when

completely random vectors are uniformly selected to encode the contents. Our results in

this chapter including the capacity and cache hit probability are based on this specific

cache placement strategy. While other fountain coding choices for cache placement

124

may reduce the decoding complexity, they can also reduce the capacity or cache hit

probability. Network designers should consider many factors including the decoding

complexity, delay, number of hops and routing (reactive or proactive) for selecting the

appropriate fountain coding scheme for cache placement.

125

Chapter 6

Fountain Coding Based Storage in

Distributed Cloud Systems

In this chapter an information theoretic approach to security and privacy is

introduced. The approach called Secure And Private Information Retrieval (SAPIR) is

applied to distributed data storage systems. In this approach, random combinations of

all contents are stored across the network. Our coding approach is based on Random

Linear Fountain (RLF) codes. To retrieve a content, a group of servers collaborate with

each other to form a Reconstruction Group (RG). SAPIR achieves asymptotic perfect

secrecy if at least one of the servers within an RG is not compromised. Further, a private

information retrieval scheme based on random queries is proposed. This information

theoretic approach ensures the users to privately download their desired contents with-

out the servers knowing about the requested contents indices. The proposed scheme is

adaptive and can provide privacy against a significant number of colluding servers. The

126

results in this chapter are published in [54].

6.1 Motivation

Cloud networks have become a popular platform for data storage during the

past decade. Security of the stored data has always been a major concern for many

cloud service providers. Many cloud service providers use encryption algorithms to en-

crypt the data on their servers. Dropbox, for instance, is using Advanced Encryption

Standard (AES) to store the contents on its servers1. Since the encryption algorithms

are computationally secure, an adversary may be able to break them with time. For

instance, Data Encryption Standard (DES) which was once the official Federal Informa-

tion Processing Standard (FIPS) in US is not considered secure anymore. An interesting

problem in highly sensitive cloud services would then be to look for information theoretic

secure solutions which are immune to attackers in time.

To achieve perfect information theoretic secrecy using Shannon cipher system

[88], the number of keys should be equal to the number of messages. Therefore, to

retrieve the contents from the cloud using an information theoretically secure approach

in which the contents are directly encoded with a different key, each user needs to store

a huge number of keys which is not practical. In this chapter we propose a technique

in which the storage capability of the trusted servers are efficiently used to generate

the keys by using the contents themselves and achieve asymptotic perfect secrecy. Our

proposed technique is based on Random Linear Fountain (RLF) codes [71]. RLF codes

1https://www.dropbox.com/en/help/27

127

have been shown [52,56,57] to be very useful in distributed storage systems.

On the other hand, in many distributed storage applications like Peer-to-Peer

(P2P) distributed storage systems or distributed storage systems in which some of the

servers are under the control of an oppressive government, a user wants to download a

content from a pool of distributed servers in a way that the servers cannot determine

which content is requested by the user. This is widely known as Private Information

Retrieval (PIR) problem.

In this chapter, we propose a novel technique to address the PIR problem in

distributed storage systems. In our solution, users use random queries to request data

from the servers. These random queries are designed in a way that they can be used to

retrieve any desired content while prevent any malicious agent with the knowledge of

up to half of the random queries to gain information about the requested content. This

is an important feature of the proposed technique that provides privacy in the presence

of many colluding servers. Such a feature has not been presented in prior information

theoretic PIR approaches [92] for coded storage systems. Our proposed Secure And

Private Information Retrieval (SAPIR) scheme provides both security and privacy for

information retrieval.

The rest of the chapter is organized as follows. Section 6.2 is dedicated to the

related work on PIR and security in distributed storage systems. The assumptions and

problem formulation are described in section 6.3. We study the security and PIR aspects

of SAPIR in sections 6.4 and 6.5, respectively. The simulation results are provided in

section 6.6.

128

6.2 Related Works

In this chapter, we use Random Linear Fountain (RLF) codes [71] to encode the

contents within the servers in the network. Significant capacity improvement using RLF

codes in wireless ad hoc and cellular networks has been shown in [39,40,51–53,56–58,75].

The application of fountain codes in distributed storage systems was also studied in [28].

In [56], we have computed the capacity of wireless ad hoc networks with caching

and shown that RLF codes can be used to achieve perfect secrecy. However, we did

not study the problem of PIR. We will use RLF codes to simultaneously achieve both

security and privacy in distributed cloud applications.

While MDS codes [27, 29] show good repair capability, these codes are not

particularly designed to provide security. Authors in [26] have studied the security of

distributed storage systems with MDS codes and [63] has proposed a construction for

repairable and secure fountain codes. Reference [63] achieves security by concatenating

Gabidulin codes with Repairable Fountain Codes (RFC). Their specific design allows

to use Locally Repairable Fountain Codes for secure repair of the lost data. Unlike [63]

which has focused on the security of the repair links using concatenated codes, we

present simultaneous security and privacy of the data storage nodes by only using RLF

codes. References [95] and [97] have studied the problem of security in the presence

of overhearing interference in cooperative communications. Further [76,77] studied the

same problem on multi-tier networks.

The authors in [24] have numerically studied the wiretap network with a simple

129

topology in which there is a relaying node between the transmitter and the receiver.

We considered the general network with a cloud infrastructure in which the servers are

cooperating to reconstruct the contents.

The idea of PIR was originally introduced in [25] for uncoded databases. Re-

cently, there has been a renewed interest in studying PIR for storage systems utilizing

different coding techniques. Reference [86] was among the first references to study the

problem of PIR for coded storage systems. They proved that with only one extra bit,

PIR can be achieved. However, the solution in [86] requires that the number of servers

grows with the data record size. Reference [19] assumed that the number of servers is

fixed and established the trade-off between storage and retrieval costs and demonstrated

the fundamental limits on the cost of PIR for coded storage systems. The authors in [92]

studied the problem of PIR for MDS coded storage systems and introduced a scheme to

achieve PIR in MDS coded databases but the security aspect was not addressed in this

chapter. They have also assumed that the databases are able to store all the contents

which may not be a realistic assumption. Unlike prior work [19,86,92] which have stud-

ied PIR for coded databases, we are interested in achieving simultaneous security and

PIR. Further, as far as we know, this is the first work to study the problem of PIR for

a fountain coded-based distributed storage system. The proposed PIR scheme is easily

scalable to the cases when up to half of the servers are colluding to obtain information

about the content or content index which makes this technique very robust against large

number of colluding servers.

130

6.3 Problem Formulation

The network is composed of n servers each capable of storing h contents. These

servers are denoted by N1,N2, . . . ,Nn. A total number of m contents exist within the

network and each content has M bits, i.e., f1, f2, . . . , fm.

6.3.1 RLF Coding-Based Storage

The contents are randomly encoded and stored on the servers during the data

preloading phase. The encoded file in the jth storage location of the ith server for any

i = 1, 2, . . . , n and j = 1, 2, . . . , h will have the form

cij =
m∑
k=0

vi,jk fk = fvij , (6.1)

where2 f = [f1 f2 . . . fm] denotes the 1 ×m vector of all contents and vij denotes an

m × 1 random encoding vector of 0’s and 1’s. Each content fi belongs to the Galois

Field F2M , i.e. f ∈ Fm
2M

. Unless otherwise stated we assume that all the vector and

matrix operations are in F2. The encoded files stored in server Ni are ci = [ci1 c
i
2 . . . cih]

where ci ∈ Fh
2M

. Note that ci = fVi where Vi is the m × h random encoding matrix

for server Ni.

In RLF all random vectors vij are chosen independently and uniformly from Fm2

which results in a random uniform choice of the encoding matrix Vi where each element

can be either 0 or 1 with equal probability. Such an encoding matrix may not necessarily

be full rank and may contain linearly dependent rows. This will result in redundant

2Throughout this chapter, the vectors are denoted in bold characters.

131

use of storage and may jeopardize the security by revealing more information. Hence,

we propose a full rank encoding scheme based on RLF codes in which randomly created

encoding vectors vij are discarded if they already exist in the span of the previously

selected random encoding vectors. In other words, for each server we select h linearly

independent vectors to construct a full rank matrix Vi of size m× h for i = 1, 2, . . . , n.

The encoding can be performed in a decentralized way. This means that each

server can fill up its storage space independently of all the other servers during the data

preloading phase. It can be shown [57] that the average minimum number of encoded

files required to decode any desired content is very close to the optimal value of m.

6.3.2 Reconstruction Groups (RG)

After the data preloading phase, users can reconstruct their desired contents

during content delivery phase. A desired file fr can be written as fr = fer, where er is

a all zero vector of size m×1 except in the rth location is equal to 1. To retrieve fr, the

user needs to access enough encoded files on the network servers in order to construct

er via vij ’s.

Since codes are constructed in Fm2 , users need m linearly independent encoding

vectors to retrieve any of the m contents. We assume that servers are divided into many

different RGs . Servers within each RG collaborate with each other to retrieve any

requested content. Therefore, the number of encoded files within a single RG should

be at least equal to m. The RGs are represented by J1,J2, . . . ,Ju and the number

of servers within their corresponding RGs by J1, J2, . . . , Ju where,
∑u

i=1 Ji = n. It is

132

shown in [57] that the average minimum number of encoded files within each RG to

retrieve all the contents is only slightly larger than m. Therefore, for each RG Ji where

1 ≤ i ≤ u, the minimum value of Ji is only slightly larger than m
h . Notice that if Ji is

smaller than m
h , then the servers will not be able to form a full rank matrix to retrieve

all desired contents. In the case that storage systems store uncoded contents, we need

exactly m cache locations for storing files which is very close to our RLF technique and

demonstrates that our RLF-coding based approach efficiently utilizes storage space. For

large values of h, i.e. h ≥ m, each server can become an RG by itself.

6.3.3 Content Retrieval

Each RG Jk stores Jkh ≥ m randomly encoded files. The matrices Vi of the

Jk servers in the RG form a full rank matrix V = [V1 V2 . . . VJk]m×Jkh. Therefore,

any content with index r can be retrieved from the servers by solving the linear equation

Vyr = er in F2. Since this matrix is full rank, one possible solution can be given as

yr = VT
(
VVT

)−1
er. (6.2)

To solve Vyr = er, servers within the RG should send their corresponding encoding

matrices Vi to one of the RG servers called Ns that generates V and computes yr from

the above equation3. If yr = [y1
r y2

r . . . yJkr]T is such a solution, where yir is a h × 1

local decoding vector for server Ni, then server Ns sends yir to server Ni and Ni then

transmits fViy
i
r to the requesting user. All of the server responses are then aggregated

3Notice that the servers of an RG only need to send this information to Ns once. This could be done
even right after the data preloading phase.

133

by the user to retrieve fr as

fr = fer = fVyr =

Jk∑
i=1

fViy
i
r. (6.3)

However, this solution reveals the identity of the downloaded content to all the servers

of the RG. This simple solution cannot be used for PIR but we will show in section

6.4 that perfect secrecy can be achieved with this solution. A solution to preserve the

privacy of the users is presented in section 6.5.

6.4 Security

This section is dedicated to the study of security of our approach. If an ad-

versary is able to wiretap all of the communication links between the RG servers and

the user, it can perfectly retrieve fr using equation (6.3). We prove that perfect com-

munication secrecy can be achieved when the adversary can wiretap all communication

links between servers and user except one. We will prove this for the case when the

user directly sends the request er to the servers and the servers respond accordingly.

Under this scenario, the adversary knows the requested content index but still unable

to reduce its equivocation about the requested content.

Consider RG Jk and without loss of generality, assume that an adversary can

wiretap all of the links between servers N1,N2, . . . ,NJk−1 and the user. Further assume

that the user wants to directly download the content fr from these servers by sending

the query er to all these servers. Such a scenario is much more vulnerable to adversarial

attacks compared to a scenario in which the requested base vectors are expanded in

134

terms of random queries in order to guarantee privacy. When the query er is received

by all the servers,they will collectively solve the linear equation Vyr = er to find the

decoding vector yr. Equation (6.3) can be rewritten as

fr = fer = fVyr =

Jk−1∑
i=1

fViy
i
r + fVJky

Jk
r . (6.4)

Since we assume that all of the responses from the servers N1,N2, . . . ,NJk−1 can be

wiretapped, we can assume that the first part of the above equation is known while the

second part is secret to the adversary. Lets define Sr ,
∑Jk−1

i=1 fViy
i
r and Tr , fVJky

Jk
r .

The requested content can be written as fr = Sr + Tr and since all operations are in

F2, we have

Sr = fr + Tr. (6.5)

This is similar to the Shannon cipher system [88] in which an encoding function e :

M×K→ C is mapping a message M ∈M and a key K ∈ K to a codeword C ∈ C. In our

problem fr, Tr, and Sr can be regarded as the message, key, and codeword respectively.

The eavesdropper knows the encoded file Sr but it cannot obtain any information about

the message fr if a unique key Tr with uniform distribution is used for each message.

Theorem 5.5.1 provides the necessary and sufficient condition [11] to obtain perfect

secrecy. We will use Theorem 5.5.1 to prove that our approach can achieve asymptotic

perfect secrecy. To use this theorem, first we prove that for large enough values of m,

the key Tr is uniformly distributed.

Lemma 6.4.1. The asymptotic distribution of bits of coded files on the servers tend

to uniform.

135

Proof. The proof is similar to the proof of Lemma 5.5.2.

This lemma paves the way to prove the following theorem.

Theorem 6.4.2. For the proposed full rank encoding scheme if m is large but m < 2h,

then the proposed encoded strategy provides asymptotic perfect secrecy against any

eavesdropper which is capable of wiretapping all but one of the links from the servers

to a user in a RG.

Proof. We formulated this problem as a Shannon cipher system assuming that M = fr,

K = Tr, and C = Sr. The condition m < 2h ensures that a unique vector yJkr exists for

each requested message. Therefore, since full rank encoding scheme is used, then VJk

will be full rank and Tr guarantees that a unique key exists for each requested message

fr. Notice that if the size of the RG is large enough, then the unique choice of the

key does not affect the solvability of the linear equation Vyr = er. Therefore, for any

pair (m,C) ∈ (M,C), a unique key K ∈ K exists such that C = m + K. Further, we are

guaranteed to have |M| = |K| = |C|.

Notice that the key K = Tr belongs to the set of all possible bit strings with

M bits. Lemma 6.4.1 proves that each encoded file is uniformly distributed among all

M -bit strings. Hence each key which is a unique summation of such encoded files is

uniformly distributed among the set of all M -bit strings. In other words, regardless

of the distribution of the bits in files, Tr can be any bit string with equal probability

for large values of m. Therefore, the conditions in Theorem 5.5.1 are met and perfect

secrecy is achieved.

136

Remark 6.4.3. In this chapter, we have assumed that the decoding vector yr and the

encoding matrix Vi are computed during the data preloading phase securely. Therefore,

the eavesdropper cannot decode this information on any of the servers or have any

knowledge about the key Tr.

Remark 6.4.4. A naive approach to achieve perfect secrecy using the Shannon cipher

system is to choose m different keys from the set of uniform M -bit strings and store

them and use them to encode the files. However, since the file size M is very large,

this requires a significant amount of storage space to store the keys on the trusted

servers which doubles the required storage capacity. The important contribution of our

approach is that users do not need to store the keys and yet perfect secrecy can still be

achieved with the help of trusted servers.

6.5 Private Information Retrieval

In PIR, the goal is to provide conditions that when a user downloads the

content fr with index r ∈ {1, 2, . . . ,m}, the content index remains a secret to all of the

servers. This is desirable in applications like Peer-to-Peer networks and in situations

where some servers may have been compromised by the adversary. To achieve PIR,

users send queries to the servers and servers respond to users based on those queries.

These queries should be designed in a way that reveal no information to the servers

about the requested content index. To formally define the information theoretic PIR,

let R be a random variable denoting the requested content index and let Ql be a subset

137

of at most l queries. We have the following definition.

Definition 6.5.1. A PIR scheme is capable of achieving perfect information theoretic

PIR against i colluding servers if for the set Ql of all queries available to all of these

servers and any number of contents we have

I(R;Ql) = 0 (6.6)

where I(.) is the mutual information function.

6.5.1 Random Query Generation

To achieve PIR, the user chooses a fixed ε > 0 and then sets Aε , m +

dlog2(1
ε)e. Then it picks Aε query vectors from Fm2 uniformly at random and statistically

independent of each other. These will be the set of random queries. Therefore, we will

have a set Qε = {q1,q2, . . . ,qAε} of i.i.d. random query vectors. In the following, we

will prove that with a probability of at least 1− ε, these random vectors span the whole

m-dimensional space of Fm2 . The properties of random vectors that we have used for

our coding technique, had been previously studied in [60].

Theorem 6.5.2. Let Q be a matrix of size m × l whose elements are independent

random variables taking the values 0 and 1 with equal probability and let ρm(l) be the

rank of the matrix Q in F2. Let s ≥ 0 and c be fixed integers, c+ s ≥ 0. If m→∞ and

l = m+ c, then

P[ρm(l) = m− s]

138

→ 2−s(s+c)
∞∏

i=s+1

(
1− 1

2i

) s+c∏
j=1

(
1− 1

2j

)−1

(6.7)

where the last product equals 1 for c+ s = 0.

Proof. This is Theorem 3.2.1 in page 126 of [60].

Corollary 6.5.3. For l = m+ c where c ≥ 0, if m→∞ we have

P[ρ(l) = m]→
∞∏

i=c+1

(
1− 1

2i

)
(6.8)

Proof. The proof follows for s = 0 in Theorem 6.5.2.

In the following, we will use these results for our proofs.

Definition 6.5.4. We define the random variable A as the minimum number of random

query vectors q1,q2, . . . ,qi to span the whole space of Fm2 .

Lemma 6.5.5. The probability of the event that A < m is zero and for any c ≥ 0 we

have

P[A ≤ m+ c]→
∞∏

i=c+1

(
1− 1

2i

)
(6.9)

Proof. This is a direct result of Corollary 6.5.3.

Lemma 6.5.6. The probability of the event that A = m + c is less than 2−c for any

c ≥ 0.

139

Proof. Let F (c) , P[A ≤ m+c]. It is easy to verify from equation (6.9) that for m→∞

we have

F (c)→ F (c− 1)

1− 1
2c

. (6.10)

Since F (c) ≤ 1, from equation (6.10) we arrive at

F (c− 1) ≤ 1− 2−c. (6.11)

Hence,

P[A = m+ c] = F (c)− F (c− 1)→ F (c− 1)

(
1

1− 1
2c
− 1

)

= F (c− 1)

(
1

1− 1
2c
− 1

)
=
F (c− 1)

2c − 1
≤ 1− 2−c

2c − 1
= 2−c

Lemma 6.5.7. The probability of the event that A ≤ m+ c is at least 1− 2−c and at

most 1− 2−(c+1) for any c ≥ 0. i.e.

1− 2−c ≤ F (c) ≤ 1− 2−(c+1) (6.12)

Proof. The upper bound is already proved in equation (6.11). From Lemma 6.5.6 we

have,

F (c) = P[A ≤ m+ c] = 1− P[A > m+ c]

= 1−
∞∑

i=c+1

P[m+ i] ≥ 1−
∞∑

i=c+1

2−i = 1− 2−c

140

Theorem 6.5.8. With a probability of at least 1− ε, the set of random queries Qε =

{q1,q2, . . . ,qAε} where Aε = m + dlog2(1
ε)e spans the whole m-dimensional space of

Fm2 .

Proof. From Lemma 6.5.7, we have

P[A ≤ Aε = m+ dlog2(
1

ε
)e] ≥ 1− 2−dlog2(1

ε
)e ≥ 1− ε

This proves the theorem.

Theorem 6.5.8 states that the probability of spanning the m-dimensional space

can arbitrarily go to 1 provided that the number of random vectors increases logarith-

mically with 1
ε . For example, to span the m-dimensional space with a probability of

at least 0.99, it is enough to only have m + 7 random vectors. Using these random

query vectors, we can now show that even with a large number of colluding servers no

information about the requested content index can be obtained. To prove this result,

we need to prove some lemmas.

Let Qε , [q1 q2 . . . qAε] be the matrix of size m × Aε whose columns are

random query vectors. Matrix Qε contains Aε statistically independent random vectors.

Let Br
x be the event that for a specific vector x ∈ FAε2 and a specific base vector er, we

have Qεx = er.

Lemma 6.5.9. For any specific non-zero vector x ∈ FAε2 we have

P[Br
x] = P[Qεx = er] = 2−m. (6.13)

141

Proof. lets assume vector x has k ones. If Qεx = er, then k vectors from the set of

all vectors q1,q2, . . . ,qAε are added together to create er. Let’s denote these vectors

by qe1 ,qe2 , . . . ,qek . Let q
ej
r denotes the rth element of vector qej . Since the vectors

qe1 ,qe2 , . . . ,qek are independent and their elements are also mutually independent,

using binary summations in F2 we have

P[Br
x] = P[Qεx = er] = P[

k∑
j=1

q
ej
r = 1]

m∏
l′=1
l′ 6=r

P[
k∑
j=1

q
ej
l′ = 0] (6.14)

We can easily prove that P[
∑k

j=1 q
ej
r = 1] = 1

2 . To prove this, we can use induction on

k. This equation is valid for the base case k = 1. Assume that it is valid for k − 1. We

have

P[
k∑
j=1

q
ej
r = 1] = P[qekr = 1]P[

k−1∑
j=1

q
ej
r = 0]

+ P[qekr = 0]P[
k−1∑
j=1

q
ej
r = 1] =

1

2

Similarly, it is easy to prove that P[
∑k

j=1 q
ej
l′ = 0] = 1

2 . Hence, equation (6.14) can be

simplified to P[Br
x] = P[Qεx = er] = 2−m.

Lemma 6.5.10. The following inequalities hold for 1 ≤ j ≤ i,

1

i+ 1
2iH(j

i
) ≤

(
i

j

)
≤ 2iH(j

i
) (6.15)

where H(α) denotes the binary entropy function, i.e. H(α) = −α log2(α) − (1 −

α) log2(1− α).

Proof. The proof can be found in the appendix of [70].

142

We are now ready to prove the following theorem which shows that accessing

a significant number of random queries in Qε cannot help in reconstructing any of the

base vectors for large m.

Theorem 6.5.11. Consider the set Qε = {q1,q2, . . . ,qAε} of Aε = m + dlog2(1
ε)e

statistically independent random uniform query vectors. For large enough values of m

with probability arbitrarily close to 1, none of the base vectors exist in the span of any

subset Ql ⊂ Qε with cardinality of at most l = bδmc where δ < 0.5.

Proof. Consider any base vector er and a non-zero vector x ∈ FAε2 . For this vector,

computing Qεx in F2 is equivalent to adding a subset of columns of Qε whose set of

indices is equal to the set of indices of non-zero elements in x. If Qεx = er for some

x ∈ FAε2 , then any subset Ql ⊂ Qε which contains the column vectors of Qε whose set

of indices is equal to the set of indices of non-zero elements in x also spans er. In fact,

the number of non-zero elements of x or Hamming weight of x (i.e., Ham(x)) is equal

to the number of vectors that should be added to reconstruct er.

Consider all vectors x ∈ FAε2 with Hamming weight less than or equal to

l = bδmc where δ < 0.5. Lemma 6.5.9 shows that for any x, we have P[Br
x] = 2−m.

Therefore, the asymptotic probability of existence of a subset Ql ⊂ Qε with a cardinality

of at most l = bδmc which spans er for large values of m can be found as

lim
m→∞

P[∃Ql ⊆ Qε|card{Ql} ≤ l = bδmc, er ∈ span{Ql}],

= lim
m→∞

P[
⋃

x∈FAε2 ,Ham(x)≤l

Br
x]

(a)

≤ lim
m→∞

∑
x∈FAε2 ,Ham(x)≤l

P[Br
x],

143

(b)
= lim

m→∞

l∑
i=1

(
Aε

i

)
2−m

(c)

≤ lim
m→∞

l

(
Aε

l

)
2−m,

(d)

≤ lim
m→∞

l

(
m

l

)
2−m = lim

m→∞
bδmc

(
m

bδmc

)
2−m,

(e)

≤ lim
m→∞

δm2
mH

(
bδmc
m

)
2−m

(f)

≤ lim
m→∞

δm2−m(1−H(δ)) (g)
= 0,

where inequality (a) comes from the union bound and (b) holds by using Lemma 6.5.9

and counting all the vectors x with Hamming weight less than l = bδmc and inequality

(e) comes from Lemma 6.5.10. Notice that (c), (d), (e) and (f) are only valid for cases

when δ < 0.5. This shows that the probability of existence of any desired base in the

span of any subset of vectors with cardinality less than bδmc goes to zero as m grows if

δ < 0.5.

In the following theorem we will use the result of Theorem 6.5.11 to prove that

accessing a large number of queries cannot reveal any information about the requested

content index.

Theorem 6.5.12. For every subset Ql ⊂ Qε with cardinality at most l = bδmc where

δ < 0.5 we have

lim
m→∞

I(R ; Ql) = 0. (6.16)

Proof. Let Dl be the event that none of the base vectors exist in the span of any subset

Ql ⊂ Qε with cardinality at most l. Let eR be the equivalent random base vector which

is uniquely defined by the requested content index R. If Dl happens, then for every

144

subset Ql ⊂ Qε there should exist kl ≥ 1 random vectors qo1 ,qo2 , . . . ,qokl ∈ Q
ε − Ql

such that eR /∈ span{Ql} but eR ∈ span{Ql ∪ {qoi ,qo2 , . . . ,qokl}}. Hence, for any

Ql ⊂ Qε, any representation of eR in terms of random queries should have a form of

eR =
∑

qj∈Ql

θjqj +

kl∑
i=1

qoi (6.17)

Where θi’s are equal to zero or one. Hence, for every Ql ⊂ Qε we should have

I(R;Ql|Dl) = H(R|Dl)−H(R|Ql, Dl)

(a)
= H(R|Dl)−H(R|Dl) = 0 (6.18)

where (a) comes from the independence of the content index (or its equivalent base

vector eR) and the random queries. Using the chain rule for mutual information, we

arrive at

I(R;Ql, Dl) = I(R;Dl) + I(R;Ql|Dl)

= I(R;Ql) + I(R;Dl|Ql). (6.19)

Combining equations (6.18) and (6.19) results in

I(R;Ql) = I(R;Dl)− I(R;Dl|Ql)

= H(Dl)−H(Dl|R))−H(Dl|Ql) +H(Dl|R,Ql)

≤ H(Dl) +H(Dl|R,Ql) ≤ 2H(Dl). (6.20)

Theorem 6.5.11 shows that when m → ∞ with probability close to one none of the

base vectors exist in the span of any subset Ql ⊂ Qε of cardinality less than or equal

to l = bδmc for δ < 0.5. Hence, this theorem shows that event Dl will happen with

145

probability one when m → ∞. Therefore, limm→∞H(Dl) = 0 and thus for any subset

Ql ⊂ Qε of cardinality less than or equal to l = bδmc for δ < 0.5 we have

lim
m→∞

I(R;Ql) ≤ 2 lim
m→∞

H(Dl) = 0 (6.21)

This proves the theorem.

Remark 6.5.13. In practice the user generates enough number of random vectors to

span the whole m-dimensional space. Hence, it has a set Q = {q1,q2, . . . ,qA} of A ≥ m

total random vectors. Then it chooses a subset Qfull = {qt1 ,qt2 , . . . ,qtm} ⊆ Q of m

linearly independent vectors from them and use them as its query vectors. This way it

is guaranteed that the m queries will span the whole space of Fm2 and any base vector

er can be represented in terms of these independent query vectors as

er =
m∑
k=1

dkqtk (6.22)

The following lemma shows that the average required number of random vectors to span

Fm2 is very close to m so in practice only a few number of random queries more than m

is needed to span Fm2 .

Lemma 6.5.14. If qj is a random vector belonging to Fm2 with elements having uniform

distribution, the average minimum number of vectors qj to span the whole space of Fm2

equals

Eq = m+
m∑
i=1

1

2i − 1
= m+ γ, (6.23)

where γ asymptotically approaches the Erdős–Borwein constant (≈ 1.6067).

Proof. The proof can be found in [57].

146

Remark 6.5.15. Since Qfull ⊆ Q, if any vector er does not exist in the span of any

subset Ql ⊂ Q, of l random query vectors, it will not exist in the span of any subset

Ql ⊂ Qfull of l random query vectors in Qfull too. So, Theorems 6.5.11 and 6.5.12

remain valid for this choice of random queries too. This means that in practice, every

base vector is guaranteed to exist in the span of the m query vectors but none of the

base vectors exist in the span of any subset Ql ⊂ Q with probability close to one if

l < bδmc for δ < 0.5.

6.5.2 Responding to Queries

In this section, we assume that the user has chosen m linearly independent

random query vectors in Qfull and wants to download the rth content. Since Qfull is a

set of vectors which spans the whole space of Fm2 , the user can expand the base vector

er in terms of the query vectors in Qfull as mentioned in (6.22). Hence, the requested

content can be expanded in terms of query vectors as

fr = fer = f

(
m∑
k=1

dkqtk

)
=

m∑
k=1

dkfqtk (6.24)

where dk ∈ F2 is either 0 or 1. Based on equation (6.24) the user requests some parts

of the desired content from each RG so that none of the RGs can understand any

information about the requested content.

To accomplish PIR, the user partitions the set of random queries qtk whose

corresponding decoding gains dk are non-zero into a disjoint subsets Q1,Q2, . . . ,Qa.

The choice of number of subsets (i.e. a) depends on the number of colluding servers.

147

RG1 RG2
...

user

RGa

∑
qtk

∈Q1

fqtk

∑
qtk

∈Q2

fqtk

∑
qtk

∈Qa

fqtk

Q1 Q2 Qa

Figure 6.1: Multiple RGs respond to queries sent from the user. This allows the user
to privately download its desired content while a significant number of colluding servers
can achieve no information about the downloaded content.

Each subset of queries is then sent to a different RG as depicted in Figure 6.1. Therefore,

the requested content can be retrieved as

fr =
∑

qtk∈Q
full

dk 6=0

fqtk =

a∑
i=1

∑
qtk∈Qi

fqtk (6.25)

The ultimate goal in PIR is to prevent any colluding group of servers to gain information

about the requested content index. Assume that the number of colluding servers is b. If

any two colluding servers lie within the same RG, they receive the same subset of queries

from the user. Therefore, without loss of generality we consider the worst scenario in

which all the colluding servers lie within different RGs and all these b colluding servers

are able to collaboratively obtain all the queries Q1,Q2, . . . ,Qb. Based on Theorems

6.5.11 and 6.5.12, if the number of all query vectors in Ql = ∪bi=1Qi is less than bδmc for

some δ < 0.5, then no information can be achieved about the requested content index.

This provides significant PIR capability for this technique.

Notice that since RGs have full rank encoding matrices, they can respond to

any query that they receive. Assume that RG Ji with the full rank encoding matrix

148

V = [V1 V2 . . . VJi] receives the set of queries Qi. This RG needs to send
∑

qtk∈Qi
fqtk

to the user. It can solve the linear equation

Vpi =
∑

qtk∈Qi

qtk (6.26)

in Galois Field F2 for pi as

pi = VT
(
VVT

)−1

 ∑
qtk∈Qi

qtk

 . (6.27)

Similar to before the server Ns in the RG Ji which has already acquired all the infor-

mation in matrix V, computes the overal query decoding solution pi which is a vector

of size Jih×1. If this vector is divided into Ji equal size pieces as pi = [p1
i p2

i . . . pJii]T ,

then the server Ns sends the jth portion of pi to server Nj in the RG Ji. More pre-

cisely, server Nj receives a query response vector pji of size h × 1 from Ns for each

j = 1, 2, . . . , Ji. Then the server Nj sends fVjp
j
i back to the coordinating server Ns.

The coordinating server Ns then aggregates all the data received from multiple servers

in the RG to construct
∑

qtk∈Qi
fqtk as

∑
qtk∈Qi

fqtk = fVpi =

Ji∑
j=1

fVjp
j
i . (6.28)

The coordinating server Ns in the RG Ji then transmits
∑

qtk∈Qi
fqtk to the user.

Each RG only transmits one encoded file to the user. However all the servers

within an RG need to collaborate with each other prior to responding to the queries

sent from the user. Notice that communication between the servers are carried using

high bandwidth fiber optic links while transmissions from the servers to the user are

performed over low bandwidth links. In our computation of communication cost for

149

achieving PIR, we only consider communication between the servers and the user in the

low bandwidth links.

Remark 6.5.16. It is worth mentioning that In our work the coordinations between

servers in an RG is necessary because the servers do not have full storage capacity to

store all the contents. In fact if we also assume each server has high storage capacity

similar to [92], then each server can act as an RG and there will be no communications

between servers.

6.5.3 Trade-off Between Communication Cost and Privacy Level

In order to achieve PIR, each user needs to download more information. This

additional bandwidth utilization is referred to as communication Price of Privacy (cPoP)

[92] which is defined as follows. Note that in this work, the cost of sending queries are

ignored because it is assumed that the size of contents are significantly higher than the

size of the queries.

Definition 6.5.17. The communication Price of Privacy (cPoP) is the ratio of the total

number of bits downloaded by the user from the servers to the size of the requested file.

To explain the trade-off between communication cost and level of privacy,

assume that the user divides the queries into a equal size groups of queries and sends

each group of queries to a different RG. Each RG should respond to at most dma e queries.

If b RGs collude to gain some information about the requested content index, then they

150

will have access to a total of at most bdma e queries. We proved in Theorem 6.5.12 that

knowing bδmc queries asymptotically gives no information about the requested content

index if δ < 0.5. Hence, if b < a
2 , then the colluding RGs will get no information about

the requested content index. Therefore, if less than half of the RGs collude to gain some

information about the requested content index, they cannot gain any information. We

can increase a to get the maximum possible level of privacy. However, the downside of

increasing a is that the communication Price of Privacy (cPoP) will also increase.

As discussed earlier, if the queries are sent to a RGs then a responses from

these RGs are required to retrieve a content. Since each RG transmits an encoded file

of size M bits to the user the total number of bits downloaded by the user will be equal

to aM and therefore the cPoP will be equal to aM/M = a. Figure 6.2 shows that as a

increases, both the PIR strength and the cPoP increase linearly.

6.5.4 Full Size Servers

Assume that the servers have large storage capability such that each RG is only

composed of 1 server. Our assumption of full rank encoding scheme guarantees that

servers with storage ability of h ≥ m encoded files can be used to retrieve any desired

content. In [92], the authors studied the use of MDS codes for PIR. They considered

full size storage systems with MDS codes and they considered the case when only one

of the databases is compromised. They proposed a PIR technique in which a cPoP of

1
1−R can be achieved in full size databases where R is the MDS code rate. To compare

our results with [92], notice that if we assume that there is only one malicious server

151

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
Maximum Number of Colluding RGs with PIR

Number of RGs that respond to queries (a)

N
o

.
o
f
c
o

llu
d

in
g
 R

G
s

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20
cPoP vs number of RGs

Number of RGs that respond to queries (a)

c
P

o
P

Figure 6.2: As the maximum number of colluding RGs increases, the average required
communication Price of Privacy (cPoP) to maintain privacy increases.

in the cloud, then we can choose any two servers and send half of the queries to each

one of them. This way we have a cPoP of 2 which is better than the results in [92] for

R > 1/2.

6.6 Simulation

To numerically verify the results proved in section 6.5, we created m linearly

independent random query vectors which are used to expand the bases. Figure 6.3

demonstrates the probability of the event that at least one of the base vectors exists in

the span of l = bδmc vectors for δ = 0.1, 0.2, 0.3 and 0.4. Consistent with our results

in section 6.5, the probability of the event that a base exists in the span of any set of

152

10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m

P
ro

b
a
b

ili
ty

Probability of existing of at least one base

 δ = 0.1

 δ = 0.2

 δ = 0.3

 δ = 0.4

Figure 6.3: Probability of the event that at least one base exists in the span of any
subset of l = bδmc random vectors.

l = bδmc vectors goes quickly to zero.

It is proved [98] that the problem of finding the minimum spanning set of

vectors is NP-Complete. It is even proved [30] that this problem is NP-Hard to approx-

imate. Therefore, in general it is NP-Hard to find out if a given base exists in the span

of at most l = bδmc vectors out of the m vectors. For our simulations we have used

a brute force approach to check if a given base exists in the span of at most l = bδmc

vectors out of the m existing random query vectors where m ≤ 20.

153

Chapter 7

Conclusions

In chapter 2, we introduced Modified Index Coding (MIC). MIC is a more

general concept than original index coding problem which can be applied to both wire-

less multi-hop communications and wired networks. We applied MIC to information

centric networks (ICN). The result was a hybrid caching scheme in ICN that consists of

a caching at the routers and distributed caching at the nodes. The purpose of caching

in routers is similar to the original concept of caching in ICN but we transmit encoded

messages instead of the data itself. The purpose of distributed caching is to have replicas

of the popular messages so that when we transmit new requested messages, we can com-

bine multiple messages in order to serve multiple users with a single transmission. We

proved that this combination results in significant transmission reductions and capacity

improvements.

In chapter 3 an efficient order optimal content delivery approach is proposed

for future wireless cellular systems. We take advantage of femtocaches [37] and multihop

154

communication using index coding. We proved that using index coding is very efficient

technique by taking advantage of side information stored in users. Further, it was shown

that under Zipfian content distribution, linear index coding could be order optimal. Our

simulation result demonstrates the gains that can be achieved with this approach. The

proposed technique in [37] requires deployment of large number of femtocaches in order

to cache the contents locally and retrieve them when needed. We propose to use a

multihop transmission scheme which significantly reduces the femtocache deployment

costs compared to [37]. Further, we show that significant capacity gains can be achieved

through the use of index codes. The optimal index coding solution is an NP-Hard

problem [64]. We propose a simple heuristic to perform the task of index coding and we

will show that this heuristic which is based on graph coloring is asymptotically capable

of achieving maximum index coding capacity.

In chapter 4 we studied the throughput capacity of cellular networks with fem-

tocaches using decentralized uncoded and coded content cache placement. We proposed

multihop communications to take away some of the communication burden from the

helpers and base station and transfer it to users with storage capability. We proved

that multihop communication together with clever use of cache placement strategy can

increase the throughput capacity of these networks. We proposed a novel decentralized

coded caching scheme based on Random Linear Fountain (RLF) codes. In this tech-

nique, each user independently caches a random combination of all the other files in a

decentralized manner. Our proposed scheme improves the efficiency of femtocaches by

taking advantage of multihop communications and index coding. The proposed decen-

155

tralized coded content cache placement scheme can increase the throughput capacity

by a factor of (log n)2 over decentralized uncoded content caching. Using our proposed

decentralized coded content cache placement scheme, we computed the throughput ca-

pacity of cellular networks operating under a Zipfian content request distribution.

In chapter 5 we introduced decentralized coded caching strategy in wireless ad

hoc networks. The capacity of this approach is compared with that of uncoded caching

for proactive and reactive routing protocols. While with proactive routing protocol un-

coded caching outperforms coded caching, coded caching performs better with reactive

routing protocol. Interestingly, it was shown that by choosing any random direction,

close to optimum number of hops can be obtained to retrieve any content in coded

caching. It is shown that when the number of cached files is very large this technique

satisfies in the perfect secrecy conditions proposed by Shannon in [88] and therefore

this technique is capable of achieving asymptotic perfect secrecy in wireless ad hoc net-

works. This provides an information theoretically secure solution for caching proprietary

contents in wireless networks which is immune to attackers in time as opposed to com-

putationally security which may be broken with time. We have also studied the cache

hit problem and shown that the cache hit probability for any desired content will be

significantly higher in the proposed technique compared to uncoded caching. Therefore,

this technique is able to reduce the problem of overcaching in the networks significantly.

An efficient and secure cache update algorithm is also proposed. The theoretical results

are validated with simulations. The results in chapter 5 are achieved with minimal

overhead in contrast to works like [44,45] where higher overhead is required to find the

156

content and route.

In chapter 6, we studied the problems of security and private information re-

trieval in distributed storage systems which are using a full rank encoding scheme based

on Random Linear Fountain (RLF) codes. We have proposed an approach based on uni-

form random queries to achieve information theoretic PIR property. We have proved

that our proposed technique can asymptotically achieve perfect secrecy for a distributed

storage system. Our proposed solution is robust against a significant number of collud-

ing servers in the network. We have also shown that our technique can outperform MDS

codes for storage systems in terms of PIR cost for certain regimes.

157

Bibliography

[1] expressive internet architecture project. http://www.cs.cmu.edu/ xia/.

[2] Nebula project. http://nebula.cis.upenn.edu.

[3] http://spectrum.ieee.org/telecom/wireless/millimeter-waves-may-be-the-future-of-5g-phones.

[4] Amendments in IEEE 802.11adTM enable multi-gigabit data throughput and

groundbreaking improvements in capacity. https://standards.ieee.org/news/

2013/802.11ad.html, 2013. [Online; accessed 9-October-2015].

[5] Named data networking. http://named-data.net/, August 2010.

[6] Psirp: publish-subscribe internet routing paradigm. http://psirp.org/, Jan. 2008.

[7] Ziv Bar-Yossef, Yitzhak Birk, TS Jayram, and Tomer Kol. Index coding with side

information. Information Theory, IEEE Transactions on, 57(3):1479–1494, 2011.

[8] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel, et al. Find-

ing a needle in haystack: Facebook’s photo storage. In OSDI, volume 10, pages

1–8, 2010.

158

[9] Yitzhak Birk and Tomer Kol. Informed-source coding-on-demand (iscod) over

broadcast channels. In INFOCOM’98. Seventeenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3,

pages 1257–1264. IEEE, 1998.

[10] Yitzhak Birk and Tomer Kol. Coding on demand by an informed source (iscod) for

efficient broadcast of different supplemental data to caching clients. IEEE/ACM

Transactions on Networking (TON), 14(SI):2825–2830, 2006.

[11] Matthieu Bloch and Joao Barros. Physical-layer security: from information theory

to security engineering. Cambridge University Press, 2011.

[12] Federico Boccardi, Robert W Heath, Aurelie Lozano, Thomas L Marzetta, and

Petar Popovski. Five disruptive technology directions for 5G. Communications

Magazine, IEEE, 52(2):74–80, 2014.

[13] Béla Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–

55, 1988.

[14] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. On the impli-

cations of Zipf’s law for web caching. Technical report, Citeseer, 1998.

[15] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching

and Zipf-like distributions: Evidence and implications. In INFOCOM’99. Eigh-

teenth Annual Joint Conference of the IEEE Computer and Communications So-

cieties. Proceedings. IEEE, volume 1, pages 126–134, New York, NY, 1999. IEEE.

159

[16] Ning Cai and Raymond W Yeung. Secure network coding. In Proceedings of IEEE

International Symposium on Information Theory, ISIT, page 323. IEEE, 2002.

[17] Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou, and Y. Thomas Hou. LT

codes-based secure and reliable cloud storage service. In Proceedings of the IEEE

INFOCOM 2012, Orlando, FL, USA, March 25-30, pages 693–701, 2012.

[18] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. I tube, you tube, every-

body tubes: analyzing the world’s largest user generated content video system.

In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.,

2007.

[19] Terence H. Chan, Siu-Wai Ho, and Hirosuke Yamamoto. Private information

retrieval for coded storage. In IEEE International Symposium on Information

Theory, ISIT 2015, Hong Kong, China, June 14-19, 2015, pages 2842–2846, 2015.

[20] Vikram Chandrasekhar, Jeffrey G Andrews, and Alan Gatherer. Femtocell net-

works: a survey. Communications Magazine, IEEE, 46(9):59–67, 2008.

[21] Mohammad Asad R Chaudhry, Zakia Asad, Alex Sprintson, and Michael Lang-

berg. On the complementary index coding problem. In Proceedings of Information

Theory (ISIT), IEEE International Symposium on, pages 244–248, Saint Peters-

burg, Russia, 2011. IEEE.

[22] Mohammad Asad R Chaudhry and Alex Sprintson. Efficient algorithms for index

coding. In INFOCOM Workshops, IEEE, pages 1–4, Phoenix, AZ, 2008. IEEE.

160

[23] Zhi Chen. Fundamental limits of caching: Improved bounds for small buffer users.

arXiv preprint arXiv:1407.1935, 2014.

[24] Fan Cheng and Vincent YF Tan. A numerical study on the wiretap network with a

simple network topology. IEEE Transactions on Information Theory, 62(5):2481–

2492, 2016.

[25] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-

mation retrieval. In 36th Annual Symposium on Foundations of Computer Science,

Milwaukee, Wisconsin, 23-25 October 1995, pages 41–50, 1995.

[26] Theodoros K. Dikaliotis, Alexandros G. Dimakis, and Tracey Ho. Security in

distributed storage systems by communicating a logarithmic number of bits. In

IEEE International Symposium on Information Theory, ISIT 2010, June 13-18,

2010, Austin, Texas, USA, Proceedings, pages 1948–1952, 2010.

[27] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu, Martin J. Wainwright,

and Kannan Ramchandran. Network coding for distributed storage systems. IEEE

Trans. Information Theory, 56(9):4539–4551, 2010.

[28] Alexandros G. Dimakis, Vinod M. Prabhakaran, and Kannan Ramchandran. Dis-

tributed fountain codes for networked storage. In Proceedings of International

Conference on Acoustics Speech and Signal Processing, ICASSP 2006, Toulouse,

France, May 14-19, pages 1149–1152, 2006.

[29] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and Changho Suh.

161

A survey on network codes for distributed storage. Proceedings of the IEEE,

99(3):476–489, 2011.

[30] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximat-

ing the minimum distance of a linear code. IEEE Trans. Information Theory,

49(1):22–37, 2003.

[31] Michelle Effros, Salim El Rouayheb, and Michael Langberg. An equivalence be-

tween network coding and index coding. Information Theory, IEEE Transactions

on, 61(5):2478–2487, 2015.

[32] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. On the index coding

problem and its relation to network coding and matroid theory. Information

Theory, IEEE Transactions on, 56(7):3187–3195, 2010.

[33] P Erdős and L Pósa. On the maximal number of disjoint circuits of a graph. Publ.

Math. Debrecen, 9:3–12, 1962.

[34] Paul Erdős. On a classical problem of probability theory. 1961.

[35] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu Ko-

ponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. Less pain, most of

the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Commu-

nication Review, volume 43, pages 147–158. ACM, 2013.

[36] Michael R Garey and David S Johnson. Computers and intractability. W. H.

Freeman, San Francisco, 2002.

162

[37] Negin Golrezaei, Karthikeyan Shanmugam, Alexandros G Dimakis, Andreas F

Molisch, and Giuseppe Caire. Femtocaching: Wireless video content delivery

through distributed caching helpers. In INFOCOM, Proceedings IEEE, pages

1107–1115, Orlando, FL, 2012. IEEE.

[38] Jad Hachem, Nikhil Karamchandani, and Suhas Diggavi. Multi-level coded

caching. In Information Theory (ISIT), 2014 IEEE International Symposium

on, pages 56–60. IEEE, 2014.

[39] Sajad Hataminia, Saeed Vahidian, Mohammadali Mohammadi, and Mahmoud

Ahmadian-Attari. Performance analysis of two-way decode-and-forward relaying

in the presence of co-channel interferences. IET Commun., 8(18):3349–3356, Dec.

2014.

[40] Sajad Hatamnia, Saeed Vahidian, Sonia Aı̈ssa, Benoit Champagne, and Mahmoud

Ahmadian-Attari. Network-coded two-way relaying in spectrum-sharing systems

with quality-of-service requirements. IEEE Transactions on Vehicular Technology,

66(2):1299–1312, 2017.

[41] Ishay Haviv and Michael Langberg. On linear index coding for random graphs.

In Information Theory Proceedings (ISIT), IEEE International Symposium on,

pages 2231–2235, Cambridge, MA, 2012. IEEE.

[42] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun

163

Shi, and Ben Leong. A random linear network coding approach to multicast.

Information Theory, IEEE Transactions on, 52(10):4413–4430, 2006.

[43] Yan Hui. Method and apparatus for data scrambling/descrambling, May 29 2003.

US Patent App. 09/997,639.

[44] Sang-Woon Jeon, Song-Nam Hong, Mingyue Ji, and Giuseppe Caire. Caching

in wireless multihop device-to-device networks. In Communications (ICC), 2015

IEEE International Conference on, pages 6732–6737. IEEE, 2015.

[45] Sang-Woon Jeon, Song-Nam Hong, Mingyue Ji, Giuseppe Caire, and Andreas F

Molisch. Wireless multihop device-to-device caching networks. arXiv preprint

arXiv:1511.02574, 2015.

[46] Mingyue Ji, Giuseppe Caire, and Andreas F Molisch. Wireless device-to-device

caching networks: Basic principles and system performance. arXiv preprint

arXiv:1305.5216, 2013.

[47] Mingyue Ji, Giuseppe Caire, and Andreas F Molisch. Fundamental limits of

caching in wireless D2D networks. Information Theory, IEEE Transactions on,

62(2):849–869, 2016.

[48] Norman Lloyd Johnson and Samuel Kotz. Urn models and their application; an

approach to modern discrete probability theory. 1977.

[49] Nikhil Karamchandani, Urs Niesen, Mohammad Ali Maddah-Ali, and Suhas Dig-

164

gavi. Hierarchical coded caching. In Information Theory (ISIT), IEEE Interna-

tional Symposium on, pages 2142–2146, Honolulu, HI, 2014. IEEE.

[50] Mohsen Karimzadeh Kiskani, Bita Azimdoost, and Hamid Sadjadpour. Effect of

social groups on the capacity of wireless networks. Wireless Communications,

IEEE Transactions on, 15:3–13, 2016.

[51] Mohsen Karimzadeh Kiskani and Hamid Sadjadpour. Application of index coding

in information-centric networks. In Computing, Networking and Communications

(ICNC), 2015 International Conference on, pages 977–983. IEEE, 2015.

[52] Mohsen Karimzadeh Kiskani and Hamid R. Sadjadpour. Capacity of cellular

networks with femtocache. In Proceedings of the IEEE Conference on Computer

Communications Workshops, INFOCOM Workshops, San Francisco, USA, April

10 - 15, 2016.

[53] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Multihop caching-aided

coded multicasting for the next generation of cellular networks. IEEE Transactions

on Vehicular Technology, 66(3):2576–2585, 2017.

[54] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Secure and pri-

vate cloud storage systems with random linear fountain codes. In IEEE

International Conference on Ubiquitous Intelligence & Computing, Advanced

and Trusted Computing, Scalable Computing and Communications, Cloud

and Big Data Computing, Internet of People, and Smart World Congress

165

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), San Francisco Bay Area, CA.

IEEE, 2017.

[55] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. A secure approach for

caching contents in wireless ad hoc networks. IEEE Transactions on Vehicular

Technology, 2017.

[56] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Secure coded caching

in wireless ad hoc networks. In Computing, Networking and Communications

(ICNC), 2017 International Conference on, pages 387–391. IEEE, 2017.

[57] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Throughput analysis of

decentralized coded content caching in cellular networks. IEEE Transactions on

Wireless Communications, 16(1):663–672, 2017.

[58] Mohsen Karimzadeh Kiskani, Zheng Wang, Hamid R Sadjadpour, Jose A Oviedo,

and Jose Joaquin Garcia-Luna-Aceves. Opportunistic interference management:

a new approach for multiantenna downlink cellular networks. Wireless Commu-

nications and Mobile Computing, 15(14):1837–1850, 2015.

[59] Donald E Knuth. Big omicron and big omega and big theta. ACM Sigact News,

8(2):18–24, 1976.

[60] Valentin Fedorovich Kolchin. Random graphs. Number 53. Cambridge University

Press, 1999.

166

[61] Zhenning Kong, Salah A. Aly, and Emina Soljanin. Decentralized coding al-

gorithms for distributed storage in wireless sensor networks. IEEE Journal on

Selected Areas in Communications, 28(2):261–267, 2010.

[62] Sanjeev R Kulkarni and Pramod Viswanath. A deterministic approach to through-

put scaling in wireless networks. Information Theory, IEEE Transactions on,

50(6):1041–1049, 2004.

[63] Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat. Secure repairable

fountain codes. IEEE Communications Letters, 20(8):1491–1494, 2016.

[64] Michael Langberg and Alex Sprintson. On the hardness of approximating the

network coding capacity. Information Theory, IEEE Transactions on, 57(2):1008–

1014, 2011.

[65] Namyoon Lee, Alexandros G Dimakis, and Robert W Heath. Index coding with

coded side-information. Communications Letters, IEEE, 19(3):319–322, 2015.

[66] Derek Leong, Tracey Ho, and Rebecca Cathey. Optimal content delivery with

network coding. In Information Sciences and Systems, CISS, 43rd Annual Con-

ference on, pages 414–419, Baltimore, MD, 2009. IEEE.

[67] Luisa Lima, Muriel Médard, and Joao Barros. Random linear network coding:

A free cipher? In Proceedings of the International Symposium on Information

Theory, ISIT 2007, pages 546–550. IEEE, 2007.

[68] Jaime Llorca, Antonia M Tulino, Ke Guan, and Daniel Kilper. Network-coded

167

caching-aided multicast for efficient content delivery. In Communications (ICC),

IEEE International Conference on, pages 3557–3562, Budapest, Hungary, 2013.

IEEE.

[69] Michael Luby. LT codes. In 43rd Symposium on Foundations of Computer Science

(FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, page

271, 2002.

[70] David J. C. MacKay. Good error-correcting codes based on very sparse matrices.

IEEE Trans. Information Theory, 45(2):399–431, 1999.

[71] David JC MacKay. Fountain codes. In Communications, IEE Proceedings-, volume

152, pages 1062–1068. IET, 2005.

[72] Mohammad Ali Maddah-Ali and Urs Niesen. Fundamental limits of caching.

Information Theory, IEEE Transactions on, 60(5):2856–2867, 2014.

[73] Mohammad Ali Maddah-Ali and Urs Niesen. Decentralized coded caching attains

order-optimal memory-rate tradeoff. IEEE/ACM Transactions on Networking

(TON), 23(4):1029–1040, 2015.

[74] Marie-Jose Montpetit, Cedric Westphal, and Dirk Trossen. Network coding

meets information-centric networking: an architectural case for information dis-

persion through native network coding. In Proceedings of the 1st ACM workshop

on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms,

and Applications, pages 31–36, Hilton Head, SC, 2012. ACM.

168

[75] Mohammadreza Mousaei and Besma Smida. Optimizing pilot overhead for ultra-

reliable short-packet transmission. arXiv preprint arXiv:1705.02753, 2017.

[76] Vahid Naghshin and Mark C Reed. On capacity and association area character-

ization in small cell-based multi-tier networks. IEEE Wireless Communications

Letters, 4(5):505–508, 2015.

[77] Vahid Naghshin, Mark C Reed, and Neda Aboutorab. Coverage analysis of packet

multi-tier networks with asynchronous slots. IEEE Transactions on Communica-

tions, 65(1):200–215, 2017.

[78] Michael J Neely, Arash Saber Tehrani, and Zhen Zhang. Dynamic index coding

for wireless broadcast networks. Information Theory, IEEE Transactions on,

59(11):7525–7540, 2013.

[79] Urs Niesen and Mohammad Ali Maddah-Ali. Coded caching for delay-sensitive

content. In Communications (ICC), IEEE International Conference on, pages

5559–5564, London, 2015. IEEE.

[80] Ramtin Pedarsani, Mohammad Ali Maddah-Ali, and Urs Niesen. Online coded

caching. In Communications (ICC), IEEE International Conference on, pages

1878–1883, Sydney, NSW, 2014. IEEE.

[81] Li Peng, Song Guo, Shui Yu, and Athanasios V. Vasilakos. Codepipe: An oppor-

tunistic feeding and routing protocol for reliable multicast with pipelined network

coding. In Proceedings of IEEE INFOCOM, pages 100–108, 2012.

169

[82] Mathew D Penrose. The longest edge of the random minimal spanning tree. The

annals of applied probability, pages 340–361, 1997.

[83] Wei Quan, Xu Changqiao, Athanasios Vasilakos, Jianfeng Guan, Hongke Zhang,

and Luigi Alfredo Grieco. Tb 2 f: Tree-bitmap and bloom-filter for a scalable and

efficient name lookup in content-centric networking. In IFIP Networking, 2014.

[84] Theodore S Rappaport, Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kang-

ping Wang, George N Wong, Jocelyn K Schulz, Mathew Samimi, and Felix Gutier-

rez. Millimeter wave mobile communications for 5G cellular: It will work! Access,

IEEE, 1:335–349, 2013.

[85] Hamid R. Sadjadpour. A new design for information centric networks. In IEEE

48th Annual Conference on Information Sciences and Systems (CISS), pages 1–6,

2014.

[86] Nihar B. Shah, K. V. Rashmi, and Kannan Ramchandran. One extra bit of down-

load ensures perfectly private information retrieval. In 2014 IEEE International

Symposium on Information Theory, Honolulu, HI, USA, June 29 - July 4, 2014,

pages 856–860, 2014.

[87] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F

Molisch, and Giuseppe Caire. Femtocaching: Wireless content delivery through

distributed caching helpers. Information Theory, IEEE Transactions on,

59(12):8402–8413, 2013.

170

[88] Claude E Shannon. Communication theory of secrecy systems*. Bell system

technical journal, 28(4):656–715, 1949.

[89] Yi-Sheng Shiu, Shih Yu Chang, Hsiao-Chun Wu, Scott C.-H. Huang, and Hsiao-

Hwa Chen. Physical layer security in wireless networks: a tutorial. IEEE Wireless

Commun., 18(2):66–74, 2011.

[90] Amin Shokrollahi. Raptor codes. IEEE Trans. Information Theory, 52(6):2551–

2567, 2006.

[91] Wolfgang Stadje. The collector’s problem with group drawings. Advances in

Applied Probability, pages 866–882, 1990.

[92] Razan Tajeddine and Salim El Rouayheb. Private information retrieval from MDS

coded data in distributed storage systems. arXiv preprint arXiv:1602.01458, 2016.

[93] Tuan Tran, Thinh Nguyen, Bella Bose, and Vinodh Gopal. A hybrid network cod-

ing technique for single-hop wireless networks. Selected Areas in Communications,

IEEE Journal on, 27(5):685–698, 2009.

[94] Vutha Va, Takayuki Shimizu, Gaurav Bansal, Robert W Heath Jr, et al. Mil-

limeter wave vehicular communications: A survey. Foundations and Trends R© in

Networking, 10(1):1–113, 2016.

[95] Saeed Vahidian, Sonia Aı̈ssa, and Sajad Hatamnia. Relay selection for security-

constrained cooperative communication in the presence of eavesdropper’s over-

171

hearing and interference. IEEE Wireless Communications Letters, 4(6):577–580,

2015.

[96] Saeed Vahidian, Maryam Najafi, Marzieh Najafi, and Fawaz S Al-Qahtani. Power

allocation and cooperative diversity in two-way non-regenerative cognitive radio

networks. arXiv preprint arXiv:1705.02242, 2017.

[97] Saeed Vahidian, Ehsan Soleimani-Nasab, Sonia Aı̈ssa, and Mahmoud Ahmadian-

Attari. Bidirectional AF relaying with underlay spectrum sharing in cognitive

radio networks. IEEE Transactions on Vehicular Technology, 66(3):2367–2381,

2017.

[98] Alexander Vardy. The intractability of computing the minimum distance of a

code. IEEE Trans. Information Theory, 43(6):1757–1766, 1997.

[99] Yongge Wang. LT codes for efficient and reliable distributed storage systems

revisited. arXiv preprint arXiv:1207.5542, 2012.

[100] Zheng Wang, Hamid R Sadjadpour, JJ Garcia-Luna-Aceves, and Shirish S

Karande. Fundamental limits of information dissemination in wireless ad hoc

networks-part I: single-packet reception. Wireless Communications, IEEE Trans-

actions on, 8(12):5749–5754, 2009.

[101] Alec Wolman, M Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and

Henry M Levy. On the scale and performance of cooperative web proxy caching.

ACM SIGOPS Operating Systems Review, 33(5):16–31, 1999.

172

[102] Qinghua Wu, Zhenyu Li, and Gaogang Xie. Codingcache: multipath-aware CCN

cache with network coding. In Proceedings of the 3rd ACM SIGCOMM Workshop

on Information-Centric Networking, pages 41–42, Hong Kong, 2013. ACM.

[103] Feng Xue and Panganamala R. Kumar. Scaling Laws for Ad Hoc Wireless Net-

works: An Information Theoretic Approach, volume 1. Now Publishers Inc, 2006.

[104] R Yeung, SY Li, Ning Cai, and Zhen Zhang. Network coding theory (foundations

and trends in communications and information theory). New York: Now, 2006.

173

