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Abstract

Performance Analysis of Today’s Networks: Network of Social Entities —

Network of Caches

by

Bita Azimdoost

Extensive growth of Internet applications like communication, education, and

leisure, along with the privacy concerns and significant amount of personalized contents,

have clearly affected the connectivity of the networks and the users’ behavior. The so-

cial nature of today’s networks’ users has in turn a major influence on the networks’

shapes and characteristics. On the other hand, with the emergence of advanced hard-

ware and software technologies which enable significant processing power and storage

space in mobile devices, and with their ever increasing widespread use, today’s Internet

is moving from an infrastructure-based network towards a wireless ad-hoc network. Be-

sides, caching data within the network is going to be inevitable to improve latency and

reduce bandwidth consumption, and storage is being considered as one of the network

primitives.

This research, thus, investigates the impact of the above aspects of today’s

networks on the performance. It first discusses and evaluates the effect of users’ so-

cial behavior on the maximum achievable data rate in the wireless ad-hoc networks,

and proves that social connection among nodes may actually help in scaling wireless



networks. It also reveals that due to their different social status, various users have dif-

ferent effects on the performance, and therefore, traditional transport capacity concept

for wireless networks is not appropriate for these types of networks.

Second part of this work investigates the improvements in the fundamental

limits of the performance metrics in networks of caches, and evaluates the effect of dif-

ferent caching policies and content searching algorithms on the obtained improvements.

Then a framework is presented to quantify the overhead traffic of locating contents, and

is later used to define some optimal policies with respect to the contents that should be

cached for an operator-driven content distribution system. This framework can gener-

ally be used in many other distributed systems contexts where a control plane has to

stay aware of the state of the forwarding plane.
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Chapter 1

Introduction

1.1 Research Motivations

The extensive growth of the wireless communications market and widespread

use of handheld devices that can connect to the Internet have changed the architecture

of the communication networks from an infrastructure-based network towards a wireless

ad-hoc network. A wireless ad-hoc network is a self-organized network system in which

wireless terminals autonomously construct a multi-hop network. In this system all the

nodes inside the transmission range of a transmitter contact as a relay.

At the same time, the social behaviors and interests of users are changing wire-

less networks into wireless social networks which are significantly influenced by users’

social behaviors. In these social networks, the users do not necessarily communicate with

a central server [28, 86] and instead, based on their social interests they can communi-

cate with nodes inside a wireless ad-hoc network. Therefore, a portion of future data

2



communication networks can be envisioned as social wireless ad-hoc networks, where

the non-uniform characteristics of social contacts don’t let the wireless network’s nodes

to behave completely autonomously, and the multi-hop characteristics of the underlying

wireless network restrict the social communications.

While in today’s Internet because of the use of fiber optic backbone, the

throughput may not be seen a big problem, the rapid increase of video streaming appli-

cations like Youtube or Netflix which account for over half of the Internet traffic in North

America can potentially be the bottleneck for communications over future wireless net-

works. A concrete example of such network can be the future 5G networks [28, 86] in

which a portion of the data traffic and video streaming should be carried over wireless

ad-hoc networks. Therefore, theoretical analysis of capacity for these networks becomes

increasingly important.

Many research results have been reported on the capacity of wireless networks

after the seminal work by Gupta and Kumar [55]. However, although practical networks

are indeed composite networks that have characteristics of both social and communica-

tion networks, these results have focused on communication networks and ignore all the

social aspects of the entities. There also has been some prior works on understanding

of the propagation in composite networks, but they focus on heuristic techniques [71]

and not on understanding the fundamental trade-offs or analytic studies.

3



1.2 Contributions

The present chapter investigates the asymptotic orders1 of throughput capacity

in networks where nodes are entities with social behavior.

Three characteristics of social networks are considered in this chapter. First,in

social wireless ad-hoc networks the nodes are selecting their destinations in the con-

text of social groups which means that the nodes are not communicating with random

nodes outside their social groups. In many situations, the source may not have a prior

knowledge about the members of social groups. Backstrom et al. [18] observed that, the

probability that each node being selected as a member of social group decreases with

its distance to the origin according to a power-law distribution.

Second, the frequency of communicating with different nodes within a social

group is not the same; some nodes are contacted more frequently than others. Latane

et al. [67] studied the frequency of social interactions in social networks and observed

that in these networks, the probability of choosing the members of a social group is

inversely proportional to distance according to a power-law distribution.

Third, the number of members of social groups is also a random number in

actual wireless social networks. Studies on complex networks [6, 27,44,81], which are a

superset of social networks, suggest that these networks are scale-free networks meaning

that they have power-law degree distributions.

1Given two functions f and g, we say that f(n) = O(g(n)) or f(n) � g(n) if supn(f(n)/g(n)) <∞,
f(n) = Ω(g(n)) or f(n) � g(n) if g(n) = O(f(n)), f(n) = Θ(g(n)) or f(n) ≡ g(n) if both f(n) = O(g(n))
and f(n) = Ω(g(n)), f(n) = o(g(n)) or f(n) ≺ g(n) if f(n)/g(n) → 0, and f(n) = ω(g(n)) or
f(n) � g(n) if g(n)/f(n)→ 0.

4



The current chapter tries to address the following questions in such social

wireless networks ( [10,13–15,62]):

• How does the social behavior of the network users affect the order of the maximum

achievable information rate?

• How can this information rate be improved?

• Is traditional transport capacity definition [55] appropriate for such networks? Is

there any better approach to demonstrate the performance of such networks in

terms of throughput capacity?

The main results of this part of the research are summarized in table 1.2.

1.3 Outline

Chapter 2 goes over the previous works done in the two areas of social networks

modeling and wireless networks performance analysis. Chapter 3 briefly describes the

wireless network models used in the literature, and the social network models and char-

acteristics which distinguish it from ordinary wireless networks. Chapter 4 summarizes

some basics about throughput capacity derivation in networks. Chapter 5 entails the

theorems and results of our research on performance analysis of social networks, and

finally, chapter 6 concludes this chapter.
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Ref.

Size of Each

Social Group

(q(n))

Distance Distri-

bution Between

Communicating

Peers

Peer Selection

to Communi-

cate

Capacity per Node

[55] n Uniform Uniform Θ( 1
nr(n)

)

5.1 Fixed, Θ(1) Power-Law (α) Uniform



Θ( 1
nr(n)

), for 0 ≤ α ≤ 2

Θ( 1
nrα−1(n)

), for 2 ≤ α ≤ 3

Θ( 1
nr2(n)

), for 3 ≤ α

5.1 Fixed, o(n), ω(1) Power-Law (α) Uniform Θ( 1
nr(n)

)

5.1 Fixed, Θ(n) Power-Law (α) Uniform Θ( 1
nr(n)

)

5.2 Power-Law (γ) Power-Law (α) Uniform Θ( 1
nr(n)

) in average

if 2 ≤ γ,

Θ( 1
nr(n)

) for popular nodes

Θ( 1
nr(n)

), for 0 ≤ α ≤ 2

Θ( 1
nrα−1(n)

), for 2 ≤ α ≤ 3

Θ( 1
nr2(n)

), for 3 ≤ α

for ordinary nodes

5.3 Fixed, Θ(1) Power-Law (α)
Distance-Based

Power-Law (β)



Θ( 1

nrβ+1(n)
), for 0 ≤ α ≤ 2, 0 ≤ β ≤ 1

Θ( 1

nrα+β−1(n)
), for 0 ≤ α + β ≤ 3, 2 ≤ α

Θ( 1
nr2(n)

), Otherwise

5.3 Fixed, o(n), ω(1) Power-Law (α)
Distance-Based

Power-Law (β)



Θ( 1
nr(n)

), for0 ≤ β ≤ 1

Θ( 1

q(n)nrβ+1(n)
), for

1≤β≤3

q(n)=Ω(rβ−1(n))

Θ( 1
q(n)nr4(n)

), for
3≤β
q(n)=Ω(r2(n))

Θ( 1
nr2(n)

), Otherwise

5.3 Fixed, Θ(n) Power-Law (α)
Distance-Based

Power-Law (β)



Θ( 1
nr(n)

), for 0 ≤ β ≤ 2

Θ( 1

nrβ−1(n)
), for 2 ≤ β ≤ 3

Θ( 1
nr2(n)

), for 3 ≤ β

5.4 Power-Law (γ) Power-Law (α)
Distance-Based

Power-Law (β)


Θ( 1

nrβ+1(n)
), for 0 ≤ β ≤ 1

Θ( 1
nr2(n)

), for 1 ≤ β

Table 1.1: Summary of the Main Social Characteristics and Results.
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Chapter 2

Previous Work

An early work by Milgram on the small-world phenomenon [79] has evoked a

considerable attention to the modeling of social networks which include a large family of

networks. Studies have shown that the Web [7, 31], scientific collaboration on research

papers [82], and general social networks [3] have small-world properties. Several models

have been proposed and analyzed in this category. Watts and Strogatz [104] divided the

edges of a network into local and long-range contacts and assumed that there is always an

edge between a node and any of its local or long-range social contacts. Dietzfelbinger

et al. [42] studied a ring-based network where each node is connected to its left and

right neighbors and possibly to some further nodes, and the long-range contacts may

be selected through any distribution.

Liben-Nowell et al. [72] found a strong correlation between friendship and

geographic location in social networks by using data from Live Journal, and Backstrom

et. al. [18] observed that in practical networks like Facebook the geography and social

7



relationships are inseparable; the nodes that interact with each other are more likely to

be geographically close.

Fraigniaud et al. [48] assumed that the probability of a node being the long-

range contact of a source is proportional to the rank of their distance among the dis-

tances from the source to all the other nodes and derived the upper bound for the

expected number of steps for any source-target pair. Kleinberg [64] proposed a model

to explain the small-world phenomenon. His model consists of a two-dimensional ex-

tended grid with point-to-point links in which each node has four local contacts and

one long-range contact. The source node s selects any other node v as its long-range

contact with a probability proportional to d−α(s, v), where d(s, v) is the lattice distance

between s and v, and α shows the density of the social network. Li et al. [70] computed

upper bounds on the capacity of a wireless network in which source-destination pairs

followed a power-law distribution as in Kleinberg’s model.

8



Chapter 3

Network Models

3.1 Wireless Network Models

Properties of wireless ad hoc networks like their throughput capacity are so

challenging, that they require, and may thus strongly depend on assumptions on the

physical features of the radio channels, on the power assignments, on the node locations,

on the traffic matrix, to name a few. The scalability of these properties is of primary

concern, hence the results obtained are often of asymptotic nature, valid when the

number of nodes is large enough. This can be achieved in two different ways: either

the network is deployed on a finite area, with a sufficiently large node density (dense

network model), or the node density is kept constant, but the surface is made sufficiently

large (extended network model). According to the condition of successful transmission,

three following main network models may be used to study the capacity scaling laws in

ad hoc wireless networks.

9



Definition 3.1.1. Protocol Model: This model assumes a model for successful packet

reception at a receiver, by specifying either a guard zone around a receiver or an interfer-

ence footprint around a transmitter. Node i at position Xi can successfully transmit to

node j at position Xj if for any node k at position Xk, k 6= i, that transmits on the same

subchannel at the same time as i, then |Xi −Xj | ≤ r(n) and |Xk −Xj | ≥ (1 + ∆)r(n),

where Xi, Xj and Xk are the cartesian positions in the unit square network for these

nodes.

Definition 3.1.2. Physical Model: This model models successful reception in terms

of the received signal-to-noise-plus-interference ratio at a receiver. Let {Xk; k ∈ N}

be the subset of nodes simultaneously transmitting at some time instant over a certain

subchannel. All nodes in this subchannel choose a common power level P for all their

transmissions. For each subchannel, the noise power is N . A node can transmit over

several subchannels. A transmission from a node Xi, i ∈ N , is successfully received by

a node Xi(R) if
P

|Xi−Xi(R)|α

N +
∑

k∈N ,k 6=i
P

|Xk−Xk(R)|α
≥ β. (3.1)

for every sub-channel.

Definition 3.1.3. Information Theoretic Model: Both the protocol and physicals model

are a simplification of the successful transmission condition. The actual amount of infor-

mation that can be transmitted through the network should be derived from information

theory, which is referred as the information theoretical model.

The network studied in this research is a dense network in a unit square area
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with n uniformly distributed nodes. We use the protocol model [108] to determine

the success of communication in the presence of multiple access interference (MAI). In

particular, if χi, χj and χk denote the Cartesian positions in the unit square area for

nodes vi, vj and vk, assuming that node vk 6= vi transmits on the same sub-channel

at the same time as vi, and r(n) is the common transmission range of all the nodes

in the network, then node vi can successfully transmit to node vj if |χi − χj | ≤ r(n)

and |χk − χj | ≥ (1 + ∆)r(n), where ∆ > 0 is the guard zone factor. To guarantee

connectivity in this network [87], the transmission range (r(n)) is assumed to be1

r(n) = Ω(
√

log n/n) (3.2)

As Figure 3.1 illustrates, a TDMA medium access control scheme is assumed to

avoid MAI. The network area is divided into square cells with side-length C1r(n), (C1 <

1
4), and at any given time the cells separated by M -cell distance are the only cells

allowed to transmit as shown with a cross sign inside the cells in figure 3.1 where

M ≥ (2 + ∆)/C1.

3.2 Social Network Model

3.2.1 Social Network Characteristics

Social network is a network of entities that are linked to each other through

some kind of common interest like friendship. The individuals (called nodes) that are

1For n points placed uniformly at random on the unit square, the probability that there is no node

in the r(n) vicinity of any selected node tends to zero if r(n) is at least Θ(
√

logn
n

).
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connected to one node are the social contacts of that node. Studies show that the social

behavior imposes some properties on the network structure, out of which we focus on

three power-law distributed metrics:

1. Power-law distributed path length - According to [18, 67, 106] the social ties are

more probable to get formed between individuals that are closer to each other.

In other words, it has been observed [18] that, each node selects its social group

members according to a power-law distribution versus distance. In this work we

use α as the social group density parameter showing the skew factor of this power-

law distribution.

2. Power-law distributed communication length - The frequency of communicating

with different nodes within a social group is not the same; some nodes are con-

tacted more frequently than others. Latane et al. [67] studied the frequency of

social interactions in social networks and observed that in these networks, nodes

tend to communicate with their social contacts that are geographically closer to

them. In other words, the probability of choosing the members of a social group to

communicate with is inversely proportional to distance according to a power-law

distribution. We will consider a power-law distribution with parameter β for the

frequency of communications within a social group and call it social communica-

tion density.

3. Power-law degree distribution - The number of members of social groups is also a

random number in actual wireless social networks. Studies on complex networks
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[6,27,44,81], which are a superset of social networks, suggest that these networks

are scale-free networks, meaning that they have power-law degree distributions.

Therefore, we assume a power law distribution with parameter γ for the size of

social groups in our derivations.

3.2.2 Small-World Phenomenon

A social network exhibits the small-world phenomenon if, roughly speaking,

any two individuals in the network are likely to be connected through a short sequence

of intermediate acquaintances. Recent works has suggested that this phenomenon ex-

ists in networks arising in nature and technology, and a fundamental ingredient in the

structural evolution of the World Wide Web.

Most of the early work on this issue was based on versions of the following

explanation: random networks have low diameter. That is, if every individual were to

have a small number of acquaintances selected uniformly at random from the population,

and if acquaintanceship were symmetric, then two random individuals would be linked

by a short chain with high probability. However, it is obvious that the uniform random

model has some limitations; if A and B are two individuals with a common contact, it

is much more likely that they themselves are directly connected. But at the same time,

a network of acquaintanceships that is too clustered will not have the low diameter.

Watts and Strogatz [104] proposed a model for the small-world phenomenon

based on a class of random networks that interpolates between these two extremes, in

which the edges of the network are divided into local and long-range contacts. The
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paradigmatic example they studied was a re-wired ring lattice, containing a set V of n

points spaced uniformly on a circle, in which each point is joined by an edge to each of its

k nearest neighbors, for a small constant k. These are the local contacts in the network.

There are also a small number of edges in which the endpoints are chosen uniformly

at random from V , the long-range contacts. Watts and Strogatz argued that such a

model captures two crucial parameters of social networks: there is a simple underlying

structure that explains the presence of most edges, but a few edges are produced by

a random process that does not respect this structure. Their networks thus have low

diameter (like uniform random networks), but also have the property that many of

the neighbors of a node u are themselves neighbors (unlike uniform random networks).

They showed that a number of naturally arising networks exhibit this pair of properties;

and their approach has been applied to the analysis of the hyperlink graph of the World

Wide Web as well [2]. Figure 3.2 shows some examples of these networks.

Figure 3.2: Social Network Models-Some networks that are formed from a superpo-
sition of a structured subgraph and a random subgraph.
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3.2.3 A Power-Law Distribution for Social Groups

In Kleinberg’s model [64], every node s has a directed edge to every other

node vi within lattice distance p ≥ 1, and directed edges to q ≥ 0 other nodes using

independent random trials. Each directed edge from s has endpoint vi, i = 1, .., n with

probability proportional to d−αi
∆
= d−α(s, vi) and normalizing factor

∑n
i=1 d

−α
i . Consid-

ering the same probability distribution function for long-range social contacts (grouped

into set G), the probability that G for a source node contains exactly q independently

selected members is the summation of all possible q-member subsets of nodes probabil-

ities.

P (|G| = q) =
∑

1≤i1<...<iq≤n
P (G = {vi1 , ..., viq})

=
∑

1≤i1<...<iq≤n

q∏
j=1

P (vij ∈ G)

=
∑

1≤i1<...<iq≤n

d−αi1 ...d−αiq
(
∑n

j=1 d
−α
j )q

. (3.3)

where vij is the ithj node in the network for j = 1, ..., q and ij = 1, ..., n. As

can be seen, this probability is close to one for q = Θ(1), decreases by increasing q,

and approaches zero when q = Θ(n). Kleinberg [64] assumed that q is a universally

constant value and the above derivation proves that the original power-law distribution

used in his work should be modified to consider those cases when q is a function of n.

We assume that a source node has q(n) long range contacts selected in independent

random trials.

The long-range contacts are selected independently, while closer nodes to the
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source have a better chance of being selected as a G, thus, the probability that a

particular q-member set is the G set is proportional to the product of the inverse of the

distances of its members from the source. This probability can be written as

P (G = {vi1 , ..., viq}) =
d−αi1 ...d−αiq
Nα,q

. (3.4)

The normalization factor Nα,q is obtained using the fact that
∑

1≤i1<...<iq≤n P (G =

{vi1 , ..., viq}) = 1.

Nα,q =
∑

1≤i1<...<iq≤n
d−αi1 ...d−αiq (3.5)

The probability that a particular node vk is selected as a G for source s (i.e.,

the probability that vk is a member of the s’s G set) is given by

P (vk ∈ G) =
∑

1≤i1<...<iq−1≤n,ij 6=k
P (G = {vk, vi1 , ..., viq−1}),

=

∑
1≤i1<...<iq−1≤n,ij 6=k d

−α
k d−αi1 ...d−αiq−1∑

1≤i1<...<iq≤n d
−α
i1
...d−αiq

. (3.6)

The above probability function denotes the probability of node vk being in s’s

G, and is non-decreasing in q. It also guarantees that the described process ends up

with a q-member G set for source node s.

Let ϑt be a random variable denoting the destination node. Then, for each

particular vk ∈ V (the set of nodes except source), we have

P (ϑt = vk) = P (ϑt = vk | vk ∈ G)× P (vk ∈ G)

+ P (ϑt = vk | vk /∈ G)× P (vk /∈ G). (3.7)
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Given that the destination is only selected from G, P (ϑt = vk | vk /∈ G) = 0.

P (ϑt = vk) = P (ϑt = vk | vk ∈ G)P (vk ∈ G)

=

∑
1≤i1<...<iq−1≤n,ij 6=k d

−α
k

∏q−1
j=1 d

−α
ij∑

1≤i1<...<iq≤n
∏q
j=1 d

−α
ij

P (ϑt = vk | vk ∈ G) (3.8)

We use the notation of [80] to denote the elementary symmetric polynomials

of the variables x = (x1, ..., xn) by σp,n, 1 ≤ p ≤ n. In other words,

σp,n(x) = σp,n(x1, ..., xn) =
∑

1≤i1<i2<..<ip≤n
xi1 ...xip . (3.9)

Moreover, we define the elementary symmetric polynomials of the same set of

variables except one, xk, as

σkp,n−1(x1, ..., xn) = σp,n−1(x1, ..., xk−1, xk+1, ..., xn). (3.10)

Now let v = (v1, ..., vn) denote (d−α1 , ..., d−αn ), then the above equations can be

written as

P (vk ∈ G) =
d−αk σkq−1,n−1(v)

σq,n(v)
(3.11)

P (ϑt = vk) =
d−αk σkq−1,n−1(v)

σq,n(v)
P (ϑt = vk | vk ∈ G). (3.12)

This equation is used later to analyze the performance of social networks.

3.3 Routing Model

We have assumed to have a very simple routing algorithm. Each node is as-

sumed to know the locations of its intended destination and its immediate neighbors,

and selects as its next hop to the destination the local contact that is closest to the
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destination. The local contacts are within the radio range since they are the one hop

physical neighbors of the node. Assuming that there is at least one local contact in

each of the four adjacent cells of the source guarantees that this simple routing protocol

converges. If each node has more than four local contacts, i.e., all nodes within trans-

mission range are local contacts, then the order throughput capacity computation does

not change and the same results can be derived. The four local contacts assumption

was first considered in [64] for grid networks.
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Chapter 4

Throughput Capacity

The maximum common data transfer rate which can be achieved on average

by all users in a network is called throughput capacity. Let λ denote the data rate for

each node and X be the number of hops traveled by each bit from source to destination.

The total number of concurrent transmissions per second in such a network is then

nλE[X], where E[X] is the average number of hops in a route for any given source-

destination pair. This value is upper bounded by the total bandwidth W available,

divided by the number of non-interfered groups in the TDMA scheme as shown in

Figure 3.1 (i.e., W
M2C2

1r
2(n)

). Therefore, the maximum data rate for each node is [15]

λ ≤ λmax = Θ(
1

nr2(n)E[X]
). (4.1)

The average number of hops can be computed as

E[X] =

xmax∑
x=1

xP (X = x) = P (X = 1) +

xmax∑
x=2

xP (X = x). (4.2)
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P (X = 1) is the probability that the packets travel just one hop from source to desti-

nation, and its value resides between 0 and 1. Since each packet needs to travel at least

one hop from the source to reach the destination, the average number of hops between

the sources and destinations cannot be less than 1. Therefore, P (x = 1) does not change

the order of the E[X] and can be ignored when deriving the order of expected number

of hops.

To compute P (X = x) for x > 1, we need to consider the long-range contacts

outside the circle with radius r(n) centered at the source node. Given that all the

nodes inside the transmission range of a source receive the data transmitted from it in

just one hop, P (X = x) = 0 for 1 < x < d 1
C1

+ 1e. The information between source

and destination located on two opposite corners of the network area passes through the

maximum number of hops which is d 2
C1r(n)e. Thus, E[X] can be calculated as

E[X] ≡
d 2
C1r(n)

e∑
d 1
C1

+1e

xP (X = x). (4.3)

To compute P (X = x) for x = d 1
C1

+ 1e, ..., d 2
C1r(n)e, the number of nodes at

a distance of x hops from the source and their corresponding Euclidean distances from

the source are required. The geometric place of such nodes is a rhombus around the

source node as shown in Figure 3.1 and explained in [15]. The probability that the

number of hops between source and destination is x hops equals the probability that
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the destination is located in one of the cells on the boundaries of this rhombus. Hence,

P (X = x) =
4x∑
l=1

P (destination is inside sl)

=
4x∑
l=1

∑
vk in sl

P (ϑt = vk). (4.4)

Therefore,

E[X] ≡
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

P (ϑt = vk) (4.5)

In the following chapter we derive the values of P (ϑt = vk), to compute E[X]

and, consequently, λmax for networks with users that have social characteristics. To

make the whole derivation process simpler to follow we add one social property at a

time and figure out how each characteristic may change the network throughput.
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Chapter 5

Throughput Capacity in Social

Networks

5.1 Fixed-Size Groups/Uniform Peer Selection

This section presents a modeling framework for the capacity of a wireless net-

work in which nodes communicate in the context of social groups and successful trans-

missions can occur only between nodes within transmission range of each other. The

model characterizes a wireless network of n nodes each with a social group size that is

a function of the number of nodes n, the probability of a node being a long-range social

contact of a source that is inversely proportional to their Euclidean distance with power

factor α, and MAI is modeled according to the protocol model ( [14,15]).
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5.1.1 Results and Discussion

Theorem 5.1.1. Consider a wireless network consisting of n connected nodes with

social behavior modeled by the following properties.

• Any two nodes in distance d away from each other are socially connected with a

probability inversely proportional to dα, where α is the social group density.

• All the nodes have exactly q independent social contacts where q = 1, .., n− 1.

• Each source selects one of its social contacts as its destination randomly with no

preference.

Under these conditions, the maximum capacity order in this wireless social

network is

λmax =



Θ( 1
nr(n)), for q = Θ(n)

Θ( 1
nr(n)), for (q, qn)

n→∞→ (∞, 0)

Θ(n−q+1
n2r(n)

), for q <∞, 0 ≤ α < 2

Θ( n−q+1
n2rα−1(n)

), for q <∞, 2 ≤ α ≤ 3

Θ( n−q+1
n2r2(n)

), for q <∞, 3 < α

It is important to compute the traffic carried in each cell and find out if this

throughput capacity can be supported for each cell.

Theorem 5.1.2. Throughput capacity order obtained in Theorem 5.1.1 is achievable

and the flow in no node may become the bottleneck.
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For the purpose of making the theorems simpler to quantify we assume that

the according to equation 3.2 the transmission range is the minimum value required

to have a connected network (r(n) = Θ(
√

logn
n )). Figure 5.1 illustrates the results of

Theorem 1 by plotting the network capacity as a function of n for different values of α

(shown in dash-dot lines) when the number of long-range contacts is a fixed number, i.e.,

q(n) = 1. The solid lines show similar results obtained through simulations which follow

closely the theoretical results. It can be observed that the capacity order decreases

exponentially as the number of nodes increases. However, increasing the value of α

affects the rate of this capacity decrease. Small values of α correspond to the case in

which the social groups are highly distributed in the wireless network, and lead to a

rate of order-capacity decrease similar to the results derived by Gupta and Kumar [55],

in which no social groups exist.

In contrast, for large values of α, social groups are localized, the paths from

sources to destinations involve only Θ(1) hops, and the maximum throughput capacity

is achieved. Furthermore, rate of order-capacity decrease is much smaller than with

small values of α.

Figure 5.2 shows the throughput capacity versus the power law exponent (α)

for two values of q(n). In one case, q(n) is a function of n, i.e., q(n) = f(n), where

f(n) is an increasing function of n, and in the second case q(n) is a constant value,

i.e., q(n) = 100. It can be concluded that if the number of long-range contacts is not

a function of the number of nodes, the resulting capacity changes with the parameter

α. If α assumes small values (α ≤ 2), the network behaves as if there were no social
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Figure 5.1: Throughput vs. Network Size (Fixed-Size Groups/Uniform Peer
Selection)-Throughput capacity vs. the number of nodes for different social network
densities α, when each source has q = 1 long-range contact based on Theorem 1 results
(dash-dot curves), and the simulation results (solid curves).
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groups. For medium values of α (2 < α < 3), an exponential growth is observed in the

throughput capacity from Θ(1/
√
n log n) to Θ(1/ log n). For large values of α (α ≥ 3),

each source selects its destination along a path involving only Θ(1) hops w.h.p. and the

resulting capacity is the maximum capacity that can be obtained. We also observe that

the rate of capacity increase is very slow for α > 4.

0 1 2 3 4 5 6 7

m
a
x

q<

q=f(n)

((log n)
-1

)

((nlog n)
-1/2

)

Figure 5.2: Throughput vs. Social Group Density (Fixed-Size
Groups/Uniform Peer Selection)-Throughput capacity is constant (or changes)
with respect to social network density α when each source has finite (or infinite q = f(n))
number of social contacts.

However, if the number of long-range social contacts q(n) grows proportional

to the number of nodes n, the network behaves as if the network had no social groups,

independently of the rate of growth for q(n), and each node selects its destination
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randomly from all the other network nodes. In this case, the throughput capacity does

not change with parameter α, and this is true even if q(n) is much smaller than n, i.e.,

q(n) = log log(n), which is a small number even when n is a very large number.

This phenomenon can be described considering the probability of the source-

destination distance (dst) order being Θ(1). When the number of social contacts of each

node is a finite number, this probability is very small, even if that finite number is very

large. While in the latter case, if the number of social contacts grows with the network,

it can be proved that with high probability the source-destination distance is Θ(1).

Pr(dst = Θ(1)) = Pr(D1 < dst < D2)

= Pr(destination is inside the Ring(source,D1, D2))

≡
∫ D2

D1

nx1−ασxq−1,n−1

qσq,n
dx (5.1)

where D1, D2 < ∞ are real finite numbers, and Ring (source, D1, D2) is a

ring with the inner radius of D1 and outer radius of D2 centered on the source. Using

the approximations and techniques used before in this work, the following probability

is proved in Appendix.

Pr(dst = Θ(1)) =


0 for q <∞, 2 ≤ α

1 for q →∞ or 0 ≤ α ≤ 2

(5.2)

Figure 5.3 illustrates the simulation results for a fixed large social group density

α = 5 for three social group sizes; q = 1, n−1, n. It can be seen that the results are very

close to the analytical results even when n is not a very large value, i.e., 500 < n < 4000.
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5.1.2 Proofs to Theorems

Proof to Theorem 5.1.1. Since the destination is selected randomly among the q

contacts with no preference, we have

P (ϑt = vk | vk ∈ G) =
1

q
(5.3)

Combining the above equation with equations (3.12) and (4.5) the average

number of hops can easily be written as the following equation,

E[X] ≡
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk σkq−1,n−1(v)

qσq,n(v)
(5.4)

We now compute the average number of hops based on different values of q as

a function of n.

• Case I: q grows with n

If q = n, then E[X] can be rewritten as

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

x
4x∑
l=1

∑
vk in sl

d−αk σkn−1,n−1(v)

nσn,n(v)
. (5.5)

Since

d−αk σkn−1,n−1(v) = d−αk

n∏
i=1,i 6=k

d−αi

=
n∏
i=1

d−αi = σn,n(v), (5.6)

then

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

x

4x∑
l=1

∑
vk in sl

1

n
. (5.7)
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Because nodes are uniformly distributed over the network area, there are nC2
1r

2(n)

nodes inside each cell sl with high probability. Thus1

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

4x2C2
1r

2(n)

≡ r2(n)

∫ d 2
C1r(n)

e

d 1
C1

+1e
u2du ≡ 1

r(n)
. (5.8)

Hence, the per-node throughput capacity is 1
nr(n) , which will lead to the same

result obtained by Gupta and Kumar ( 1√
n logn

) [55], if we use the minimum trans-

mission range necessary to guarantee connectivity (equation 3.2). This result is

consistent, because the number of social contacts is equal to the total number of

nodes in the network, and one of these nodes is selected randomly and uniformly

as the destination, which is a similar assumption to that of the original work by

Gupta and Kumar [55].

The second case is when q = Θ(n) but q 6= n. Define i.i.d. random variables

Yi = d−αi for 1 ≤ i ≤ n and define the sequence Zi = log Yi for all values of i. It

is obvious that Zi are i.i.d. as well. Utilizing the law of large numbers, we have

limm→∞
1
m

∑m
i=1 Zi = Z where Z is the expected value of random variable Zi.

1Note that we are computing the order of E[X] dropping constant factors.
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Thus equation (3.12) can be computed as

P (ϑt = vk) ≡
∑

1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij

q
∑

1≤i1<..<iq≤n
∏q
j=1 Yij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp
∑q

j=1 Zij

q
∑

1≤i1<..<iq≤n exp
∑q

j=1 Zij
,

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp qZ

q
∑

1≤i1<..<iq≤n exp qZ

≡
(n−1
q−1 )

q(nq )
=

1

n
. (5.9)

Therefore, the value of E[X] is similar to the case q = n.

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

x
4x∑
l=1

∑
vk in sl

1

n
≡ 1

r(n)
. (5.10)

Using equation (4.1) provides the capacity as λmax = Θ( 1
nr(n)).

• Case II: n grows much faster than q

In this case, the expected number of hops between source and destination is ob-

tained when limn→∞
q
n = 0, and two mutually exclusive situations must be con-

sidered, namely: limn→∞q =∞ and limn→∞ q <∞.

When limn→∞ q = ∞, we can use law of large numbers and a similar procedure

as before to arrive at

E[X] = Θ(
1

r(n)
),

λmax = Θ(
1

nr(n)
). (5.11)

When each node has finite number of contacts (limn→∞ q < ∞), the numerator
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of P (ϑt = vk) can be expanded as

d−αk σkq−1,n−1(v) = d−αk σq−1,n(v)− d−2α
k σkq−2,n−1(v)

= d−αk σq−1,n(v)− d−2α
k σq−2,n(v) + d−3α

k σkq−3,n−1(v)(5.12)

Note that d−αk and σq−i,n−j are positive values; therefore, the upper and lower

bounds for P (ϑt = vk) are obtained as

d−αk
σq−1,n(v)− d−αk σq−2,n(v)

qσq,n(v)
≤ P (ϑt = vk) ≤

d−αk σq−1,n(v)

qσq,n(v)
. (5.13)

Lemma 5.1.3. Let Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-negative real numbers.

Then for a finite p, i.e., limn→∞ p <∞, we have

σ1,n(Ψ)σp,n(Ψ)

(p+ 1)σp+1,n(Ψ)
= Θ

(
n

n− p

)
. (5.14)

Proof. Define random variables Upi = ψi1 ...ψip for i = 1, .., (np ) where 1 ≤ i1 <

.. < ip ≤ n. Due to symmetry, these random variables are identically distributed.

Moreover, their mean Up is a function of p. It can be easily seen that these

random variables are not independent, as they may have common factors of ψij .

We partition the set Ψ into p-member subsets. Assume that T p is the set of all

possible such partitioning (each denoted by T pi ) with no common member, i.e.,

T pi ∩T
p
j = φ. For a finite p, the number of T p members is |T p| ≡ (np )/(np ) = (n−1

p−1 ).

Now we can expand σp,n(Ψ) to separate summations over different partitions de-

scribed above. Thus,

σp,n =
∑

1≤i1<..<ip≤n
ψi1 ..ψip =

|T p|∑
j=1

∑
{ψi1 ..ψip}∈T

p
j

ψi1 ..ψip . (5.15)
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Because each inner summation is applied over one possible partitioning of Ψ, it is

performed over n
p of independent Ui as described before. The law of large numbers

can be applied here.

lim
n→∞

∑
{ψi1 ..ψip}∈T

p
j

ψi1 ..ψip = lim
n→∞

∑
{ψi1 ..ψip}∈T

p
j

Upi =
n

p
Up (5.16)

Thus,

σp,n =

|T p|∑
j=1

n

p
Up = (np )Up. (5.17)

A similar formulation can be derived for σp+1,n(Ψ).

σp+1,n =

|T p+1|∑
j=1

n

p+ 1
Up+1 = (np+1)Up+1 (5.18)

Therefore,

σ1,nσp,n
(p+ 1)σp+1,n

=
σ1,n(np )Up

(p+ 1)(np+1)Up+1

. (5.19)

Note that Upi have identical distribution and ψi are i.i.d.. Therefore, the expected

value Up+1 can be expressed in terms of Up

Up+1 = E[Up+1
i ] = E[ψi1 ...ψip+1 ]

=
∑
ψip+1

E[ψi1 ...ψipψip+1 |ψip+1 ]p(ψip+1),

=
∑
ψip+1

ψip+1E[ψi1 ...ψip ]p(ψip+1)

= Up
∑
ψip+1

ψip+1p(ψip+1)

= Up.ψp+1 = Up.ψ. (5.20)
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Furthermore, by utilizing law of large numbers for σ1,n results in σ1,n(Ψ) → nψ.

Thus

σ1,n(Ψ)σp,n(Ψ)

(p+ 1)σp+1,n(Ψ)
≡

n(np )

(p+ 1)(np+1)
=

n

n− p
. (5.21)

Returning to the case of finite contacts, we use Lemma 5.1.3 (for p = q − 1) and

inequality (5.13) to obtain an upper bound for E[X] in equation (5.4).

E[X] ≤
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk σq−1,n(v)

qσq,n(v)

≡ n

n− q + 1

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk
σ1,n

(5.22)

Referring to the results presented in [15], it can be observed that the average

number of hops in this case is n
n−q+1 times more than the case when there is only

one long-range contact for each source. To calculate the above summation, we need

to compute the distance between each node in si and the source. To simplify the

problem, we use distances R1 = xC1r(n)/A1 and R2 = A2xC1r(n) (A1, A2 > 1)

for all such nodes to reach upper and lower bounds for this summation (see figure

3.1).

4x∑
l=1

∑
vk in sl

(A2xC1r(n))−α ≤
4x∑
l=1

∑
vk in sl

d−αk

≤
4x∑
l=1

∑
vk in sl

(xC1r(n)/A1)−α (5.23)

By replacing the number of nodes in each cell by nC2
1r

2(n) and ignoring the

constant values in the above inequality, we can see that the order of both upper
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and lower bounds are the same.

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk ≡ nr2−α(n)

d 2
C1r(n)

e∑
d 1
C1

+1e

x2−α

a≡ nr2−α(n)

∫ d 2
C1r(n)

e+1

d 1
C1

+1e
u2−αdu (5.24)

The last equality (a) is obtained by replacing the sum by its integral approxima-

tion. After computing that integral for a sufficiently large value of n which leads

to sufficiently small transmission range, we arrive at

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk ≡


Θ( n

r(n)) , for 0 ≤ α ≤ 3

Θ( n
rα−2(n)

) , for 3 ≤ α
(5.25)

Moreover, σ1,n can be written as

σ1,n =
∑
vk

d−αk ≡
∫ γdmax

r(n)
nu1−αdu, (5.26)

where dmax is the maximum distance between any two nodes in the network, and

γ ≤ 1. Calculating the integral for a sufficiently large value of n leads to

σ1,n ≡


Θ(n) for 0 ≤ α ≤ 2

Θ( n
rα−2(n)

) for 2 ≤ α
(5.27)

The derivations of equations (5.25) and (5.27) are described in the Appendix.

Now we can use these results in equation (5.22) to obtain the following upper

bound for E[X]. Note that E[X] ≥ 1; therefore, if the computation ends up with
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E[X] < 1, we replace it with 1.

E[X] =



O( n
n−q+1

1
r(n)) for 0 ≤ α < 2

O( n
n−q+1

1
r3−α(n)

) for 2 ≤ α ≤ 3

O( n
n−q+1) for 3 < α

The lower bound capacity follows immediately.

λmax =



Ω(n−q+1
n2r(n)

) for 0 ≤ α < 2

Ω( n−q+1
n2rα−1(n)

) for 2 ≤ α ≤ 3

Ω( n−q+1
n2r2(n)

) for 3 < α

Thus, these are the upper bounds of E[X] and the lower bounds on the capacity

if the number of long-range contacts is a finite number greater than one.

To compute the lower bound for E[X], we will study the lower bound of P (ϑt = vk)

in equation (5.13). First, we calculate the order of
σq−2,n(v)
qσq,n(v) . This value is obtained

by replacing p = q − 1 and p = q − 2 in equation (5.14).

σ1,nσq−1,n

qσq,n
= Θ

(
n

n− q + 1

)
σ1,nσq−2,n

(q − 1)σq−1,n
= Θ

(
n

n− q + 2

)
(5.28)

By multiplying these two equations and combining with equation (5.27), we arrive
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at

σq−2,n

qσq,n
= Θ(

(q − 1)n2

(n− q + 1)(n− q + 2)σ2
1,n

)

=


Θ( (q−1)

(n−q+1)(n−q+2)) for 0 ≤ α ≤ 2

Θ( (q−1)r2α−4(n)
(n−q+1)(n−q+2)) for 2 ≤ α

(5.29)

The lower bound for E[X] is derived by combining equations (5.4) and (5.13).

E[X] ≥
d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk σq−1,n(v)− d−2α
k σq−2,n(v)

qσq,n(v)

=
σq−1,n(v)

qσq,n(v)

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk

− σq−2,n(v)

qσq,n(v)

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−2α
k . (5.30)

Following similar steps for deriving equation (5.25), we have

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−2α
k

≡


Θ( n

r(n)) , for 0 ≤ α ≤ 3/2

Θ( n
r2α−2(n)

) , for 3/2 ≤ α
(5.31)

If the terms in the negative part of equation (5.30) are replaced with their equiv-

alents from equations (5.29) and (5.31), it is easy to show that for connected
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networks (minimum transmission range given by equation 3.2), these negative

parts will be of an order less than one.

σq−2,n(v)

qσq,n(v)

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−2α
k

=



Θ( 1
nr(n)) , for 0 ≤ α ≤ 3/2

Θ( 1
r2α−2(n)

) , for 3/2 ≤ α ≤ 2

Θ( 1
r2(n)

) , for 2 ≤ α

=



Θ( 1√
n logn

) , for 0 ≤ α ≤ 3/2

Θ( 1
n2−α logα−1 n

) , for 3/2 ≤ α ≤ 2

Θ( 1
logn) , for 2 ≤ α

= o(1) (5.32)

Thus, these terms can be ignored compared to the positive part of E[X] and the

lower bound for E[X] is the same as its upper bound. Therefore, the obtained

bounds on capacity are indeed tight bounds.

Proof to Theorem 5.1.2. In order to prove that the throughput capacity is achiev-

able, we just need to compute the total traffic load that a cell is required to accommodate

and check if it is not greater than the maximum rate a cell can support.

The traffic load of a node may appear in different situations of being source,

relay or destination, the maximum of this value multiplied by the number of nodes in
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a cell (traffic load of a cell) should not exceed the maximum rate that each cell can

support which is Θ(1).

• Traffic load of a source node

Each source is assumed to transmit data at rate λ, so the maximum load

created by each source will be Θ(λmax).

• Traffic load of a relay node

We need to compute the maximum number of paths passing through each relay

node. To compute this value, we calculate the maximum number of source-destination

paths passing through each cell which is ( [55,103])

E[X]Pr(Pathi intersects cellj) =

O(E[X]r2(n)) < O(nr2(n)). (5.33)

As they are Θ(nr2(n)) nodes in each cell, using a routing protocol that randomly and

uniformly selects one node in a cell to forward the packets will result in the maximum

traffic load of a relay node to be Θ(λmaxnr
2(n)/nr2(n)) = Θ(λmax).

• Traffic load of a destination node

The power-law distribution of the social contacts leads to a non-uniform distri-

bution for destinations. However, we prove that for large n this distribution is asymp-

totically uniform. The probability that a node vk is selected as destination is

Pr(vk is destination) =
∑
vi

Pr(vk is destination|vi is source)Pr(vi is source), (5.34)
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and as the source nodes are uniformly distributed, this probability is equal to

1

n

∑
vi

Pr(vk is destination|vi is source). (5.35)

As we have shown in equation (3.12), the probability inside the summation is equal to

d−αki
σ
vk
q−1,n−1,i(v)

qσq,n,i(v) , where index i shows that all the distances in this equation are measured

toward source vi. Replacing this value, which has been shown by P (ϑt = vk) throughout

this work, with the equivalent values obtained for different values of q, it can be easily

seen that the probability that vk is destination will be Θ( 1
n).

If q goes to infinity for sufficiently large n,

Pr(vk is destination|vi is source) =
1

n
. (5.36)

Thus,

Pr(vk is destination) =
1

n

∑
vi

1

n
=

1

n
. (5.37)

If q does not grow with n,

Pr(vk is destination|vi is source) =
n

n− q + 1

d−αki
σ1,n,i

. (5.38)

Thus,

Pr(vk is destination) =
1

n− q + 1

∑
vi

d−αki
σ1,n,i

(5.39)

Since σ1,n,i has the same order for all i, and by definition is equal to
∑

vi
d−αki ,

the above equation is equivalent to

1

n− q + 1

∑
vi
d−αki

σ1,n
=

1

n
. (5.40)

41



The maximum number of routes passing through each cell is Θ(nr2(n)), thus,

it can be concluded that the maximum number of paths destined to each cell has the

same order. Thus, similar to the relay traffic load, each destination traffic load will be

Θ(λmax).

The total traffic load of a node is λmax(Θ(1) + Θ(1) + Θ(1), which results in

a total traffic of λmaxΘ(nr2(n)) for each cell. If the transmission range is greater than

Θ(
√

logn
n ), the traffic load will be λmaxΘ(log n) which is less than Θ(1) for all values of

α and q.

Therefore, the maximum throughput capacity is upper bounded by the inverse

of this traffic [74], i.e., λmax ≤ Θ( 1
logn), which does not violate the throughput capacity

bounds we derived earlier.

5.2 Power-Law Group Size/Uniform Peer Selection

Section 5.1 focused on the homogeneous social networks where all nodes have

the same number of social group members. However, study of social networks reveals

that the number of social group members for each node is different, and a large number

of networks like WWW [7] can be characterized as scale-free networks. More specifically,

a small portion of the nodes have a very large social group size while majority of nodes

have social contact with a few other nodes in the network. In other words, the number

of nodes with q contacts in these networks is inversely proportional to qγ , where the

exponent γ illustrates the clustering property of the network. According to [27], it has
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been shown that for each social network, this exponent is a constant number which does

not change over time. Therefore, different nodes in the network have different social

status, i.e., few nodes are highly popular while most of the nodes are less popular in the

network. Such networks have been named scale-free networks [6,7]. The present section

thus addresses these networks.

5.2.1 Results and Discussion

Theorem 5.2.1. Consider a social wireless network consisting of n connected nodes

with the following properties.

• Any two nodes in distance d away from each other are socially connected with a

probability inversely proportional to dα, where α is the social group density.

• Each node has q = 1, 2, .., or n − 1 social contacts and the number of nodes

with q social contacts is inversely proportional to qγ, where γ is the social degree

distribution exponent.

• Each source communicates with one of its social contacts randomly with no pref-

erence.

Under these conditions the throughput capacity will be λmax = Θ( 1
nr(n)) for

sufficiently large n.

Theorem 5.2.1 shows that these networks are not scalable. However, Theorem

5.2.2 demonstrates th at by separating few popular nodes (nodes with large number

43



of social contacts) from the rest of nodes that have few social contacts using different

sections of available bandwidth, the majority of nodes can scale.

Theorem 5.2.2. Consider the social network characterized in theorem 5.2.1 with large

social degree distribution exponent (2 < γ), and assume that social connectivity between

nodes is highly concentrated (α > 2). Let’s divide the total bandwidth (W ) into two

distinct parts, W/2 each; one part to be used to transfer the information generated from

the highly connected source nodes (G>q0) and the other part to be used for communication

by the source nodes with small social group size (G≤q0) where q0 is a constant value

independent of n.

The maximum data rate for the first group (G>q0) is

λmax = Θ(
1

nr(n)
), for 2 < α. (5.41)

The maximum data rate for the second group (G≤q0) is

λmax =


Θ( 1

nrα−1(n)
), for 2 < α < 3

Θ( 1
nr2(n)

), for 3 < α

(5.42)

Theorem 5.2.3. The obtained capacity results in theorem 5.2.2 are achievable. In

other words, no cell is a bottleneck and the traffic passing through each cell can be

routed through.

According to Theorem 5.2.1 the order of the throughput capacity in scale free

networks with uniform peer selection has been derived and proved to be Θ( 1
nr(n)), which
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is Θ( 1√
n logn

) for connected network with minimum transmission range (3.2). Further

investigation in Theorem 5.2.2 reveals that nodes with different social status, i.e., differ-

ent number of social contacts, have different effect on throughput capacity. Therefore,

traditional transport capacity concept for wireless networks is not appropriate for these

types of networks. However, if we divide the nodes into two groups based on their social

status and assign to each group half of the available bandwidth, then nodes with small

number of social group members can easily scale. On the other hand, the limiting factor

in scaling the capacity is the existence of few nodes with high social status that consume

majority of the network resources in terms of relaying requirements. More specifically,

it is shown that the nodes that limit the capacity consist of a small portion of the net-

work under the condition that the social groups are geographically highly concentrated

(α > 2) and the degree distribution exponent is large (γ > 2). Figures 5.5(a) and (b)

demonstrate data rates for these two groups of nodes, when γ > 2.

There exist many other features of social groups that we add in next sections

and study the throughput capacity performance of such networks. However, these pre-

liminary results show that the results of Gupta and Kumar and many other papers

followed that work are overly pessimistic and social connection among nodes may actu-

ally help in scaling wireless networks.

5.2.2 Proofs to Theorems

Proof to Theorem 5.2.1. The number of social contacts of a node, or its degree, is

a random variable (Q) which can take the values q = 1, .., n − 1 with the probability
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Figure 5.4: Popular Nodes to Ordinary Nodes Ratio (Power-Law-Distributed
Group Size/Uniform Peer Selection)-The ratio between the number of very popu-

lar nodes and less popular ones (
N>q0
N≤q0

) for large degree distribution exponent (γ = 2.3)

and (a) diffrent values of social group size threshold q0 for a fixed number of nodes
(n = 107), (b) different network sizes and a fixed value for q0 (103).

46



102 103 104 105 106 107
10-3

10-2

10-1

100

n

λ m
ax

>q
0

(b)

 

 

0<α<2

α=2.3

α=2.7

3<α

102 103 104 105 106 107
10-3

10-2

10-1

100

n

λ m
ax

≤ 
q 0

(a)

Θ((log n)-1)

Θ((nlog n)-.5)

Θ((n3-αlog nα-1)-.5)

Increasing α

Figure 5.5: Maximum Achievable Data Rate Order (Power-Law-Distributed
Group Size/Uniform Peer Selection)- for (a) highly connected source nodes (Group
G>q0), (b) nodes with small social group (Group G≤q0), with large degree distribution
exponent (γ > 2).
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distribution

Pr(Q = q) =
q−γ

Nq,γ,n
, (5.43)

where the normalization factor for this probability (Nq,γ,n) is

Nq,γ,n =
n−1∑
q=1

q−γ . (5.44)

Let’s assume that each node selects its destination in random from its social

contacts, so that the average number of hops (X) passed by the information from source

vi to its destination is

E[X|Source = vi] =
n−1∑
q=1

Pr(Q = q)E[X|Source = vi, Q = q]. (5.45)

Replacing the value of Pr(Q = q) from (5.43) and E[X|Source = vi, Q = q]

from [14] in the above equation results in

E[X|Source = vi] =

1
r(n)∑

1

x
4x∑
l=1

∑
vk in sl

n−1∑
q=1

q−γ∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

qσq,n(v)
, (5.46)

where dk is the distance between source and any other node vk in the network. sl

represents a square cell at distance of x hops from the source node vi. σq,n(v) is the

polynomial symmetric function described in [80] and is equal to
∑

1≤i1<..<iq≤n
∏q
j=1 d

−α
ij

.

σkq−1,n−1(v) is defined in [14] as
∑

1≤i1<..<iq−1≤n,ih 6=k
∏q−1
j=1 d

−α
ij

. Expanding the elemen-

tary symmetric polynomials, we have

d−αk σkq−1,n−1(v)

σq,n(v)
=

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 d

−α
ij∑

1≤i1<..<iq≤n
∏q
j=1 d

−α
ij

. (5.47)
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Since each dij is an independent sample of a random variable (distance between

the source and any other random node), we can define i.i.d. random variables Yij = d−αij

for 1 ≤ ij ≤ n and the random variable sequence Zij = log Yij for all values of ij , which

will obviously be i.i.d. as well.

d−αk σkq−1,n−1(v)

σq,n(v)
=

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij∑

1≤i1<..<iq≤n
∏q
j=1 Yij

=

∑
1≤i1<..<iq≤n,∃h:ih=k exp(

∑q
j=1 Zij )∑

1≤i1<..<iq≤n exp(
∑q

j=1 Zij )
, (5.48)

For sufficiently large value of q0 that is independent of n, we can apply the

Law of Large Numbers (LLN) for q > q0 and q random variables of type Zi. Thus for

q > q0, for any small ε > 0 we can find small δ(ε) such that limLarge q
1
q

∑q
i=1 Zi = Z+ε,

with probability 1 − δ(ε) → 1, where Z is the expected value of random variable Zi.

Therefore the order of the above equation equals to2

∑
1≤i1<..<iq≤n,∃h:ih=k exp(q(Z + ε))∑

1≤i1<..<iq≤n exp(q(Z + ε))
=

(n−1
q−1 )

(nq )
=
q

n
. (5.49)

Let’s define E1 as

E1 =

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk in sl

n−1∑
q=q0+1

q−γ−1∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

σq,n(v)
, (5.50)

which is equal to

E1 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk in sl

n−1∑
q=q0+1

q−γ−1∑n−1
b=1 b

−γ
q

n
(5.51)

2We use the notation ≡ to show the order equality.
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The term
∑n−1

q=q0+1
q−γ−1∑n−1
b=1 b

−γ
q
n is not a function of k or l, so it can be taken out

of the summation, and the number of terms of the two summations over k and l is in

the order of x(nr2(n)). Thus,

E1 ≡ r2(n)∑n−1
b=1 b

−γ

1
r(n)∑
x=1

x2
n−1∑

q=q0+1

q−γ

≡ 1

r(n)
∑n−1

b=1 b
−γ

n−1∑
q=q0+1

q−γ . (5.52)

The last equality is computed by approximating the sum as integral, i.e.,∑ 1
r(n)

1 x2 ≡ 1
r3(n)

.

Now define

E2 =

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk in sl

q0∑
q=1

q−γ−1∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

σq,n(v)
.

Note that E[X] = E1 +E2. We will compute E1 and E2 for different values of

α and γ and investigate which one of them will be the dominant factor in computation

of E[X].

Lemma 5.2.4. E1 has higher order value than E2 for all values of α and γ.

Proof. We observe that E1 is not a function of α.

E1 ≡
1

r(n)
∑n−1

q=1 q
−γ

n−1∑
q=q0+1

q−γ (5.53)

If 0 ≤ γ ≤ 1, it can be easily shown that the order of
∑n−1

q=q0+1 q
−γ and∑n−1

q=1 q
−γ are both equal to n1−γ

1−γ . Therefore, E1 ≡ 1
r(n) , and as this is the maximum
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number of hops that E[X] can have in a unit square area, therefore E2 does not have

any effect on the order of E[X].

If 1 ≤ γ,
∑n−1

q=1 q
−γ ≡

∑n−1
q=q0+1 q

−γ ≡ 1. Therefore E1 ≡ 1
r(n) and again E1

will be the dominant factor in computation of E[X].

Lemma 5.2.4 implies that regardless of the density and clustering degree of

the social network, each piece of information needs to travel Θ( 1
r(n)) hops on average

to reach the destination. Finally combining this result and by utilizing the minimum

transmission range to assure connectivity in the network (equation 3.2), the maximum

data rate is equal to λ ≤ λmax = Θ( 1
E[X]nr2(n)

). Then, Theorem 5.2.1 is readily proved.

λmax = Θ(
W

E[X]nr2(n)
) (5.54)

= Θ(
1

nr(n)
) (5.55)

W is the available bandwidth in the network.

Proof to Theorem 5.2.2. We observe from 5.1 and computation of E1 and E2 that

when nodes have large social contact size, they require significant network resources

to transport unicast data to destinations. On the other hand, when nodes have small

social contact size, they require much less network resources in order to transport pack-

ets from sources to destinations. Such significant disparity in capacity behavior among

nodes suggests that the conventional definition of transport capacity for wireless com-

munication networks is not appropriate for scale free wireless social networks. In these

networks, a more accurate analysis should be based on the fact that nodes with different
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social status in terms of popularity (i.e., number of social contacts) should be grouped

separately. For this reason, we divide the bandwidth W into two equal parts and allow

communication for each group of nodes within its allocated bandwidth. Note that as

we are talking about the order of the throughput capacity, any bandwidth allocation

which does not depend on the number of nodes will not change the order of throughput

capacity result. Clearly, in order to preserve the connectivity in the network, we still

allow nodes in different social status to relay messages for the other group of nodes.

However, this condition requires that each node is equipped with two radios, each one

operating in different frequency. Further discussion on the details of this approach is

beyond the scope of this work.

Lemma 5.2.5. Let q0 be a large constant number. For small social degree distribution

exponent (0 < γ < 1), the number of nodes with more than q0 social contacts (N>q0)

is Θ(n) and the number of nodes with less than q0 social contacts (N≤q0) is Θ(nγ).

Further, for large social degree distribution exponent (2 < γ), the ratio of the number of

nodes with more than q0 social contacts to the number of nodes with less than q0 social

contacts (
N>q0
N≤q0

) is Θ(q1−γ
0 ) which is a very small number for sufficiently large q0.

Proof. According to [27], the number of nodes with q connections is proportional to

q−γ and based on (5.43), the number of nodes with q connections is on average equal

to n q−γ∑n−1
q=1 q

−γ . Therefore the number of nodes with more than q0 social connections

(N>q0)is
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N>q0 = n

∑n−1
q=q0+1 q

−γ∑n−1
q=1 q

−γ
, (5.56)

and the number of nodes with less than q0 + 1 social connections (N≤q0)is

N≤q0 = n

∑q0
q=1 q

−γ∑n−1
q=1 q

−γ
. (5.57)

These summations can be approximated by integrals.

1 +

∫ n

2

dq

qγ
≤

n−1∑
q=1

q−γ ≤ 1 +

∫ n

2

dq

(q − 1)γ

1 +

∫ q0+1

2

dq

qγ
≤

q0∑
q=1

q−γ ≤ 1 +

∫ q0+1

2

dq

(q − 1)γ∫ n

q0+1

dq

qγ
≤

n−1∑
q=q0+1

q−γ ≤
∫ n

q0+1

dq

(q − 1)γ

Therefore the upper and lower bounds for N>q0 and N≤q0 are

n

1
1−γ (n1−γ − (q0 + 1)1−γ)

1 + 1
1−γ ((n− 1)1−γ − 1)

≤ N>q0 ≤ n
1

1−γ ((n− 1)1−γ − q1−γ
0 )

1 + 1
1−γ ((n1−γ − 21−γ)

, (5.58)

and

n
1 + 1

1−γ ((q0 + 1)1−γ − 21−γ)

1 + 1
1−γ ((n− 1)1−γ − 1)

≤ N≤q0 ≤ n
1 + 1

1−γ (q1−γ
0 − 1)

1 + 1
1−γ ((n1−γ − 21−γ)

. (5.59)

Based on these inequalities, it can be easily seen that for small γ (less than

1), the number of nodes with large number of social connections is a tight bound, i.e.,

N>q0 = Θ(n). For larger γ, the number of such nodes decreases significantly and will be

negligible compared to the number of nodes with very small number of social contacts.

When γ is larger than 2, both N>q0 and N≤q0 are Θ(n) but their ratio is inversely

53



proportional to qγ−1
0 . Figure 5.4(a) shows the ratio of the number of nodes with more

than q0 social contacts to the number of nodes with less social connections for γ = 2.3

and n = 107, and Figure 5.4(b) illustrates the same ratio for similar γ and q0 = 1000.

It can be seen that the network size (n) does not considerably affect this ratio as long

as it is much more than q0, and the value of q0 changes the ratio exponentially.

In other words, for large γ, the number of nodes involving in E1 is much less

than the nodes which generate the E2 part of the total average number of hops. E2

is calculated in appendix and it is shown that for large values of γ and α this term is

much smaller than E1. The following Lemma describes the size of E1 and E2 for large

values of α and γ.

Lemma 5.2.6. In highly concentrated social networks (large α) with large social degree

distribution exponent (large γ) , a very small group of nodes (N>q0) use the majority

of the resources (due to the large average number of hops traveled by each packet to

reach the destination), while a large group of nodes (N≤q0) use a small portion of the

resources.

This Lemma implies that conventional definition of transport capacity may

not be appropriate for scale-free networks. In these networks, transportation of a single

packet requires different amount of network resources in terms of relaying and average

number of hops to reach destination. Based on this observation, it makes sense that

we divide the nodes into two categories. One group of nodes are less popular and their

social group size is small, i.e., N≤q0 and the other group of nodes are those nodes that

54



are more popular with higher social status with many social contacts, i.e., N>q0 . We

divide the available bandwidth W into two equal parts and allow communication for

each group inside their own bandwidth. By doing so, there is more fairness in each group

in terms of utilizing the network resources for transmission of packets to destinations

which will ultimately allow us to better understand the performance of the network.

For example if q0 = 100 and γ = 2.5, then it is easy to show that 99.9% of

nodes can scale while only 0.1% of nodes with larger than 100 social contacts will not

scale.

We have computed E1 before and by utilizing (5.54), the maximum data rate

for sources with N>q0 is given by

λmax>q0 = Θ(
W/2

E1nr2(n)
) = Θ(

1

nr(n)
). (5.60)

We use the results of appendix and particularly equation (A.20) for sources in

the second category, i.e., N≤q0 , to compute the throughput capacity.

λmax≤q0 = Θ(
W/2

E2nr2(n)
) (5.61)

=



Θ( 1
nr(n)) for 0 < α < 2

Θ( 1
nrα−1(n)

) for 2 < α < 3

Θ( 1
nr2(n)

) for 3 < α

(5.62)

These two capacity results prove Theorem 5.2.2.

Proof of theorem 5.2.3. The proof of this theorem is very similar to the proof of

theorem 5.1.2 For relay and transmit modes we can readily use the same proof as in
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theorem 5.1.2. For receive mode, we only need to prove that the destinations have a

uniform distribution.

The source nodes are uniformly distributed in the network. Thus the proba-

bility that a specific node vk is the destination can be written as

Pr(ϑt = vk) =

n∑
i=1

Pr(ϑt = vk|vi is source)Pr(vi is source)

=
1

n

n∑
i=1

Pr(ϑt = vk|vi is source). (5.63)

Let Gi be the set of social contacts if node vi is the source, and Qi be the number of

social contacts of source node vi. Using equations (3.11) and (3.12) which has been

written for one specific source node, we have

Pr(ϑt = vk|vi is source)

=
n∑
q=1

Pr(ϑt = vk|vi is source, vk ∈ Gi, Qi = q)

× Pr(vk ∈ Gi, Qi = q) (5.64)

=

n∑
q=1

Pr(ϑt = vk|vi is source, vk ∈ Gi, Qi = q)

× Pr(vk ∈ Gi|Qi = q)Pr(Qi = q)

=
n∑
q=1

q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn)
(5.65)

Now let P1 and P2 represent
∑n

q=q0+1
q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn) and
∑q0

q=1
q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn) ,

respectively. Using the results from [63], we have
d−αk σq−1(dk̄

n)

σq(dn) ≡ q
n . Also using results
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from [13] we have
d−αk σq−1(dk̄

n)

σq(dn) <
d−αk q

σ1(dn) . Therefore,

P1 = Θ(
1

nσ1(b)

n∑
q=q0+1

q−γ)

P2 = O(
d−αk

σ1(b)σ1(dn)

q0∑
q=1

q−γ) (5.66)

For large values of γ, σ1(b),
∑n

q=q0+1 q
−γ , and

∑q0
q=1 q

−γ are all Θ(1). Hence, we have

P1 ≡ 1
n and P2 = O(

d−αk
σ1(dn)). Then,

Pr(ϑt = vk) =
1

n

n∑
i=1

(P1 + P2)

=
1

n

n∑
i=1

Θ(
1

n
) +O(

d−αk
σ1(dn)

), (5.67)

where dk in the above formulation is the distance from vk to the source node vi which

can be shown as dki . Thus using similar notation for dni
we have

n∑
i=1

O(
d−αk

σ1(dni
)
) = O(

σ1(dnk
)

σ1(dni
)

) = O(1), (5.68)

that results in Pr(ϑt = vk) ≡ 1
n . Therefore, the destinations are distributed uniformly

similar to the relay nodes, and no node in receive mode will be a bottleneck.

5.3 Fixed-Size Groups/Power-Law Peer Selection

This section focuses on the case when nodes select their destinations inside the

social groups based on distance, according to a power law distribution. This assumption

is based on a highly cited paper [67] on frequency of communication inside social groups.

We assume that within the social group G, the source selects its destination according
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to a power law distribution with parameter β. Further, the number of long range social

contacts for all nodes in this section is assumed to be a same number q(n).

5.3.1 Results and Discussion

Theorem 5.3.1. Consider a social wireless network consisting of n connected nodes

with the following properties.

• Any two nodes in distance d away from each other are socially connected with a

probability inversely proportional to dα, where α is the social group density.

• All the nodes have exactly q independent social contacts where q = 1, .., n− 1.

• Each source communicates with one of its social contacts randomly with a proba-

bility inversely proportional to dβ, where β is the social communication density.

Under these conditions the throughput capacity will be

• If q = Θ(n):

λmax =



Θ( 1
nr(n)), for 0 ≤ β ≤ 2

Θ( 1
nrβ−1(n)

), for 2 ≤ β ≤ 3

Θ( 1
nr2(n)

), for 3 ≤ β
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• If q
n→∞→ ∞ and , qn

n→∞→ 0:

λmax =



Θ( 1
nr(n)), for 0 ≤ β ≤ 1

Θ( 1
q(n)nrβ+1(n)

), for 1≤β≤3,
q(n)=Ω(rβ−1(n))

Θ( 1
q(n)nr4(n)

), for 3≤β,
q(n)=Ω(r2(n))

Θ( 1
nr2(n)

), Otherwise

• If q = Θ(1):

λmax =



Θ( 1
nrβ+1(n)

), for 0≤α≤2,
0≤β≤1

Θ( 1
nrα+β−1(n)

), for 0≤α+β≤3,
2≤α

Θ( 1
nr2(n)

), Otherwise

Theorem 5.3.2. These capacity results are achievable. In other words, no cell is a

bottleneck and the traffic passing through each cell can be routed through.

Here we take a closer look at each of the regions stated in Theorem 5.3.1. In

case of q = Θ(n), by replacing r(n) with its minimum value for a connected network,

the maximum achievable throughput is given by

λmax =



Θ( 1√
n logn

), 0 ≤ β < 2

Θ( 1
logn

√
logn
n

3−β
), 2 ≤ β ≤ 3

Θ( 1
logn). 3 < β

(5.69)

This result demonstrates that for q = Θ(n) and when the destination is selected

based on distance, then the throughput capacity is independent of α. Further, we can
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achieve highest possible capacity (λmax = Θ( 1
logn)) even for small values of α when

β > 3. Based on this observation, it can be concluded that for this case, selecting

destination based on distance is the dominant factor. This result can be justified by

observing that since the total number of social contacts is proportional to n, then

selecting them based on a power law distribution (with parameter α) does not make

much difference since most of the nodes belong to all social groups. As we see in the

next region (q = Θ(1)), the effect of α will appear as the nodes become more selective

in choosing the members of their social groups.

If q = Θ(1), then replacing r(n) with its minimum value, gives λmax as

λmax ≡



Θ( 1
logn

√
logn
n

1−β
), 0 ≤ β ≤ 1, 0 ≤ α ≤ 2

Θ( 1
logn

√
logn
n

3−α−β
), 0 ≤ α+ β ≤ 3, 2 ≤ α

Θ( 1
logn). Otherwise

(5.70)

The results indicate that when both α and β are small, then social charac-

teristics of the network has little effect on the throughput capacity which is the first

capacity region for this case. However, by increasing the value of α beyond the thresh-

old of 2, social characteristics start influencing and increasing the throughput capacity

while the effect of communication network decreases (second capacity region). When

we move beyond these values, social characteristics become dominant factor and the

communication network does not have any effect on the capacity of the network. In this

capacity region, average hop count is proportional to Θ(1) which is the direct result of

strong social aspects of the network.
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Similarly, in case of q
n→∞→ ∞ and , qn

n→∞→ 0, the achievable throughput for

minimum transmission range is derived as

λmax ≡



Θ( 1
f(n) logn

√
logn
n

1−β
), 1 ≤ β ≤ 3, f(n) = Ω(

√
logn
n

β−1

)

Θ( 1
f(n) logn

n
logn), 3 ≤ β, f(n) = Ω( logn

n )

Θ( 1
logn). Otherwise

The result in this region provides insight on the behavior of throughput capac-

ity as a function of the number of social contacts for each node. This part explains how

different social characteristics of the network that are represented by two parameters of

β and α (α in these equations is indirectly reflected in f(n)) influences the throughput

capacity in the most general case.

To summarize, in general when the social characteristics of the network become

a dominant factor, then the throughput capacity of the network improves. On the other

hand, when the wireless communication characteristics of the network is dominant, the

throughput capacity will decrease up to the point that in the extreme case, it will be

the same as Gupta-Kumar result (small β in case that the social group size increases

with the network size, and when β = 0 in case of fix social groups).

The results in this research, which are obtained through mathematical proofs

are expressed in terms of scaling laws. In order to validate our theoretical results with

simulations, we need to use very large values for n. However, using very large values for

n is not practical due to the non-polynomial number of computations. For instance, we

have
(
n
q

)
different possibilities to choose q members of the social group from the total
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number of nodes n. Each one of these choices has an associated probability expressed

as

Pr(G = {vg1 , ..., vgq}) =
d−αg1

...d−αgq∑
1≤i1<...<iq≤n d

−α
i1
...d−αiq

(5.71)

This means that for any numerical simulation, we need to compute the asso-

ciated probabilities. Now, if q = Θ(f(n)), then we should compute these probabilities

for at least
(
n
q

)
=
(
n

f(n)

)
≥
(

n
f(n)

)f(n)
different choices. This value grows faster than

exponential for many choices of f(n). Therefore, conducting a comprehensive numerical

analysis for the theoretical results in this work is almost impossible except for special

cases of q = Θ(1) and q = Θ(n). We simulated our results and compared them against

the theoretical results. Figure 5.6 shows the average hop count in theory and by sim-

ulation. The results clearly demonstrate that our theoretical derivations are very close

to simulation results as the number of nodes in the network increases. For the case

of β = 3.5, we only show the simulation results which is consistent with theory, i.e.,

E[X] = Θ(1).

Figure 5.7 demonstrates the maximum throughput as a function of n when

q = Θ(n). We can see from this figure, that for different values of α and β, the

simulation results are very close to theoretical results which verifies the accuracy of the

analytic work.

Figures 5.6 and 5.7 compare the simulation results with theory for the case of

q = Θ(1). Both the analytical results for the average number of hops and throughput

capacity for different values of α and β are close to simulation results. From all these
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Figure 5.6: Hop Count vs. Network Size When q = Θ(n) (Fixed-Size
Groups/Power-Law-Distributed Peer Selection).
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results, we can conclude that the analytical results accurately predict the behavior of

the network when social characteristics are considered.
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Figure 5.8: Latency vs. Network Size When q = Θ(1) (Fixed-Size
Groups/Power-Law-Distributed Peer Selection).

5.3.2 Proofs to Theorems

Proof to Theorem 5.3.1. By defining dq = (d−βg1 , ..., d
−β
gq ), we have

Pr(ϑt = vk | vk ∈ G) =
d−βk∑q
j=1 d

−β
j

=
d−βk
σ1(dq)

, (5.72)

which reduces equation (4.5) to

E[X] =

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−α−βk σq−1(dk
n)

σ1(dq)σq(dn)
. (5.73)

Next, we state some lemmas (with proofs in Appendix) to compute the value of E[X]

based on the size of social group.
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Figure 5.9: Throughput vs. Network Size When q = Θ(1) (Fixed-Size
Groups/Power-Law-Distributed Peer Selection).

Lemma 5.3.3. When limn→∞ q =∞, we have
d−αk σq−1(dk

n)

σq(dn) ≡ q
n .

specifically, when q = Θ(n), we have
d−αk σq−1(dk

n)

σq(dn) ≡ Θ(1).

The following two lemmas stated and proved in [63]. We will restate them here

and use them to prove Theorem 5.3.1.

Lemma 5.3.4.

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk ≡


Θ
(
nr−1(n)

)
, 0 ≤ β ≤ 3

Θ
(
nr2−β(n)

)
, 3 ≤ β

(5.74)

Lemma 5.3.5.

σ1(dn) ≡


Θ (n) , 0 ≤ α ≤ 2

Θ
(
nr2−α(n)

)
, 2 ≤ α

(5.75)

Also notice that when q = Θ(n), we have
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σ1(dq) ≡


Θ (n) , 0 ≤ β ≤ 2

Θ
(
nr2−β(n)

)
. 2 ≤ β

(5.76)

E[X] in case of q = Θ(n) can be derived as a direct result of lemmas 5.3.3,

5.3.4, and 5.3.5 used in equation (5.73). Corresponding throughput capacity for this

region in Theorem 5.3.1 is obtained using equation (4.1).

Lemma 5.3.6. When q = Θ(1) or q = Θ(f(n)) where limn→∞
f(n)
n = 0, then σ1(dq)

has the order of Θ
(
r(n)−β

)
.

Lemma 5.3.7. The following inequalities hold.

σq−1(dn)− d−αk σq−2(dn) ≤ σq−1(dk
n) ≤ σq−1(dn) (5.77)

We can now use lemma 5.3.3 to simplify equation (5.73) as

E[X] ≡ q

nσ1(dq)

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−βk . (5.78)

and, using lemmas 5.3.4 and 5.3.6, and replacing q with Θ(f(n)) proves the second

region of Theorem 5.3.1.

Finally, the proof to the third region of Theorem 5.3.6 uses similar reasoning

and can be found in [63].

Proof to Theorem 5.3.2. Since each node can receive or transmit just one flow at a

time, the maximum rate a node (and a cell) can support is Θ(1). Each node carries

traffic during transmission, reception, or relaying of the data. The maximum value of
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this traffic should not exceed the maximum supportable traffic of Θ(1). We will consider

three different scenarios:

• Traffic load of a source node

Each node transmit at maximum rate of λmax which is much less than one for

all the obtained capacity regions. It has been shown [66] that there are Θ(nr2(n)) nodes

in each cell which results in maximum generated traffic by each cell as Θ(λmaxnr
2(n)).

Since λmax does not exceed Θ( 1
nr2(n)

), then the maximum traffic generated by each

cell cannot exceed Θ(1). Therefore, the traffic generate in transmission mode does not

create any bottleneck.

• Traffic load of a relay node

A path of length x-hops consists of exactly x cells in our model. Since we have

a total of 1
r2(n)

cells, the probability that a cell is selected from a group of x specific

cells is equal to xr2(n). The probability that a source-destination path of length x-hops

passes through a specific cell is always less than xr2(n). Thus, the probability of a

source-destination path Li passing through a specific cell S0 is

Pr(Li intersects S0) =
∑
x

Pr(Li intersects S0|Xi = x)Pr(Xi = x)

≤
∑
x

xr2(n)Pr(Xi = x), (5.79)

where Xi is the number of hops the path Li is passing through. Therefore,

Pr(Li intersects S0) ≤ E[X]r2(n). (5.80)
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Since we only consider unicast communications, there are at most a total of

Θ(n) source-destination pairs. Therefore, using the union bound, the maximum number

of paths intersecting a specific cell is Θ(nE[X]r2(n)). Consequently, the maximum

traffic load of a relay cell is Θ(nE[X]r2(n)λmax) which is Θ(1) in all regions of the

throughput capacity obtained in this work. Therefore no cell will carry more than what

it can support when it is in relay mode.

A relay node in a cell consisting of Θ(nr2(n)) nodes is selected with a uniform

distribution. Hence, the probability that a specific node is a relay equals the probability

that the corresponding cell is a relay, divided by the number of nodes in that cell. This

probability is smaller than Θ(E[X]λmax) which is less than Θ(1). It is concluded that

the relay nodes will never cause bottleneck in the network.

• Traffic load of a destination node

Similar to previous section argument, we conclude that receiver cells do not

cause bottleneck in the network. Since the selection of friends for each node follows

power-law distribution that may make the distribution of the destination nodes non-

uniform. In case of q = Θ(1), each node has only q = Θ(1) social contacts and it

consumes a constant bandwidth and does not cause bottleneck. For q = Θ(n), we prove

that this distribution is still uniform for large n and similar to the relay nodes, the

destination nodes does not create any bottleneck.

The source nodes are uniformly distributed in the network. Thus the proba-
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bility that a specific node vk is the destination can be written as

Pr(ϑt = vk) =
n∑
i=1

Pr(ϑt = vk|vi is source)Pr(vi is source)

=
1

n

n∑
i=1

Pr(ϑt = vk|vi is source). (5.81)

Let dki be the distance between vk and vi and Gi be the set of social contacts

if node vi is the source. Let’s define dqi
= (d−βg1i

, ..., d−βgqi) and dni
= (d−αg1i

, ..., d−αgni). Now,

similar to equation (3.12) which has been written for one specific source node, we have

Pr(ϑt = vk|vi is source) = Pr(ϑt = vk|vi is source, vk ∈ Gi)Pr(vk ∈ Gi)

=
d−βki

σ1(dqi
)

d−αki σq−1(dk̄
ni

)

σq(dni
)

. (5.82)

By using lemma 5.3.3 we arrive at

Pr(ϑt = vk|vi is source) ≡
d−βki

σ1(dqi
)
. (5.83)

Therefore,

Pr(ϑt = vk) =
1

n

n∑
i=1

Pr(ϑt = vk|vi is source) =
1

n

n∑
i=1

d−βki
σ1(dqi

)
=

1

n
. (5.84)

So the destinations are distributed uniformly similar to the relay nodes, and

no node in receive mode will be a bottleneck. Notice that since for the case of q = Θ(n)

no node will become bottleneck, for the case of q = Θ(f(n)) also no node will become

bottleneck when f(n) = O(n) as in our case.
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5.4 Power-Law Group Size and Peer Selection

In this section we study the impact of the combination of all three power law

distributions on the network performance; the social network formation with parameter

α for selecting the long range contacts, parameter γ for the number of long range

contacts, and the communication among the members of the social group with parameter

β.

5.4.1 Results and Discussion

Theorem 5.4.1. Consider a social wireless network consisting of n connected nodes

with the following properties.

• Any two nodes in distance d away from each other are socially connected with a

probability inversely proportional to dα, where α is the social group density.

• Each node has q = 1, 2, .., or n − 1 social contacts and the number of nodes

with q social contacts is inversely proportional to qγ, where γ is the social degree

distribution exponent.

• Each source communicates with one of its social contacts randomly with a proba-

bility inversely proportional to dβ, where β is the social communication density.

Under these conditions the throughput capacity will be

λmax =


Θ( 1

nrβ+1(n)
), for 0 ≤ β ≤ 1

Θ( 1
nr2(n)

), for 1 ≤ β
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Theorem 5.4.1 implies that in a wireless network where each node has a power-

law distributed number of contacts picking based on a power-law distributed distance,

and where the closer contacts have more opportunity to be contacted to, the social

communication density (β) is the dominant social concept, and for large enough β the

network can support the most possible throughput capacity which is Θ( 1
logn) for a

connected network.

5.4.2 Proofs to Theorems

Proof to Theorem 5.4.1. The analysis in the proof of Theorem 5.2.1 and 5.3.1 can

be easily modified to get the results. Using equations (4.5), (3.12), and (5.46) we have

E[X] =

n∑
q=1

Pr(Q = q)E[X|Q = q]

≡

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

n∑
q=1

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(5.85)

To simplify the equation (5.85), like the process in the proof of theorem 5.2.1,

we break E[X] into the following two parts,

E1 ≡

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

n−1∑
q=q0

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(5.86)

and

E2 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

q0−1∑
q=1

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(5.87)
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We can use the argument in the proof of theorem 5.2.1 to simplify E1 as

E1 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

n∑
q=q0

q−γd−βk
σ1(b)σ1(dq)

q

n

≡

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−βk
nσ1(b)

n∑
q=q0

q−γ+1

σ1(dq)
(5.88)

Since q0 is a very large number, law of large numbers ensures that 1
qσ1(dq) lies in the

interval (E[dq]− ε, E[dq] + ε) with probability one thus it can be replaced by E[dq] in

our work.
n∑

q=q0

q−γ+1

σ1(dq)
=

1

E[dq]

n∑
q=q0

q−γ (5.89)

To find E[dq] notice that according to the proof of lemma 5.3.6 we know that with

probability close to one when n approaches infinity, there exists a long-range social

contact within the lattice distance of Θ(1) from the source thus

E[dq] ≡

1
r(n)∑
x=1

Pr(X = x)(xr(n))−β ≡ (r(n))−β (5.90)

Now if γ > 1, we have
∑n

q=q0
q−γ ≤ σ1,n(b−γ) ≤

∑∞
q=1 q

−γ = ζ(γ) ≡ Θ(1). Therefore

(5.89) can be simplified to
n∑

q=q0

q−γ+1

σ1(dq)
= (r(n))β (5.91)

and if 0 ≤ γ ≤ 1 we have
∑n

q=q0
q−γ ≡ σ1,n(b−γ) ≡ n−γ+1

−γ + 1
≡ n−γ+1. Thus in this case

(5.89) simplifies to
n∑

q=q0

q−γ+1

σ1(dq)
≡ n−γ+1(r(n))β (5.92)
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Using the previous equations of (5.74) and (5.75)

1

nσ1(b)

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk

≡



Θ
(
nγ−1r(n)−1

)
, 0 ≤ β ≤ 3, 0 ≤ γ ≤ 1

Θ
(
nγ−1r(n)2−β) , 3 ≤ β, 0 ≤ γ ≤ 1

Θ
(
r(n)−1

)
, 0 ≤ β ≤ 3, γ > 1

Θ
(
r(n)2−β) , 3 ≤ β, γ > 1

(5.93)

Therefore using (5.91), (5.92) and (5.93) we have

E1 ≡


Θ
(
r(n)−1+β

)
, 0 ≤ β ≤ 3

Θ
(
r(n)2

)
, 3 ≤ β

≡


Θ
(
r(n)−1+β

)
, 0 ≤ β ≤ 1

Θ (1) , 1 ≤ β
(5.94)

Notice that since E[X] cannot be smaller than one, thus we can replace r(n)−1+β for

1 ≤ β ≤ 3, and r(n)2 with 1, thus, the second equality holds. Now we use lemma

5.3.7 and equation (5.77) to prove that the order of E1 is dominant in the summation

E[X] = E1 + E2. Using the right hand side of (5.77) we have

E2 ≤

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

q0−1∑
q=1

q−γd−α−βk σq−1(dn)

σ1(b)σ1(dq)σq(dn)
(5.95)

Since q ≤ q0, it is a finite number and we can use lemma A.4.1 to get

σq−1(dn)

σq(dn)
≡ 1

σ1(dn)
Θ(

nq

n− q + 1
) ≡ 1

σ1(dn)
(5.96)

73



Thus

E2 ≤

1
r(n)∑
x=1

x
4x∑
l=1

∑
vk∈sl

d−α−βk

σ1(dn)σ1(b)

q0−1∑
q=1

q−γ

σ1(dq)
. (5.97)

Notice that using the argument in the proof of lemma 5.3.6 for very large n, there exists

a long-range contact in the lattice distance of Θ(1) to the source, with high probability,

which will be the dominant term in the summation σ1(dq) thus σ1(dq) scales as r(n)−β

and hence,
q0−1∑
q=1

q−γ

σ1(dq)
≡ 1

r(n)−β

q0−1∑
q=1

q−γ ≡ r(n)β (5.98)

Therefore, E2 ≤
r(n)β

σ1(dn)σ1(b)

∑ 1
r(n)

x=1 x
∑4x

l=1

∑
vk∈sl d

−α−β
k . Thus for γ > 1 we have

E2 ≡



O
(
r(n)−1+β

)
, 0 ≤ α+ β ≤ 3, 0 ≤ α ≤ 2

O
(
r(n)α+β−3

)
, 0 ≤ α+ β ≤ 3, α ≥ 2

O
(
r(n)2−α) , 3 ≤ α+ β, 0 ≤ α ≤ 2

O (1) , 3 ≤ α+ β, α ≥ 2

(5.99)

and for 0 ≤ γ ≤ 1, E2 will have a scaling factor of n1−γ multiplied by the above equation.

It can be verified that E1 is the dominant term compared to E2 and therefore using

equation (4.1) theorem 5.4.1 is proved.
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Chapter 6

Conclusion and Future View

In this part of our research, we comprehensively studied the effects of social

interactions among nodes on the capacity of wireless networks. We considered three

power-law distributed characteristics of social networks and added them one by one to

study their impact on the network performance. The three considered social characteris-

tics are distance between members of each social group, distance between communication

pairs inside each group, and the size of social groups.

Through further investigation we revealed that traditional transport capacity

definition provides misleading conclusions for such network models. We showed that

nodes with different social status impact the capacity differently. By categorizing nodes

based on their different social status and allocating separate bandwidth to them, it was

shown that majority of nodes scale in this network.

Our simulation results corroborated the analytical results. Further, we ob-

served consistently that social interaction improves the capacity of wireless networks
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which implies that the Gupta-Kumar results were pessimistic for real networks.

In this work we have made many assumptions to simplify our analytical frame-

work. For example, we have assumed that each source unicasts with a single destination

in its social group, that the protocol model is used to model MAI, and that all radios are

similar. In addition, we have not addressed the role of content popularity or common

interest in content within social groups. Relaxing these assumptions can be one line of

the works that can be done in future.

It is also worth emphasizing that the effects of social group evolution is not

considered in our network model and a more comprehensive work, should consider such

effects in the study of wireless networks with social considerations. For future work,

proper protocols for these wireless social networks can be studied, different resource

allocations based on social status can also be investigated to name a few.
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Part II

Network of Caches
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Chapter 7

Introduction

7.1 Research Motivations

In today’s networking situations, users are mostly interested in accessing con-

tent regardless of which host is providing this content. They are looking for a fast

and secure access to data in a whole range of situations: wired or wireless; heteroge-

neous technologies; in a fixed location or when moving. The dynamic characteristics of

the network users makes the host-centric networking paradigm inefficient. Information-

centric networking (ICN) is a new networking architecture where content is accessed

based upon its name, and independently of the location of the hosts [1, 4, 59,112].

In most ICN architectures, data is allowed to be stored in the nodes and routers

within the network in addition to the content publisher’s servers. This reduces the

burden on the servers and on the network operator, and shortens the access time to the

desired content. Combining content routing with in-network-storage for the information
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is intuitively attractive, but there has been few works considering the impact of such

architecture on the capacity of the network in a formal or analytical manner.

Further, a higher level look can abstract a communication network into two

(logical) layers, namely, a control plane carrying signaling and administrative traffic,

and a data forwarding plane carrying the user data traffic. In many applications, for

the network to function properly, the control plane must have some knowledge about

the forwarding plane in order to create a view of the underlying network. The un-

derlying network will be in an operating state which is reported by a protocol to the

control/management layer. For example, in a network of caches described above, the

data plane contains caches keeping the data traffic, e.g. video or audio files, which are

requested and used by the users, and the information regarding the items kept in each

cache reported to the control layer forms the control traffic.

However, as the networks have grown in size and complexity, as end nodes,

content and virtual machines move about, it will become more difficult for the control

layer to have an accurate view of the forwarding plane. Consider the example of finding

a service or a piece of content. Current protocols attempt to resolve a content request

to the nearest copy of the object by using DNS or redirecting HTTP requests. Further

proposals suggest to share content location information in between content delivery

networks (CDNs), or even to build content routing within the architecture. In all cases,

this implicitly entails that the mechanism responsible to route to the content has to be

dynamically updated with the content location. Meta-information from the forwarding

plane needs to be delivered to the control plane. This raises the question: how much?
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In other words, depending on the size of the domain being controlled, of the underlying

state space, of the dynamics of the evolution of the state in the forwarding plane, what

stream of data is required to keep the control plane up to date?

7.2 Contributions

The present research investigates the asymptotic orders of access time and

throughput capacity in such networks of caches. We study a wireless information-

centric network where nodes can both route and cache content. We also assume that a

node keeps a copy of the content only for a finite period of time, that is until it runs

out of memory space in its cache and has to rotate content, or until it ceases to serve a

specific content.

The nodes issue some queries for content that is not locally available. We

suppose that there exists a server which permanently keeps all the contents. This

means that the content is always provided at least by its publisher, in addition to the

potential copies distributed throughout the network. Therefore, at least one replica of

each content always exists in the network and if a node requests a piece of information,

this data is provided either by its original server or by a cache containing the desired

data. When the customer receives the content, it stores the content and shares it with

the other nodes if needed ( [16]).

We also consider the issue of maintaining a consistent view of the underlying

state at the control layer, and develop an abstracted mechanism, which can be applied
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to a wide range of scenarios. We assume the underlying state as an evolving random

process, and calculate the rate that this process would create to keep the representation

of this state up-to-date in the control plane. This provides a lower bound on the overhead

bandwidth required for the control plane to have an accurate view of the forwarding

plane1.

We then illustrate the power of our model by focusing on the specific case

of locating content in a resolution-based content-oriented network. Enabling content

routing has attracted a lot of attention recently, and thus we are able to shed some light

on its feasibility. In this case, the underlying state depends on the size and number

of caches, on the request for content process and on the caching policy. We apply

our framework to derive the bandwidth needed to accurately locate a specific piece of

content. We observe that there is a trade-off for keeping an up-to-date view of the

network at the cost of significant bandwidth utilization, versus the gain achieved by

fetching the nearest copy of the content. We consider a simple scenario to illustrate this

trade-off.

Our contribution is as follows ( [11,16,17]):

• We first state our results on fundamental limits of throughput capacity and latency

in network of caches and quantify the performance improvement brought about

by a content-centric network architecture over networks with no content sharing

1There exists other overhead that we have not discussed in this work. We believe that addressing
all the overhead of data/control plane interface in one work may not be possible, since there might
be several sources for them. However, if one thinks of certain sources of overhead, like the overhead
of setting up a secure connection between the forward and control planes, then the actual protocol
overhead would be proportional to the information theoretic overhead, at least if the rate of update is
high enough. In which case we provide a good idea of how the whole protocol overhead will trend.
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capability.

• We investigate content discovery mechanism effect on the performance. More

specifically, we compare the performance improvement by selecting the nearest

copy of the content and selecting the nearest copy in the direction of original

server.

• We study the impact of the caching policy, and in particular, the length of time

each piece of content spends in the cache’s memory, on the performance.

• We then present a framework to quantify the minimal amount of information

required to keep a (logical) control plane aware of the state of the forwarding plane.

We believe this framework to be useful in many distributed systems contexts.

• We apply our framework to the specific case of locating content, and see how

content location is affected by the availability of caches, the caching policy and

the content popularity. We can thus apply our results to some of the content-

oriented architectures and observe that cached copies would go ignored for a large

swath of the content set.

• We see how our framework allows to define some optimal policies with respect

to the contents that should be cached for an operator-driven content distribution

system. While it is not surprising that very unpopular contents should not be

cached, we can actually compute a penalty for doing so under our model.

We quickly note that our framework does not debate the merit of centralized
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vs distributed, as the control layer we consider could be either. For a routing example,

our model would provide a lower-bound estimate of the bandwidth for, say OpenFlow to

update a centralized SDN controller, or for a BGP-like mechanism to update distributed

routing instances.

Our results are theoretic in nature, and provide a lower bound on the overhead.

We hope they will provide a practical guideline for protocol designers to optimize the

protocols which synchronize the network state and the control plane ( [17]).

7.3 Outline

Part II of this research is organized as follows. After a brief review of the related

work in Chapter 8, the network models, the content discovery algorithms used in the

current work, and the content distribution in steady-state are introduced in Chapter 9.

The main theorems on fundamental limits of performance metrics are stated and proved

in Chapter 10. We discuss the results and study some simple examples in Chapter 11.

We then introduce our framework to model the protocol overhead and study the content

location in the network of caches in Chapter 12. The derived model is used to study a

simple caching network as well. We show the power of the model in the protocol design

by computing the cost of content routing and suggesting a cache management policy.

Finally this part is concluded and some possible directions for the future work will be

introduced in Chapter 13.
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Chapter 8

Previous Work

Information Centric Networks have recently received considerable attention.

While our work presents an analytical abstraction, it is based upon the principles de-

scribed in some ICN architectures, such as CCN [59], NetInf [5], PURSUIT [1], or

DONA [65], where nodes can cache content, and requests for content can be routed to

the nearest copy. Papers surveying the landscape of ICN [4] [50] show the dearth of

theoretical results underlying these architectures.

Caching, one of the main concepts in ICN networks, has been studied in prior

works [4]. [85] computes the performance of a Least-Recently-Used (LRU) cache taking

into account the dynamical nature of the content catalog. Some performance metrics

like miss ratio in the cache, or the average number of hops each request travels to locate

the content have been studied in [34, 91], and the benefit of cooperative caching has

been investigated in [107].

Optimal cache locations [90], cach sizes [12], and cache replacement tech-
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niques [110] are other aspects most commonly investigated. The work in [92] considers

a network of LRU caches with arbitrary topology and develops a calculus for computing

bounding flows in such network. And an analytical framework for investigating prop-

erties of these networks like fairness of cache usage is proposed in [98]. [105] considered

information being cached for a limited amount of time at each node, as we do here,

but focused on flooding mechanism to locate the content, not on the capacity of the

network. [41] investigates the routing in such networks in order to minimize the average

access delay. Rossi and Rossini explore the impact of multi-path routing in networks

with online caching [93], and also study the performance of CCN with emphasis on the

size of individual caches [94].

However, to the best of our knowledge, there are just a few works focusing

on the achievable data rates in such networks. Calculating the asymptotic throughput

capacity of wireless networks with no cache has been solved in [55] and many subse-

quent works [70] [84]. Some work has studied the capacity of wireless networks with

caching [54] [57] [8] . There, caching is used to buffer data at a relay node which

will physically move to deliver the content to its destination, whereas we follow the

ICN assumption that caching is triggered by the node requesting the content. [75] uses

a network simulation model and evaluates the performance (file transfer delay) in a

cache-and-forward system with no request for the data. [32] proposes an analytical

model for single cache miss probability and stationary throughput in cascade and bi-

nary tree topologies. Some scaling regimes for the required link capacity is computed

in [51] for a static cache placement in a multihop wireless network.
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[83] considers a general problem of delivering content cached in a wireless

network and provides some bounds on the caching capacity region from an information-

theoretic point of view, and [76] proposes a coded caching scheme to achieve the order-

optimal performance. Additionally, the wireless device-to-device cache networks’ per-

formance with offline caching phase has been studied in [60,61,73]. This is important to

note that our current work is different from [60,61,73,76,83] since unlike the mentioned

works it considers the online caching and assumes that the cache contents are updated

during the content delivery time.

A preliminary version our work [11] has derived the throughput capacity when

all the items have exactly the same characteristics (popularity), which has been shown

to be one of the important characteristics of such networks [19,25]. In this work, we do

not assume any specific popularity distribution and present the results for any arbitrary

request pattern.

—————————————

As SDN makes the separation explicit between the control and forwarding

layers, it begs the question of how these layers interact. This interaction has been

pointed out as one of the bottlenecks of OpenFlow [78], and several papers have been

trying to optimize the performance of the traffic going from one layer to the other. For

instance, [97] optimizes the controller to support more traffic, while [37] or [111] attempt

to make the control layer more distributed and thus reduce the amount of interaction

between the switches and the control layer. There has been no attempt to model the

interaction between the control and forwarding layers to our knowledge.
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Studying the gap between the state of the system and the view of the controller,

[69] focuses on the relationship between performance and state consistency, and [22]

studies similar relationship in multiple controller systems. This underlines the need for

the view at the control layer to be representing the network state with as little distortion

as possible.

The forwarding plane in a network usually consists of a state machine which is

changing because of different network characteristics. The control plane needs to obtain

adequate information about the underlying states so that the network can perform

within a satisfactory range of distortion. The first theoretical study of this information

was conducted by Gallager in [49]. This work utilizes the rate distortion theory to

calculate the bounds on the information required to show some characteristics such as

the start time and the length of the messages.

The link states (validity of a link) and the geographic location and velocity of

each node in a mobile wireless network are some examples of such state, which have

been studied in [100] and [101], respectively. An information-theoretic framework to

model the relationship between network information and network performance, and the

minimum quantity of information required for a given network performance was derived

in [58].

One impetus to study the relationship between the control layer and the net-

work layer comes from the increased network state complexity from trying to route

directly to content. Request-routing mechanisms have been in place for a while [21]

and proposals [88] have been suggested to share information between different CDNs,
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in essence enabling the control planes of two domains to interact (our framework ap-

plies to this situation). And many architectures have been proposed that are oriented

around content [4,53,59,65,99,112] and some have raised concerns about the scalability

of properly identifying the location of up to 1015 pieces of content [50]. Our model

presents a mathematical foundation to study the pros and cons of such architectures.

The cache management problem in the networks has been studied in several

contexts. [96] presents a centralized approximation algorithm to solve the cache place-

ment problem for minimizing the total data access cost in ad hoc networks. [26] proposes

a replication algorithm that lets nodes autonomously decide on caching the information,

and [12] determines whether/where to keep a copy of a content such that the overall

cost of content delivery is minimized and show that such optimized content delivery

significantly reduces the cost of content distribution and improves quality of service.

Some cooperative cache management algorithms are developed in [29] which

tries to maximize the traffic volume served from cache and minimize the bandwidth

cost in content distribution networks. [95] proposes some online cache management

algorithms for Information Centric Networks (ICNs) where all the contents are available

by caching in the network instead of a server or original publisher. [33] investigates if

caching only in a subset of node(s) along the content delivery path in ICNs can achieve

better performance in terms of cache and server hit rates. These works define a specific

cost in the network and try to determine the locations and the number of copies of the

contents in the network such that the defined cost is minimized. Finally [11] and [16]

analytically prove that on-path content discovery has the same asymptotic capacity as
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finding the nearest copy in these networks.

To the best of our knowledge, there is no work considering the protocol over-

head in such systems. In this work, we model the protocol overhead, then use that

model to compute a general cost for data retrieval (including the protocol overhead).

We also investigate whether allowing more copies of the contents cached in the network

reduces the total cost. One related work on this topic is [36] which proposes a content

caching scheme, in which the number of chunks (fragments) to be cached in each storage

is adjusted based on the popularity of the content. In this work, each upstream node

recommends the number of chunks to be cached in the downstream node according to

the number of requests.
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Chapter 9

Network of Caches

9.1 Network Model

Two network models are studied in this part.

9.1.1 Grid Network

Assume that the network consists of n nodes {v1, v2, ..., vn} each with a local

cache of size Li = Θ(1) located on a grid. In this work we focus on the grid shown

in Figure 9.1(a), but conjecture the theorems could be adapted to other regular grid

topologies too. Each node can transmit over a common wireless channel, with bandwidth

W bits per second, shared by all nodes. The distance between two adjacent nodes equals

to the transmission range of each node, so the packets sent from a node are only received

by four adjacent nodes.

There are m different contents, {f1, ..., fm} with sizes {B1, ..., Bm}, for which
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Figure 9.1: Network models a) Grid network: the transmission range of node v
contains four surrounding nodes. The black vertices contain the content in their lo-
cal caches. The arrow lines demonstrate a possible discovery and receive path in grid
network with path search, where node v downloads the required information from u.
In grid network with ring search, v will download the data from w instead. b) Ran-
dom network: the grey squares are the cells that can transmit simultaneously without
interference, and r(n) is the transmission range of each node.

each node vj may issue a query with probabilities {αk, k = 1, ...,m}, where
∑m

k=1 αk =

1, and m and αk are not changing with the network size1. Based on the content discovery

algorithms which will be explained later in this section, the query will be transmitted in

the network to discover a node containing the desired content locally. vj then downloads

Bk bits of data with rate γ in a hop-by-hop manner through the path Pxj from either a

node (vi, x = i) containing it locally (f ∈ vi) or the server (x = s). When the download

is completed, the data is cached and shared with other nodes either by all the nodes on

the delivery path, or only by the end node. In this work we consider both options.

Pjs denotes the nodes on the path from vj to server. Without loss of generality,

we assume that the server is attached to the node located at the middle of the network,

as changing the location of the server does not affect the scaling laws. Using the protocol

1In this work we are not considering applications like YouTube where the users are content generators.
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model and according to [108], the transport capacity in such network is upper bounded

by Θ(W
√
n). This is the model studied in Theorem 10.1.1 and the first two scenarios

of Theorem 10.1.2.

9.1.2 Random Network

The next network studied in Theorem 10.1.2 is a more general network model

where the nodes are randomly distributed over a unit square area according to a uniform

distribution (Figure 9.1(b)). We use the same model used in [108] (section 5) and divide

the network area into square cells each with side-length proportional to the transmission

range r(n), which is decreasing when the number of nodes increases, and is selected to

be at least Θ
√

logn
n to guarantee the connectivity of the network [87] and a non-zero

capacity. According to the protocol model [108], if the cells are far enough they can

transmit data at the same time with no interference; we assume that there are M2 non-

interfering groups which take turn to transmit at the corresponding time-slot in a round

robin fashion. Again, without loss of generality the server is assumed to be located

at the middle of the network. In this model the maximum number of simultaneous

feasible transmissions will be in the order of 1
r2(n)

as each transmission consumes an

area proportional to r2(n). All other assumptions are similar to the grid network.
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9.2 Content Discovery Algorithm

9.2.1 Path-Wise Discovery

To discover the location of the desired content, the request is sent through the

shortest path toward the server containing the requested content. If an intermediate

node has the data in its local cache, it does not forward the request toward the server

anymore and the requester will start downloading from the discovered cache. Otherwise,

the request will go all the way toward the server and the content is obtained from the

main source. In case of the random network when a node needs a piece of information,

it will send a request to its neighbors toward the server, i.e. the nodes in the same cell

and one adjacent cell in the path toward the server, if any copy of the data is found it

will be downloaded. If not, just one node in the adjacent cell will forward the request

to the next cell toward the server.

9.2.2 Expanding Ring Search

In this algorithm the request for the information is sent to all the nodes in

the transmission range of the requester. If a node receiving the request contains the

required data in its local cache, it notifies the requester and then downloading from

the discovered cache is started. Otherwise, all the nodes that receive the request will

broadcast the request to their own neighbors. This process continues until the content

is discovered in a cache and the downloading follows after that. This will return the

nearest copy from the requester.
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9.3 Content Distribution in Steady-State

The time diagram of data access process in a cache is illustrated in Figure

9.2. When a query for content fk is initiated, the content is downloaded from a cache

containing it and is received by another cache where it is going to be kept. The same

cache may receive the same data after some random time (T k2 ) with distribution g2k

and mean 1/λk. Note that 1) no specific caching policy is assumed here, and 2) a node

will receive the content only if it does not have it in its local cache. The solid lines in

this diagram denote the portions of time that the data is available at the cache.

Figure 9.2: Data access process time diagram in a cache for content k

As the requests for different contents are assumed to be independent and hold-

ing times are set for each content independent of the others, we can do the calculations

for one single content. If the total number of contents is not a function of the network

size, this will not change the capacity order. Assume that content sizes Bk are much

larger than the request packet size, so we ignore the overhead of the discovery phase in

our calculations.

The average portion of time that each node contains a content in its local cache
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is

ρ(k)(n) =
1/µk

1/µk + 1/λk
=

λk
λk + µk

, (9.1)

which is the average probability that a node contains the content k at steady-state. λk

is the rate of requests for content k received by a cache in case of the data not being

available, and µk is the rate of the data being expunged from the cache. Both these

parameters can strongly be dependent on the total number of users, or the topology

and configuration of the network or the cache characteristics like size and replacement

policy.

9.4 Performance Indices

The performance indices studied in this part are:

9.4.1 Throughput Capacity

Throughput capacity is the maximum common content download rate which

can be achieved by all users on average.

9.4.2 Average Latency

The average amount of time it takes for a customer to receive its required

content from a cache or server.
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9.4.3 Total Traffic

The total traffic generated by downloading item k is the number of item k bits

moving across the netwrok in a second. In other words, it is the product of total request

rate (the product of the number of requesting nodes and the rate at which each node

is sending the request), the number of hops between source and destination, and the

content size.
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Chapter 10

Throughput Capacity in Networks of

Caches

Our results on the asymptotic orders are stated in three sections; Section 10.1

formulates the capacity in a grid network which uses the shortest path to the server

content discovery mechanism, Section 10.2 derives the capacity results for a grid network

with expanding ring content discovery method. Section 10.3 formulates the capacity in

a random network which uses the shortest path discovery mechanism. The theorems

stated in these sections demonstrate that adding the content sharing capability to the

nodes can significantly increase the capacity and gives us some ideas how the content

search mechanism can affect the performance improvement.
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10.1 Grid Network/Path-Wise Content Discovery

Consider a grid wireless network consisting of n nodes, transmitting over a

common wireless channel, with shared bandwidth of W = Θ(1) bits per second. Assume

that there is a server which contains all the information. Without loss of generality we

assume that this server is located in the middle of the network. Each node contains some

information in its local cache. Assume that according to the symmetry, the probability

of each content k being in all the caches with the same distance (j hops) from the server

is the same (ρ
(k)
j (n)).

Theorem 10.1.1. The maximum achievable throughput capacity order (γmax) in the

above grid network when the nodes use the nearest copy of the required content on the

shortest path toward the server is given by1

γmax ≡ n∑m
k=1 αk

∑√n
i=1 4i

∑i−1
j=0(i−j)ρ(k)

j (n)
∏i
l=j+1(1−ρ(k)

l (n))
, (10.1)

where ρ
(k)
0 (n) = 1, which means that the server always contains all the contents.

Proof. Considering the grid topology and large number of nodes, each cache may receive

requests and downloaded contents originated from different nodes. Since the users are

sending requests independent of each other, the requests received by different caches

can be assumed independent of each other. Thus, the information in each cache is

independent of the contents in the other caches. This assumption has been made in

some other works too, among which are [32,38,47,77,89] to name a few.

1Since no online caching assumption is used in this Theorem, it can be used for offline caching
networks as well. However, we skip the offline results and target the networks with online caching which
is the scope of this work.
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A request initiated by a user vi in i-hop distance from the server (located in

level i = 1, ..,
√
n) is served by cache uj located in level j, 1 ≤ j ≤ i on the shortest

path from vi to the server if no caches before uj , including vi, on this path contains the

required information, and uj contains it. This request is served by the server if no copy

of it is available on the path. Let P
(k)
i,j denote the probability of vi’s request for item k

being served by uj , this probability is given by P
(k)
i,j =

(1− ρ(k)
i (n))(1− ρ(k)

i−1(n))...(1− ρ(k)
j+1(n))ρ

(k)
j (n) (10.2)

where ρ
(k)
j (n) is the probability of content k being available in a cache in level j, 1 ≤

j ≤
√
n, and j = 0 shows the server and ρ

(k)
0 (n) = 1. Thus a content k requested by vi

is traveling i− j hops with probability P
(k)
i,j . There are 4i nodes in level i so the average

number of hops (E[hk]) traveled by item k from the serving cache (or the original server)

to the requester is

E[hk] = 1
n

∑√n
i=1 4i

∑i−1
j=0(i− j)P (k)

i,j (10.3)

Therefore the average number of hops in the network is given by E[h] =
∑m

k=1 αkE[hk].

Assume that each user is receiving data with rate γ. The transport capacity

in this network, which equals to nγE[h], is upper bounded by Θ(
√
n) bits-meters/sec

divided by the distance of each hop Θ( 1√
n

), which is Θ(n) bits-hops/sec. So γmax =

Θ( 1
E[h]) and the Theorem is proved.

Now consider a wireless network consisting of n nodes, with each node contain-
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ing information k in its local cache with common probability2,3, ρ(k)(n) 9 1 (meaning

that it does not tend to 1 when n increases.), otherwise for ρ(k)(n) → 1, the request is

served locally and no data is transferred between the nodes. Assume that the request

process and cache look up time in each node is not a function of the number of nodes.

We restate Theorem 10.1.1 as a new theorem here and derive the average latency of

getting a content in such networks.

Theorem 10.1.2. The average latency order in the above grid network when the nodes

use the nearest copy of the required content on the shortest path toward the server is

given by

E[h] = Θ(min(
√
n,

1

min
k

(ρ(k)(n))
)) (10.4)

Here we prove Theorem 10.1.2 by utilizing some Lemmas. The proof of lemmas

are presented in the Appendix.

Lemma 10.1.3. Consider the wireless networks described in Theorem 10.1.2. The

average number of hops between the customer and the serving node (a cache or original

2The proof does not need the probabilities to be exactly the same, they just need to be of the same
order in terms of n.

3Note that this assumption is correct for networks with online caching. In offline caching scenarios
each content is present in some specific caches. However, offline caching can be considered as a special
case of online caching, and we still can use this theorem by assigning the value of the fraction of caches
containing the item to the probability of each item being in a cache.
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server) for item k asymptotically equals to

E[hk] ≡
1

n

√
n∑

i=1

i2(1− ρ(k)(n))i

+
ρ(k)(n)

n

√
n∑

i=1

i
i−1∑
l=1

l(1− ρ(k)(n))l (10.5)

Lemma 10.1.4. Consider the wireless networks described in Theorem 10.1.2. For

sufficiently large networks, the average number of hops between the customer and the

serving node (a cache or the original server) for item k is

E[hk] ≡


√
n, for ρ(k)(n) � 1√

n

1
ρ(k)(n)

, for ρ(k)(n) � 1√
n
.

(10.6)

Theorem 10.1.2 is now simply proved using the above Lemmas.

Proof to Theorem 10.1.2. The average number of hops each content is traveling is

E[h] =
∑m

k=1 αkE[hk].

We assume that the number of contents and also the popularity of each item

is not changing with the network size (number of users). In the above scenario if

ρ(k)(n) � 1√
n

, when there is at least one node with average number of hops equal to

√
n, then that node’s E[hk] in E[h] defined above becomes the dominant factor.

If for all the contents ρ(k)(n) � 1√
n

, then E[h] is given by
∑m

k=1
αk

ρ(k)(n)
≡

1
min
k

(ρ(k)(n))
.

The total E[h] can be simply written as the results shown in Theorem 10.1.2.

Assuming that the delay of the request process and cache look up in each node

is not increasing when the network size (the number of nodes) increases, and that there
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is enough bandwidth to avoid congestion, then the latency of getting the data is directly

proportional to the average number of hops between the serving node and the customer.

Thus, the latency and the average number of hops the data is traveling to reach the

customer are of the same order and Theorem 10.1.2 is proved.

Theorem 10.1.5. Consider the network of Theorem 10.1.2, and assume each node can

transmit over a common wireless channel, with W = Θ(1) bits per second bandwidth,

shared by all nodes. The maximum achievable throughput capacity order γmax is

γmax = Θ(max(
1

n
,min

k
((ρ(k)(n))2))). (10.7)

To prove Theorem 10.1.5 we use Lemma 10.1.4, and the following two Lemmas.

Lemma 10.1.6. Consider the wireless networks described in Theorem 10.1.2. In or-

der not to have interference, the maximum throughput capacity is upper limited by

Θ(max( 1√
n
,min

k
(ρ(k)(n)))).

In the previous Lemma, the maximum throughput capacity in a wireless net-

work utilizing caches has been calculated such that no interference occurs. Now it is

important to verify if this throughput can be supported by each node (cell), i.e. the

traffic carried by each node (cell) is not more than what it can support (Θ(1)).

Lemma 10.1.7. The maximum supportable throughput capacities in the studied sce-

nario is Θ(max( 1
n ,mink

((ρ(k)(n))2))).

The maximum throughput capacity is the value which can be supported by

all the nodes while no interference occurs. Thus the throughput capacity will be the
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minimum of the two values derived in Lemmas 10.1.6 and 10.1.7, and Theorem 10.1.5

is proved.

10.2 Grid Network/Expanding Ring Content Search

Here we consider the same network studied in Section 10.2 when nodes find

the contents by expanding ring search as a content discovery mechanism instead of

path search. Theorem 10.2.1 derives the average latency of getting a content in such

networks.

Theorem 10.2.1. The average latency order in the above grid network when the nodes

use the nearest copy of the required content through expanding ring search is given by

E[h] = Θ(min(
√
n,

1√
min
k

(ρ(k)(n))
)). (10.8)

Here we prove Theorem 10.2.1 by utilizing some Lemmas. The proof of lemmas

are presented in the Appendix.

Lemma 10.2.2. Consider the wireless networks described in Theorem 10.2.1. The

average number of hops between the customer and the serving node (a cache or original

server) for item k asymptotically equals to

E[hk] ≡
1

n
{

√
n∑

i=1

i2(1− ρ(k)(n))2i2−2i+1

+

√
n∑

i=2

i
i−1∑
l=1

l(1− ρ(k)(n))2l2−2l+1(1− (1− ρ(k)(n))4l)} (10.9)
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Lemma 10.2.3. Consider the wireless networks described in Theorem 10.2.1. For

sufficiently large networks, the average number of hops between the customer and the

serving node (a cache or the original server) for item k is

E[hk] ≡


√
n, for ρ(k)(n) � 1

n

1√
ρ(k)(n)

, for ρ(k)(n) � 1
n .

(10.10)

Theorem 10.2.1 is now simply proved using the above Lemmas.

Proof to Theorem 10.2.1. In the above scenario when ρ(k)(n) � 1
n , when there is at

least one node with average number of hops equal to
√
n, then that node’s E[hk] in E[h]

defined above becomes the dominant factor.

If ρ(k)(n) � 1
n , for all the contents, then E[h] in the three scenarios is given by∑m

k=1
αk√
ρ(k)(n)

≡ 1√
min
k

(ρ(k)(n))
.

The total E[h] can be simply written as the results shown in Theorem 10.2.1.

Assuming that the delay of the request process and cache look up in each node

is not increasing when the network size (the number of nodes) increases, and that there

is enough bandwidth to avoid congestion, then the latency of getting the data is directly

proportional to the average number of hops between the serving node and the customer.

Thus, the latency and the average number of hops the data is traveling to reach the

customer are of the same order and Theorem 10.2.1 is proved.

Theorem 10.2.4. Consider the network of Theorem 10.2.1, and assume each node can

transmit over a common wireless channel, with W = Θ(1) bits per second bandwidth,
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shared by all nodes. The maximum achievable throughput capacity order γmax is

γmax = Θ(max(
1

n
,min

k
(ρ(k)(n)))). (10.11)

To prove Theorem 10.2.4 we use Lemma 10.2.3, and the following two Lemmas.

Lemma 10.2.5. Consider the wireless networks described in Theorem 10.2.1. In or-

der not to have interference, the maximum throughput capacity is upper limited by

Θ(max( 1√
n
,
√
min
k

(ρ(k)(n)))).

In the previous Lemma, the maximum throughput capacity in a wireless net-

work utilizing caches has been calculated such that no interference occurs. Now it is

important to verify if this throughput can be supported by each node (cell), i.e. the

traffic carried by each node (cell) is not more than what it can support (Θ(1)).

Lemma 10.2.6. The maximum supportable throughput capacities in the studied sce-

nario is Θ(max( 1
n ,mink

(ρ(k)(n)))).

The maximum throughput capacity is the value which can be supported by

all the nodes while no interference occurs. Thus the throughput capacity will be the

minimum of the two values derived in Lemmas 10.2.5 and 10.2.6, and Theorem 10.2.4

is proved.

10.3 Random Network/Path-Wise Content Discovery

In this section we consider a random network with nodes using the path search

to find the contents. Each node has a transmission range of r(n) which at least equals
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to Θ(
√

logn
n ) so the network is connected. Theorem 10.3.1 derives the average latency

of getting a content in such networks.

Theorem 10.3.1. The average latency order in the above random network when the

nodes use the nearest copy of the required content through path search is given by

E[h] = Θ(max[1,min(
1

r(n)
,

1

min
k

(ρ(k)(n))nr2(n)
)]). (10.12)

Here we prove Theorem 10.3.1 by utilizing some Lemmas. The proof of lemmas

are presented in the Appendix.

Lemma 10.3.2. Consider the wireless networks described in Theorem 10.3.1. The

average number of hops between the customer and the serving node (a cache or original

server) for item k asymptotically equals to

E[hk] ≡ r2(n){

1
r(n)∑
i=2

i2(1− ρ(k)(n))inr
2(n)

+ (1− (1− ρ(k)(n))nr
2(n))

1
r(n)∑
i=2

i
i−1∑
l=1

l(1− ρ(k)(n))lnr
2(n)} (10.13)

Lemma 10.3.3. Consider the wireless networks described in Theorem 10.3.1. For

sufficiently large networks, the average number of hops between the customer and the

serving node (a cache or the original server) for item k is

E[hk] ≡



1
r(n) , for ρ(k)(n) � 1

nr(n)

1
ρ(k)(n)nr2(n)

, for 1
nr(n) � ρ

(k)(n) � 1
nr2(n)

1, for ρ(k)(n) � 1
nr2(n)

.

(10.14)
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Theorem 10.3.1 is now simply proved using the above Lemmas.

Proof to Theorem 10.3.1. In the above scenario for the case of ρ(k)(n) � 1
nr(n) , when

there is at least one node with average number of hops equal to 1
r(n) , then that node’s

E[hk] in E[h] defined above becomes the dominant factor.

If ρ(k)(n) � 1
nr2(n)

for all the contents, then E[h] is given by
∑m

k=1 αk = 1.

If there is no item for which ρ(k)(n) � 1
nr(n) , but there is at least one item such

that ρ(k)(n) � 1
nr2(n)

, then E[h] =
∑m

k=1
αk

ρ(k)(n)nr2(n)
≡ 1

min
k

(ρ(k)(n)nr2(n))
.

The total E[h] can be simply written as the results shown in Theorem 10.3.1.

Assuming that the delay of the request process and cache look up in each node

is not increasing when the network size (the number of nodes) increases, and that there

is enough bandwidth to avoid congestion, then the latency of getting the data is directly

proportional to the average number of hops between the serving node and the customer.

Thus, the latency and the average number of hops the data is traveling to reach the

customer are of the same order and Theorem 10.3.1 is proved.

Theorem 10.3.4. Consider the network of Theorem 10.3.1, and assume each node can

transmit over a common wireless channel, with W = Θ(1) bits per second bandwidth,

shared by all nodes. The maximum achievable throughput capacity order γmax is

γmax = Θ(max[
1

n
,min(

1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]). (10.15)

To prove Theorem 10.3.4 we use Lemma 10.3.3, and the following two Lemmas.
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Lemma 10.3.5. Consider the wireless network described in Theorem 10.3.4. In or-

der not to have interference, the maximum throughput capacity is upper limited by

Θ(min[ 1
nr2(n)

,max( 1
nr(n) ,mink

(ρ(k)(n)))]).

In the previous Lemma, the maximum throughput capacity in a wireless net-

work utilizing caches has been calculated such that no interference occurs. Now it is

important to verify if this throughput can be supported by each node (cell), i.e. the

traffic carried by each node (cell) is not more than what it can support (Θ(1)).

Lemma 10.3.6. The maximum supportable throughput capacities in the studied sce-

nario is Θ(max[ 1
n ,min( 1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]).

The maximum throughput capacity is the value which can be supported by

all the nodes while no interference occurs. Thus the throughput capacity will be the

minimum of the two values derived in Lemmas 10.3.5 and 10.3.6, and Theorem 10.3.4

is proved.
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Chapter 11

Sample Case Results and Discussion

The Theorems above express the maximum achievable data download rate in

terms of the availability of the contents in the caches(ρ(k)(n)), in networks with specific

topology and content discovery mechanisms. However, no assumption on the caching

policy, which is an important factor in determining ρ(k)(n) have been made. In this

section, we discuss our results based on two examples and try to study the affect of

caching policy on the performance.

In these examples we consider two different cache replacement policies based on

Time-To-Live (TTL). First example uses exponentially distributed TTL, and the second

one considers constant TTL. According to [46] this can predict metrics of interest on

networks of caches running other replacement algorithms like LRU, FIFO, or Random.

In order to use the stated theorems, the probability of each item being in

each cache is first calculated, and then, the appropriate theorem is used to give the

throughput capacity. In the first example, in addition to the capacity, we analyze
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the total request rate (n(1 − ρ(k))λk) and total generated traffic for an item k (n(1 −

ρ(k))λkBkE[hk]) as well. This gives us an idea about how the request rates and cache

holding times affect the traffic in the network and how the resources are utilized.

11.1 Sample Case 1

11.1.1 Network Model

Consider a network where the received data is stored only at the receivers

(edge caching [23, 52]) and then shared with the other nodes as long as the node keeps

the content. Assume that receiving a data k in the local cache of the requesting user

sets a time-out timer with exponentially distributed duration with parameter ηk and

no other event will change the timer until it times-out, meaning that in equation (9.1)

µk = ηk, which is not a function of n. Considering the request process for each content k

from each user being a Poisson process with rate βk not changing with n, and using the

memoryless property of exponential distribution (internal request inter-arrival times),

and assuming that the received data is stored only in the end user’s cache (the caches

on the download path do not store the downloading data), it can be proved that in

equation (9.1) λk = βk. Thus we can write the presence probability of each content k

in each cache as ρ(k)(n) = βk
βk+ηk

(equal order probability of all the caches containing

an item k).
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11.1.2 Results

Figures 11.1 (a),(b) respectively illustrate the total request rate and the total

traffic generated in a fixed size network in Section 10.1 for each item k for different

request rates when the time-out rate is fixed. Small λk means that each node is sending

requests for k with low rate, so fewer caches have that content, and consequently more

nodes are sending requests with this low rate. In this case most of the requests are

served by the server. The total request rate of item k will increase by increasing the per

node request rate. High λk shows that each node is requesting the content with higher

rate, so the number of cached content k in the network is high, thus fewer nodes are

requesting it with this high rate externally. Here most of the requests are served by the

caches. The total request rate then is determined by the content drop rate. So for very

large λk, the total request rate is the total number of nodes in the network times the

drop rate (nµk) and the total traffic is nµkBk. As can be seen there is some request rate

at which the traffic reaches its maximum; this happens when there is a balance between

the requests served by the server and by the caches. For smaller request rates, most

of the requests are served by the server and increasing λk increases the total traffic.

For larger λk, on the other hand, most of the requests are served by the caches and

increasing the request rate will not change the distance to the nearest content and the

total traffic.

Figures 11.2 (a),(b) respectively illustrate the total request rate and the total

traffic generated in a fixed size network in Section 10.1 for different time-out rates when
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Figure 11.1: Grid Network/Path Search results (a) Total request rate for an
item k in the network (λkn(1 − ρ(k)(n))), (b) Total traffic in the network (Bkλkn(1 −
ρ(k)(n))E[hk]) vs. the request rate (λk) with fixed time-out rate (µk = 1).

the request rate is fixed. For low 1/µk (high time-out rates or small lifetimes), most of

the item k requests are served by the server and caching is not used at all. For large

time-out times, all the requests are served by the caches, and the only parameter in

determining the total request rate is the time-out rate.

However, when the network grows the traffic in the network will increase and

the download rate will decrease. If we assume that the new requests are not issued

in the middle of the previous download, the request rate will decrease with network

growth. If the holding time of the contents in a cache increases accordingly the total

traffic will not change, i.e. if by increasing the network size the requests are issued not

as fast as before, and the contents are kept in the caches for longer times, the network

will perform similarly.

In Figure 11.3 we assume that the request rate is roughly 7 times the drop

112



10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

5

10
x 10

8

1/µ
k

T
ot

al
 tr

af
fic

 k

 

 

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−10

10
0

10
10

T
ot

al
 r

eq
ue

st
 r

at
e 

 
   

 
n(

1−
ρ(k

) )λ
k

 

 

n=104 (Path Search)

n=105 (Path Search)

n=106 (Path Search)

n=106 (Expanding Ring)

Θ(nλ
k
)

µ
k
 ≡ Θ(n1/2)

(a)

(b)

µ
k
 ≡ Θ(n)

Figure 11.2: Grid Network/Path Search results (a) Total request rate in the net-
work (λkn(1− ρ(k)(n))), (b) Total traffic in the network (Bkλkn(1− ρ(k)(n))E[hk]) vs.
the inverse of the time-out rate (1/µk) with fixed request ratio (λk = 1).

rate for all the contents, so ρ(k)(n) = 7/8, and show the maximum throughput order

as a function of the network size. In Section 10.3, we set the transmission range to

the minimum value needed to have a connected network (r(n) ≡
√

logn
n ). According

to Theorem 10.2.1 and as can be observed from this figure, the maximum throughput

capacity of the network in a grid network with the described characteristics is not

changing with the network size if the probability of each item being in each cache is

fixed, while in a network with no cache this capacity will be inversely proportional to the

network size. Similarly in the random network the maximum throughput is inversely

proportional to nr2(n), which is the logarithm of the network size, while in a no cache

network it is diminishing with the rate of network growth.

Moreover, comparing results of sections 10.1 and 10.2, we observe that the

throughput capacity in both cases are almost the same; meaning that using the path
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discovery scheme will lead to almost the same throughput capacity as the expanding

ring discovery. Thus, we can conclude that just by knowing the address of a server

containing the required data and forwarding the requests through the shortest path

toward that server we can achieve the best performance, and increasing the complexity

and control traffic to discover the closest copy of the required content does not add

much to the capacity.
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Figure 11.3: Maximum download rate (γmax) vs. number of nodes (n) for
ρ = 7/8.

On the other hand with a fixed network size, if the probability of an item

being in each cache is greater than a threshold (Θ( 1√
n

), Θ( 1
n), and Θ( 1

nr2(n)
) = Θ( 1

logn)

in cases of grid network with path search, grid network with ring search, and random

network with path search, respectively), most of the requests will be served by the

caches and not the server, so increasing the probability of an intermediate cache having

the content reduces the number of hops needed to forward the content to the customer,
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and consequently increases the throughput. For content presence probability orders

less than these thresholds (Θ( 1
nr(n)) = Θ( 1√

n logn
) in case of random network with

path search) most of the requests are served by the main server, so the maximum

possible number of hops will be traveled by each content to reach the requester and the

minimum throughput capacity (Θ( 1
n)) will be achieved. Note that in these networks,

the maximum throughput is limited by the maximum supportable load on each link,

and more specifically on the server.

As may have been expected and according to our results, the obtained through-

put is a function of the probability of each content being available in each cache, which in

turn is strongly dependent on the network configuration and cache management policy.

11.2 Sample Case 2

11.2.1 Network Model

Assume an n-cache grid wireless network with one server containing all the

items located in the middle of the network. Each cache in level i (nodes at i hops

away from the server) receives requests for a specific document k according to a Poisson

distribution with rate β(k) from the local user, and with rate β
(k)′

i (n) from all the

other nodes. Note that rate β
(k)′

i (n) is a function of the individual request rate of

users for item k (β(k)) and also the location of the cache in the network. The content

discovery mechanism is path-wise discovery, and whenever a copy of the required data

is found (in a cache or server), it will be downloaded through the reverse path, and
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either all the nodes on the download path or only the requester node store it in their

local caches. Moreover, we assume that receiving the item k and also any request

for the available cached data k by a node in level i refreshes a time-out timer with

fixed duration D
(k)
i (n). According to [35], this is a good approximation for caches with

LRU replacement policy when the cache size and the total number of documents are

reasonably large. Furthermore, according to the same work this value is a constant for

all contents and is a function of the cache size, so we can use Di(n) for all contents in

caches in level i. We will calculate the average probability of item k being in a cache in

level i (ρ
(k)
i (n)) based on these assumptions and then use Theorem 10.1.1 to obtain the

throughput capacity.

11.2.2 Results

Let random variable t
(k)i
on (T ) denote the total time of the data k being available

in a cache in level i (i hop distance from the server) during constant time T . Assume that

item k is received N (k)i(T ) times during time T by each node vi in level i (according

to the symmetry all nodes in one level have similar conditions.). The data available

time between any two successive receipt of item k is Di(n) if the timer set by the first

receipt is expired before the second one comes, or is equal to the time between these

two receipts. Let τ
req(k)
i denote the time between two successive receipts. This process

has an exponential distribution with parameter β
(k)
i = β(k) + β

(k)′

i . So the total time of
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data k availability in a level i cache is

t(k)i
on (T ) =

N(k)i(T )∑
j=0

min(τ
req(k)
i , Di(n)), (11.1)

and the average value of this time is (E[t
(k)i
on (T )])

∞∑
l=0

E[

l∑
j=0

min(τ
req(k)
i , Di(n))]Pr(N (k)i(T ) = l),

=

∞∑
l=0

lE[min(τ
req(k)
i , Di(n))]Pr(N (k)i(T ) = l),

= E[min(τ
req(k)
i , Di(n))]E[N (k)i(T )]. (11.2)

According to the Poisson arrivals of requests (data downloads) with parameter

β(k) + β
(k)′

i , the rightmost term in equation (11.2) (E[N (k)i(T )]) equals (β(k) + β
(k)′

i )T .

The leftmost term in this equation (E[min(τ
req(k)
i , Di(n))]) can also be easily calculated

and equals to 1−e−Di(n)(β(k)+β
(k)′
i

)

β(k)+β
(k)′
i

. Therefore, E[t
(k)i
on (T )] = (1−e−Di(n)(β(k)+β

(k)′
i ))T . And

finally the probability of an item k being available in a level i cache is ρ
(k)
i = E[t

(k)i
on (T )]
T =

1− e−Di(n)(β(k)+β
(k)′
i (n)). Note that D0 =∞ so that ρ

(k)
0 = 1.

Now we need to calculate the rate of item k received by each node in level i.

First, assume that when an item is downloaded , only the end user (the node which

has requested the content) keeps the downloaded content, and storing a new content

refreshes the time-out timer with fixed duration Di(n). Thus β
(k)′

i (n) = 0, and ρ
(k)
i (n) =

1 − e−Di(n)β(k)
. It is obvious that in such network where all the caches have the same

size and the request patterns, Di(n) will not depend on the cache location, and since the

request rate and the caches sizes are not changing with n this value does not depend
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on the network size either. Thus, Di(n) can be replaced by fixed and constant D.

Therefore, ρ
(k)
i (n) = 1 − e−Dβ(k)

which is similar for all the caches, and the maximum

throughput capacity order (γmax) is n∑m
k=1 αk

∑√n
i=1 i

∑i−1
j=0(i−j)(1−e−Dβ(k)

)e−(i−j)Dβ(k) , which

is

1∑m
k=1

αke−Dβ
(k)

1−e−Dβ(k)

≡ 1. (11.3)

As the second case, we assume that all the nodes on the download path keep

the data, and the shortest path from the requester to the server is selected such that

all the nodes in level i receive the requests for item k with the same rate. There are 4i

nodes in level i and 4(i+ 1) nodes in level i+ 1. So the request initiated or forwarded

from a node in level i+ 1 will be received by a specific node in level i with probability

i
i+1 if it is not locally available in that node, so β

(k)′

i (n) can be expressed as

β
(k)′

i =
(1− ρ(k)

i+1)(β(k) + β
(k)′

i+1)(i+ 1)

i
(11.4)

Combining equation (11.4), the relationship between ρ
(k)
i and β

(k)′

i , and the

fact that there is no external request coming to the nodes at the edge boundary of

the network (β
(k)′√
n

= 0), together with the result of Theorem 10.1.1 we can obtain

the capacity (γmax) in the grid network with path-wise content discovery and on-path

storing scheme which is

n∑m
k=1 αk

∑√n
i=1 i

∑i−1
j=0(i− j)(1− e−Dj(n)(β(k)+β

(k)′
j ))e−

∑i
l=j+1Dl(n)(β(k)+β

(k)′
l )

. (11.5)

The result of this equation cannot exceed Θ(1) since this is the maximum

possible throughput order in the grid network. Thus, caching the downloaded data in
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all the caches on the download path does not add any asymptotic benefit in the capacity

of the network, and keeping the downloaded items only in the requester caches will yield

the maximum possible throughput.
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Chapter 12

Content Discovery Control Traffic

12.1 Protocol Overhead Model

In this section we turn our attention to the mechanism to synchronize the view

at the control layer with the underlying network state, and introduce a framework to

quantify the minimal amount of required transferred information.

Assume that SX(t) describes the state of random process X in a network at

time t. In order to update the control plane’s information about the states of X in

the network, the forwarding plane must send update packets regarding those states to

the control plane whenever some change occurs. Let ŜX(t) denote the control plane’s

perceived state of X at time t. It is obvious that no change in ŜX will happen before

SX changes, and if SX changes, the control plane may or may not be notified of that

change. Therefore, there are some instances of time where ŜX 6= SX .

In this work, we consider, systems and applications in which the state can have
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two values ′0′ and ′1′.1 For instance, a link can be up or down; or a piece of content can

be present at a node, or not. Figure 12.1 illustrates the time diagram of state changes

of such binary random process which is the state of the forwarding plane in the network

being announced to the control plane.

Let {Ym}∞m=1 and {Zm}∞m=1 denote the sequences of ′0′s and ′1′s time durations

of SX(t) respectively, and {Tm}∞m=1 denote the times of changes. We consider large

distributed systems, where the input is driven by a large population of users (smaller

systems offer no difficulty in tracking in the control plane what is happening in the

data plane). It is a well known result that the aggregated process resulting from a large

population of uncoordinated users will converge to a Poisson process (chapter 3.6 [43]),

and therefore the events in the future are independent of the events in the past and

depend only on the current state. Thus we assume with no loss of generality that Ym

is an independent and identically distributed (i.i.d) sequence with probability density

function (pdf) fY (y) and mean θX , and Zm is another i.i.d. sequence with pdf fZ(z)

and mean τX . We also assume that any two Ym and Zm are mutually independent.

SX and ŜX may differ in two cases resulting in two types of distortion; first,

when the state of X is changed from ′0′ to ′1′ (change type I) but the control plane is not

1Note that this Boolean case is just an example to illustrate the method, and can be generalized to
other possible values. For instance, to measure the congestion on a link, one could quantize the link
congestion into bins (say bins b1 to b10 for normalized link utilization between 0 to 0.1, 0.1 to 0.2,..., 0.9
to 1) and map the link utilization to a 0/1 variable such that bh = 1 if the current link utilization is in
((h − 1)/10, h/10) and 0 otherwise. Obviously using this quantization method the bh variables would
not be independent and only one of them can be ′1′ at each instant of time. As other way to solve such
problem, one can model the changes in the quantized levels as a binary variable. Since the values of the
congestion levels change smoothly and there is not any kind of discontinuity in the congestion levels,
one can expect going one level up or down in case of any changes. Using this method, one needs to
have new distortion definitions. Due to the lack of space we leave it as future work to study other state
distributions, where other distortion functions would apply.

121



����������	�
�����������	�
�
�
��
�
����	�


��
�
��

���������	�
�
�
�

�
�

�
�

�
�
���

�
��������	�
��
��������	�
�
��

�
�

�
�
� �

�
�
�

�����
�
�
�
�
�

�
�

�
�

�
�

Figure 12.1: Time diagram of the state of binary random process X at time t
(SX(t)).

notified (ŜX = 0, SX = 1); second, when the state of X is changed from ′1′ to ′0′ (change

type II) and the control plane still has the old information about it (ŜX = 1, SX = 0).

Let D1 and D2 denote the probability of the distortions corresponding to changes type I

and II, respectively. Here we calculate the minimum rate at which the underlying plane

has to update the state of X so that the mentioned distortion probabilities are less than

some values ε1 for the first type, and ε2 for the second type, respectively. ε1 and ε2 can

be viewed as probability of false negative and false positive alarms at the controller.

We make an additional assumption that the delay of the network is much lower

than the time duration of the changes in the forwarding layer, and the control plane

will be aware of the announced state immediately2 (the alternative - that the state of

2The control packets sent from the data plane to the control plane are very small in size comparing
to the data packets. For example in case of transferring video files, no state changes happen in the data
plane unless a video file is downloaded. Since the size of the video files are much larger than the update
packets (hundreds of megabytes comparing to a few bytes), the download time and thus the duration
of state changes is much lower than the delay of the network for update packets. According to [53] the
request round-trip latency in Akamai and Cisco are in the order of a few 10ms, while the download
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the system changes as fast or faster than the control plane can be notified of these

changes - is obviously unmanageable). Thus, the above errors may occur just when the

forwarding plane does not send an update about a change.

The main result now can be stated as a Lemma (with the proof in Appendix).

Lemma 12.1.1. If the ups and downs in the state of X follow some distributions with

means τX and θX , respectively, then the minimum update rate RX(ε1, ε2) (number of

update packets per second) satisfying the mentioned distortion criterion is given by

RX(ε1, ε2) ≥ 1
τX+θX

(2−
ε1
θX
τX

θX
τX+θX

−ε2
−

ε2
τX
θX

τX
τX+θX

−ε1
) (12.1)

if ε2
1−ε2 < θX

τX
< 1−ε1

ε1
and ε2τX + ε1θX < τXθX

τX+θX
. Otherwise the distortion criteria is

satisfied with no update at all.

Lemma 12.1.1 shows the minimum update rate for state of a single random

variable X in the underlying plane so that an accepted amount of distortion is satisfied.

The total rate and consequently the total protocol overhead for keeping the control layer

informed of the forwarding layer is the combination of all the overheads needed for all

the random processes of the underlying layer, which may be independent of each other

or have some mutual impacts.

In the following section, we will use our model to formulate the control traffic

needed in the interaction between caches and controller inside a sub-network.

time for a 1GB movie using a very high speed internet of 100Mbps would take around 10s. This is a
practical assumption as well: if the delay in the network is longer than the duration of the changes, then
a message sent to update the controller would be carrying obsolete information by the time it reaches
the controller. Most practical systems are such that the time to notify the control is sufficient for the
controller to use the information when it receives it. However, in any system, there is a chance that the
actual state changes while the notification of the previous state is still underway, and there is always
some distortion in the state representation at the control vs. the actual state in the forwarding plane.
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The notations used here can be found in Tables 12.1-12.2.

12.2 Content Location in Cache Networks

Information-centric networks [109] usually employ resolution-based [39,40,65,

99] or routing-based [59] methods for content discovery purposes. In the routing-based

discovery methods, like CCN, the required items are found exploring some areas of the

network opportunistically or using other solutions like flooding. [9,68,102] have studied

these methods and proposed solutions to have the best performance. Resolution-based

methods, on the other hand, require the control layer to know at least one location for

each piece of data. PSIRP, DONA, and NetInf (partly) are some models which use the

resolution-based methods. For instance, [99] attempts to set up a route to a nearby

copy by requesting the content from a pub/sub mechanism. The pub/sub rendezvous

point needs to know the location of the content. This is highly dynamic, as content can

be cached, or expunged from the cache at any time. NDN [112] also assumes that the

routing plane is aware of multiple locations for a piece of content3.

In a cache network, the addition/removal of an item (pieces of data which are

requested and used by the users) to/from a cache may affect the timings of the other

items in that cache; caching a piece of content somewhere may force another content out

of the cache, and the caching policy will thus influence the network state (the existing

3The routing (in NDN in particular) could know only one route to the content publisher or to an
origin server and find cached copies opportunistically on the path to this server. But Fayazbakhsh et.
al. [45] have demonstrated that the performance of such an ICN architecture would bring little benefit
over that of strict edge caching.
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items information), so we need to consider this effect in our calculations. It is worth

noting that this framework may be used for CDNs as well, since the basics are the same,

the point is that the update traffic for reporting the state of the caches in CDN would

be very close to zero, since there are not a large number of changes in their states, unless

the acceptable distortion is very low. We assume from now on that the Least-Recently-

Used (LRU) replacement policy is used in the caches, as it is a common policy and has

been suggested in some ICN architectures [59]. However, based on [77], other policies

can be handled in a similar manner by generalizing the decoupling technique of Che’s

approximation [35].

The request process also impacts the cache state, and we make the usual

assumption that the items are requested according to a Zipf distribution with parameter

α; meaning that the popularity of an item i is αi = i−α∑M
k=1 k

−α , where M is the size of

the content set.

In the following sections we first introduce our framework to model the protocol

overhead in section 12.1. Then, in section 12.2.1, we use our model to study the total

data retrieval cost including the control overhead and data downloading costs in a

network of caches, where the nodes update the control plane of a domain (say, an AS)

so as to route content to a copy of the cache within this domain if it is available. We

denote the control plane function which locates the content for each request as the

Content Resolution System (CRS).
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12.2.1 Cache-Controller Interaction

Assume that we partition the network into smaller sub-networks each with its

own control plane, such that all the nodes in each one of them have similar request

patterns. A possible example of such partitioning are the Autonomous Systems (ASs)

in the Internet.

Whenever a client has a request for an item, it needs to discover a location

of that item, preferably within the AS, and it downloads it from there. To do so, it

asks a (logically) centralized Content Resolution System (CRS) by sending a Content

Resolution Request (CRReq) or locates the content by any other non-centralized locat-

ing protocol. The Content Resolution Reply (CRRep) sent back to the client contains

the location of the item, then the client starts downloading from the cache identified in

CRRep.

If the network domain is equipped with a CRS, it is supposed to have the

knowledge of all the caches, meaning that each cache sends its item states (local presence

or absence of each item) to the CRS whenever some state changes.

Depending on the caching policy, whenever a piece of content is being down-

loaded, either no cache, all the intermediate caches on the path, or just the closest cache

to the requester on the download path stores it in its content store, independently of

the content state in the other caches, or refresh it if it already contains it.

We consider an autonomous network containing N nodes (terminals), each

sending requests for items i = 1, ...,M with sizes Bi according to a Poisson distributed
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process with rate of γi. The total request rate for all the items from each node is denoted

by γ =
∑M

i=1 γi. Note that all the nodes in an AS have the same request pattern, i.e.

content locality is assumed uniform in each AS4,, and that the total request rate of each

terminal is a fixed rate independent of the total number of nodes and items while the

total requests for all the nodes is a function of N (namely Nγ). If different users have

different request distributions, then less cached contents will be reused, and thus there

will be more changes in the cache states, and consequently more update traffic will be

needed. The uniform content locality will give us the minimum required update rate.

Suppose that there are Nc caches in the system (Vc = {v1, ..., vNc}) each with

size Lc that can keep (and serve) any item i for some limited amount of time τi, which

depends on the cache replacement policy. Based on the the rate at which each item

i enters a cache and the time it stays there, each cache may have item i with some

probability ρi. For simplicity, we assume that the probability distribution of the con-

tents in all the caches are similar to each other. We can easily extend to the case of

heterogeneous caches at the cost of notation complexity. For instance, Theorem 12.2.1

below can be stated as a sum over all Nc possible types of caches with Nc different ρis

for each type of cache, instead of a product by Nc of identical terms. Our purpose is to

describe the homogeneous case, and let the reader adapt the heterogeneous case to suit

4This assumption is widely used in works using the mathematical modeling for the networks [30].
This comes from the fact that 1) The requests coming from a specific region are very likely to follow
similar patterns, because the users’ interest in one area are highly correlated and can be predicted by
having the information about just part of them [24]. For example, some certain news title might be of
special interest in a certain area, or some new TV series might be very popular in a certain country. 2)
each user in this work can actually be a hot spot or a base station, so a request generated from a node
is not coming from one specific user but a group of users. So since we assume random users per station,
then the assumption of uniform user locality is the best fitted assumption.
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her/his specific needs.

In the following Theorem we want to compute the update rate for this system.

Let N̄c denote the number of caches where each downloaded piece of content is stored in

(and thus need to send an update), either on the downloaded path, or off-path (Caching

policy and network topology are the two factors that determine this number.). Thus,

the rate of requests for item i received by each cache is λi = γiNN̄c/Nc.

Parameter Definition

N Number of users

M Total number of items

Nc Number of content stores/caches

N̄c Number of caches storing the downloaded content

Lc Storage size per content store (bits)

Bi Average size of item i (bits)

αi Popularity of item i (Zipf)

γi Total request rate for item i per user

γ Total request rate per user

λi Total request rate for item i received per cache

λ Total request rate received per cache

Table 12.1: Parameters of the Network Model

128



Theorem 12.2.1. The minimum total update rate for each item i in the worst case is

Ri(ε1, ε2) ≥ Ncλi(1− ρi)

{2− ε1(1− ρi)
ρi(1− ρi − ε2)

− ε2ρi
(1− ρi)(ρi − ε1)

} (12.2)

if ε1 < ρi < 1 − ε2 and ε1(1 − ρi) + ε2ρi < ρi(1 − ρi). Otherwise no update is

needed.

Proof. Let the random process X in the forwarding plane denote the existence of item

i in a cache vj at time t, which is needed to be reported to the control plane (CRS).

Let τij denote the mean duration of time item i spends in any cache vj , and θij denote

the mean duration of time item i not being in the cache vj .

In order to keep the CRS updated about the content states in the network, all

the nodes have to send update packets regarding their changed items to CRS. All the

assumptions of section 12.1 are valid here. Thus, by replacing τX and θX in equation

(12.1) with τij and θij respectively, the result (Rij = RX) shows the minimum rate at

which each cache vj has to send information about item i to the CRS.

It can be seen that at the steady-state, the probability that cache vj contains

item i will be ρij =
τij

θij+τij
. On the other hand, the total rate of generating (or refreshing)

copies of item i at each cache vj , denoted by λij , equals to 1
θij

. Replacing the values of

τij
τij+θij

and 1
θij

in Rij with ρij and λij respectively, we obtain

Rij(ε1, ε2) ≥ λij(1− ρij)

{2− ε1(1− ρij)
ρij(1− ρij − ε2)

− ε2ρij
(1− ρij)(ρij − ε1)

} (12.3)
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for ε1 < ρij < 1− ε2 and ε2ρij + ε1(1− ρij) < ρij(1− ρij).

It is worth noting that we are not assuming any specific topology or caching

policy here; the items may be cached on-path or off-path; just one cache may keep the

downloaded content or a few caches may keep it. We are looking for the minimum

amount of update packets in the worst case, which happens when each cache stores

items independent of the items in other caches. It is obvious that topologies like a line

of caches which result in strongly dependent caches are not in the scope of this work.

Thus, the total update rate for item i, is the sum of the update rates in all caches which

is Ri(ε1, ε2) =
∑Nc

j=1Rij(ε1, ε2). Recalling the assumption of (probabilistically) similar

caches, we can drop the index j and express the total update rate of item i in terms of

the probability of this item being in a cache. This yields the result of equation (12.2)

and the total update rate for all the items is the summation of these rates.

12.2.2 Model Evaluation and Simulation Results

To figure out how the calculated rates perform in practice and evaluate our

model, we simulate an LRU cache with capacity Lc = 20 items. We use the MovieLens

dataset [56], which contains 100, 000 ratings together with their time stamps collected

for M = 1, 682 movies from 943 users during a seven-month period. We took the ratings

as a proxy for content requests, assuming that the users who reviewed the movie have

requested them shortly prior to the review. In these simulations we first estimate the

item availability in the cache ρi (by dividing the total time that item is in the cache

by the total simulation time), then using the estimated ρi and according to equations
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Parameter Definition

τi Average time item i stays in a cache

θi Average time a cache does not have item i

ρi Probability of item i being in a cache

ε1,2 Distortion thresholds

Rij(ε1, ε2) Minimum rate at which each cache vj

must send update state of item i to CRS so

the defined distortion criteria is satisfied

Ri(ε1, ε2) Minimum total update rate for item i that

satisfies the defined distortion criteria

R(ε1, ε2) Minimum total update rate that

satisfies the defined distortion criteria

Table 12.2: Parameters Used in Cache-Controller Interaction
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(B.29) and (B.30), we calculate the update rate in case of a change. Then we run the

simulation for 100, 000 requests. In this simulation we update the CRS according to the

calculated rates, which can be interpreted as the chances of update, whenever a change

occurs in the cache. Then we measure the total time that the CRS information does

not match the actual cache state for each item, and calculate the average generated

distortion during 10 rounds of simulation. The top figures in Figure 12.2 illustrate the

results for the case where ε1 = ε2 = 0.01.

Since, according to [65] and [20], the number of data objects is very large,

and is becoming larger, we repeated similar evaluation with a relatively large synthetic

dataset, containing 10 million Poisson requests for contents picked from a catalog of

100K movies, according to a Zipf distribution with skew parameter α = 0.7. Bottom

figures in Figure 12.2 show the results for the synthetic dataset allowing ε1 = ε2 = 10−4

distortion accepted (larger number of contents leads to lower cache availability, thus we

allowed lower distortion here).

It must be noted here that we are estimating ρi based on the past cache states,

so it is not the exact ρi.Thus the generated distortion may exceed the tolerable values for

some items, while they are in the safe zone for the others. It is observed that for a large

portion of the items the distortion type I satisfies the distortion criteria. Distortion type

II, however, does not satisfy the distortion criteria for more items. The reason is that

the calculated update rates are strongly dependent on the availability of the items in

the cache and any small error in the estimation of ρi may lead to some extra distortions.

Since the ρi’s are mostly very small, not updating just one type II change may cause an
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Figure 12.2: Measured distortion type I (D1) and II (D2) top) for MovieLens
dataset (100K requests for M = 1, 682 movies), with ε1 = ε2 = 0.01 as accepted
distortions, and bottom) for synthetic dataset (10M Poisson requests for M = 100K
Zipf distributed movies with skew factor α = 0.7), with ε1 = ε2 = 10−4 as accepted
distortions.

133



error which remain in the system for a long time, and thus creating a large distortion.

Figure 12.3 illustrates the number of needed updates per generated request

for each item i in the network Ri
Ncλi

= Ri
Nγi

when the caches does not contain it with a

known probability (1 − ρi). The only variable parameters in this graph are ε1 and ε2.

The higher distortion we tolerate, the less update announcements for each item i we

need to handle. Moreover, the number of items which need some updates is decreasing

when higher distortions are accepted. As can be seen the update rate starts from zero

for those items which are in the cache with high probability. Status of these items are

permanently set to ′1′ in CRS, and no update is needed. At the other end of the graph,

for the items which are almost surely not in the cache, The presence probability is close

to zero (ρi = 0 and thus 1− ρi = 1)), and the status of those items can be permanently

set to ′0′ in the control plane, thus the caches don’t need to send any more information

regarding those items to the control plane. Therefore, again no update is needed.
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generated request for that item versus 1− ρi for different distortion criteria.
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The probability ρi is strongly dependent on the cache replacement policy. We

consider LRU as the cache replacement method used in the network. Clearly, in LRU

caches (similarly in other policies like FIFO, LFU, etc.) ρi is just a function of the

probability of item i coming to the cache (αi), and the cache capacity (Lc). Figure 12.4

shows the changes of the total update rate (scaled by 1
λNc

) versus the cache storage

size, in a network of LRU caches, such that the distortion criteria defined by (ε1, ε2) is

satisfied. In this simulation M = 103. Note that each change in a cache consists of one

item entering into and one other item being expunged from the cache, therefore if no

distortion is tolerable, this rate will be 2 updates per change per cache.
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Figure 12.4: Total cache-CRS update rate (Updates per generated request per
cache) for different cache storage capacities and different acceptable distortions. Content
set contains M = 1, 000 contents.

It can be observed that for very small storage sizes and small popularity index,

almost each incoming item changes the status of the cache and triggers an update. When

the storage size is still very small, the caches do not provide enough space for storing
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the items and reusing them when needed, so increasing the size will increase the update

rate. At some point, the items will move down and up in the cache before going out,

so increasing the storage size more than that will reduce the need to update. However,

if the popularity index is large, then increasing cache size from the very small sizes will

decrease the need to update since there are just a few most popular items which are

being requested.

Moreover, as it is expected, when more distortion is tolerable, the CRS needs

fewer change notifications. However, if the cache size is too big, or the popularity

exponent is too high, fewer changes will occur, but almost all the changes are needed

to be announced to the CRS. On the other hand, for small cache sizes accepting a little

distortion will significantly decrease the update rate.

12.3 Application to Cost Analysis

In this section we use Theorem 12.2.1 to study trade-offs involved in updating

the content control layer. More specifically, we try to calculate the bounds on the

total cost (required bandwidth for download + CRS update) and look at the trade-offs

between the cost, the size of the information chunks, the number of caches, and the size

of caches.

12.3.1 Layered Network Model

Figure 12.5 illustrates the network model studied in this section. This model

consists of entities in three substrates: users are located in first layer; a network of
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caches with the CRS on the second level; external resources (caches in other networks,

Internet, etc.) on the third.

Figure 12.5: Layered network model.

We need to define the relative costs of the different actions. We assume that

the state update process for item i has a per bit cost of ξupi for sending data from the

cache to CRS, and per bit cost of ξextupi > ξupi for sending data from one CRS to another

one. On the other hand, the requested piece of content i may be downloaded from a

cache inside the network with some per bit cost ξinti , or it may be downloaded from an

external server with some other cost ξexti > ξinti . These costs may be a function of the

number of hops in the network. Note that the exact costs for each cache are determined

based on the network topology, and may not be the same for all the caches. In this

work we use the average cost over all the caches 5.

5The other option for defining the distortion and correspondingly cost is the worst case, which will
map to the maximum update cost. There are many few caches that may undergo some maximum
number of changes and need some maximum update transfers, thus, this is clearly not illustrating the
performance of a cache network correctly. We have decided to work with the average method, which is
very common in the literature (References [58,100,101]) and we believe it can represent the performance
of the entire network better in our specific application and many others.
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12.3.2 Total Cost in Cache-Controller Interaction

Lemma 12.3.1. The length of each update packet for content i is

li ≥ logNc − log
λi(1− ρi)∑M
i=1 λk(1− ρk)

+ 1 (12.4)

Proof. Each update packet contains the ID of the cache issuing the query, the ID of the

updated item and its new state. There are Nc caches in the network, hence, logNc bits

are needed to represent the cache. Item i is updated with probability βi = λi(1−ρi)∑M
i=1 λk(1−ρk)

,

which results in a code length of at least − log βi bits. Thus, the length of each update

packet is li ≥ logNc − log βi + 1.

Lemma 12.3.2. The total update cost in the defined network is

ϕup =

M∑
i=1

Ri(ε1, ε2)liξ
up
i . (12.5)

where Ri(ε1, ε2) is the minimum rate at which the update state of item i must

be reported to CRS so that a distortion criteria defined by (ε1, ε2) is satisfied.

Proof. Each cache sends update packets at rate Ri(ε1, ε2) to provide its CRS with the

state of item i in its local content store. Each update packet contains li bits, and there is

a per bit cost of ξupi for the update packets. Therefore, the cost for updating information

about item i in the sub-network is ϕupi = Ri(ε1, ε2)liξ
up
i , and the total update cost is

ϕup =
∑M

i=1Ri(ε1, ε2)liξ
up
i .

Lemma 12.3.3. The total download cost in the defined network is

ϕdl =
M∑
i=1

NγiBi((Pi − ρi)ξinti + (1− Pi)ξexti ) (12.6)
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if ε1 < ρi < 1 − ε2 and ε1(1 − ρi) + ε2ρi < ρi(1 − ρi). Otherwise no update is

needed.

Proof. The requested piece of content i may be downloaded from the local cache with

cost 0 (with probability ρi of being in this cache), from another cache inside the same

network with some per bit cost ξinti (with a probability we denote by Pi − ρi, where Pi

is the probability that content i is within the AS’s domain), or it must be downloaded

from an external server with some other cost ξexti (with probability (1−Pi)). Obviously,

ρi ≤ Pi ≤ 1. Thus, the download cost for item i with size Bi bits for each user in the

sub-network is

ϕdlij = γiBi((Pi − ρi)ξinti + (1− Pi)ξexti ), (12.7)

The total download cost for item i is ϕdli = Nϕdlij , and the total download cost

for all the items is the summation of ϕdli ’s over all the contents.

Theorem 12.3.4. The total cost in the defined network including update and download

costs is

ϕ =
M∑
i=1

NγiBi((Pi − ρi)ξinti + (1− Pi)ξexti )

+

M∑
i=1

Ri(ε1, ε2)liξ
up
i . (12.8)

Proof. Adding Lemmas 12.3.2 and 12.3.3 proves the Theorem.

It can be seen that the total cost is strongly dependent on where each query

is served from, and consequently on the probability of each item being internally served
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(Pi). This probability depends on the probability of that item being in an internal cache,

which is in turn a function of the caching criteria and the replacement policy. Lemma

12.3.5 presents some bounds on Pi based upon the allowed distortion. The proof can

be found in appendix.

Lemma 12.3.5. The probability that each content i is internally served is bounded by

[1− (1− ρi + ε1)Nc ]+ ≤ Pi ≤ 1− (1− ρi)Nc . (12.9)

where [x]+ = max(x, 0),

Note that the above Pi may take any value in the calculated bounds depending

on the value of ρi. For example if ρi < ε1 then D1i = ρi, and Pi = 0, which is the

lowest value of this bound. On the other hand, if ρi > 1 − ε2 then D1i = 0, and

Pi = 1− (1− ρi)Nc , which is the highest value in this bound. All the other values of ρi

will lead to Pi between those two boundaries.

These two extreme cases of Pi result in some bounds on the download cost.

Let ϕdlL and ϕdlH denote the lower and upper bounds of the download cost corresponding

to the upper and lower bounds of Pi, respectively, and ϕL and ϕH denote the lower and

upper bounds of the total cost. Note that for small values of the tolerable distortion ε1

the upper and lower limits of Pi and correspondingly the bounds of download cost are

very close to each other.

Figure 12.6 the left plot illustrates the changes of update and download costs

in a network with a content set of a total of 1 million contents, when the size of each

cache is limited to Lc = 100 contents. The length of the data packets is assumed to be
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100KB in average, while the update packets are li bytes each. Note that increasing the

data (or update) packet lengths will increase the download (or update) cost linearly.

Here we assume that whenever an item is downloaded, it is stored in N̄c =

logNc caches, which have to report the changes to the controller6. If these caches are

selected randomly, the total update rate would be N̄c times the rate of update of each

cache resulting in max ϕup. On the other side, if they are completely dependent, for

example if all the caches on the download path keep it, then just one update may be

enough, resulting in min ϕup. So depending on the caching policy, the update cost will

be something between min and max ϕup.

The request rate received by each cache is inversely proportional to the number

of caches (the request rate per user is assumed to be fixed and independent of Nc), and

the update packet length increases logarithmically with the number of caches. The total

update rate per cache is almost linearly decreasing with Nc, hence the minimum of the

total update rate, or the total update rate if just one cache keeps the downloaded item,

will almost be stable when Nc varies (changes are in the order of logNc). The maximum

total update rate will linearly change with the number of copies N̄c per download. Thus,

increasing the number of caches in the network increases the update cost by a factor of

at least logNc and at most N̄c logNc.

Increasing Nc, however, increases the probability of an item being served in-

ternally and thus decreases the download cost. Nevertheless, as it can be observed, the

rate of decrease is so low that it can be assumed as stable.

6This happens in largely used network models like binary tree or grid topology, when all the caches
on the download path store the content.
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In the right plot of figure 12.6, we fix the number of caches in the AS (NC = 10)

and study the effects of cache storage size on the update and total cost. Increasing

the cache size, simply increases the probability of an item being served internally and

decreases the download cost. Again similar to the left plot, the rate of changes in the

download cost is very low. As expected, on the other side, the update cost shows an

increase when increasing the storage size. Looking at each cache, very small cache size

leads to very large durations where that item is not in that cache and consequently, the

update rate would be low. Increasing the storage size will increase the probability of

that item being in the cache, and thus increases the update rate. If we let more cache

storage, this increase reaches its highest value for a certain value of cache size, and for

larger values of cache beyond a threshold, the item is in the cache most of the time.

Therefore, we need less updates and increasing the cache size will increase the duration

of the item being in the cache leading to fewer update messages. Since the total cost

mostly depends on the download cost, by increasing the cache size, this value reaches

its minimum value.

It is worth noting here that the cost of download from another AS has been

assumed 5 times bigger than the cost of download from inside the AS, which in turn is

assumed to be the same as the update cost per bit. Figure 12.7 shows the impact of

the external and internal costs on the total download cost. Higher external costs result

in higher total download costs, as it is expected, and show more decrease rate when

the number of caches increases. Thus, if the external download cost comparing to the

internal download cost is very high, having more caches may make sense, although, the
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total cost decrease rate is still very low.

Another important result shown by figures 12.6 and 12.7 is that having big

data packets, the download cost is always much higher than the update cost, which is

reasonable. In other words, having the resolution-based content discovery when the data

packets are large, will add just negligible cost to update the controller. In the following

we study the affect of chunk-based caching to obtain some insight on the reasonable size

of chunks, such that the update cost remains negligible.

The top plot in figure 12.8 shows the total cost versus the number of caches,

when the LRU cache replacement policy is used and the total storage of the cache

sublayer is limited to half of the total number of items. The parameters are set as

follows: M = 10, 000, ε1,2 = 1e − 4, Bi = 100K, ξinti = 1, ξexti = 5, ξupi = 1, and

α = 0.7. Since the lower and upper bounds of the total cost are very close to each

other, we just plot the upper limit here. In the bottom plot of this figure, the total

cost is plotted versus the size of each cache. It can be observed that with a fixed total

storage size, concentrating all the caches in one node and increasing the size of it will

lead to better overall performance (least cost). Note that in these figures the total cost

value shown is just a relative value, and not the exact one.

12.3.3 Optimized Cache Management

In previous section, the total cost in the described cache network was derived

and the impacts of the number or size of the content stores on this cost was studied.

We now turn our attention to minimizing the total cost for given Nc and Lc.
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Figure 12.6: Total update costs vs. number of caches (minimum and maximum
of ϕup) and total download cost (lower and upper bounds, ϕdlL and ϕdlH , left) vs. the
number of caches (Nc), when each item is B = 105 units long, the storage size per cache
is fixed (Lc = 100 items), and each downloaded item is stored in N̄c = logNc caches,
and right) vs. the cache size (Lc), when each item is B = 105 units long, the number of
caches is fixed (Nc = 10), and each downloaded item is stored in N̄c = 1 cache.
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Under a Zipf popularity distribution, many rare items will not be requested

again while they are in the cache under the LRU policy. We can rewrite the total cost

if the caches only keep the items with popularity from 1 up to i∗.

ϕ =

i∗∑
i=1

NγiBi((Pi − ρi)ξinti + (1− Pi)ξexti )

+
M∑

i=i∗+1

NγiBiξ
ext
i +

i∗∑
i=1

Ri(ε1, ε2)liξ
up
i (12.10)

Now just i∗ different pieces of content may be stored in each cache. This

changes the probability of an item i = 1, ..., i∗ being in a cache (ρi), which in turn

changes Pi and Ri.

Figures 12.9 demonstrates the total cost versus the caching popularity thresh-

old i∗, for different number and size of content stores, and acceptable distortions.

If just a very small number of items (small i∗) are kept inside cache layer,

then the download cost for those which are not allowed to be inside caches will be the

dominant factor in the total cost and will increase it. On the other hand, if a lot of

popularity classes are allowed to be kept internally, then the update rate is increased

and also the probability of the most popular items being served internally decreases, so

the total cost will increase. There is some optimum caching popularity threshold where

the total cost is minimized. This optimum threshold is a function of the number and

size of the stores, distortion criteria, per bit cost of downloads and updates.

The benefit of the optimized solution also varies depending on the mentioned

parameters. For example according to figure 12.9, the optimized solution can have 17%

reduction in cost in case when Nc = 50, Lc = 10, ε1 = ε2 = 1e − 4, while this cost
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reduction is just 7% when Nc is five times smaller.
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Figure 12.9: Total cost when just i∗ most popular items are allowed to be stored
inside caches (N = 103,M = 104, B = 105, α = 0.7).

To find the optimal i∗, assume that all the items have the same size (Bi = B)

and the per bit costs is fixed for all popularity classes (ξinti = ξint, ξexti = ξext, ξupi = ξup).

We can rearrange equation (12.10).

ϕ = ϕ1 − ϕ2 + ϕ3 (12.11)

where ϕ1 = BNγξext is the total cost if no cache exists and all the requests are

served externally; ϕ2 = BNγ(ξext−ξint)
∑i∗

i=1 αiPi+BNγξ
int
∑i∗

i=1 αiρi corresponds to

the benefit of caching (cost reduction due to caching); and ϕ3 = ξup
∑i∗

i=1Ri(ε1, ε2)li is

the caching overhead cost due to the updates. The last term is the cost we pay because

of caching (updates). We need to calculate the value of i∗ such that the cost of caching

is dominated by its advantage; i.e. we need to maximize ϕ2 − ϕ3.

This can be done using numerical methods which will lead to a unique i∗ for
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each network setup (fixed parameters). However, the network characteristics and the

request pattern are changing over time, so it seems that it is better to have a mechanism

to dynamically optimize the cost by selecting the caching threshold (i∗) according to

the varying network features.

In such a mechanism, the CRS can keep track of requests and have an estima-

tion of their popularity. For those requests which are served locally the CRS can have

an idea of the popularity based on the updates that receives from all the caches; i.e. the

longer an item stays in a cache, the more popular it is. It can also take into account

the local popularity of the items. The CRS can then dynamically search for the caching

threshold which minimizes the total cost by solving equation (12.11). Once the CRS

determines which items to keep internally, it will set/reset a flag in each CRRep so that

the local cache knows to store or not to store the requested piece of content.
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Chapter 13

Conclusion and Future View

We studied the asymptotic throughput capacity and latency of ICNs with

limited lifetime cached data at each node. The grid and random networks are two

network models we investigated in this work. Representing all the results in terms

of the probability of the items being in the caches while not considering any specific

content popularity distribution, or cache replacement policy has empowered us to have

a generalized result which can be used in different scenarios. Our results show that with

fixed content presence probability in each cache, the network can have the maximum

throughput order of 1 and 1
nr2(n)

in cases of grid and random networks, respectively, and

the number of hops traveled by each data to reach the customer (or latency of obtaining

data), can be as small as one hop.

Moreover, we studied the impact of the content discovery mechanism on the

performance in grid networks. It can be observed that looking for the closest cache

containing the content will not have much asymptotic advantage over the simple path-
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wise discovery when min
k
ρ(k)(n) is sufficiently small (min

k
ρ(k)(n) � 1

n) or big enough

(min
k
ρ(k)(n) 9 0). For other values of min

k
ρ(k)(n), looking for the nearest copy at most

decreases the throughput diminishing rate by a factor of two. Consequently, download-

ing the nearest available copy on the path toward the server has similar performance

as downloading from the nearest copy. A practical consequence of this result is that

routing may not need to be updated with knowledge of local copies, just getting to the

source and finding the content opportunistically will yield the same benefit.

Another interesting finding is that whether all the caches on the download

path keep the data or just the end user does it, the maximum throughput capacity scale

does not change.

In this work, we represented the fundamental limits of caching in the studied

networks, proposing a caching and downloading scheme that can improve the capacity

order is part of our future work.

We also formulated a distortion-based protocol overhead model. Some sim-

ple content distribution networks were then considered as examples to show how this

framework can be used, and based on this model the overhead of keeping the control

plane informed about the states of the contents in these networks was calculated. It was

confirmed that with big data packets, or in large un-chunked data transfer scenarios,

the cost of updating the control layer is much lower than the cost of data download, so

resolution-based content discovery can be a good solution.

We also studied the total cost of data retrieval and observed that with limited

cache storage sizes, allowing all the items to have the opportunity to be stored inside the
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sub-network’s caches is not always the most efficient way of using the caching feature.

For the case with a central resolution system in each sub-network and with

LRU cache replacement policy, an algorithm has been proposed that can dynamically

determine which items not to be cached inside the AS at any time such that the total

cost of data retrieval is minimized.

In this work, our overhead model focuses on systems with Boolean states. Our

future work involves systems with other state distributions. In addition, we have as-

sumed uniform distribution of caches in the studied example. This assumption means

that the probability of an item being in all the caches are the same. Future study can

consider some structure like tree or power-law for the caches inside each sub-network,

and using the described framework, investigate how this assumption changes the re-

sults.
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Appendix A

Detailed Derivation of Equations and

Proofs in Part I

A.1 Detailed derivation of equation (5.25)

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk ≡ nr2−α(n)

∫ d 2
C1r(n)

e+1

d 1
C1

+1e
u2−αdu

=
nr2−α(n)

3− α
((d 2

C1r(n)
e+ 1)3−α − (d 1

C1
+ 1e)3−α)(A.1)

If the transmission range decreases with increasing n, then for sufficiently large

n, we have

(
d 2

C1r(n)
e+ 1

)3−α
= Θ(

1

r3−α(n)
). (A.2)
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If α < 3,1

(d 2

C1r(n)
e+ 1)3−α − (d 1

C1
+ 1e)3−α ≡ Θ(

1

r3−α(n)
)−Θ(1)

= Θ(
1

r3−α(n)
) (A.3)

Therefore,

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk ≡ nr2−α(n)

3− α
Θ(

1

r3−α(n)
) ≡ Θ(

n

r(n)
) (A.4)

For dense social networks in which α > 3, we have

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk

≡ nr2−α(n)

α− 3
((

1

d 1
C1

+ 1e
)α−3 − (

1

d 2
C1r(n)e+ 1

)α−3), (A.5)

and for large n

(
1

d 1
C1

+ 1e
)α−3 − (

1

d 2
C1r(n)e+ 1

)α−3 ≡ Θ(1)−Θ(rα−3(n)) ≡ Θ(1) (A.6)

Thus, the above summation is equivalent to

nr2−α(n)

α− 3
Θ(1) ≡ Θ(

n

rα−2(n)
). (A.7)

A.2 Detailed derivation of equation (5.27)

For large n with minimum transmission range, we have

σ1,n ≡
∫ γdmax

r(n)
nu1−αdu =

n

2− α
((γdmax)2−α − r2−α(n)) (A.8)

1Note that for α = 3, both Cases I and II give the same result.
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For α < 2 and small r(n), we arrive at σ1,n ≡ n
2−α(γdmax)2−α ≡ Θ(n).

And for α > 2, σ1,n is

σ1,n ≡
1

r2−α(n)
− (

1

γdmax
)α−2)

≡ n

(α− 2)r2−α(n)
≡ Θ(

n

rα−2(n)
) (A.9)

A.3 Detailed derivation of equation (5.2)

Based on the computations in section 5 and if limn→∞ q =∞, the probability

of a node vk at distance dk = x away from the source being the destination (equation

(3.12)) will be

x−ασxq−1,n−1

qσq,n
≡ 1

n
. (A.10)

Thus equation (5.1) equals to

Pr(dst = Θ(1)) ≡
∫ D2

D1

xdx = Θ(1). (A.11)

For networks with finite number of contacts per node, limn→∞ q < ∞, the

probability that a node at distance x is selected as the destination is nx−α

(n−q+1)σ1,n
(equa-

tion (5.22)). By replacing this value in equation (5.1) we have

Pr(dst = Θ(1)) ≡ n

n− q + 1

∫ D2

D1

nx1−α

σ1,n
dx

≡ Θ(
n

σ1,n
) ≡


1 for 0 ≤ α ≤ 2√

logn
n

α−2

for 2 ≤ α
(A.12)
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As can be seen, for both finite and infinite values of q when 0 ≤ α ≤ 2, with

high probability the destinations are at distance of Θ(1) from the sources, while for

concentrated social networks(2 ≤ α) with finite q, this probability is asymptotically

negligible.

A.4 Detailed calculation of E2

Here we calculate the upper bound for E2. d−αk σkq−1,n−1(v) in (5.53) can be

written as

d−αk σkq−1,n−1(v) = d−αk (σq−1,n(v)− d−αk σkq−2,n−1(v)),

= d−αk (σq−1,n(v)− d−αk (σq−2,n(v)− d−αk σkq−3,n−1(v))).

(A.13)

Since d−αk and σq−2,n−1 are positive values, d−αk σq−1,n(v) provides an upper

bound for d−αk σkq−1,n−1(v).

Lemma A.4.1. [80] Let Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-negative real numbers.

Then for 1 ≤ p ≤ n− 1 we have σ1(Ψ)σp(Ψ) ≥ n(p+1)
n−p σp+1(Ψ).

In Section 5 (Lemma 5.1.3), we prove that this is a tight bound for values of

p that do not grow as fast as n.

According to Lemma A.4.1, p requires to be very small such that n
p is suffi-

ciently large and we use Law of Large Numbers. Therefore, we select q0 such that when

n goes to infinity and for q ≤ q0, we have

172



σq−1,n(v)

σq,n(v)
≡

nqd−αk
(n− q + 1)σ1,n(v)

. (A.14)

By incorporating the upper bound of (A.13) into (5.53), we arrive at

E2 <

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk in sl

q0∑
q=1

q−γ−1∑n−1
b=1 b

−γ
nqd−αk

(n− q + 1)σ1,n(v)
. (A.15)

It can be easily seen that the order of the distances between the source and all

the nodes inside sl for all l = 1, .., 4x equals to xr(n) and the number of nodes with a

distance of x equals to Θ(xnr2(n)), thus

E2 <
n2r2−α(n)

σ1,n(v)
∑n−1

b=1 b
−γ

1
r(n)∑
x=1

x2−α
q0∑
q=1

q−γ

n− q + 1
. (A.16)

Since q0 is not growing with n, then n− q + 1 = Θ(n) for q ≤ q0. Therefore,

E2 <
nr2−α(n)

σ1,n(v)
∑n−1

b=1 b
−γ

1
r(n)∑
x=1

x2−α
q0∑
q=1

q−γ . (A.17)

According to equation (5.27) the order of E2, the average number of hops for

sources with low number of social connections is

E2 <
1∑n−1

b=1 b
−γ

q0∑
q=1

q−γ



1
r(n) for 0 ≤ α ≤ 2

1
r3−α(n)

for 2 ≤ α ≤ 3

1 for 3 ≤ α

.

(A.18)
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By utilizing (A.13) and the results from section 5.1, we arrive at

σq−2,n(v)

qσq,n(v)
= Θ(

n2

σ2
1,n(v)

q − 1

(n− q + 1)(n− q + 2)
). (A.19)

We can use similar calculations to prove that this upper bound is actually a

tight bound. Therefore for γ > 1.

E2 =



Θ( 1
r(n)) for 0 ≤ α ≤ 2

Θ( 1
r3−α(n)

) for 2 ≤ α ≤ 3

Θ(1) for 3 ≤ α

(A.20)

It is obvious that for α > 2, the value of E2 is much less than E1. Under this

condition, a small number of nodes (N>q0) are using a large portion of the resources

and are limiting the total throughput of the network.

A.5 Proof of Lemma 5.3.3

Proof. Define the random variables Yi = d−αi and Zi = log Yi for 1 ≤ i ≤ n. Since Yi’s

are i.i.d random variables, Zi’s are also i.i.d. random variables. By using the law of

large numbers, we have limm→∞
1
m

∑m
i=1 Zi = Z̄ where Z̄ is the expected value of the
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random variable Zi. Hence,

d−αk σq−1(dk
n)

σq(dn)
≡

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij∑

1≤i1<..<iq≤n
∏q
j=1 Yij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp
∑q

j=1 Zij∑
1≤i1<..<iq≤n exp

∑q
j=1 Zij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp qZ∑
1≤i1<..<iq≤n exp qZ

≡
(n−1
q−1 )

(nq )
=
q

n
(A.21)

Now if q = Θ(n), we have q
n ≡ Θ(1) and therefore,

d−αk σq−1(dk
n)

σq(dn) ≡ q
n ≡ Θ(1).

A.6 Proof of Lemma 5.3.6

Proof. Suppose that the i-th member of the long-range social group is located in the

distance of xqi hops from the source, then we can say that

σ1(dq) =

q∑
i=1

d−βqi =

q∑
i=1

(cir(n)xqi)
−β = (r(n))−β

q∑
i=1

(cixqi)
−β. (A.22)

Since, xqi can be every integer between one and 1
r(n) , the order of σ1(dq)

may range from Θ(1) to Θ(r(n)−β). However, note that when n goes to infinity, with

probability approaching one at least one of the long-range contacts lies within a lattice

distance of Θ(1) to the source.

To prove this, it is enough to show that with probability approaching zero, all

of the long-range contacts lie outside a lattice distance of f(n) = Ω(1) to the source.

Assuming q = Θ(1) or q = Θ(f(n)) where limn→∞
f(n)
n = 0, we can argue that the

probability of selecting long-range social contacts is independent of each other. Thus,

using lemma 5.3.5 we have
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Pr(xq1 = Θ(f(n)), xq2 = Θ(f(n)), ..., xqq = Θ(f(n)))

=

q∏
i=1

Pr(xqiΘ(f(n))

≡
q∏
i=1

(f(n)r(n))−α

σ1(dn)

≡ O(
(r(n))−qα

(σ1(dn))q
)

=


O
(
(nrα(n))−q

)
, 0 ≤ α ≤ 2

O
(
(log n)−q

)
. 2 ≤ α

(A.23)

It is not difficult to verify that the right hand side which is an upper bound for

this probability goes to zero as n approaches infinity thus the aforementioned probability

tends to zero. Thus with probability approaching one, there exists at least one long-

range contact in the lattice distance of Θ(1) to the source which will be the dominant

term in σ1(dq). Therefore, σ1(dq) = Ω
(
(r(n))−β

)
and since in the case of q = Θ(1),

σ1(dq) is only composed of Θ(1) terms we have σ1(dq) = Θ
(
(r(n))−β

)
.

For the case of q = Θ(f(n)) we know that at least one long range contact

exists within a distance of Θ(1) to the source. Therefore, σ1(dq) can have the order

of Θ
(
(r(n))−β

)
when it only has Θ(1) social contacts within a distance of Θ(1) to the

source or it can have the order of Θ
(
f(n)(r(n))−β

)
when almost all of the Θ(f(n))

social contacts lie within a distance of Θ(1) to the source. We will now show that with

a probability close to one the latter almost never happens and therefore in the case of
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q = Θ(f(n)), almost surely we have, σ1(dq) = Θ
(
(r(n))−β

)
. To prove this, using the

same approach as above, we will compute the probability that almost all of the social

contacts lie within a distance Θ(1) to the source,

Pr(xq1 = Θ(1), xq2 = Θ(1), ..., xqq = Θ(1)) =

q∏
i=1

Pr(xqi = Θ(1))

≡
q∏
i=1

(r(n))−α

σ1(dn)

≡ Θ(
(r(n))−qα

(σ1(dn))q
)

=


Θ
(
(nrα(n))−q

)
, 0 ≤ α ≤ 2

Θ
(
(log n)−q

)
. 2 ≤ α

(A.24)

Clearly, when n is a large number, this probability goes to zero and therefore

this scenario almost surely never happens.

A.7 Proof of Lemma 5.3.7

Proof. This lemma can be proved by expanding the polynomials and considering the

non-negativity of elements in dn. We will use this lemma to find the upper and lower

bounds for E[X].
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Appendix B

Detailed Derivation of Equations and

Proofs in Part II

B.1 Proof of Lemma 10.1.3

Proof. Let hk, dsr, and dmax denote the number of hops between the customer and the

serving node (cache or original server) for content k, the number of hops between the

customer and the serving node (cache or original server), and the maximum value of

dsr, respectively. The average number of hops between the customer and the serving

node (E[hk]) is given by

E[hk] =

dmax∑
i=1

E[hk|dsr = i]Pr(dsr = i). (B.1)

This case can be considered as a special case of the network studied in Theorem

10.1.1, where ρ
(k)
i (n) is the same for all i1. Thus, we can drop the index i and let ρ(k)(n)

1We will give examples in Section V using this assumption.
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denote the common value of this probability. Using equation (10.2) and (10.3) we will

have E[hk] equal to

4

n

√
n∑

i=1

i{i(1− ρ(k)(n))i +
i−1∑
j=1

(i− j)(1− ρ(k)(n))i−jρ(k)(n)} (B.2)

The constant factor 4 does not change the scaling order and it can be dropped.

By defining l = i− j, then the proof follows.

B.2 Proof of Lemma 10.2.2

Proof. dmax in this network is Θ(
√
n), and there are 4i nodes at distance of i hops from

the original server. Thus, Pr(dsr = i) ≡ i
n . Each customer may have the required

item k in its local cache with probability ρ(k)(n). If the requester is one hop away

from the original server, it gets the required item from the server with probability

1 − ρ(k)(n). The customers at two hops distance from the server (8 such customers)

download the required item from the original server (traveling hk = 2 hops) if no cache

in a diamond of two hops diagonals contains it (with probability (1 − ρ(k)(n))2), and

gets it from a cache at distance one hop if one of those caches has the item (with

probability (1 − ρ(k)(n))(1 − (1 − ρ(k)(n))4)). Using similar reasoning, the customers

at distance i from the server get the item from the server (distance hk = i hops) with

probability (1 − ρ(k)(n))1+4(1+2+...+(i−1)) = (1 − ρ(k)(n))2i2−2i+1, and from a cache at

distance hk = l < i with probability (1 − ρ(k)(n))2l2−2l+1(1 − (1 − ρ(k)(n))4l) as there

are 4l nodes at distance of l hops. Therefore, using equations (B.1), (10.2), and (10.3),
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E[hk] is equal to

1

n

√
n∑

i=2

i
i−1∑
l=1

l(1− (1− ρ(k)(n))4l)(1− ρ(k)(n))2l2−2l+1 +
1

n

√
n∑

i=1

i2(1− ρ(k)(n))2i2−2i+1

(B.3)

B.3 Proof of Lemma 10.3.2

Proof. The number of caches within transmission range (one hop) is Θ(nr2(n)). dmax

in this network is of the order of 1
r(n) and Pr(dsr = i) ≡ ir2(n).

Each customer may have the required item k in its local cache with proba-

bility ρ(k)(n). If the requester is one hop away from the original server (4Θ(nr2(n))

nodes), it receives the required item from the server with probability 1 − ρ(k)(n). The

customers at two hops distance from the server (8Θ(nr2(n)) such customers) down-

load the required item from the original server (traveling hk = 2 hops) if no cache

in the cell at one hop distance contains it (probability (1 − ρ(k)(n))2nr2(n)), and gets

it from a cache at distance one hop if one of those caches has the item (probability

(1 − ρ(k)(n))(1 − (1 − ρ(k)(n))2nr2(n))). Using similar reasoning the customers at dis-

tance i from the server receive the item from the server (distance hk = i hops) with

probability (1−ρ(k)(n))inr
2(n), and from a cache at distance hk = l < i with probability

(1−ρ(k)(n))lnr
2(n)(1− (1−ρ(k)(n))nr

2(n)). Therefore, according to equation (B.1) E[hk]

equals to
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r2(n){(1− ρ(k)(n)) +

1
r(n)∑
i=2

i2(1− ρ(k)(n))inr
2(n)

+ (1− (1− ρ(k)(n))nr
2(n))

1
r(n)∑
i=2

i

i−1∑
l=1

l(1− ρ(k)(n))lnr
2(n)}.

(B.4)

Noting that r2(n)(1 − ρ(k)(n)) is always less than one, and tends to zero for

sufficiently large n, the Lemma is proved.

B.4 Proof of Lemma 10.1.4

Proof. To simplify the notations, we have dropped the index k when there is no ambi-

guity.

To prove this Lemma we use (A): limN→∞(1 − x)N ≈ e−xN approximation,

which is ≈ 1 for x = o( 1
N ) (region 1), ≈ e−1 for x = Θ( 1

N ) (region 2), and ≈ 0 for

x = ω( 1
N ) (region 3).

Let us define

Eis =
1

n

√
n∑

i=1

i2(1− ρ(n))i , Eic =
ρ(n)

n

√
n∑

i=1

i

i−1∑
l=1

l(1− ρ(n))l. (B.5)

Thus equation (10.5) is written as E[h] = Eis + Eic. First we investigate the

value of Eis for different ranges of ρ(n). The summation for Eis can be decomposed into

two summations.
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Eis ≡
1

n
{
∑
i≺
√
n

i2(1− ρ(n))i +
∑
i≡
√
n

i2(1− ρ(n))i} (B.6)

Assume ρ(n) ≡ 1√
n

, then using first and second region of equation (B.4) we

have

Eis ≡
1

n
{
∑
i≺
√
n

i2 +
∑
i≡
√
n

i2} ≡ n3/2

n
≡
√
n. (B.7)

Moreover it can easily be seen that Eis is a decreasing function of ρ(n), so for

ρ(n) with order less than 1√
n

it is more than
√
n. Since dmax =

√
n, we can say Eis ≡

√
n

for ρ(n) � 1√
n

. Now we expand the summation to obtain

Eis ≡
(1− ρ(n))(2− ρ(n))

nρ3(n)

− (1− ρ(n))
√
n+1

nρ3(n)
{n(1− ρ(n))2 − (1− ρ(n))(2n+ 2

√
n− 1) + (

√
n+ 1)2}

(B.8)

If ρ(n) � 1√
n

, then using third region in equation (B.4), (1−ρ(n))
√
n+1 is going

to zero exponentially, so n(1− ρ(n))
√
n+1 → 0. Thus, Eis ≡ 1

nρ3(n)
, and in summary

Eis ≡


√
n ρ(n) � 1√

n

1
nρ3(n)

ρ(n) � 1√
n

(B.9)

According to equation (B.9) and since E[h] = Eis + Eic, when Eis ≡
√
n (for

ρ(n) � 1√
n

) which is the maximum possible order for E[h], then adding Eis to E[h]

cannot increase its order beyond the maximum possible value. Now to derive the order
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of E[h] for other values of ρ(n), we decompose the equation of Eic = Ei1c + Ei2c to the

following summations and investigate their behaviors when ρ(n) � 1√
n

.

Ei1c =
1

n

∑
i≡
√
n

i

i−1∑
l=1

lρ(n)(1− ρ(n))l,

Ei2c =
1

n

∑
i≺
√
n

i
i−1∑
l=1

lρ(n)(1− ρ(n))l (B.10)

The number of i ≡
√
n is in the order of Θ(1). Therefore using the following

series
∑n

x=1 xa
x = an+1(na−n−1)+a

(a−1)2 , we have

Ei1c ≡ 1√
n

√
n∑

l=1

lρ(n)(1− ρ(n))l

≡ 1− ρ(n)

ρ(n)
√
n

(1− (1− ρ(n))
√
n(1 + ρ(n)

√
n)) (B.11)

which is equivalent to 1
ρ(n)
√
n

when ρ(n) � 1√
n

.

Utilizing the same series, the first summation in Ei2c is Θ(
√
n). Hence we arrive

at

Ei2c ≡ 1− ρ(n)

ρ(n)n

∑
i≺
√
n

i[1− {1− ρ(n) + ρ(n)i}(1− ρ(n))i−1]

≡
1− ρ(n){1− 1

n

∑
i≺
√
n

i(1− ρ(n))i − 1
n

∑
i≺
√
n

i2ρ(n)(1− ρ(n))i−1}

ρ(n)

≡ 1− ρ(n)

ρ(n)
− (1− ρ(n))2

ρ3(n)n
− 1

ρ3(n)n
≡ 1

ρ(n)
(B.12)

Since ρ(n) � 1√
n

, Ei2c is the dominant factor in Eic, and also it is dominant

factor in E[h]. Thus, E[h] ≡ Eis ≡
√
n for ρ(n) � 1√

n
, and E[h] ≡ Ei2c ≡ 1√

ρ(n)
for

ρ(n) � 1√
n

.
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B.5 Proof of Lemma 10.2.3

Proof. Let us define

Eiis =
1

n

√
n∑

i=1

i2(1− ρ(n))2i2−2i+1,

Eiic =
1

n

√
n∑

i=2

i

i−1∑
k=1

l(1− ρ(n))2l2−2l+1(1− (1− ρ(n))4l) (B.13)

So E[h] = Eiis + Eiic . Assume that ρ(n) ≡ 1
n , then

Eiis ≡
1

n

√
n∑

i=1

i2(1− 1

n
)2i2−2i+1 ≡ 1

n

√
n∑

i=1

i2 ≡
√
n. (B.14)

Since Eiis is increasing when ρ(n) is decreasing and its maximum possible order is
√
n,

then Eiis ≡
√
n for all ρ(n) � 1

n .

For ρ(n) � 1
n , we approximate the summation with the integral.

Eiis ≡ 1

n

∫ √n
v=1

v2(1− ρ(n))2v2−2v+1

≡ {
(1− log(1− ρ(n)))

√
2π(1− ρ(n))erf(

(2v−1)
√
− log(1−ρ(n))√

2
)

n log3/2(1− ρ(n))

+
−2
√
− log(1− ρ(n))(2v + 1)(1− ρ(n))2v2−2v+1

n log3/2(1− ρ(n))
}|
√
n

v=1 (B.15)

where erf is the error function which is always limited by [−1, 1] and is zero at zero. If

ρ(n)→ 1, then it is obvious that Eiis → 0. For other values of ρ(n) � 1
n we use the third

approximation in equation (B.4), and also − log(1 − ρ(n)) ≡ ρ(n), which is true when

ρ(n) tends to zero while n approaches infinity, and − log(1− ρ(n)) ≡ 1 for ρ(n) 9 0 to
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prove that Eiis ≡
√
n for ρ(n) � 1

n , and Eiis ≡ 1
nρ3/2(n)

for ρ(n) � 1
n . Since for ρ(n) � 1

n

the Eiis reaches the maximum E[h], therefore Eiic cannot increase the scaling value of

E[h] anymore. For ρ � 1
n we have Eiic ≡

√
1

ρ(n) . Thus it can easily be verified that

E[h] ≡ Eiis ≡
√
n for ρ(n) � 1

n , and E[h] ≡ Eiic ≡
√

1
ρ(n) for ρ(n) � 1

n .

B.6 Proof of Lemma 10.3.3

Proof. Let us define E[h] = Eiiis + Eiiic , where

Eiiis = r2(n)

1
r(n)∑
i=2

i2(1− ρ(n))inr
2(n)

Eiiic = r2(n)(1− (1− ρ(n))nr
2(n)){

1
r(n)∑
i=2

i

i−1∑
l=1

l(1− ρ(n))lnr
2(n)} (B.16)

First we check the behavior of Eiiis when ρ(n) ≡ 1
nr(n) . Using the second region

in equation (B.4) we will have Eiiis ≡ 1
r(n) . Eiiis is increasing when ρ(n) is decreasing

and the maximum possible value for the number of hops is 1
r(n) , then Eiiis ≡ 1

r(n) for all

ρ(n) � 1
nr(n) .

By approximating the summation with integral, we arrive at

Eiiis ≡ r2(n)
∫ 1
r(n)

2 v2(1− ρ(n))vnr
2(n)dv, (B.17)

which equals to

{(v2 log2 (1− ρ(n))nr
2(n) − 2v log (1− ρ(n))nr

2(n) + 2)
r2(n)(1− ρ(n))vnr

2(n)

log3 (1− ρ(n))nr2(n)
}|

1
r(n)

v=2 .

(B.18)
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If 1
nr(n) � ρ(n) � 1

nr2(n)
, using the fact that log (1− ρ(n))nr

2(n) ≡ −ρ(n)nr2(n) and also

equation (B.4), we will have Eiiis ≡ 1
n3ρ3(n)r4(n)

.

When ρ(n) � 1
nr2(n)

, equation (B.18) tends to zero.

Using the previous approximations along with 1 − (1 − ρ(n))nr
2(n) ≡ 1 for

ρ(n) � 1
nr2(n)

, and ρ(n)nr2(n) for ρ(n) � 1
nr2(n)

, we can approximate Eiiic as its dominant

terms (Eiiic ≡ 1
nρ(n)

∑ 1
r(n)

i=2 i ≡
1

ρ(n)nr2(n)
).

When ρ(n) � 1
nr2(n)

, the dominant term is Θ(1). Thus,

E[h] ≡



Eiiis ≡ 1
r(n) ρ(n) � 1

nr(n)

Eiiic ≡ 1
ρ(n)nr2(n)

1
nr(n) � ρ(n) � 1

nr2(n)

Eiiic ≡ 1 1
nr2(n)

� ρ(n)

(B.19)

It can be seen that for large enough ρ(n) the average number of hops between

the nearest content location and the customer is just Θ(1) hops. This is the result of

having nr2(n) caches in one hop distance for every requester. Each one of these caches

can be a potential source for the content. When the network grows, this number will

increase and if ρ(n) is large enough ( 1
nr2(n)

� ρ(n)) the probability that at least one of

these nodes contain the required data will approach 1, i.e., limn→∞(1−(1−ρ(n))nr
2(n)) =

1.

B.7 Proof of Lemmas 10.1.6, 10.2.5, and 10.3.5

Proof. Assume that each content is retrieved with rate γ bits/sec. The traffic generated

because of one download from a cache (or server) at average distance of E[h] hops from
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the requester node is γE[h]. The total number of requests for a content in the network at

any given time is limited by the number of nodes n. Thus the maximum total bandwidth

needed to accomplish these downloads will be nE[h]γ, which is upper limited by (Θ(n))

in Lemmas 10.1.6, 10.2.5, and (Θ( 1
r2(n)

)) in Lemma 10.3.5. Thus, nE[h]γ � n and

γmax ≡ 1
E[h] in Lemmas 10.1.6, and 10.2.5, and nE[h]γ � 1

r2(n)
and γmax ≡ 1

E[h]nr2(n)

Lemma 10.3.5. Therefore the maximum download rate is easily derived using the results

of Lemmas 10.1.6, 10.2.5, and 10.3.5.

B.8 Proof of Lemma 10.1.7

Proof. Each link between two nodes can carry at most Θ(1) bits per second. Here

we calculate the maximum traffic passing through a link considering the throughput

capacities derived in previous theorems, and check if any link can be a bottleneck.

Each one of the four links connected to the server will carry all the traffic

related to the items not found in the on-path caches. Thus, the total traffic related to

item k carried by each of those links is ψk =
∑√n

i=1 γi(1− ρ(k)(n))i.

When ρ(k)(n) � 1√
n

, we have (1 − ρ(k)(n))i ≡ 1 for all i ≤
√
n. So this traffic

is equal to ψk =
∑√n

i=1 γi ≡ nγ.

When ρ(k)(n) � 1√
n

, using equation (B.4) the above summation can be written

as

γ
(−1 + ρ(k)(n))(

√
nρ(k)(n)(1− ρ(k)(n))

√
n + (1− ρ(k)(n))

√
n − 1)

(ρ(k)(n))2
≡ γ

(ρ(k)(n))2
.(B.20)

The total traffic is ψ =
∑m

k=1 αkψk which must be less than one. If ρ(k)(n) �
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1√
n

for all the items, then the item with minimum ρ(k)(n) will be the dominant factor in

the above equation (ψ ≡ Θ( γ
min
k

(ρ(k)(n))2)
)), and if at least one item has ρ(k)(n) � 1√

n
, it

will put the bound on the maximum rate (ψ ≡ nγ). Thus, ψ ≡ min(nγ, γ
min
k

(ρ(k)(n))2)
) �

1, then γmax ≡ max( 1
n ,mink

((ρ(k)(n))2)).

Therefore, the links directly connected to the server will be a bottleneck if γ is

more than the above values. On the other hand, the traffic related to item k carried by a

node to cache content in level j is
∑√n−j

i=1 γi(1−ρ(k)(n))i �
∑√n

i=1 γi(1−ρ(k)(n))i, so the

server links carry the maximum load, and thus the derived upper limits are supportable

in every link.

B.9 Proof of Lemma 10.2.6

Proof. Each link between two nodes can carry at most Θ(1) bits per second. Here

we calculate the maximum traffic passing through a link considering the throughput

capacities derived in previous theorems, and check if any link can be a bottleneck.

Each one of the four links connected to the server will carry all the traffic

related to the items not found in any caches closer to the requester. Thus, the total
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traffic related to item k (ψk) carried by each of those links is

γ(1− ρ(k)(n)) +

√
n∑

i=1

4γi(1− ρ(k)(n))(1+4
∑i
j=1 j)

≡ γ(1− ρ(k)(n)) +

√
n∑

i=1

γi(1− ρ(k)(n))2i2+2i+1,

≡ γ{(1− ρ(k)(n)) +
(1− ρ(k)(n))n − (1− ρ(k)(n))4

log(1− ρ(k)(n))/(1− ρ(k)(n))

+

√
− log(1−ρ(k)(n))

1−ρ(k)(n)
erf(

√
−n log(1− ρ(k)(n)))

log(1− ρ(k)(n))/(1− ρ(k)(n))

−

√
− log(1−ρ(k)(n))

1−ρ(k)(n)
erf(

√
− log(1− ρ(k)(n)))

log(1− ρ(k)(n))/(1− ρ(k)(n))
}. (B.21)

If ρ(k)(n) � 1
n , then (1 − ρ(k)(n))2i2+2i+1 ≡ 1 for all 1 ≤ i ≤

√
n. Thus

the above traffic will be ψk ≡ nγ. If ρ(k)(n) � 1
n the above equation is equivalent to

ψk ≡ γ
ρ(k)(n)

.

The total traffic then is ψ ≡
∑m

k=1 αkψk � 1. If ρ(k)(n) � 1
n for all the

items, then ψ ≡ γ
min
k

(ρ(k)(n))
. If ρ(k)(n) � 1

n for at least one item, then ψ ≡ nγ. Thus,

ψ ≡ min(nγ, γ
min
k

(ρ(k)(n))
) � 1, then γmax ≡ max( 1

n ,mink
(ρ(k)(n))).

Using similar reasoning as in Lemma 10.1.7 other links carry less traffic, so the

above capacities are supportable for all the other links.

B.10 Proof of Lemma 10.3.6

Proof. Each link between two nodes can carry at most Θ(1) bits per second. Here

we calculate the maximum traffic passing through a link considering the throughput

capacities derived in previous theorems, and check if any link can be a bottleneck.
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The traffic load for item k between the server cell and each of the four neighbor

cells (ψk) is given by

γnr2(n){(1− ρ(k)(n)) +

1
r(n)∑
i=2

i(1− ρ(k)(n))inr
2(n)}

≡ γnr2(n){(1− ρ(k)(n))

+
(1− ρ(k)(n))nr(n)(nr(n) log(1− ρ(k)(n))− 1)

log2(1− ρ(k)(n))nr2(n)

− (1− ρ(k)(n))nr
2(n)(log(1− ρ(k)(n))nr

2(n) − 1)

log2(1− ρ(k)(n))nr2(n)
} (B.22)

If ρ(k)(n) � 1
nr(n) , then (1−ρ(k)(n))inr

2(n) → 1 for 2 ≤ i ≤ 1
r(n) , thus the traffic

load equals to γnr2(n)
∑ 1

r(n)

i=2 i ≡ nγ.

If 1
nr(n) � ρ

(k)(n) � 1
nr2(n)

, then the maximum traffic load ψk on a link is

γnr2(n) + γnr2(n)
1 + 2ρ(k)(n)nr2(n)

(ρ(k)(n))2n2r4(n)
≡ γ

(ρ(k)(n))2nr2(n)
(B.23)

If ρ(k)(n) � 1
nr2(n)

, then equation (B.22) is equivalent to γnr2(n). There-

fore, if ρ(k)(n) � 1
nr2(n)

for all the items, then the total traffic (ψ =
∑m

k=1 αkψk) is

simply ψ ≡ γnr2(n). If ρ(k)(n) � 1
nr(n) for all items but there is at least one item

for which ρ(k)(n) � 1
nr2(n)

, then the total traffic is dominated by the traffic gener-

ated by the item with the least ρ(k)(n) (ρ(k)(n) � 1
nr2(n)

). And finally if there is

at least one item for which ρ(k)(n) � 1
nr(n) , then it will generate the dominant traf-

fic (ψ ≡ nγ). Thus, ψ ≡ min[nγ, max(γnr2(n), γ
min
k

(ρ(k)(n))2nr2(n)
)] � 1, γmax �

max[ 1
n ,min( 1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]. Note that if there is no cache in the sys-

tem, or ρ(n) is very low, less than the stated threshold values, almost all the requests

would be served by the server, and the maximum download rate would be Θ( 1
n).
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B.11 Proof of Lemma 12.1.1

Proof. The distortion criteria is defined as

D1 = Pr(SX = 1, ŜX = 0) ≤ ε1

D2 = Pr(SX = 0, ŜX = 1) ≤ ε2 (B.24)

It can be seen that Pr(SX = 1) = τX
τX+θX

, and Pr(SX = 0) = θX
τX+θX

. There

are three cases where the distortion criteria is satisfied even when the controller has no

information about the underlying plane.

1. If the monitoring state is ’down’ with high probability (Pr(SX = 1) ≤ ε1), then

having the controller assume that it is always ’down’ (keeping ŜX constantly equal

to ′0′) will satisfy the distortion criteria (D1 = Pr(SX = 1) ≤ ε1 and D2 = 0 < ε2).

2. If the monitoring state is ’up’ with high probability (Pr(SX = 0) ≤ ε2), then

setting the controller to assume it is always ’up’ (keeping ŜX constantly equal to

′1′) will satisfy the distortion criteria (D1 = 0 < ε1 and D2 = Pr(SX = 0) ≤ ε2).

3. If the monitoring variable can take both ’up’ and ’down’ states with high enough

probabilities such that 1− ε1
Pr(SX=1) ≤

ε2
Pr(SX=0) , then we pick a value ρ0 between

1− ε1
Pr(SX=1) and ε2

Pr(SX=0) , and assign ′1′ to ŜX with probability ρ0 independent

of the value of SX . Therefore, since D1 = Pr(SX = 1)Pr(ŜX = 0) = Pr(SX =

1)(1 − ρ0) ≤ ε1, and D2 = Pr(SX = 0)Pr(ŜX = 1) = ρ0Pr(SX = 0) ≤ ε2, the

distortion criteria is satisfied.
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Thus in the following, we concentrate on the cases where Pr(SX = 1) > ε1,

Pr(SX = 0) > ε2, and 1− ε1
Pr(SX=1) >

ε2
Pr(SX=0) .

Note that we assume that ε1 + ε2 ≤ 1, then ε2
1−ε2 ≤

1−ε1
ε1

, and the first two

regions can be summarized in the region where ε2
1−ε2 ≤

θX
τX
≤ 1−ε1

ε1
. The third region is

also mapped to the region where ε2τX + ε1θX < τXθX
τX+θX

.

Let U1
X(ε1) (and U2

X(ε2)) denote the needed update rate per change type I

(and II), or in other words the ratio of times that type I (and II) changes have to be

reported to the control plane so that the distortion criteria is satisfied. As can be seen

in figure 12.1, each ’up’ period Zm starts at time T2m−1 and ends at time T2m. The

false negative alarm is generated during the mth ’up’ period (Zm) if a type I change in

the state of X at time T2m−1 is not announced to the control plane while the previous

state (’0’) was correctly perceived by the control plane; we show this event by W 1
m, and

its probability is given by

Pr(W 1
m) = (1− U1

X(ε1))Pr(ŜX = 0|SX = 0)

= (1− U1
X(ε1))(1− Pr(ŜX = 1|SX = 0))

= (1− U1
X(ε1))(1− Pr(SX = 0, ŜX = 1)

Pr(SX = 0)

= (1− U1
X(ε1))(1−D2

τX + θX
θX

) (B.25)

In this case, ŜX = 0 during the time where SX = 1. So assuming that the mth such

change is perceived wrong by the control plane, Zm is the time interval where the control

plane has the type I wrong information about the state of X. Let Nw be the number

of times SX undergoes type I changes during a time interval [0, w]. The probability of
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type I error, and consequently type I distortion can be calculated as the ratio of total

time of type I error over w when w →∞.

D1 = E[
1

w

Nw∑
m=1

1[W 1
m]Zm]

=
1

w
E[1[W 1

m]Zm]E[Nw]

=
τX

τX + θX
Pr(W 1

m)

=
τX

τX + θX
(1− U1

X(ε1))(1−D2
τX + θX
θX

) (B.26)

Similarly, a false positive alarm is generated when a type II change is not

announced while the previous perceived state (’1’) was correct, and assuming that this

is the mth such change, Ym+1 is the time interval that the control plane has type II

wrong information about X; let W 2
m denote this event. Thus,

Pr(W 2
m) = (1− U2

X(ε2))Pr(ŜX = 1|SX = 1)

= (1− U2
X(ε2))

Pr(SX = 1)− Pr(SX = 1, ŜX = 0)

Pr(SX = 1)

= (1− U2
X(ε2))(1−D1

τX + θX
τX

) (B.27)

and

D2 = E[
1

w

Nw∑
m=1

1[W 2
m]Zm]

=
1

w
E[1[W 2

m]Ym+1]E[Nw]

=
θX

τX + θX
Pr(W 2

m)

=
θX

τX + θX
(1− U2

X(ε2))(1−D1
τX + θX
τX

) (B.28)

To satisfy the distortion criteria we need D1 ≤ ε1 and D2 ≤ ε2. The update

rates per changes type I and II, U1
X(ε1) and U2

X(ε2), then can be written as
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U1
X(ε1) = 1−

D1
θX
τX

θX
τX+θX

−D2

≥ 1−
ε1
θX
τX

θX
τX+θX

−ε2
(B.29)

U2
X(ε2) = 1−

D2
τX
θX

τX
τX+θX

−D1
≥ 1−

ε2
τX
θX

τX
τX+θX

−ε1
(B.30)

It can easily be verified that using the lower bounds obtained in equations (B.29) and

(B.30) for update rates per each change type will result in distortions D1 = ε1 and

D2 = ε2, and thus they are the minimum values needed.

Therefore, the total number of updates announced to the control plane divided

by the total number of changes is given by

UX(ε1, ε2) = U1
X(ε1) + U2

X(ε2) (B.31)

Note that the total rate of type I changes, which is equal to the rate of type II changes

in average is given by 1
τX+θX

changes per second, thus total number of updates per

second is given by

RX(ε1, ε2) =
UX(ε1, ε2)

τX + θX
(B.32)

Combining equations (B.29-B.32) proves the Lemma.

B.12 Proof of Lemma 12.3.5

Proof. Recall that Vc is the set of caches, ρi denotes the probability that a specific cache

contains item i. Let Sij represent the state of an item i at a node j, which is 1 if cache

j contains item i, and 0 otherwise, and let Ŝij denote the corresponding state perceived
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by the CRS. A request from a user is not served internally (by a cache in second layer)

either if no cache contains it:

Pr(∀ j ∈ Vc : Sij = 0) = (1− ρi)Nc , (B.33)

or if there are some caches containing it but the CRS is not aware of that:

Pr(∃ j ∈ Vc : Sij = 1 & Ŝij = 0)

=

Nc∑
k=1

∑
1≤j1<..<jk≤Nc

Pr(
i/∈Vc−{j1,...,jk} &

[Ŝijl=0, Sijl=1]kl=1

)

=

Nc∑
k=1

∑
1≤j1<..<jk≤Nc

(1− ρi)Nc−kΠk
l=1Pr(

Ŝijl=0

Sijl=1)

=

Nc∑
k=1

(Nck )(1− ρi)Nc−kDk
1i

= (1− ρi +D1i)
Nc − (1− ρi)Nc (B.34)

where D1i ≥ 0 is the probability that i exists in cache j and the CRS does not

know about it.

Thus the probability that a request is served externally is 1− Pi which equals

(1− ρi)Nc + [(1− ρi +D1i)
Nc − (1− ρi)Nc ] = (1− ρi +D1i)

Nc (B.35)

where under the independent cache assumption, the state of an item in a cache

is independent of the state in another cache. The probability D1i ≥ 0 is always less

than the probability of i being in cache j (D1i ≤ ρi), and if the state updates are done

at rate greater than Ri(ε1, ε2), it will also be less than ε1.
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