December 12, 2005

Hopping Mini-Bots

Here is a very interesting article on tiny little hopping robots. These are the brainchild of a cooperation between Dr. Penelope Boston and Dr. Steven Dubowsky, a cave biologist and a roboticist.

pegbot.jpg If you want to travel to distant stars, or find life on another world, it takes a bit of planning. That's why NASA has established NIAC, the NASA Institute for Advanced Concepts. For the past several years, NASA has been encouraging scientists and engineers to think outside the box, to come up with ideas just this side of science fiction. Their hope is that some of these ideas will pan out, and provide the agency with technologies it can use 20, 30, or 40 years down the road.

NIAC provides funding on a competitive basis. Only a handful of the dozens of proposals submitted are funded. Phase I funding is minimal, just enough for researchers to flesh out their idea on paper. If the idea shows merit, it then may get Phase II funding, allowing the research to continue from the pure-concept to the crude-prototype stage.

One of the projects that received Phase II funding earlier this year was a collaboration between Dr. Penelope Boston and Dr. Steven Dubowsky to develop "hopping microbots" capable of exploring hazardous terrain, including underground caves. If the project pans out, hopping microbots may some day be sent to search for life below the surface of Mars.

Boston spends a lot of time in caves, studying the microorganisms that live there. She is the director of the Cave and Karst Studies Program and an associate professor at New Mexico Tech in Socorro, New Mexico. Dubowsky is the director of the MIT Field and Space Robotics Laboratory at MIT, in Cambridge, Massachusetts. He is known in part for his research into artificial muscles.

[...]

AM: How do all these little spheres co-ordinate with each other?

PB: They behave as a swarm. They relate to each other using very simple rules, but that produces a great deal of flexibility in their collective behavior that enables them to meet the demands of unpredictable and hazardous terrain. The ultimate product that we're envisioning is a fleet of these little guys being sent to some promising landing site, exiting from the lander and then making their way over to some subsurface or other hazardous terrain, where they deploy themselves as a network. They create a cellular communication network, on a node-to-node basis.

AM: Are they able to control the direction in which they hop?

PB: We have aspirations for them ultimately to be very capable. As we move into Phase II, we're working with Fritz Printz at Stanford on ultra-miniature fuel cells to power these little guys, which would enable them to be able to do a fairly complex array of things. One of those capabilities is to have some control over the direction in which they go. There are certain ways that they can be built that can allow them to preferentially go in one direction or another. It's not quite as precise as it would be if they were wheeled rovers just going on a straight path. But they can preferentially cant themselves more or less in the direction that they wish to go. So we're envisioning that they will have at least crude control over direction. But a lot of their value has to do with their swarm motion as an expanding cloud.

As wonderful as the MER rovers are, for the kind of science I do, I need something more akin to the insect robot idea pioneered by Rodney Brooks at MIT. Being able to tap into the model of insect intelligence and adaptation for exploration had long appealed to me. Adding that to the unique mobility provided by Dr. Dubowsky's hopping idea, I think, can enable a reasonable percentage of these little units to survive the hazards of subsurface terrain - that just seemed like a magical combination to me.

Posted by elkaim at December 12, 2005 1:19 PM