
DistributedRecedingHorizonControl for

Multi-VehicleFormationStabilization ?

William B. Dunbar a, Richard M. Murray b

aDepartment of Computer Engineering, Baskin School of Engineering
University of California, 1156 High Street, Santa Cruz, CA, 95064, USA

bDepartment of Control and Dynamical Systems, Division of Engineering and Applied Science
California Institute of Technology, MC 107-81, 1200 E. California Blvd., Pasadena, CA, 91125, USA

Abstract

We consider the control of interacting subsystems whose dynamics and constraints are decoupled, but whose state vectors
are coupled non-separably in a single cost function of a finite horizon optimal control problem. For a given cost structure, we
generate distributed optimal control problems for each subsystem and establish that a distributed receding horizon control
implementation is stabilizing to a neighborhood of the objective state. The implementation requires synchronous updates
and the exchange of the most recent optimal control trajectory between coupled subsystems prior to each update. The key
requirements for stability are that each subsystem not deviate too far from the previous open-loop state trajectory, and that
the receding horizon updates happen sufficiently fast. The venue of multi-vehicle formation stabilization is used to demonstrate
the distributed implementation.

Key words: receding horizon control; model predictive control; distributed control; multi-vehicle formations.

1 Introduction

We are interested in the control of a set of dynamically
decoupled subsystems that are required to perform a co-
operative task. An example of such a situation is a group
of vehicles cooperatively converging to a desired forma-
tion, as explored in Olfati Saber et al. [14], Dunbar and
Murray [7], Ren and Beard [15], and Leonard and Fiorelli
[10]. One control approach that accommodates a gen-
eral cooperative objective is receding horizon control.
In receding horizon control, or model predictive control,
the current control action is determined by solving on-
line, at each sampling instant, a finite horizon optimal
control problem. In continuous time formulations, each
optimization yields an open-loop control trajectory and
the initial portion of the trajectory is applied to the sys-
tem until the next sampling instant. A survey of reced-
ing horizon control is given by Mayne et al. [11]. For the
problem of interest here, cooperation between subsys-
tems can be incorporated in the optimal control problem

? This paper was not presented at any IFAC meeting. Cor-
responding author: W. B. Dunbar. Tel. +01-831-459-1031.
Fax +01-831-459-4829.

Email addresses: dunbar@soe.ucsc.edu (William B.
Dunbar), murray@cds.caltech.edu (Richard M. Murray).

by including coupling terms in the cost function, as done
in [7] and [14]. In this paper, subsystems that are coupled
in the cost function are referred to as neighbors. When
the subsystems are operating in a real-time distributed
environment, as is typically the case with multi-vehicle
systems, a centralized implementation is generally not
viable, due to the computation and communication re-
quirements of solving the centralized problem at every
receding horizon update. In this paper, a distributed im-
plementation of receding horizon control is presented in
which each subsystem is assigned its own optimal control
problem, optimizes only for its own control at each up-
date, and exchanges information only with neighboring
subsystems. It is assumed that neighboring subsystems
can directly communicate with one another. The moti-
vation for pursuing such a distributed implementation
is to enable the autonomy of the individual subsystems
while reducing the computation and communication re-
quirements of a centralized implementation.

Previous work on distributed receding horizon con-
trol include Jia and Krogh [3], Motee and Sayyar-
Rodsaru [13] and Acar [1]. All of these papers address
unconstrained coupled LTI subsystem dynamics with
quadratic separable cost functions. In another work,
Jia and Krogh [8] solve a min-max problem for each

Preprint submitted to Automatica 5 December 2005

subsystem, where again coupling comes in the dynam-
ics and the neighboring subsystem states are treated as
bounded contracting disturbances. In contrast to this
work, subsystems are here coupled via the cost function,
and do not view one another as bounded, contracting
disturbances. Instead, vehicles communicate their most
recent optimal control policy. A work related to [8] is
by How and Richards [16], who examine the multi-
vehicle case of linear dynamically decoupled subsystems
and coupling constraints, e.g., collision avoidance con-
straints. By their approach, vehicles update sequentially
(in order), and robust feasibility is shown assuming
initial feasibility. Similar to Jia and Krogh, neighbors
whose update has not occurred in the sequence are
viewed as bounded, contracting disturbances. In com-
parison, collision avoidance constraints are only dis-
cussed here (Section 5), while more general dynamics
are considered and vehicles perform control updates in
parallel. Keviczky et al. [9] have also recently formu-
lated a distributed model predictive scheme where each
subsystem optimizes locally for itself and every neigh-
bor at each update. The primary obstacles to ensuring
feasibility and stability by this scheme are stated, and a
hierarchical version is also given.

We begin in Section 2 by defining the nonlinear sub-
system dynamics and an integrated cost function. Both
are specific to a multi-vehicle formation objective (sub-
systems are henceforth referred to as vehicles). How-
ever, the theory applies for more general decoupled dy-
namics and coupling cost functions [5]. In Section 3,
the integrated cost is decomposed into distributed in-
tegrated costs and a distributed optimal control prob-
lem is defined for each vehicle. The distributed receding
horizon control algorithm is then defined, and the sta-
bility results are given in Section 4. Two key require-
ments for stability are that the receding horizon updates
happen sufficiently fast, and that each distributed op-
timal state trajectory satisfy a compatibility constraint.
Loosely speaking, the compatibility constraints ensure
that the actual state trajectory of each vehicle is not too
far from the trajectory that each neighbor assumes for
that vehicle, from one receding horizon update to the
next. This is in contrast to the work in [8] and [9], where
neighbors are assumed to react worst-case or solely with
respect to mutual interests, and so actual and assumed
behavior can be considerably different. The compatibil-
ity constraints used here incur some conservatism in the
closed-loop response, a fact quantified in Section 4. Fi-
nally, Section 5 discusses conclusions and extensions.

2 System Description and Objective

In this section, we define the system dynamics and pose
an integrated cost function relevant for multi-vehicle for-
mation stabilization. The states of the vehicles are cou-
pled in the cost function, while each vehicle has decou-
pled dynamics subject to input constraints. We make

use of the following notation. The symbol ‖ · ‖ denotes
any vector norm in Rn, and dimension n follows from
the context. For any vector x ∈ Rn, ‖x‖P denotes the P -
weighted 2-norm, defined by ‖x‖2P = xT Px, and P is any
positive-definite real symmetric matrix. Also, λmax(P)
and λmin(P) denote the largest and smallest eigenvalues
of P , respectively. The set B(x; r) denotes a closed ball
in Rn with center x and radius r.

Our objective is to stabilize a group of vehicles toward
an equilibrium point in a cooperative way using receding
horizon control. For each vehicle i ∈ {1, ..., Na}, the state
and control vectors are denoted zi(t) = (qi(t), q̇i(t)) ∈
R2n and ui(t) ∈ Rm, respectively, at any time t ≥ t0 ∈ R.
The vectors qi(t) ∈ Rn and q̇i(t) ∈ Rn are the posi-
tion and velocity, respectively, of each vehicle i. The de-
coupled second-order, time-invariant nonlinear system
dynamics for each vehicle i ∈ {1, ..., Na} are given by
q̈i(t) = gi(qi(t), q̇i(t), ui(t)), t ≥ t0, which we shall
write in the equivalent form

żi(t) = fi(zi(t), ui(t)), t ≥ t0, (1)

where fi(zi(t), ui(t)) = (q̇i(t), gi(qi(t), q̇i(t), ui(t))) ∈
R2n. It is assumed that there is no model error. While the
system dynamics can be different for each vehicle, the
dimension of every vehicles state (control) is assumed to
be the same, for notational simplicity and without loss of
generality. Each vehicle i is also subject to the decoupled
input constraints ui(t) ∈ U , t ≥ t0, and UN is the N -
times Cartesian product U × · · · × U . The concatenated
vectors are denoted q = (q1, ..., qNa

), q̇ = (q̇1, ..., q̇Na
),

z = (z1, ..., zNa
) ∈ R2nNa and u = (u1, ..., uNa

) ∈ UNa .
In concatenated vector form, the system dynamics are

ż(t) = f(z(t), u(t)), t ≥ t0, given z(t0), (2)

where f(z, u) = (f1(z1, u1), ..., fNa(zNa , uNa)). The de-
sired equilibrium point is denoted zc = (zc

1, ..., z
c
Na

).
Since the dynamics are second-order and time-invariant,
the desired equilibrium velocity q̇c

i = 0 for every vehicle
i, and the desired constant equilibrium position values
are denoted qc = (qc

1, ..., q
c
Na

). We now make some stan-
dard assumptions regarding the system (2) and the set
U (e.g., see (A1)–(A3) in [4]).

Assumption 2.1 The following holds: (a) f : R2nNa×
RmNa → R2nNa is twice continuously differentiable, 0 =
f(zc, 0), and f linearized around (z, u) = (zc, 0) is stabi-
lizable; (b) the system (2) has a unique, absolutely con-
tinuous solution for any initial condition z(t0) and any
piecewise right-continuous control u : [t0,∞) → UNa ;
(c) U is a compact subset of Rm containing the origin in
its interior.

Let umax be the positive scalar constant umax ={
max ‖v(t)‖

∣∣∣ v(t) ∈ UNa , t ≥ t0 ∈ R
}

. The integrated

2

cost for multi-vehicle formation stabilization is

L(z, u) =
∑

(i,j)∈ E0

ω‖qi − qj + dij‖2

+ ω‖qΣ − qd‖2 + ν‖q̇‖2 + µ‖u‖2,

given the positive weighting constants ω, ν, µ ∈ R, and
where ω‖qΣ − qd‖2 is the tracking cost, defined by qΣ =
(q1+q2+q3)/3 and qd = (qc

1+qc
2+qc

3)/3. The set E0 is the
set of all pair-wise neighbors that defines the formation
in the following way. First, if (i, j) ∈ E0, then (j, i) /∈ E0,
and (i, i) /∈ E0 for every vehicle i ∈ {1, ..., Na}. Next,
for every vehicle i there is at least one pair (i, j) or
(j, i) in E0, i.e., every vehicle has at least one neighbor.
Finally, associated with E0 is the set of constant rela-
tive vectors D = {dij ∈ Rn|(i, j) ∈ E0}, each of which
connects the desired equilibrium positions of a pair of
neighboring vehicles, i.e., for any two neighbors i and
j, qc

i + dij = qc
j . Additionally, the relative vectors in D

are consistent with one another in the sense that, e.g., if
(i, j), (j, k) and (i, k) are all in E0, then dij + djk = dik.
It is assumed at the outset that E0 and D are provided
by some supervisory mechanism. Note that L(z, u) = 0
if and only if (z, u) = (zc, 0). Also, while the track-
ing cost is here defined with vehicles 1, 2 and 3, dif-
ferent and fewer (or more) vehicles can be included in
this term without loss of generality. The set of pair-
wise neighbors of any vehicle i ∈ {1, ..., Na} is defined
asNi = {j ∈ {1, ..., Na} | (i, j) or (j, i) ∈ E0} . When we
refer to the neighbors of any vehicle i ∈ {4, ..., Na},
we mean the set Ni, and the neighbors of any vehicle
i ∈ {1, 2, 3} refers to the set Ni ∪ {1, 2, 3} \ {i}. The in-
tegrated cost can be equivalently written as

L(z, u) = ‖z − zc‖2Q + µ‖u‖2, (3)

where Q = QT > 0 (Proposition 6.1 in [5]). In the
next section, L(z, u) is decomposed into distributed in-
tegrated cost functions. Then, distributed optimal con-
trol problems and the corresponding distributed reced-
ing horizon control algorithm are stated.

3 Distributed Receding Horizon Control

In this section, we introduce notation, define Na sep-
arate optimal control problems and the distributed
receding horizon control algorithm. For any ve-
hicle i ∈ {1, ..., Na}, let z−i = (zj1 , ..., zjk

) and
u−i = (uj1 , ..., ujk

) denote the vectors of the states and
controls of the neighbors of i, respectively, where the
ordering of the sub vectors is arbitrary but fixed. Also,
ż−i = f−i(z−i, u−i) represents the collective decoupled
dynamics of the neighbors of any vehicle i. The dis-
tributed integrated cost in the optimal control problem

for any vehicle i ∈ {1, ..., Na} is defined as

Li(zi, z−i, ui) = Lz
i (zi, z−i) + γµ‖ui‖2 + Ld(i), where

Lz
i (zi, z−i) =

∑
j∈Ni

γω

2
‖qi − qj + dij‖2 + γν‖q̇i‖2

and Ld(i) =

{
γω‖qΣ − qd‖2/3, i ∈ {1, 2, 3}
0, otherwise,

and γ ∈ R is a positive constant. The cost Ld(i) is de-
fined such that only vehicles 1, 2 and 3 have a nonzero
fraction of the tracking cost, since it is only these vehi-
cles whose states appear in the tracking cost. By con-
struction,

∑Na

i=1 Li(zi, z−i, ui) = γL(z, u). Note that the
terms that couple the positions of vehicles are equally
weighted in the decomposition, although such a choice
is not necessary for the stability results to hold. In every
distributed optimal control problem, the same constant
prediction horizon T ∈ (0,∞) and constant update pe-
riod δ ∈ (0, T] are used. In practice, the update period
δ ∈ (0, T] is typically the sample interval. By our dis-
tributed implementation, an additional condition on δ
is required, namely that it be chosen sufficiently small,
as quantified in the next section. At each receding hori-
zon update, every optimal control problem is solved syn-
chronously, i.e., at the same instant in time. The common
receding horizon update times are denoted tk = t0 + δk,
where k ∈ N = {0, 1, 2, ...}. At each update, every vehi-
cle optimizes only for its own open-loop control, given
its current state and that of its neighbors. Since each
cost Li(zi, z−i, ui) depends upon the neighboring states
z−i, each vehicle i must presume some trajectories for
z−i over each prediction horizon. To that end, prior to
each update, each vehicle i receives an assumed control
trajectory from each neighbor. Then, using the model,
the current state and the assumed control for that neigh-
bor, the assumed state trajectories are computed. Like-
wise, vehicle i transmits an assumed control to all neigh-
bors prior to each optimization. By design, the assumed
control for any vehicle is the same in every distributed
optimal control problem in which it occurs, i.e., every
neighbor of i will assume the same trajectories for i over
each prediction horizon. To distinguish all of the dif-
ferent trajectories, we introduce the following notation.
Recall that zi(t) and ui(t) are the actual state and con-
trol, respectively, for each vehicle i ∈ {1, ..., Na} at any
time t ≥ t0. Over any prediction interval [tk, tk + T],
k ∈ N, associated with current time tk, for each vehicle
i ∈ {1, ..., Na} we denote

up
i (τ ; tk) : the predicted control trajectory,

u∗i (τ ; tk) : the optimal predicted control trajectory,

ûi(τ ; tk) : the assumed control trajectory,

where τ ∈ [tk, tk +T]. The corresponding state trajecto-
ries are likewise denoted zp

i (τ ; tk), z∗i (τ ; tk) and ẑi(τ ; tk),

3

and at time τ = tk, all of these trajectories are equal to
the initial condition zi(tk). Let up(τ ; tk), u∗(τ ; tk) and
û(τ ; tk) be the concatenated predicted, optimal and as-
sumed control vectors for all vehicles, respectively, with
similar notation for the concatenated state vectors. Con-
sistent with z−i, also let û−i(τ ; tk) and ẑ−i(τ ; tk) be the
assumed control and state trajectories of the neighbors
of i, corresponding to current time tk. The collection of
distributed optimal control problems is now defined.

Problem 3.1 For each vehicle i ∈ {1, ..., Na} and at
any update time tk, k ∈ N: Given zi(tk), z−i(tk), and
ûi(τ ; tk) and û−i(τ ; tk) for all τ ∈ [tk, tk + T], find
J∗i (zi(tk), z−i(tk)) = minup

i
Ji(zi(tk), z−i(tk), up

i (·; tk)),
where Ji(zi(tk), z−i(tk), up

i (·; tk)) is equal to

∫ tk+T

tk

Li(z
p
i (s; tk), ẑ−i(s; tk), up

i (s; tk)) ds

+ γ‖zp
i (tk + T ; tk)− zc

i ‖2Pi
,

subject to

żp
i (τ ; tk) = fi(z

p
i (τ ; tk), up

i (τ ; tk))
˙̂zi(τ ; tk) = fi(ẑi(τ ; tk), ûi(τ ; tk))
˙̂z−i(τ ; tk) = f−i(ẑ−i(τ ; tk), û−i(τ ; tk))
up

i (τ ; tk) ∈ U
‖zp

i (τ ; tk)− ẑi(τ ; tk)‖ ≤ δ2κ (4)

for all τ ∈ [tk, tk+T], with zp
i (tk; tk) = ẑi(tk; tk) = zi(tk)

and ẑ−i(tk; tk) = z−i(tk), and terminal constraint

zp
i (tk + T ; tk) ∈ Ωi(εi),

given the constants κ, εi ∈ (0,∞), weighting matrix Pi =
PT

i > 0, and terminal set Ωi(εi) = {z ∈ R2n | ‖z −
zc
i ‖2Pi

≤ εi}. �

As part of the optimal control problem, the optimized
state for i is constrained to be at most a distance of
δ2κ from the assumed state in Equation (4). We refer to
Equation (4) as the state compatibility constraint. The
constraint is a means of enforcing a degree of consistency
between what a vehicle plans to do and what neighbors
believe that vehicle will plan to do, proportional to the
square of the update period. The optimal control so-
lution to each distributed optimal control problem (as-
sumed to exist) is u∗i (τ ; tk), τ ∈ [tk, tk +T]. The closed-
loop system for which stability is to be guaranteed is

ż(τ) = f(z(τ), uRH(τ)), τ ≥ t0, (5)

with the applied distributed receding horizon control law

uRH(τ) = (u∗1(τ ; tk), ..., u∗Na
(τ ; tk)),

for τ ∈ [tk, tk+1) and any k ∈ N. The receding hori-
zon control law is updated when each new initial state
update z(tk) ← z(tk+1) is available. Before stating the
control algorithm formally, which in turn defines the as-
sumed control for each vehicle at every update, a de-
coupled terminal controller associated with each termi-
nal cost and constraint set is defined. The linearization
of the ith subsystem (1) at (zi, ui) = (zc

i , 0) is denoted
Ai = ∂fi

∂zi
(zc

i , 0), Bi = ∂fi

∂ui
(zc

i , 0). By assuming stabi-
lizability for each vehicle i (Assumption 2.1 (a)), a feasi-
ble local linear feedback ui = Ki(zi−zc

i) which stabilizes
each linearized and nonlinear subsystem (1) in Ωi(εi) can
be constructed [4,12]. To that end, we make an assump-
tion. First, for each i ∈ {1, ..., Na}, let zK

i (t; z′i) denote
the closed-loop solution to

żK
i (t; z′i) = fi

(
zK
i (t; z′i),Ki

(
zK
i (t; z′i)− zc

i

))
, (6)

with t ≥ t0, given initial condition z′i. Also, define the
asymptotically stable matrix Ac

i = Ai+BiKi, and define
Qi = λmax(Q)I ∈ R2n×2n where Q is the weighting for
the integrated cost (3).

Assumption 3.1 For every vehicle i ∈ {1, ..., Na}, the
largest positive constant εi > 0 is chosen such that: (a)
the function Vi(zK

i) = ‖zK
i − zc

i ‖2Pi
satisfies d

dtVi(zK
i) ≤

−‖zK
i −zc

i ‖2Qi+µKT
i

Ki
along solutions to (6) for any inital

state in Ωi(εi), and (b) ui = Ki(zi − zc
i) ∈ U for all

zi ∈ Ωi(εi).

Following the logic presented in Section II of [12],
it is straightforward to show that such a positive
constant εi > 0 exists, and immediate consequence
is that Ωi(εi) is a positively invariant region of at-
traction for Equation (6). As such, Assumption
3.1 could alternatively be replaced by an existence
lemma and proof, and a design constraint on each
εi to meet the stated conditions. By construction,
diag(Q1, ..., QNa) = λmax(Q)I ≥ Q, where Q is
the weighting for the integrated cost (3). Denoting
K = diag(K1, ...,KNa

) and P = diag(P1, ..., PNa
), ob-

serve that by Assumption 3.1,

d

dt
‖zK(t)− zc‖2P ≤ −‖zK(t)− zc‖2Q+µKT K , (7)

for all zK
i (t) ∈ Ωi(εi) and every i ∈ {1, ..., Na}, where

zK = (zK
1 , ..., zK

Na
). The decoupled linear feedbacks are

referred to as terminal controllers. In the quasi-infinite
horizon approach in [4], the (single) terminal controller is
never actually employed, as the receding horizon control
law is applied for all time. In the dual-mode approach in
[12], receding horizon control is employed until the state
reaches the terminal constraint set, at which point the
terminal controller is employed for all future time. The
distributed implementation algorithm defined below is
based on the quasi-infinite horizon approach, while a

4

dual-mode version is discussed in Section 4. Let ZΣ ⊂
R2nNa denote the set of initial states z(t) which can be
steered to Ω1(ε1)× · · · ×ΩNa(εNa) by a piecewise right
continuous control up(·; t) : [t, t+T]→ UNa . To achieve
convergence, the update period must satisfy δ ≤ δmax,
where the constant δmax ∈ (0, T] is defined in the next
section. When results apply for any constant δ ∈ (0, T],
we set δmax = T . Following the succinct presentation in
[12], we now state the control algorithm.

Algorithm 3.1 At time t0 with z(t0) ∈ ZΣ, the Dis-
tributed Receding Horizon Controller for any vehicle i ∈
{1, ..., Na} is as follows:

Data: zi(t0), z−i(t0), T ∈ (0,∞), δ ∈ (0, δmax].
Initialization: At time t0, solve Problem 3.1 for vehicle
i, setting ûi(τ ; t0) = 0 and û−i(τ ; t0) = 0 for all τ ∈
[t0, t0 + T] and removing the constraint (4).
Controller:
(1) Over any interval [tk, tk+1), k ∈ N:

(a) Apply u∗i (τ ; tk), τ ∈ [tk, tk+1).
(b) Compute ûi(τ ; tk+1) = ûi(τ) as

ûi(τ) =

{
u∗i (τ ; tk), τ ∈ [tk+1, tk + T)

Ki

(
zK
i (τ ; zk

i)− zc
i

)
, τ ∈ [tk + T, tk+1 + T]

where zk
i := z∗i (tk + T ; tk).

(c) Transmit ûi(·; tk+1) to every neighbor and
receive ûj(·; tk+1) from every neighbor j.

(2) At any time tk, k ∈ {1, 2, ...}:
(a) Measure current state zi(tk) and measure or

receive the current states z−i(tk).
(b) Solve Problem 3.1 for vehicle i, yielding

u∗i (τ ; tk), τ ∈ [tk, tk + T]. �

At initialization of Algorithm 3.1, Problem 3.1 is solved
for each vehicle without enforcing the compatibility con-
straint (4) and assuming that every neighbor applies zero
control over the prediction interval [t0, t0+T]. The choice
of û(τ ; t0) = 0 at initialization is motivated in [5]. When
z(t0) ∈ ZΣ, Problem 3.1 is feasible at initialization, in
that the input and terminal constraints are satisfied and
every distributed value function Ji(·) is bounded. At ev-
ery subsequent update tk, k ≥ 1, the compatibility con-
straints are enforced, and each vehicle assumes all neigh-
bors will continue along their previous open-loop plans,
finishing with their decoupled linear control laws. Al-
though Algorithm 3.1 requires the solution to Problem
3.1 instantaneously at each update time tk, a predictive
version could be stated to account for non-trivial com-
putation times. Also, the algorithm relies on computing
the optimal solution to Problem 3.1 at every update, al-
though the optimal need not be unique. To relax this re-
quirement, a version akin to that in [12] could be stated,
wherein each distributed value function Ji(·) satisfies an
improvement property from one update to the next. The
assumed control trajectories would then be defined in
terms of the previous (suboptimal) control.

4 Analysis

In this section, we state the stability results, assess the
distributed implementation and discuss alternative for-
mulations. The main result of this subsection is to show
that by applying Algorithm 3.1, the closed-loop state
z(t) converges to a neighborhood of the objective state
zc, for a sufficiently small upper bound on the update
period δmax. At any time tk, k ∈ N, the sum of the op-
timal distributed value functions is denoted

J∗Σ(z(tk)) =
Na∑
i=1

J∗i (zi(tk), z−i(tk)).

We begin by demonstrating that initial feasibility of
the implementation implies subsequent feasibility, fol-
lowing the standard arguments in [4] and [12]. The re-
sult requires that a modified version of Algorithm 3.1
be implemented, such that the assumed control is de-
fined in terms of a feasible control rather than the opti-
mal control. Recall that if z(t0) ∈ ZΣ, then there exists
at least one (not necessarily optimal) input up(·; t0) :
[t0, t0 + T]→ UNa such that the terminal constraints in
Problem 3.1 are satisfied.

Lemma 4.1 Suppose Assumptions 2.1 and 3.1 hold and
z(t0) ∈ ZΣ. Then, for any update period δ ∈ (0, T], Prob-
lem 3.1 has a feasible solution at any update time tk,
k ∈ {1, 2, ...}.

Proof. By assumption, Problem 3.1 has a feasible solu-
tion at time t0, and feasibility for all subsequent update
times is proven by induction. Let the feasible control and
state solution at time tk be up(·; tk) and zp(·; tk). A can-
didate control that can steer z(tk+1) = zp(tk+1; tk) to
Ω1(ε1)×· · ·×ΩNa(εNa) in time tk+1 +T is the assumed
control û(·; tk+1), defined in component form as:

ûi(τ) =

{
up

i (τ ; tk), τ ∈ [tk+1, tk + T)

Ki

(
zK
i (τ ; zk

i)− zc
i

)
, τ ∈ [tk + T, tk+1 + T]

,

where zk
i = zp

i (tk + T ; tk). The candidate feasible con-
trol at update time tk+1 is up(·; tk+1) = û(·; tk+1). The
control and terminal constraints remain feasible from
the properties of the terminal controllers stated in As-
sumption 3.1. Also, the compatibility constraints are
trivially satisfied since zp

i (·; tk+1) = ẑi(·; tk+1) for every
i ∈ {1, ..., Na}. �
Note that the assumed control defined above is exactly
the feasible control trajectory used in Lemma 2 of [4] to
show the feasibility result for a centralized implementa-
tion. The remaining analysis is based on Algorithm 3.1,
and so relies on computing the optimal solution to Prob-
lem 3.1 at every update. As such, we require existence
of a solution at every update based on this algorithm, so
that our control policy is well defined.

5

Lemma 4.2 Suppose Assumptions 2.1 and 3.1 hold and
z(t0) ∈ ZΣ. Then, by application of Algorithm 3.1 with
δmax = T , Problem 3.1 has a feasible solution at any
update time tk, k ∈ {1, 2, ...}. Moreover, the set ZΣ is a
positively invariant set for the closed-loop system (5).

Proof. The feasibility results follows the same logic in
the proof of Lemma 4.1, with the modification that the
assumed control is as defined in Algorithm 3.1. Now,
suppose z(t) leaves ZΣ at some time t = t′ ∈ [tk, tk+1),
for some k ∈ N. A feasible control that can steer z(t′) to
Ω1(ε1)×· · ·×ΩNa

(εNa
) in time t′+T is up(·; t′), defined

in component form up
i (·; t′) = up

i (·) as follows:

up
i (τ) =

{
u∗i (τ ; tk), τ ∈ [t′, tk + T)

Ki

(
zK
i (τ ; zk

i)− zc
i

)
, τ ∈ [tk + T, t′ + T]

,

where zk
i = z∗i (tk + T ; tk). Thus, z(t′) ∈ ZΣ by contra-

diction, concluding the proof. �
As a consequence of Lemma 4.2, if z(t0) ∈ ZΣ, then Al-
gorithm 3.1 can be initialized and applied for all time
t ≥ t0. In the analysis that follows, we require that the
optimal and assumed state trajectories remain bounded.

Assumption 4.1 There exists a constant ρmax ∈
(0,∞) such that ‖z∗(t; tk)− zc‖ ≤ ρmax and ‖ẑ(t; tk)−
zc‖ ≤ ρmax, for all t ∈ [tk, tk + T] and any k ∈ N.

The following lemma gives a bounding result on the de-
crease in J∗Σ(·) from one update to the next. Since the
compatibility constraints are enforced for update times
tk with k ≥ 1, the result holds for k ∈ {1, 2, ...}.

Lemma 4.3 Suppose Assumptions 2.1, 3.1 and 4.1 hold
and z(t0) ∈ ZΣ. Then, by application of Algorithm 3.1
with δmax = T , and for the positive constant ξ defined by

ξ = γκωT
(
4ρmax + T 2κ

)
[|E0|+ 1], (8)

the function J∗Σ(·) satisfies

J∗Σ(z(tk + δ))− J∗Σ(z(tk)) ≤

−
∫ tk+δ

tk

Na∑
i=1

Lz
i (z∗i (s; tk), ẑ−i(s; tk)) ds + δ2ξ,

for all k ∈ {1, 2, ...}.

Proof. Since z(t0) ∈ ZΣ, Algorithm 3.1 can be initialized
and applied for all time t ≥ t0. For any k ≥ 1, J∗Σ(z(tk))
is equal to

∫ tk+T

tk

Na∑
i=1

Li(z∗i (s; tk), ẑ−i(s; tk), u∗i (s; tk))ds

+ γ‖z∗(tk + T ; tk)− zc‖2P .

Applying the optimal control for some δ ∈ (0, T] seconds,
we are now at time tk+1 = tk + δ, with new state update
z(tk+1). A feasible (suboptimal) control for Problem 3.1
at update time tk+1 is up(·; tk+1) = û(·; tk+1); therefore,

J∗Σ(z(tk+1)) ≤
∫ tk+1+T

tk+1

γL(ẑ(s; tk+1), û(s; tk+1)) ds

+ γ‖ẑ(tk+1 + T ; tk+1)− zc‖2P ,

J∗Σ(z(tk+1))− J∗Σ(z(tk)) ≤

−
∫ tk+1

tk

Na∑
i=1

Li(z∗i (s; tk), ẑ−i(s; tk), u∗i (s; tk)) ds

+
∫ tk+T

tk+1

Na∑
i=1

Li(ẑi(s; tk+1), ẑ−i(s; tk+1), ûi(s; tk+1)) ds

−
∫ tk+T

tk+1

Na∑
i=1

Li(z∗i (s; tk), ẑ−i(s; tk), u∗i (s; tk)) ds

+
∫ tk+1+T

tk+T

γ‖ẑ(s; tk+1)− zc‖2Q+µKT K ds

+ γ
[
‖ẑ(tk+1 + T ; tk+1)− zc‖2P

− ‖z∗(tk + T ; tk)− zc‖2P
]
.

Denote z′ = ẑ(tk + T ; tk+1) = z∗(tk + T ; tk). Then,
ẑi(τ ; tk+1) = zK

i (τ ; z′i), i.e., the solution to Equation
(6), for τ ∈ [tk + T, tk+1 + T] and every i ∈ {1, ..., Na}.
By the properties stated in Assumption 3.1 and Equa-
tion (7), the sum of the last three terms in the equal-
ity above is nonpositive, and therefore the inequality
holds after removing these terms. Additionally, we
have for every i, Li(z∗i (s; tk), ẑ−i(s; tk), u∗i (s; tk)) ≥
Lz

i (z
∗
i (s; tk), ẑ−i(s; tk)), and so we have proven the

lemma if we can prove that∫ tk+T

tk+1

Na∑
i=1

[
Li(ẑi(s; tk+1), ẑ−i(s; tk+1), ûi(s; tk+1))

− Li(z∗i (s; tk), ẑ−i(s; tk), u∗i (s; tk))
]
ds ≤ δ2ξ,

with ξ given by Equation (8). By definition, ẑi(s; tk+1) =
z∗i (s; tk) and ûi(s; tk+1) = u∗i (s; tk), for s ∈ [tk+1, tk+T],
and so the integrand above is equal to

=
Na∑
i=1

∑
j∈Ni

γω

2

{
‖q∗i (s; tk)− q∗j (s; tk) + dij‖2

− ‖q∗i (s; tk)− q̂j(s; tk) + dij‖2
}

+
∑

(i,j,l)∈Ec

γω

27

{
‖q∗i (s; tk) + q∗j (s; tk) + q∗l (s; tk)− 3qd‖2

− ‖q∗i (s; tk) + q̂j(s; tk) + q̂l(s; tk)− 3qd‖2
}

,

6

where Ec = {(1, 2, 3), (3, 1, 2), (2, 3, 1)}. Using the trian-
gle inequality, we have

‖q∗i (s; tk)− q∗j (s; tk) + dij‖2

− ‖q∗i (s; tk)− q̂j(s; tk) + dij‖2

≤ 2‖q∗i (s; tk)− q̂j(s; tk) + dij‖ · ‖q∗j (s; tk)− q̂j(s; tk)‖
+ ‖q∗j (s; tk)− q̂j(s; tk)‖2

≤ 2
[
‖q∗i (s; tk)− qc

i ‖+ ‖q̂j(s; tk)− qc
j‖

]
δ2κ + δ4κ2

≤ δ2κ
[
4ρmax + T 2κ

]
,

where we use dij = qc
j−qc

i , the bound in Assumption 4.1,
the compatibility constraint bound, and that δ2 ≤ T 2.
Bounding the terms in the tracking cost in the same way,
the integrated expression becomes

δ2γκω

∫ tk+T

tk+1

{
Na∑
i=1

∑
j∈Ni

1
2

[
4ρmax + T 2κ

]
+

∑
(i,j,l)∈Ec

1
27

[
12ρmax + 4T 2κ

]}
ds ≤ δ2ξ,

where ξ is an upper bound given by Equation (8),
with the total number of pairwise neighbors |E0| =∑Na

i=1

∑
j∈Ni

1/2. This completes the proof. �
In the following, we demonstrate that by the applica-
tion of Algorithm 3.1, the closed-loop state trajectory
converges to a closed neighborhood of the objective
state. In particular, the neighborhood of convergence
is a level set of the function J∗Σ(z(t)). First, denote the
compact level sets as Ωβ = {z ∈ R2nNa | J∗Σ(z) ≤ β},
with constant β ∈ (0,∞). The set Ωβ is in the inte-
rior of ZΣ if β > 0 is sufficiently small. Now, for any
β ∈ (0,∞) such that Ωβ ⊂ ZΣ, we can choose a constant
r = r(β) ∈ (0, ρmax) with the following properties:

B(zc; r) ⊆ Ωβ/2 and r2 ≤ 8β

γλmin(Q)
. (9)

Our main result demonstrates that, for any β ∈ (0,∞),
the closed-loop state trajectory converges to Ωβ , pro-
vided that the update period bound δmax in Algorithm
3.1 is proportional to r2 as defined below, and r satisfies
the properties in Equation (9). We require the following
assumptions.

Assumption 4.2 The following holds: (a) the update
period is sufficiently small that the following first-order
Taylor series approximation is valid:

Na∑
i=1

Lz
i (z

∗
i (s; tk), ẑ−i(s; tk)) ≈ γ‖z(tk)− zc‖2Q

+ 2γ(s− tk)(z(tk)− zc)T Qf(z(tk), u∗(tk; tk)),

for all s ∈ [tk, tk + δ] and any k ∈ N; (b) there exists a
Lipschitz constant K ∈ [1,∞) such that for any z, z′ ∈
ZΣ, u, u′ ∈ UNa ,

‖f(z, u)− f(z′, u′)‖ ≤ K
(
‖z − z′‖ + ‖u− u′‖

)
.

The main theorem of the paper is now stated.

Theorem 1 Suppose Assumptions 2.1, 3.1 and 4.1-4.2
hold, z(t0) ∈ ZΣ and for a given constant β ∈ (0,∞)
with Ωβ ⊂ ZΣ, the constant r = r(β) ∈ (0, ρmax) is such
that the properties in Equation (9) are satisfied. Then,
by application of Algorithm 3.1 with

δmax =
γ(r/2)2λmin(Q)

ξ + γKρmax(ρmax + umax)λmax(Q)
, (10)

and ξ given by Equation (8), the closed-loop state trajec-
tory enters B(zc; r) in finite time and remains in Ωβ for
all future time.

Proof. Since z(t0) ∈ ZΣ, Algorithm 3.1 can be applied
for all time t ≥ t0. We now reason about the closed-
loop state trajectory for time t ≥ t1. A straightforward
extension of Lemma 4.3 is

J∗Σ(z(τ))− J∗Σ(z(tk))

≤ δ2ξ −
∫ τ

tk

Na∑
i=1

Lz
i (z∗i (s; tk), ẑ−i(s; tk)) ds,

for all τ ∈ (tk, tk + δ], for any constant δ ∈ (0, δmax] and
any k ∈ {1, 2, ...}. The extension follows by the same
logic in the proof of Lemma 3 in [4]. After substitution
of the Taylor series expressions we have

J∗Σ(z(τ))− J∗Σ(z(tk))
≤ −γ(τ − tk)‖z(tk)− zc‖2Q + (τ − tk)2γC + δ2ξ,

where C = −(z(tk) − zc)T Qf(z(tk), u∗(tk; tk)) has the
upper bound

C ≤ ‖z(tk)− zc‖‖f(z(tk), u∗(tk; tk))‖λmax(Q)
≤ Kρmax(ρmax + umax)λmax(Q).

Since τ − tk ≤ δ ≤ δmax, we have

J∗Σ(z(τ))− J∗Σ(z(tk))
≤ −γ(τ − tk)‖z(tk)− zc‖2Q + δ · δmax(γC + ξ)

≤ −γλmin(Q)
[
(τ − tk)‖z(tk)− zc‖2 − δ(r/2)2

]
. (11)

Setting τ = tk + δ = tk+1, the bound above becomes

J∗Σ(z(tk+1))− J∗Σ(z(tk))
≤ −γδλmin(Q)

[
‖z(tk)− zc‖2 − (r/2)2

]
.

7

From this inequality, there exists a finite integer l ≥ 1
such that z(tl) ∈ B(zc; r). If this were not the case, the
inequality implies J∗Σ(z(tk)) → −∞ as k → ∞. How-
ever, J∗Σ(z(tk)) ≥ 0 for any z(tk) ∈ ZΣ, since the cost
functions are all quadratic with nonnegative weighting
constants and weighting matrices. Therefore, by con-
tradiction, there exists a finite integer l ≥ 1 such that
z(tl) ∈ B(zc; r) ⊆ Ωβ/2, verifying the first statement of
the theorem. Now, we prove that z(t) ∈ Ωβ for all time
t ≥ tl.
For any k, if z(tk) ∈ Ωβ/2 \ B(zc; r/2), then z(t) ∈ Ωβ

for all time t ∈ [tk, tk+1] and z(tk+1) ∈ Ωβ/2. This is
shown first by bounding Equation (11) as

J∗Σ(z(τ))− J∗Σ(z(tk)) ≤ γδmaxλmin(Q)(r/2)2

for all τ ∈ (tk, tk+1]. Also, δmax < 1/4, since

δmax <
γ(r/2)2λmin(Q)

γKρmax(ρmax + umax)λmax(Q)
<

(r/2)2

ρ2
max

.

Therefore, the bound on J∗Σ becomes

J∗Σ(z(τ)) ≤ J∗Σ(z(tk)) +
γλmin(Q)(r/2)2

4
≤ β

for all τ ∈ (tk, tk+1], using J∗Σ(z(tk)) ≤ β/2 and
Equation (9). Thus, z(tk) ∈ Ωβ/2 \ B(zc; r/2) im-
plies z(t) ∈ Ωβ for all time t ∈ [tk, tk+1]. Moreover,
z(tk) ∈ Ωβ/2 \B(zc; r/2) and Equation (11) imply that
J∗Σ(z(tk+1)) < J∗Σ(z(tk)) and so z(tk+1) ∈ Ωβ/2.
Also, for any k, if z(tk) ∈ B(zc; r/2), then z(t) ∈
B(zc; r) ⊆ Ωβ/2 for all time t ∈ [tk, tk+1]. This follows
from the bounding argument

‖z(t)− zc‖ ≤ ‖z(tk)− zc‖+ ‖
∫ t

tk

f(z(s), uRH(s))ds‖

≤ r/2 + (t− tk)K(ρmax + umax)
≤ r/2 + δmaxK(ρmax + umax),

for all time t ∈ [tk, tk+1], and

δmaxK(ρmax + umax) <
(r/2)2λmin(Q)
ρmaxλmax(Q)

<
r

2
.

Combining the analysis above, we have shown the fol-
lowing: there exists a finite update time tl such that
z(tl) ∈ B(zc; r) ⊂ Ωβ ; at any subsequent update time
tk, k > l, z(tk) ∈ Ωβ/2 ⊂ Ωβ ; finally, for any two subse-
quent update times tk and tk+1, with k ≥ l, z(t) ∈ Ωβ

for all time t ∈ [tk, tk+1]. This completes the proof. �
The theorem guarantees that, by application of Algo-
rithm 3.1 with δmax given by Equation (10), the closed-
loop state trajectory enters the the closed ball B(zc; r)
in finite time and remains in the level set Ωβ for all fu-
ture time. Moreover, the size of the set Ωβ can be made

arbitrarily small provided the positive constant r sat-
isfies the conditions in Equation (9). The price for a
smaller set of convergence, i.e., by choosing r smaller,
is a smaller bound on the update period δmax, which in
turn results in a tighter bound in the compatibility con-
straints (4). Still, the conditions above for convergence
are only sufficient, and simulation results demonstrate
that good closed-loop performance and convergence is
achieved with an update period larger than required by
the theory, as detailed in [5].

Remark 4.1 Observe that the update period bound
δmax in Equation (10) is proportional to 1/ξ, which in
turn is proportional to 1/κ. So, the compatibility con-
straint in Equation (4) cannot be independently relaxed
by increasing κ, since this results in a smaller bound on
δ. Also, γ serves as a convergence parameter in Equation
(11), and choosing larger values for γ results in faster
convergence of the closed-loop state trajectory to the set
Ωβ . However, larger values of γ require smaller values for
r from Equation (9), which in turn results in a smaller
update period bound δmax from Equation (10).

As stated in the introduction, our motivation for pur-
suing a distributed implementation is to enable the au-
tonomy of the individual subsystems while reducing the
computation and communication requirements of a cen-
tralized implementation. Since each vehicle is computing
its own control locally, the autonomy objective is satis-
fied. Regarding the cost of computation, the distributed
implementation is computationally scalable in that each
agent i optimizes only for itself, while numerically in-
tegrating |Ni| equations of motion for neighbors. This
is a key advantage over a centralized implementation.
Comparing the cost of communication is less straight-
forward, as the distributed implementation requires the
transmission of trajectories, as opposed to just current
state information, at each update. A qualitative analy-
sis comparing the cost of computation and communica-
tion of the distributed and centralized implementations
is given in [5].

We can also assess the closed-loop performance of the
distributed implementation. More than in centralized
implementations, the closed-loop performance depends
largely on the optimal open-loop trajectories computed at
initialization. One reason for this dependence is that ve-
hicles update their controls under the assumption that
neighbors will act on what was previously optimal. As
such, the effect of the initial response is propagated into
subsequent responses in a more direct way than in cen-
tralized implementations. This is true to the extent that
a vehicles performance objective is affected by its neigh-
bors, which is a function of the relative weighting be-
tween coupling and non coupling terms. For example,
if the initial response is sluggish and coupling terms in
the cost are heavily weighted, each vehicles subsequent
control will likely be sluggish. Another reason for the
dependence of performance on initialization is the com-

8

patibility constraints, a fact that we now quantify. Let
NRH ∈ N be some number of receding horizon updates
after time t0 such that NRH · δ ≈ T . At the optimum,
the state compatibility constraint for each vehicle i is

‖z∗i (t; tk)− ẑi(t; tk)‖ ≤ δ2κ, t ∈ [tk, tk + T].

Over the subinterval of time [tk, tk−1 + T], we have

‖z∗i (t; tk)− z∗i (t; zi(tk−1))‖ ≤ δ2κ, t ∈ [tk, tk−1 + T].

For k = 1 and at time t = tNRH , where tNRH = t0 +
NRH · δ ≈ t0 + T , we therefore have that

‖z∗i (tNRH ; zi(t1))− z∗i (tNRH ; zi(t0))‖ ≤ δ2κ.

For k = 2 and at time t = tNRH , we also have that

‖z∗i (tNRH ; zi(t2))− z∗i (tNRH ; zi(t1))‖ ≤ δ2κ.

Applying this recursively up to k = NRH, each at time
t = tNRH , summing up both sides of the inequalities and
applying the triangle inequality gives

‖zi(tNRH)− z∗i (tNRH ; zi(t0))‖ ≤ NRH · δ2κ ≈ Tδκ,

where we use the fact that z∗i (tNRH ; zi(tNRH)) =
zi(tNRH). After NRH iterations, the current state devi-
ates from the original optimal state, at the appropriate
point in time, by at most Tδκ. Thus, when the update
period is small enough to satisfy the theoretical con-
ditions for convergence, the compatibility constraints
imply the closed-loop trajectory must remain relatively
close to the trajectory computed at initialization; there-
fore, the transient response will only be as good as the
initial response. If the compatibility constraints are
relaxed by choosing a larger update time, one might
expect a more optimal transient response at the price
of poorer convergence. In fact, simulation experiments
show good convergence even in the absence of the com-
patibility constraints.

5 Conclusions

In this paper, a distributed implementation of receding
horizon control is formulated. An integrated cost func-
tion relevant for multi-vehicle formation stabilization
that couples the states of a set of dynamically decoupled
subsystems is first defined. One aspect of the general-
ity of our approach is that the subsystem dynamics are
nonlinear and heterogeneous. The coupling cost is de-
composed and distributed optimal control problems are
then defined. Each distributed problem is augmented
with a compatibility constraint, which is a central ele-
ment in the stability analysis by ensuring that actual
and assumed responses of each vehicle are not too far
from one another. Convergence to a neighborhood of the

desired equilibrium point is proven in the absence of ex-
plicit uncertainty and for sufficiently fast receding hori-
zon updates. We note that a sufficiently fast update pe-
riod is also required in [12], which addresses robustness
to model error. In contrast, we require sufficiently small
δ to mitigate an engineered uncertainty, namely due to
the discrepancy between the assumed and actual con-
trols of every vehicle, which is a byproduct of our im-
plementation and present even though there is no model
error.

Since every optimal control problem is solved syn-
chronously, the distributed receding horizon control
law is not technically decentralized, since a globally
synchronous implementation requires centralized clock
keeping [2]. A locally synchronous, and consequently
decentralized, version is currently being explored. In
our distributed approach, no communication is required
between vehicles while the distributed optimal control
problems are being solved. This is an advantage over
parallelization methods [2], where every distributed
optimization must communicate with neighboring opti-
mizations while iterating. Thus, our distributed imple-
mentation would generally incur a lower communication
cost than an approach using receding horizon control
with parallelization methods. A tradeoff is that for
problems that admit parallelization, convergence to the
centralized solution is guaranteed. The distributed im-
plementation here, on the other hand, will perform dif-
ferently in general than the centralized implementation.

Another important extension of our distributed im-
plementation is the ability to handle coupling state
constraints, such as collision avoidance constraints. The
dual-mode receding horizon approach by Michalska and
Mayne [12] addresses robustness to model uncertainty
in the presence of generic state constraints by mak-
ing the constraints more conservative. As described in
[5], the same approach can be employed in the dis-
tributed implementation here to guarantee constraint
satisfaction. However, accommodating coupling state
constraints makes the initialization procedure more del-
icate. In particular, every vehicle must assume a control
for each neighbor that is feasible with respect to all
coupling constraints. Moreover, the compatibility con-
straints must be enforced at initialization to guarantee
subsequent constraint satisfaction.

In conclusion, we note that great potential exists for sta-
bilizing and scalable distributed receding horizon con-
trollers that can jointly manage objectives/constraints
for control over networks and control of the networks
themselves, particularly in ad-hoc networks. In that
light, in a simple one-dimensional multi-vehicle exam-
ple, Yan and Bitmead recently explored the interaction
between the control performance of receding horizon
control and the information quality of different infor-
mation flow architectures [17]. As network flow control
problems involve dynamically coupled distributed sub-

9

systems, the recent extension of our implementation to
the case of dynamically coupled subsystems [6] suggests
that our approach may bare relevance to the problem of
finding such a control approach with dual-management
capability.

Acknowledgements

Partial support for this work was provided by the
DARPA SEC program under grant number F33615-98-
C-3613 and by AFOSR grant number F49620-01-1-0361.
The authors gratefully acknowledge Prof. Jeff Shamma,
Dr. Reza Olfati Saber, Prof. Nicolas Petit, and the three
anonymous reviewers for their help in preparing and
revising this work.

References

[1] L. Acar. Boundaries of the receding horizon control for
interconnected systems. Journal of Optimization Theory and
Applications, 84(2), 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[3] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar.
Distributed model predictive control. IEEE Control Systems
Magazine, February, 2002.

[4] H. Chen and F. Allgöwer. A quasi-infinite horizon
nonlinear model predictive scheme with guaranteed stability.
Automatica, 14(10):1205–1217, 1998.

[5] W. B. Dunbar. Distributed Receding Horizon Control of
Multiagent Systems. PhD thesis, California Institute of
Technology, Pasadena, CA, 91125, April 2004. Available
online at http://etd.caltech.edu/.

[6] W. B. Dunbar. A distributed receding horizon control
algorithm for dynamically coupled nonlinear systems. In
Accepted to IEEE Conference on Decision and Control / IEE
European Control Conference, 2005.

[7] W. B. Dunbar and R. M. Murray. Model predictive control of
coordinated multi-vehicle formations. In Proceedings of the
Conference on Decision and Control, Las Vegas, NV, 2002.

[8] D. Jia and B. H. Krogh. Min-max feedback model predictive
control for distributed control with communication. In
Proceedings of the American Control Conference, 2002.

[9] T. Keviczky, F. Borrelli, and G. J. Balas. A study on
decentralized receding horizon control for decoupled systems.
In Proceedings of the American Control Conference, Boston,
MA, 2004.

[10] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial
potentials and coordinated control of groups. In Proceedings
of the Conference on Decision and Control, Florida, 2001.

[11] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Contrained model predictive control: Stability and
optimality. Automatica, 36:789–814, 2000.

[12] H. Michalska and D.Q. Mayne. Robust receeding horizon
control of contrained nonlinear systems. IEEE Trans.
Automat. Control, 38:1623–1632, 1993.

[13] N. Motee and B. Sayyar-Rodsari. Optimal partitioning in
distributed model predictive control. In Proceedings of the
American Control Conference, 2003.

[14] R. Olfati-Saber, W. B. Dunbar, and R. M. Murray.
Cooperative control of multi-vehicle systems using cost
graphs and optimization. In Proceedings of the American
Control Conference, Denver, CO, 2003.

[15] W. Ren and R.W. Beard. A decentralized scheme
for spacecraft formation flying via the virtual structure
approach. AIAA Journal of Guidance, Control and
Dynamics, 27(1):73–82, 2004.

[16] A. Richards and J. How. A decentralized algorithm for robust
constrained model predictive control. In Proceedings of the
American Control Conference, Boston, MA, 2004.

[17] J. Yan and R. R. Bitmead. Coordinated control and
information architectures. In Proceedings of the IEEE
Conference on Decision and Control, Maui, HI, 2003.

10

