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Chapter 1

Background and basics

1.1 Quantification of uncertainty

Case study : Diagnostic screening for HIV. Widespread screening for HIV
has been proposed by some people in some countries (e.g., the U.S.). Two
blood tests that screen for HIV are available: ELISA, which is relatively
inexpensive (roughly $20) and fairly accurate; and Western Blot (WB), which
is considerably more accurate but costs quite a bit more (about $100). Let’s
say1 I’m a physician, and a new patient comes to me with symptoms that
suggest the patient (male, say) may be HIV positive. Questions:

• Is it appropriate to use the language of probability to quantify my
uncertainty about the proposition A ={this patient is HIV positive}?

• If so, what kinds of probability are appropriate, and how would I assess
P (A) in each case?

• What strategy (e.g., ELISA, WB, both?) should I employ to decrease
my uncertainty about A? If I decide to run a screening test, how should
my uncertainty be updated in light of the test results?

1As will become clear, the Bayesian approach to probability and statistics is explicit
about the role of personal judgment in uncertainty assessment. To make this clear I’ll write
in the first person in this book, but as you read I encourage you to constantly imagine
yourself in the position of the person referred to as “I” and to think along with that person
in quantifying uncertainty and making choices in the face of it.

1
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Statistics might be defined as the study of uncertainty: how to mea-
sure it, and what to do about it, and probability as the part of math-
ematics (and philosophy) devoted to the quantification of uncertainty. The
systematic study of probability is fairly recent in the history of ideas, dating
back to about 1650 (e.g., Hacking, 1975). In the last 350 years three main
ways to define probability have arisen (e.g., Oakes, 1990):

• Classical: Enumerate the elemental outcomes (EOs) (the funda-
mental possibilities in the process under study) in a way that makes
them equipossible on, e.g., symmetry grounds, and compute PC(A) =
ratio of nA =(number of EOs favorable to A) to n =(total number of
EOs).

• Frequentist: Restrict attention to attributes A of events: phenomena
that are inherently (and independently) repeatable under “identical”
conditions; define PF (A) = the limiting value of the relative frequency
with which A occurs in the repetitions.

• Personal, or “Subjective”, or Bayesian: I imagine betting with
someone about the truth of proposition A, and ask myself what odds
O (in favor of A) I would need to give or receive in order that I judge
the bet fair; then (for me) PB(A) = O

(1+O)
.

Other approaches not covered here include logical (e.g., Jeffreys, 1961) and
fiducial (Fisher, 1935) probability.

Each of these probability definitions has general advantages and disad-
vantages:

• Classical

– Plus: Simple, when applicable (e.g., idealized coin-tossing, draw-
ing colored balls from urns, choosing cards from a well-shuffled
deck, and so on).

– Minus: The only way to define “equipossible” without a circular
appeal to probability is through the principle of insufficient
reason—I judge EOs equipossible if I have no grounds (empirical,
logical, or symmetrical) for favoring one over another—but this
can lead to paradoxes (e.g., assertion of equal uncertainty is not
invariant to the choice of scale on which it’s asserted).
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• Frequentist

– Plus: Mathematics relatively tractable.

– Minus: Only applies to inherently repeatable events, e.g., from
the vantage point of (say) 2005, PF (the Republicans will win the
White House again in 2008) is (strictly speaking) undefined.

• Bayesian

– Plus: All forms of uncertainty are in principle quantifiable with
this approach.

– Minus: There’s no guarantee that the answer I get by asking
myself about betting odds will retrospectively be seen by me or
others as “good” (but how should the quality of an uncertainty
assessment itself be assessed?).

Returning to P (A) = P (this patient is HIV-positive), data are available
from medical journals on the prevalence of HIV-positivity in various subsets
of P = {all humans} (e.g., it’s higher in gay people and lower in women). All
three probabilistic approaches require me to use my judgment to identify
the recognizable subpopulation Pthis patient (Fisher, 1956; Draper et al.,
1993): this is

the smallest subset to which this patient belongs for which the HIV
prevalence differs from that in the rest of P by an amount I judge
as large enough to matter in a practical sense.

The idea is that within Pthis patient I regard HIV prevalence as close enough
to constant that the differences aren’t worth bothering over, but the differ-
ences between HIV prevalence in Pthis patient and its complement matter to me.
Here Pthis patient might consist (for me) of everybody who matches this patient
on gender, age (category, e.g., 25–29), and sexual orientation. NB This is a
modeling choice based on judgment; different reasonable people might make
different choices.

As a classicist I would then (a) use this definition to establish equipos-
sibility within Pthis patient, (b) count nA =(number of HIV-positive people in
Pthis patient) and n =(total number of people in Pthis patient), and (c) compute
PC(A) = nA

n
.
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As a frequentist I would (a) equate P (A) to P (a person chosen at random
with replacement (independent identically distributed (IID) sampling)
from Pthis patient is HIV-positive), (b) imagine repeating this random sampling
indefinitely, and (c) conclude that the limiting value of the relative frequency
of HIV-positivity in these repetitions would also be PF (A) = nA

n
. NB Strictly

speaking I’m not allowed in the frequentist approach to talk about P (this
patient is HIV-positive)—he either is or he isn’t. In the frequentist paradigm
I can only talk about the process of sampling people like him from Pthis patient.

As a Bayesian, with the information given here I would regard this patient
as exchangeable (de Finetti, e.g., 1964, 1974/5) with all other patients in
Pthis patient—meaning informally that I judge myself equally uncertain about
HIV-positivity for all the patients in this set—and this judgment, together
with the axioms of coherence, would also yield PB:You(A) = nA

n
(although

I’ve not yet said why this is so). Exchangeability and coherence will be
defined and explored in more detail in what follows.

Note that with the same information base the three approaches in this
case have led to the same answer, although the meaning of that answer
depends on the approach, e.g., frequentist probability describes the process
of observing a repeatable event whereas Bayesian probability is an attempt
to quantify my uncertainty about something, repeatable or not.

The classical and frequentist approaches have sometimes been called ob-
jective, whereas the Bayesian approach is clearly subjective, and—since
objectivity sounds like a good goal in science—this has sometimes been used
as a claim that the classical and frequentist approaches are superior. I’d ar-
gue, however, that in interesting applied problems of realistic complexity, the
judgment of equivalence or similarity (equipossibility, IID, exchangeabil-
ity) that’s central to all three theories makes them all subjective in practice.

Imagine, for example, that I’m given data on HIV prevalence in a large
group of people, along with many variables (possible predictors) that might
or might not be relevant to identifying the recognizable subpopulations. I
might well differ (with other reasonable people working independently) in my
judgments on which of these predictors are relevant (and how they should
be used in making the prediction), and the result could easily be noticeable
variation in the estimates of P (HIV positive) obtained by the other analysts
and me, even if I and the other people all attempt to use “objective” methods
to arrive at these judgments (there are many such methods, and they don’t
always lead to the same conclusions). Thus the assessment of complicated
probabilities is inherently subjective—there are “judgment calls” built into
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probabilistic and statistical analysis.

With this in mind attention in all three approaches should evidently shift
away from trying to achieve “objectivity” toward two things: (1) the ex-
plicit statement of the assumptions and judgments made on the way to my
probability assessments, so that other people may consider their plausibility,
and (2) sensitivity analyses exploring the mapping from assumptions to
conclusions. (To a Bayesian saying that PB(A) is objective just means that
lots of people more or less agree on its value.)

1.2 Sequential learning; Bayes’ Theorem

Let’s say that, with this patient’s values of relevant demographic variables,
the prevalence of HIV estimated from the medical literature, P (A) = P (he’s
HIV-positive), in his recognizable subpopulation is about 1

100
= 0.01. To

improve this estimate by gathering data specific to this patient, I decide to
take some blood and get a result from ELISA. Suppose the test comes back
positive—what should the updated P (A) be?

Bayesian probability has that name because of the simple updating rule
that has been attributed to Thomas Bayes (1763), who was one of the first
people to define conditional probability and make calculations with it:

Bayes’ Theorem
for propositions

P (A|D) =
P (A) P (D|A)

P (D)

(Actually—Stigler, 1986; Bernardo and Smith, 1994—Bayes only stated and
worked with a special case of this; the general form was first used by Laplace,
1774.)

In the usual application of this A is an unknown quantity (such as the
truth value of some proposition) and D stands for some data relevant to my
uncertainty about A:

P (unknown|data) =
P (unknown) P (data|unknown)

normalizing constant

posterior = c · prior · likelihood

The terms prior and posterior emphasize the sequential nature of the learn-
ing process: P (unknown) was my uncertainty assessment before the data
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arrived; this is updated multiplicatively on the probability scale by the like-
lihood P (data|unknown), and renormalized so that total probability remains
1.

Writing the Theorem both for A and (not A) and combining gives a
(perhaps even more) useful version:

Bayes’ Theorem in odds form

P (A|data)

P (not A|data)

posterior
odds

=

=

P (A)

P (not A)

prior
odds

·

·

P (data|A)

P (data|not A)

Bayes
factor

Another name for the Bayes factor is the likelihood ratio, since this factor
measures the relative plausibility of the data given A and (not A).

Applying this to the HIV example requires additional information about
ELISA obtained by screening the blood of people with known HIV status:

sensitivity = P (ELISA positive|HIV positive) and

specificity = P (ELISA negative|HIV negative)

In practice ELISA’s operating characteristics are (or at least seem) rather
good—sensitivity about 0.95, specificity about 0.98—so you might well ex-
pect that

P (this patient HIV positive|ELISA positive)

would be close to 1.
Here the updating produces a surprising result: the Bayes factor comes

out

B =
sensitivity

1− specificity
=

0.95

0.02
= 47.5,

which sounds like strong evidence that this patient is HIV positive, but
the prior odds are quite a bit stronger the other way ( P (A)

1−P (A)
= 99 to 1

against HIV) leading to posterior odds of 99
47.5

.
= 2.08 against HIV, i.e.,

P (HIV positive|data) = 1
1+odds

= 95
293

.
= 0.32 (!).

The reason for this is that ELISA was designed to have a vastly better
false negative rate—P (HIV positive| ELISA negative) = 5

9707

.
= 0.00052

.
=
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1 in 1941—than false positive rate—P (HIV negative| ELISA positive) =
198
293

.
= 0.68

.
= 2 in 3. This in turn is because ELISA’s developers judged that

it’s far worse to tell somebody who’s HIV positive that they’re not than the
other way around (this is a reasonable position when using ELISA for, e.g.,
blood bank screening, which is one of the main uses for the test). This false
positive rate would make widespread screening for HIV based only on ELISA
a truly bad idea.

Formalizing the consequences of the two types of error in diagnostic
screening would require quantifying the misclassification costs, which shifts
the focus from (scientific) inference (the acquisition of knowledge for its own
sake: Is this patient really HIV-positive?) to decision-making (putting that
knowledge to work to answer a public policy or business question: What use
of ELISA and Western Blot would yield the optimal screening strategy?).

1.3 Bayesian decision theory

Axiomatic approaches to rational decision-making date back to Ramsay
(1926), with von Neumann and Morgenstern (1944) and Savage (1954) also
making major contributions. The ingredients of a general decision problem
(e.g., Bernardo and Smith, 1994) include

• A set {ai, i ∈ I} of available actions, one of which I will choose;

• For each action ai, a set {Ej, j ∈ J} of uncertain outcomes describ-
ing what will happen if I choose action ai;

• A set {cj, j ∈ J} of consequences corresponding to the outcomes
{Ej, j ∈ J}; and

• A preference relation ≤, expressing my preferences between pairs of
available actions (a1 ≤ a2 means “a1 is not preferred by me to a2”).

Define a1 ∼ a2 (“a1 and a2 are equivalent” to me) iff a1 ≤ a2 and
a2 ≤ a1.

This preference relation induces a qualitative ordering of the uncertain out-
comes (E ≤ F means “E is not more likely than F”), because if I compare
two dichotomized possible actions, involving the same consequences and dif-
fering only in their uncertain outcomes, the fact that I prefer one action to
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another means that I must judge it more likely that if I take that action the
preferred consequence will result.

Within this framework I have to make further assumptions—the coher-
ence axioms—to ensure that my actions are internally consistent. Informally
(see Bernardo and Smith, 1994, for the formalism) these are:

• An axiom insisting that I be willing to express preferences between
simple dichotomized possible actions ({a, not a});

• A transitivity axiom in which (for all actions a, a1, a2, a3) a ≤ a, and
if a1 ≤ a2 and a2 ≤ a3 then a1 ≤ a3; and

• An axiom based on the sure-thing principle: if, in two situations,
no matter how the first comes out the corresponding outcome in the
second is preferable, then I should prefer the second situation overall.

This puts ≤ on a sound footing for qualitative uncertainty assessment,
but does not yet imply how to quantify—it’s like being able to say that one
thing weighs less than another but not to say by how much. To go further
requires a fourth assumption, analogous to the existence of a set of reference
standards (e.g., an official kg weight, half-kg, and so on) and the ability to
make arbitrarily precise comparisons with these standards:

• An axiom guaranteeing that for each outcome E there exists a stan-
dard outcome S (e.g., “idealized coin lands heads”) such that E ∼ S.

This framework implies the existence and uniqueness of a (personal) prob-
ability PB (abbreviated P ), mapping from outcomes E to [0,1] and corre-
sponding to the judgments in my definition of ≤, and a utility function U
(large values preferred, say), mapping from consequences c to R and quanti-
fying my preferences.

This has all been rather abstract. Two concrete results arising from this
framework may make its implications clearer:

• Bayes’ original definition of personal probability is helpful in thinking
about how to quantify uncertainty. Pretending that consequences are
monetary (e.g., US$), for me to say that PB(E) = p for some uncertain
outcome E whose truth value will be known in the future is to say that
I’m indifferent between (a) receiving $p ·m for sure (for some (small)



Bayesian Modeling, Inference and Prediction 9

hypothetical amount of money $m) and (b) betting with someone in
such a way that I’ll get $m if E turns out to be true and nothing if not
(this can be used this to estimate PB(E)).

• It turns out that any coherent set of probability judgments must satisfy
the standard axioms and theorems of a finitely additive probability
measure:

– 0 ≤ P (E) ≤ 1 and P (Ec) = 1− P (E);

– P (E1 or . . . or EJ) =
∑

j∈J P (Ej) for any finite collection {Ej,
j ∈ J} of disjoint outcomes;

– P (E and F ) = P (E) · P (F ) for any two independent outcomes
(informally, E and F are independent if my uncertainty judg-
ments involving one of them are unaffected by information about
the other); and

– Conditional probability has a natural definition in this setup, cor-
responding to the updating of my uncertainty about E in light of
F , and with this definition P (E|F ) = P (E and F )

P (F )
.

Otherwise (de Finetti, 1964) someone betting with me on the basis of
my probability judgments can make Dutch book against me, i.e., get
me to agree to a series of bets that are guaranteed to lose me money.

Thus coherent Bayesian probability obeys the same laws as with the
classical and frequentist approaches (apart from a technical issue about
finite versus countable additivity).

Nothing so far has said clearly what choice to make in a decision problem
if I wish to avoid incoherence. If the outcomes were certain I’d evidently
choose the action that maximizes my utility function, but since they’re not
the best action must involve weighing both my probabilities for the uncer-
tain outcomes and the utilities I place on their consequences. It’s a direct
implication of the framework here that the form this weighing should take is
simple and clear:

Maximization of Expected Utility (MEU) Given my

probability and utility judgments, my decision-making is coher-
ent iff for each action ai, with associated uncertain outcomes
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Table 1.1: Probabilities and utilities for action a1.

True HIV ELISA
Probability Status Status Utility

.0095 + + −c1

.0005 + − −c1 − LI

.0198 − + −c1 − LII

.9702 − − −c1

{Ej, j ∈ J} and consequences {cj, j ∈ J}, I compute the ex-
pected utility EUi =

∑
j∈J U(cj)P (Ej) and choose the action

that maximizes {EUi, i ∈ I}.

Example: HIV screening. As a simplified version of this problem con-
sider choosing between two actions:

• a1: Obtain ELISA results at a cost of c1 = $20; if positive conclude
this patient is HIV+, if negative conclude HIV–.

• a2: Same as a1 except if ELISA comes out positive, obtain Western
Blot (WB) results at an additional cost of c2 = $100; if WB is positive
conclude HIV+, if negative conclude HIV–.

With action a1 the probabilities, uncertain outcomes, and utilities are as
in Table 1.1. Here LI and LII are the false negative (false positive) monetary
losses suffered by this patient if he really is HIV+ (HIV–) but ELISA says
he’s HIV– (HIV+). The expected utility with action a1 is thus

EU1 = .0095(−c1) + .0005(−c1 − LI) + . . . + .9702(−c1)

= −(c1 + .0005LI + .0198LII) .

The corresponding information for action a2 is given in Table 1.2. These
probabilities arise from WB ’s design (the goal was to have about the same
false negative rate as ELISA and a much lower false positive rate (about 0.1),
leading to a slightly worse sensitivity (0.949) but much improved specificity
(0.999)).
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Table 1.2: Probabilities and utilities for action a2.

True HIV ELISA WB
Probability Status Status Status Utility

.00945 + + + −c1 − c2

.00005 + + − −c1 − c2 − LI

.00004 + − + −c1 − LI

.00046 + − − −c1 − LI

.0001 − + + −c1 − c2 − LII

.0197 − + − −c1 − c2

.00095 − − + −c1

.96925 − − − −c1

The expected utility with action a2 comes out

EU2 = .00945(−c1 − c2) + . . . + .9604(−c1)

= −(c1 + .0293c2 + .00055LI + .0001LII) .

By MEU I should prefer a2 to a1 iff EU2 > EU1, i.e., iff

.0197LII − .00005LI − .0293c2 > 0 .

Thus a2 becomes more desirable as the loss suffered with a false positive
(negative) increases (decreases), and less desirable as WB ’s cost increases,
all of which makes good sense.

It’s interesting to note that with a modest value for LII (e.g., $1,000),
the monetary advantage from taking action a2 is quite small even with a
realistically huge value for LI (e.g., $100,000, which leads to an edge for a2

of only about $12). This is due to the extremely low false negative rate for
both tests—LI would have to be over $335,000 for a1 to dominate!

1.4 Problems

1. (Conditional probability; elaboration of the HIV case study in this
chapter) Consider the HIV screening example, in which A = {the pa-
tient in question is HIV positive} and D = {ELISA says he’s HIV
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positive}. Let p stand for the prevalence of HIV among people similar
to this patient (recall that in the case study p = 0.01), and let ε and
π stand for the sensitivity and specificity of the ELISA screening test,
respectively (in the case study ε = 0.95 and π = 0.98).

(a) By using either Bayes’ Theorem (in probability or odds form) or
2× 2 contingency tables, write down explicit formulas in terms of
p, ε, and π for the positive predictive value (PPV), P (A|D),
and negative predictive value (NPV), P (not A|not D), of
screening tests like ELISA (recall that ELISA’s PPV and NPV
with patients like the one in our case study were 0.32 and 0.99948,
respectively). These formulas permit analytic study of the tradeoff
between PPV and NPV.

(b) Interest focused in this chapter on why ELISA’s PPV is so bad
for people (like the man considered in the case study) for whom
HIV is relatively rare (p = 0.01).

(i) Holding ε and π constant at ELISA’s values of 0.95 and 0.98,
respectively, obtain expressions (from those in (a)) for the
PPV and NPV as a function of p, and plot these functions as
p goes from 0 to 0.1.

(ii) Show (e.g., by means of Taylor series) that in this range the
NPV is closely approximated by the simple linear function
(1− 0.056 p).

(iii) How large would p have to be for ELISA’s PPV to exceed 0.5?
0.75?

(iv) What would ELISA’s NPV be for those values of p?

(v) Looking at both PPV and NPV, would you regard ELISA as
a good screening test for subpopulations with (say) p = 0.1?
Explain briefly.

(b) Suppose now that p is held constant at 0.01 and you’re trying to
improve ELISA for use on people with that background prevalence
of HIV, where “improve” for the sake of this part of the problem
means raising the PPV while not suffering too much of a decrease
(if any) of the NPV. ELISA is based on the level L of a particular
antibody in the blood, and uses a rule of the form {if L ≥ c
announce that the person is HIV positive}. This means that if
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you change c the sensitivity and specificity change in a tug-of-war
fashion: altering c to make ε go up makes π go down, and vice
versa.

(i) By using the formulas in (a) or 2×2 contingency tables, show
that as ε approaches 1 with π no larger than 0.98, the NPV
will approach 1 but the biggest you can make the PPV is
about 0.336. Thus if you want to raise the PPV you would
be better off trying to increase π than ε.

(ii) Suppose there were a way to change c which would cause π to
go up while holding ε arbitrarily close to 0.95. Show that π
would have to climb to about 0.997 to get the PPV up to 0.75.
Is the NPV still at acceptable levels under these conditions?
Explain briefly.

2. (Coherence and Dutch book) On 2 Apr 2001 a senior writer for the web
page Sportsline.com, Mark Soltau, posted an article about the Masters
golf tournament which was about to be held on 5–8 Apr 2001 (copy
attached). Among other things he identified the 24 players (among
the 93 golfers in the field) who were, in his view, most likely to win
the tournament, and he posted odds against each of them winning
(for example, his quoting of 10–1 odds on Phil Mickelson meant that
his personal probability that Mickelson would win was 1

1+10

.
= 0.091),

which are summarized in Tables 1.3–1.4 below.

(a) If the 24 odds quoted by Mr. Soltau were taken literally, show that
the personal probability specification implied by his posted odds
was incoherent. (In fact Mr. Soltau may well have been quoting
un-normalized odds, which is a fairly common practice in sports,
but let’s take him literally in this part of the problem.)

(b) It would be nice to demonstrate Mr. Soltau’s incoherence by ex-
plicitly providing a set of bets which would be guaranteed to lose
him money, but that’s actually fairly complicated (hint for the
previous part of this question: that’s not what I had in mind for
you to do in (a)). To take a simpler example that has the same
flavor as Mr. Soltau’s mistake (if his odds are taken literally),
pretend that he’s handicapping (setting odds for) a tournament
in which only Tiger Woods, Phil Mickelson, and some other un-
named golfers are playing, and he announces 3 to 1 odds in favor
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of Woods winning and 1 to 1 odds in favor of Mickelson (again
without specifying any odds for the other golfers). (To be clear
on the relationship between odds and money, here’s how it works
in horse-racing (and Mr. Soltau would have to play by the same
rules): suppose that a bookie at the horse track offers odds of 4 to
1 against horse A, and I bet (say) $1 on that horse to win; if horse
A wins I enjoy a net gain of $4, otherwise I suffer a net loss of $1.)
Work out an explicit set of bets to offer Mr. Soltau which would
constitute a Dutch book against him. If Mr. Soltau were willing
to accept arbitrarily large bets, is there any theoretical limit to
the amount of money you would be guaranteed to win from him?
Explain briefly.

(c) (c) In practice sports bookies only allow people to make bets for
individual golfers, so that in reality you’re not allowed to con-
struct a wager like {$x on Woods to win and $y on Mickelson to
lose}. Can you make Dutch book against Mr. Soltau under these
conditions? Explain briefly.

3. (Bayes’ Theorem; based on problem 7 in chapter 1 of Gelman et al.,
2003) In the old television game show Let’s Make a Deal, there are
three doors; behind one of the doors is a car, and behind the other
two are goats, with the assignment of prizes to doors made at random.
You—the contestant, who prefers cars to goats—are asked to pick a
door. After you choose (of course you can do no better than picking at
random), the Master of Ceremonies, Monte Hall, who knows where the
car is, opens one of the other doors to reveal a goat, and he offers you
the choice of staying with the door you originally picked or switching to
the other unopened door. Suppose that Monte Hall uses the following
algorithm to decide which door to reveal to you after you’ve chosen
(without loss of generality) door 1: if the car is behind door 2 he shows
you door 3; if it’s behind door 3 he shows you door 2; and if it’s behind
door 1 he randomizes between showing you doors 2 and 3 with equal
probability. Should you switch or stay with your original choice?

(a) Explicitly use Bayes’ Theorem to work out the chance of winning
the car under each strategy.

(b) How would you explain intuitively to someone who favors the in-
ferior strategy why the other one is better?
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4. (Conditional probability, and review of the normal distribution; based
on problem 4 in chapter 1 of Gelman et al., 2003) (American) foot-
ball (not soccer) experts provide a point spread (PS) for every football
game as a measure of the difference in ability between the two teams.
For example, team A might be a 3.5–point favorite over team B. This
means that the proposition that A (the favorite) defeats B (the un-
derdog) by 4 or more points is considered a fair bet, i.e., P (A wins by
more than 3.5 points) = 1

2
. If the PS is an integer, the implication is

that A is as likely to win by more points than the PS as it is to win
by fewer points than the PS (or to lose); there is a positive probability
that A will win by exactly the PS, in which case neither side is paid
off. In Chapter 1 Gelman et al. (2003) present data on the PS and
actual game outcome for 672 professional football games played during
the 1981 and 1983–84 seasons, and they show that the histogram of
the quantity (actual outcome – PS) is well approximated by a normal
distribution with mean 0.07 and standard deviation (SD) 13.86, sug-
gesting that a good predictive distribution for the actual result of an
NFL football game would be normal with mean equal to the PS and
SD 14 points (two touchdowns). (If you’re in the habit of betting on
NFL games this should give you pause, e.g., if a team is favored by a
touchdown the chance it will win, according to this uncertainty assess-
ment, is only about 69%.) It turns out that there were 12 games in
this data base with PS values of 8 points, and the actual outcomes in
those games were –7, –5, –3, –3, 1, 6, 7, 13, 15, 16, 20, and 21, with
positive (negative) values indicating wins by the favorite (underdog)
by the number of points indicated. Consider the following conditional
probabilities:

P (favorite wins|PS = 8)

P (favorite wins by at least 8|PS = 8)

P (favorite wins by at least 8|PS = 8 and favorite wins)

(a) Estimate each of these using the relative frequencies of the games
with an 8–point PS.

(b) Estimate each using the normal approximation to the distribution
of (actual outcome – PS). (You can use a normal table from any
statistics book, or the error function erf in Maple.)
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(c) Which of these approaches to uncertainty assessment seems to
have produced better answers here? How should “better” be de-
fined? Explain briefly.

5. (Cromwell’s Rule and its implications for Bayesian learning) Prove
the following two facts: for any D such that P (D) > 0,

(a) If P (A) = 0 then P (A|D) = 0.

(b) If P (A) = 1 then P (A|D) = 1.

In the usual application of these facts (as in the HIV case study in this
chapter), A is a proposition whose truth value is unknown to me (such
as the HIV status of the patient) and D represents some data relevant
to A (such as the result of a screening test like ELISA); in this setting
(a) and (b) together are referred to as Cromwell’s Rule (history). What
are the implications of Cromwell’s Rule for the use of Bayes’ Theorem
as a formal model for learning from data? Explain briefly.
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Table 1.3: Odds posted by sports writer Mark Soltau against each of the top
24 golfers competing in the Masters golf tournament, April 2001 (part 1 of
table).

Player Best Finish Odds Comment

Tiger Woods 1st in 1997 3–1 His tournament to lose

Phil Mickelson 3rd in 1996 10–1
Overdue for

major breakthrough

Vijay Singh 1st in 2000 10–1
Faldo successfully
defended in 1990

Davis Love III 2nd in 1999 15–1
Has come

oh-so-close before

Colin Montgomerie
Tied for 8th

in 1998
15–1

Sooner or later
he’ll get it right

José Maria
Olazabal

1st in
1994, 1999

20–1
Fearless competitor

who never quits

Tom Lehman 2nd in 1994 25–1
Has all the tools
to contend again

Nick Price 5th in 1986 25–1
If putter holds up,
could be a factor

Ernie Els 2nd in 2000 25–1
Play lacking lately,
but ready to rise up

David Duval
Tied for 2nd

in 1998
25–1

Wrist, back
only question marks

Jesper Parnevik
Tied for 21st

in 1997
30–1

A major is next
for gritty Swede

Mark Calcavecchia 2nd in 1998 30–1
Streaky player,
never backs off
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Table 1.4: Odds posted by sports writer Mark Soltau against each of the top
24 golfers competing in the Masters golf tournament, April 2001 (part 2 of
table).

Player Best Finish Odds Comment

Sergio Garcia
Tied for 38th

in 1999
35–1

Doesn’t lack game
or confidence

Justin Leonard
Tied for 7th

in 1997
35–1

Good grinder who
won’t beat himself

Jim Furyk 4th in 1998 35–1
Will long putter
bag a major?

Greg Norman 2nd in 1996 35–1
Everybody’s senti-

mental favorite

Paul Azinger 5th in 1998 40–1
Playing well and
knows the layout

Darren Clarke
Tied for 8th

in 1998
50–1

Cigar will come in
handy at Amen Corner

Loren Roberts
Tied for 3rd

in 2000
50–1

Splendid short game
comes in handy

Brad Faxon
Tied for 9th

in 1993
50–1

Has he ever
hit a poor putt?

Fred Couples
Tied for 2nd

in 1998
60–1 Never count him out

John Huston
Tied for 3rd

in 1990
60–1

The man is a
birdie machine

Mike Weir
Tied for 28th

in 2000
60–1

Canadian continues
to impress

Bernhard Langer 1st in 1993 65–1
Tough, determined
and unflappable



Chapter 2

Exchangeability and conjugate
modeling

2.1 Quantification of uncertainty about ob-

servables. Binary outcomes

Case Study: Hospital-specific prediction of mortality rates. Let’s say I’m
interested in measuring the quality of care (e.g., Kahn et al., 1990) offered
by one particular hospital. I’m thinking of the Dominican Hospital (DH)
in Santa Cruz, CA (you would of course almost certainly have a different
hospital in mind if you were thinking along these lines for yourself). As part
of this I decide to examine the medical records of all patients treated at
the DH in one particular time window, say January 2002 to December 2005
(inclusive), for one particular medical condition for which there is a strong
process-outcome link, say acute myocardial infarction (AMI; heart attack).
(Process is what health care providers do on behalf of patients; outcomes are
what happens as a result of that care.) I can tell from past data that in the
time window I’m interested in there will be about n = 400 AMI patients at
the DH.

To keep things simple let’s ignore process for the moment and focus here
on one particular binary outcome: death status (mortality) as of 30 days
from hospital admission, coded 1 for dead and 0 for alive. (In addition to
process this will also depend on the sickness at admission of the AMI patients,
but for simplicity let’s ignore that initially too.) From the vantage point of

19
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December 2001, say, what may be said about the roughly 400 1s and 0s I
will observe in 2002–05?

The meaning of probability. I’m definitely uncertain about the 0–1 death
outcomes Y1, . . . , Yn before I observe any of them. Probability is supposed
to be the part of mathematics concerned with quantifying uncertainty; can
probability be used here? In Chapter 1 I argued that the answer was yes,
and that three types of probability—classical, frequentist, and Bayesian—are
available (in principle) to quantify uncertainty like that encountered here. I’ll
focus on the approaches with the most widespread usage—frequentist and
Bayesian—in what follows (the classical approach is too hard to apply in any
but the simplest of problems).

2.2 Review of frequentist modeling

How can the frequentist definition of probability be applied to the hospital
mortality problem? By definition the frequentist approach is based on the
idea of hypothetical or actual repetitions of the process being studied, un-
der conditions that are as close to independent identically distributed (IID)
sampling as possible. When faced with a data set like the 400 1s and 0s
(Y1, . . . , Yn) here, the usual way to do this is to think of it as a random sam-
ple, or like a random sample, from some population that is of direct interest
to me. Then the randomness in my probability statements refers to the pro-
cess of what I might get if I were to repeat the sampling over and over—the
Yi become random variables whose probability distribution is determined by
this hypothetical repeated sampling.

Figure 2.1 gives a sketch which illustrates the basis of the frequentist
approach to inference. In this figure SD stands for standard deviation, the
most common measure of the extent to which the observations yi in a data
set vary, or are spread out, around the center of the data. The center is often
measured by the mean ȳ = 1

n

∑n
i=1 yi, and the SD of a sample of size n is

then given by

SD =

√√√√ 1

n− 1

n∑

i=1

(yi − ȳ)2. (2.1)

The population size is denoted by N ; this is often much larger than the
sample size n.
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With 0/1 (dichotomous) data, like the mortality outcomes in this case
study, the population mean µ simply records the proportion p of 1s in the
population (check this), and similarly the sample mean ȳ keeps track au-
tomatically of the observed death rate p̂ in the sample. As N → ∞ the
population SD σ with 0/1 data takes on a simple form (check this):

σ =
√

p(1− p). (2.2)

It’s common in frequentist modeling to make a notational distinction
between the random variables Yi (the placeholders for the process of making
IID draws from the population over and over) and the values yi that the Yi

might take on (although I’ll abuse this notation with p̂ below). In Figure
2.1 the relationship between the population and the sample data sets can be
usefully considered in each of two directions:

• If the population is known you can think about how the sample is likely
to come out under IID sampling—this is a probability question.

Here in this case p would be known and you’re trying to figure out the
random behavior of the sample mean Ȳ = p̂.

• If instead only the sample is known your job is to infer the likely com-
position of the population that could have led to this IID sample—this
is a question of statistical inference.

In this problem the sample mean ȳ = p̂ would be known and your job would
be to estimate the population mean p.

Suppose that N >> n, i.e., that even if SRS was used you are effec-
tively dealing with IID sampling. Intuitively both SRS and IID should be
“good” (representative) sampling methods (representative here means that
you would judge (your uncertainty about) the sampled and unsampled units
in the population as exchangeable), so that p̂ should be a “good” estimate
of p, but what exactly does the word “good” mean in this sentence?

Evidently a good estimator p̂ would be likely to be close to the truth p,
especially with a lot of data (i.e., if n is large). In the frequentist approach
to inference quantifying this idea involves imagining how p̂ would have come
out if the process by which the observed p̂ = 0.18 came to you were repeated
under IID conditions. This gives rise to the imaginary data set, the third
part of the diagram in Figure 2.1: we consider all possible p̂ values based on
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an IID sample of size n from a population with 100p% 1s and 100(1− p)%
0s.

Let M be the number of hypothetical repetitions in the imaginary data
set. The long-run mean (as M →∞) of these imaginary p̂ values is called the
expected value of the random variable p̂, written E(p̂) or EIID(p̂) to emphasize
the mechanism of drawing the sample from the population. The long-run SD
of these imaginary p̂ values is called the standard error of the random variable
p̂, written SE(p̂) or SEIID(p̂).

It’s natural in studying how the hypothetical p̂ values vary around the
center of the imaginary data set to make a histogram of these values: this
is a plot with the possible values of p̂ along the horizontal scale and the
frequency with which p̂ takes on those values on the vertical scale. It’s
helpful to draw this plot on the density scale, which just means that the
vertical scale is chosen so that the total area under the histogram is 1. The
long-run histogram of the imaginary p̂ values on the density scale is called
the (probability) density of the random variable p̂.

The values of E(p̂) and SE(p̂), and the basic shape of the density of
p̂, can be determined mathematically (under IID sampling) and verified by
simulation. It turns out that

EIID(p̂) = p and SEIID(p̂) =
σ√
n

=

√
p(1− p)

n
, (2.3)

and the density of p̂ for large n is well approximated by the normal curve
or Gaussian distribution (this result is the famous Central Limit Theorem
(CLT)).

Suppose the sample of size n = 400 had 72 1s and 328 0s, so that p̂ = 72
400

=
0.18. Thus you would estimate that the population mortality rate p is around
18%, but how much uncertainty should be attached to this estimate?

The above standard error formula is not directly usable because it involves
the unknown p, but we can estimate the standard error by plugging in p̂:

ŜE(p̂) =

√
p̂ (1− p̂)

n
=

√
(0.18)(0.82)

400
.
= 0.019. (2.4)

In other words, I think p is around 18%, give or take about 1.9%.

A probabilistic uncertainty band can be obtained with the frequentist
approach by appeal to the CLT, which says that (for large n) in repeated
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sampling p̂ would fluctuate around p like draws from a normal curve with
mean p and SD (SE) 0.019, i.e.,

0.95
.
= PF

[
p− 1.96 ŜE(p̂) ≤ p̂ ≤ p + 1.96 ŜE(p̂)

]

= PF

[
p̂− 1.96 ŜE(p̂) ≤ p ≤ p̂ + 1.96 ŜE(p̂)

]
. (2.5)

Thus (Neyman 1923) a 95% (frequentist) confidence interval for p runs

from p̂ − 1.96 ŜE(p̂) to p̂ + 1.96 ŜE(p̂), which in this case is from 0.180 −
(1.96)(0.019) = 0.142 to 0.180 + (1.96)(0.019) = 0.218, i.e., I am “95% con-
fident that p is between about 14% and 22%”. But what does this mean?

Everybody wants the confidence interval (CI) to mean

PF (0.142 ≤ p ≤ 0.218)
.
= 0.95, (2.6)

but it can’t mean that in the frequentist approach to probability: in that
approach p is treated as a fixed unknown constant, which either is or is not
between 0.142 and 0.218. So what does it mean? The answer involves a kind
of calibration of the CI process: about 95% of the nominal 95% CIs would
include the true value, if you were to generate a lot of them via independent
IID samples from the population.

The diagram in Figure 2.1 takes up a lot of space; it would be nice to
have a more succinct summary of it. A random variable Y is said to follow
the Bernoulli distribution with parameter 0 < p < 1—this is summarized by
saying Y ∼ Bernoulli(p)—if Y takes on only the values 1 and 0 and

P (Y = y) =

{
p if y = 1

1− p if y = 0

}
= py (1− p)1−y. (2.7)

A parameter is just a fixed unknown constant. Another popular name for
the parameter p in this model is θ.

Evidently what the population and sample parts of the diagram on page
6 are trying to say, in this notation, is that (Y1, . . . , Yn) are drawn in an IID
fashion from the Bernoulli distribution with parameter θ.

In the usual shorthand, which I’ll use from now on, this is expressed as

Yi
IID∼ Bernoulli(θ), i = 1, . . . , n for some 0 < θ < 1. (2.8)

This is the frequentist statistical model for the AMI mortality data, except
that I have forgotten so far to specify an important ingredient: what is
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the population of patients whose mean (underlying death rate) is θ? As a
frequentist (as noted above), to use probability to quantify my uncertainty
about the 1s and 0s, I have to think of them as either literally a random
sample or like a random sample from some population, either hypothetical
or actual. What are some possibilities for this population?

• All AMI patients who might have come to the DH in 2002–05 if the
world had turned out differently; or

• Assuming sufficient time-homogeneity in all relevant factors, you could
try to argue that the collection of all 400 AMI patients at the DH from
2002–05 is like a random sample of size 400 from the population of all
AMI patients at the DH from (say) 1997–2006; or

• Cluster sampling is a way to choose, e.g., patients by taking a random
sample of hospitals and then a random sample of patients nested within
those hospitals. What we actually have here is a kind of cluster sample
of all 400 AMI patients from the DH in 2002–2005 (and no patients
from any other hospitals). Cluster samples tend to be less informative
than SRS samples of the same size because of (positive) intracluster
correlation (patients in a given hospital tend to be more similar in their
outcomes than would an SRS of the same size from the population of all
the patients in all the hospitals). Assuming the DH to be representative
of some broader collection of hospitals in California and (unwisely)
ignoring intracluster correlation, you could try to argue that these 400
1s and 0s were like a simple random sample of 400 AMI patients from
this larger collection of hospitals.

I think you would agree with me that none of these options is entirely
compelling.

If you’re willing to ignore this difficulty and pretend the data are like a
sample from some population, interest would then focus on inference about
the parameter θ, the “underlying death rate” in this larger collection of
patients to which you feel comfortable generalizing the 400 1s and 0s: if θ
were unusually high, that would be prima facie evidence of a possible quality
of care problem at the DH.
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2.2.1 The likelihood function

Suppose (as above) that

Yi
IID∼ B(θ), i = 1, . . . , n for some 0 < θ < 1. (2.9)

Since the Yi are independent, the joint sampling distribution of all of them,
P (Y1 = y1, . . . , Yn = yn), is the product of the separate, or marginal, sampling
distributions P (Y1 = y1) , . . . , P (Yn = yn):

P (Y1 = y1, . . . , Yn = yn) = P (Y1 = y1) · · ·P (Yn = yn)

=

n∏

i=1

P (Yi = yi) . (2.10)

But since the Yi are also identically distributed, and each one is Bernoulli with
parameter θ, i.e., P (Yi = yi) = θyi (1− θ)1−yi, the joint sampling distribution
can be written

P (Y1 = y1, . . . , Yn = yn) =
n∏

i=1

θyi (1− θ)1−yi . (2.11)

Let’s use the symbol y to stand for the vector of observed data values
(y1, . . . , yn).

Before any data have arrived, this joint sampling distribution is a function
of y for fixed θ—it tells you how the data would be likely to behave in the
future if you were to take an IID sample from the Bernoulli(θ) distribution.
In 1921 Fisher had the following idea: after the data have arrived it makes
more sense to interpret (2.11) as a function of θ for fixed y—he called this
the likelihood function for θ in the Bernoulli(θ) model:

l(θ|y) = l(θ|y1, . . . , yn) =

n∏

i=1

θyi (1− θ)1−yi (2.12)

= P (Y1 = y1, . . . , Yn = yn) but interpreted

as a function of θ for fixed y.

Fisher tried to create a theory of inference about θ based only on this
function—we will see below that this is an important ingredient, but not
the only important ingredient, in inference from the Bayesian viewpoint.
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The Bernoulli(θ) likelihood function can be simplified as follows:

l(θ|y) = θs(1− θ)n−s, (2.13)

where s =
∑n

i=1 yi is the number of 1s in the sample and (n−s) is the number
of 0s. What does this function look like?

With n = 400 and s = 72 it’s easy to get Maple to plot it:

rosalind 329> maple

|\^/| Maple 9 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo

\ MAPLE / Maple Inc. 2003. ll rights reserved. Maple is a

<____ ____> trademark of Waterloo Maple Inc.

| Type ? for help.

> l := ( theta, s, n ) -> theta^s * ( 1 - theta )^( n - s );

s (n - s)

l := (theta, s, n) -> theta (1 - theta)

> plotsetup( x11 );

> plot( l( theta, 72, 400 ), theta = 0 .. 1 );

> plot( l( theta, 72, 400 ), theta = 0.12 .. 0.25 );

The results are graphed in Figure 2.2 for θ ∈ (0, 1) and again in Figure
2.3 in a kind of closeup in the interesting region, θ ∈ (0.12, 0.25). Does
this function remind you of anything? It reminds me a lot of a Gaussian
distribution for θ, although Fisher fought hard to resist this interpretation
(thinking of the likelihood function for large n as approximately a Gaussian
density for θ is, as will be seen below, completely natural from the Bayesian
viewpoint, and Fisher—with his likelihood theory—was trying hard to do
something non-Bayesian, for reasons that I’ll mention along the way as this
story unfolds).

Note that the likelihood function l(θ|y) = θs(1 − θ)n−s in this problem
depends on the data vector y only through s =

∑n

i=1 yi—Fisher referred to
any such data summary as a sufficient statistic (with respect to the given
likelihood function).
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Figure 2.2: Plot of the Bernoulli likelihood function θs(1−θ)n−s for θ ∈ (0, 1)
with n = 400 and s = 72.

There’s an interesting thing about Figures 2.2 and 2.3: the vertical scale
shows that Maple has cheerfully worked without complaining with likelihood
values on the order of 10−82. In fact, in floating point calculations, at least
in principle, Maple is supposed to be able to work smoothly with numbers
all the way from 10−400 to 10+400 or so (for comparison, there are only about
1080 elementary particles in the universe), but the possibility of numerical
instabilities with likelihood values so small makes me a bit nervous, no matter
what the software manufacturer says. Let’s see; the likelihood values got
that small by multiplying 400 numbers between 0 and 1 together. This is a
situation that’s crying out for taking logarithms: sums are more numerically
stable than products. Fisher came to the same conclusion (for somewhat
different reasons): it’s often at least as useful to look at the logarithm of the
likelihood function as the likelihood function itself.

> ll := ( theta, s, n ) -> log( l( theta, s, n ) );
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Figure 2.3: Closeup of θ72(1− θ)328 for θ ∈ (0.12, 0.25).

> plot( ll( theta, 72, 400 ), theta = 0.12 .. 0.25 );

In this case, as is often true for large n, the log likelihood function looks
locally quadratic around its maximum.

Fisher had the further idea that the maximum of the likelihood function
would be a good estimate of θ (we’ll look later at conditions under which this
makes sense from the Bayesian viewpoint). Since the logarithm function is
monotone increasing, it’s equivalent in maximizing the likelihood to maximize
the log likelihood, and for a function as well behaved as this you can do that
by setting its first partial derivative with respect to θ (the so-called score
function) to 0 and solving:

> score := simplify( diff( ll( theta, s, n ), theta ) );

s - n theta

score := - ------------------

theta (-1 + theta)
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Figure 2.4: Log likelihood function in the Bernoulli model with n = 400 and
s = 72.

> solve( score = 0, theta );

s/n

Fisher called the function of the data that maximizes the likelihood (or
log likelihood) function is the maximum likelihood estimate (MLE) θ̂MLE. You
can see that in this case θ̂MLE is just the sample mean ȳ = s

n
, which we’ve

previously seen (via Neyman’s approach to inference) is a sensible estimate
of θ.

Note also that if you maximize l(θ|y) and I maximize c l(θ|y) for any
constant c > 0, we’ll get the same thing, i.e., the likelihood function is only
defined up to a positive multiple; Fisher’s actual definition was

l(θ|y) = c P (Y1 = y1, . . . , Yn = yn)

for any (normalizing constant) c > 0 (this will be put to Bayesian use below).
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From now on c in expressions like the likelihood function above will be a
generic (and often unspecified) positive constant.

2.2.2 Calibrating the MLE

Maximum likelihood provides a basic principle for estimation of a (popu-
lation) parameter θ from the frequentist/likelihood point of view, but how
should the accuracy of θ̂MLE be assessed? Evidently in the frequentist ap-
proach I want to compute the variance or standard error of θ̂MLE in repeated
sampling, or at least estimates of these quantities—let’s focus on the es-

timated variance V̂
(
θ̂MLE

)
. Fisher (1922) proposed an approximation to

V̂
(
θ̂MLE

)
that works well for large n and makes good intuitive sense.

In the AMI mortality case study, where θ̂MLE = θ̂ = s
n

(the sample mean),
we already know that

V
(
θ̂MLE

)
=

θ(1− θ)

n
and V̂

(
θ̂MLE

)
=

θ̂(1− θ̂)

n
, (2.14)

but Fisher wanted to derive results like this in a more basic and general way.
Imagine quadrupling the sample size in this case study from n = 400

to n = 1600 while keeping the observed death rate constant at 0.18—what
would happen to the log likelihood function? To answer this question, recall
that as far as maximizing the likelihood function is concerned it’s equally
good to work with any (positive) constant multiple of it, which is equivalent
to saying that I can add any constant I want to the log likelihood function
without harming anything.

In the Maple plot in Figure 2.5 I’ve added a different constant to each
of the log likelihood functions with (s, n) = (72, 400) and (288, 1600) so that
they both go through the point (θ̂MLE, 0):

> plot( { ll( theta, 72, 400 ) - evalf( ll( 72 / 400, 72,

400 ) ), ll( theta, 288, 1600 ) - evalf( ll( 288 / 1600,

288, 1600 ) ) }, theta = 0.12 .. 0.25, color = black );

Notice in Figure 2.5 that what’s happened as n went from 400 to 1600
while holding the MLE constant at 18% mortality is that the curve has
become substantially steeper around its maximum, which means that the
second derivative of the log likelihood function at θ̂MLE, a negative number,
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Figure 2.5: Bernoulli log likelihood functions with (s, n) = (72, 400) (flatter
curve) and (288, 1600) (steeper curve).

has increased in magnitude. This led Fisher to define a quantity he called
the information in the sample about θ—in his honor it’s now called the
(observed) Fisher information:

Î
(
θ̂MLE

)
=

[
− ∂2

∂θ2
log l(θ|y)

]

θ=θ̂MLE

. (2.15)

This quantity increases as n goes up, whereas our uncertainty about θ

based on the sample, as measured by V̂
(
θ̂MLE

)
, should go down with n.

Fisher conjectured and proved that the information and the estimated vari-
ance of the MLE in repeated sampling have the following simple inverse
relationship when n is large:

V̂
(
θ̂MLE

)
.
= Î−1

(
θ̂MLE

)
. (2.16)

He further proved that for large n (a) the MLE is approximately unbiased,
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meaning that in repeated sampling

E
(
θ̂MLE

)
.
= θ, (2.17)

and (b) the sampling distribution of the MLE is approximately Gaussian
with mean θ and estimated variance given by (2.16):

θ̂MLE

·∼ N
[
θ, Î−1

(
θ̂MLE

)]
. (2.18)

Thus for large n an approximate 95% confidence interval for θ is given by

θ̂MLE ± 1.96

√
Î−1
(
θ̂MLE

)
.

You can differentiate to compute the information yourself in the AMI
mortality case study, or you can use Maple to do it for you:

> score := ( theta, s, n ) -> simplify( diff( ll( theta, s, n ),

theta ) );

score := (theta, s, n) -> simplify(diff(ll(theta, s, n),

theta))

> score( theta, s, n );

s - n theta

- ------------------

theta (-1 + theta)

> diff2 := ( theta, s, n ) -> simplify( diff( score( theta, s,

n ), theta ) );

diff2 := (theta, s, n) -> simplify(diff(score(theta, s, n),

theta))

> diff2( theta, s, n );

2

-n theta - s + 2 s theta

-------------------------

2 2

theta (-1 + theta)
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> information := ( s, n ) -> simplify( eval( - diff2( theta, s,

n ), theta = s / n ) );

> information( s, n );

3

n

- ----------

s (-n + s)

> variance := ( s, n ) -> 1 / information( s, n );

1

variance := (s, n) -> -----------------

information(s, n)

> variance( s, n );

s (-n + s)

- ----------

3

n

This expression can be further simplified to yield

V̂
(
θ̂MLE

)
.
=

s
n

(
1− s

n

)

n
=

θ̂(1− θ̂)

n
, (2.19)

which coincides with (2.14).
From (2.19) another expression for the Fisher information in this problem

is
Î
(
θ̂MLE

)
=

n

θ̂(1− θ̂)
. (2.20)

As n increases, θ̂(1− θ̂) will tend to the constant θ(1−θ) (this is well-defined
because we’ve assumed that 0 < θ < 1, because θ = 0 and 1 are probabilis-
tically uninteresting), which means that information about θ on the basis of
(y1, . . . , yn) in the IID Bernoulli model increases at a rate proportional to n
as the sample size grows.

This is generally true of the MLE (i.e., in regular parametric problems):

Î
(
θ̂MLE

)
= O(n) and V̂

(
θ̂MLE

)
= O

(
n−1
)
, (2.21)
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as n → ∞, where the notation an = O(bn) means that the ratio
∣∣∣an

bn

∣∣∣ is

bounded as n grows. Thus uncertainty about θ on the basis of the MLE goes
down like cMLE

n
on the variance scale with more and more data (in fact Fisher

showed that cMLE achieves the lowest possible value: the MLE is efficient).

2.3 Bayesian modeling

As a Bayesian in this situation, my job is to quantify my uncertainty about
the 400 binary observables I’ll get to see starting in 2002, i.e., my initial
modeling task is predictive rather than inferential. There is no samples-and-
populations story in this approach, but probability and random variables
arise in a different way: quantifying my uncertainty (for the purpose of bet-
ting with someone about some aspect of the 1s and 0s, say) requires eliciting
from myself a joint predictive distribution that accurately captures my judg-
ments about what I’ll see: PB:me(Y1 = y1, . . . , Yn = yn).

Notice that in the frequentist approach the random variables describe the
process of observing a repeatable event (the “random sampling” appealed to
earlier), whereas in the Bayesian approach I use random variables to quan-
tify my uncertainty about observables I haven’t seen yet. I’ll argue later that
the concept of probabilistic accuracy has two components: I want my un-
certainty assessments to be both internally and externally consistent, which
corresponds to the Bayesian and frequentist ideas of coherence and calibra-
tion, respectively.

2.3.1 Exchangeability

Eliciting a 400-dimensional distribution doesn’t sound easy; major simplifi-
cation is evidently needed. In this case, and many others, this is provided
by exchangeability considerations.

If (as in the frequentist approach) I have no relevant information that
distinguishes one AMI patient from another, my uncertainty about the 400
1s and 0s is symmetric, in the sense that a random permutation of the order
in which the 1s and 0s were labeled from 1 to 400 would leave my uncertainty
about them unchanged. de Finetti (1930, 1964) called random variables with
this property exchangeable:

Definition. {Yi, i = 1, . . . , n} are exchangeable if the distribu-
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tions of (Y1, . . . , Yn) and (Yπ(1), . . . , Yπ(n)) are the same for all
permutations (π(1), . . . , π(n)).

NB Exchangeability and IID are not the same: IID implies exchangeabil-
ity, and exchangeable Yi do have identical marginal distributions, but they’re
not independent (if you were expecting a priori about 15% 1s, say (that’s the
30-day death rate for AMI with average-quality care), the knowledge that
in the first 50 outcomes at the DH 20 of them were deaths would certainly
change your prediction of the 51st).

de Finetti also defined partial or conditional exchangeability (e.g., Draper
et al., 1993): if, e.g., the gender X of the AMI patients were available,
and if there were evidence from the medical literature that 1s tended to be
noticeably more likely for men than women, then you would probably want to
assume conditional exchangeability of the Yi given X (meaning that the male
and female 1s and 0s, viewed as separate collections of random variables, are
each unconditionally exchangeable). This is related to Fisher’s (1956) idea
of recognizable subpopulations.

de Finetti’s Theorem for 1s and 0s. The judgment of exchangeability
still seems to leave the joint distribution of the Yi quite imprecisely specified.

After defining the concept of exchangeability, however, de Finetti went on
to prove a remarkable result: if you’re willing to regard the {Yi, i = 1, . . . , n}
as part (for instance, the beginning) of an infinite exchangeable sequence of 1s
and 0s (meaning that every finite subsequence is exchangeable), then there’s
a simple way to characterize your joint distribution, if it’s to be coherent
(e.g., de Finetti, 1975; Bernardo and Smith, 1994).

(Finite versions of the theorem have since been proven, which say that the
longer the exchangeable sequence into which you’re willing to embed {Yi, i =
1, . . . , n}, the harder it becomes to achieve coherence with any probability
specification that’s far removed from the one below.)

de Finetti’s Representation Theorem. If Y1, Y2, . . . is an infinitely ex-
changeable sequence of 0–1 random quantities with probability measure P ,
there exists a distribution function Q(θ) such that the joint distribution
p(y1, . . . , yn) for Y1, . . . , Yn is of the form

p(y1, . . . , yn) =

∫ 1

0

n∏

i=1

θyi(1− θ)1−yi dQ(θ) , (2.22)

where Q(θ) = lim
n→∞

P (
1

n

n∑

i=1

Yi ≤ θ) and θ
P
= lim

n→∞

1

n

n∑

i=1

Yi .
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θ can also be interpreted as the marginal probability P (Yi = 1) that any
of the Yi is 1.

The Law of Total Probability. The distribution function Q will gen-
erally be well-behaved enough to have a density: dQ(θ) = p(θ)dθ.

In this case de Finetti’s Theorem says

p(y1, . . . , yn) =

∫ 1

0

n∏

i=1

θyi(1− θ)1−yi p(θ)dθ. (2.23)

Important digression. We saw in part 1 of the lecture notes that for the
true-false propositions D and A,

P (D) = P (D and A) + P [D and (not A)] (2.24)

= P (A) P (D|A) + P (not A) P (D|not A).

This is a special case of the Law of Total Probability (LTP).

Notice that A and (not A) divide, or partition, the collection of all possi-
ble outcomes into two non-overlapping (mutually exclusive) and exhaustive
possibilities.

Let A1, . . . , Ak be any finite partition, i.e., P (Ai and Aj) = 0 (mutually

exclusive) and
∑k

i=1 P (Ai) = 1 (exhaustive).

Then a more general version of the LTP gives that

P (D) = P (D and A1) + . . . + P (D and Ak)

= P (A1) P (D|A1) + . . . + P (Ak) P (D|Ak) (2.25)

=
k∑

i=1

P (Ai) P (D|Ai).

2.3.2 Hierarchical (mixture) modeling

There is a continuous version of the LTP: by analogy with (25), if X and Y
are real-valued random variables

p(y) =

∫ ∞

−∞
p(x) p(y|x) dx. (2.26)

p(x) in this expression is called a mixing distribution.
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Intuitively (26) says that the overall probability behavior p(y) of Y is a
mixture (weighted average) of the conditional behavior p(y|x) of Y given X,
weighted by the behavior p(x) of X.

Another way to put this is to say that you have a choice: you can either
model the random behavior of Y directly, through p(y), or hierarchically, by
first modeling the random behavior of X, through p(x), and then modeling
the conditional behavior of Y given X, through p(y|x).

Notice that X and Y are completely general in this discussion—in other
words, given any quantity Y that you want to model stochastically, you’re
free to choose any X upon which Y depends and model Y hierarchically
given X instead, if that’s easier.

Symbolically

Y ↔
{

X
Y |X

}
. (2.27)

The reason for bringing all of this up now is that (23) can be interpreted
as follows, with θ playing the role of x:

p(y1, . . . , yn) =

∫ 1

0

p(y1, . . . , yn|θ) p(θ) dθ

=

∫ 1

0

n∏

i=1

θyi(1− θ)1−yi p(θ) dθ. (2.28)

2.3.3 The simplest mixture model

(28) implies that in any coherent expression of uncertainty about exchange-
able binary quantities Y1, . . . , Yn,

p(y1, . . . , yn|θ) =

n∏

i=1

θyi(1− θ)1−yi . (2.29)

But (a) the left side of (29), interpreted as a function of θ for fixed
y = (y1, . . . , yn), is recognizable as the likelihood function for θ given y,
(b) the right side of (29) is recognizable as the likelihood function for θ in
IID Bernoulli sampling, and (c) (29) says that these must be the same.

Thus, to summarize de Finetti’s Theorem intuitively, the assumption
of exchangeability in your uncertainty about binary observables Y1, . . . , Yn

amounts to behaving as if
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• there’s a quantity called θ, interpretable as either the long-run relative
frequency of 1s or the marginal probability that any of the Yi is 1,
• you need to treat θ as a random quantity with density p(θ), and
• conditional on this θ the Yi are IID B(θ).
In yet other words, for a Bayesian whose uncertainty about binary Yi is

exchangeable, the model may effectively be taken to have the simple mixture
or hierarchical representation

{
θ ∼ p(θ)

(Yi|θ) IID∼ B(θ), i = 1, . . . , n

}
. (2.30)

This is our first of many examples of a parametric Bayesian model (as
contrasted with non-parametric and semi-parametric Bayesian models, which
will come up in Section 2.8 below; parametric modeling is the main topic in
this course).

2.3.4 Conditional independence

This is the link between frequentist and Bayesian modeling of binary out-
comes: exchangeability implies that you should behave like a frequentist as
far as the likelihood function is concerned (taking the Yi to be IID Bernoulli
with parameter θ), but a frequentist who treats θ as a random variable with
a mixing distribution p(θ).

NB This is the first example of a general pattern:

Yi exchangeable ↔
{

Yi conditionally IID
given one or more parameters

}
. (2.31)

So exchangeability is a special kind of conditional independence: binary
exchangeable yi are not independent, but they become conditionally inde-
pendent given θ.

(30) is an example of the simplest kind of hierarchical model (HM): a
model at the top level for the underlying death rate θ, and then a model
below that for the binary mortality indicators Yi conditional on θ (this is a
basic instance of (27): it’s not easy to model the predictive distribution for
(Y1, . . . , Yn) directly, but it becomes a lot easier when θ is introduced at the
top level of a 2–level hierarchy).

To emphasize an important point mentioned above, to make sense of this
in the Bayesian approach you have to treat θ as a random variable, even
though logically it’s a fixed unknown constant.
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This is the main conceptual difference between the Bayesian and frequen-
tist approaches: as a Bayesian you use the machinery of random variables to
express your uncertainty about unknown quantities.

Approach Fixed Random
Frequentist θ Y
Bayesian y θ

2.3.5 Prior, posterior, and predictive distributions

What’s the meaning of the mixing distribution p(θ)?
p(θ) doesn’t involve y = (y1, . . . , yn), so it must represent your informa-

tion about θ before the data set y arrives—it makes sense to call it your prior
distribution for θ.

I’ll address how you might go about specifying this distribution below.
Q: If p(θ) represents your information about θ before the data arrive,

what represents this information after y has been observed?
A: It has to be p(θ|y), the conditional distribution for θ given how y came

out.
It’s natural to call this the posterior distribution for θ given y.
Q: How do you get from p(θ) to p(θ|y), i.e., how do you update your

information about θ in light of the data?
A: Bayes’ Theorem for continuous quantities:

p(θ|y) =
p(θ) p(y|θ)

p(y)
. (2.32)

This requires some interpreting. As a Bayesian I’m conditioning on the
data, i.e., I’m thinking of the left-hand side of (32) as a function of θ for
fixed y, so that must also be true of the right-hand side. Thus (a) p(y) is
just a constant—in fact, you can think of it as the normalizing constant, put
into the equation to make the product p(θ) p(y|θ) integrate to 1; and (b)
p(y|θ) may look like the usual frequentist sampling distribution for y given θ
(Bernoulli, in this case), but I have to think of it as a function of θ for fixed
y. We’ve already encountered this idea (p. 15): l(θ|y) = c p(y|θ) is Fisher’s
likelihood function.

So Bayes’ Theorem becomes

p(θ|y) = c · p(θ) · l(θ|y) , (2.33)

posterior =

(
normalizing

constant

)
· prior · likelihood .
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You can also readily construct predictive distributions for the yi before
they’re observed, or for future yi once some of them are known.

For example, by the LTP, the posterior predictive distribution for (ym+1,
. . . , yn) given (y1, . . . , ym) is

p(ym+1, . . . , yn|y1, . . . , ym) = (2.34)∫ 1

0

p(ym+1, . . . , yn|θ, y1, . . . , ym) p(θ|y1, . . . , ym) dθ.

Consider p(ym+1, . . . , yn|θ, y1, . . . , ym): if you knew θ, the information
y1, . . . , ym about how the first m of the yi came out would be irrelevant
(imagine predicting the results of IID coin-tossing: if you somehow knew
that the coin was perfectly fair, i.e., that θ = 0.5, then getting (say) 6 heads
in the first 10 tosses would be useless to you in quantifying the likely behavior
of the next (say) 20 tosses—you’d just use the known true value of θ).

Thus p(ym+1, . . . , yn|θ, y1, . . . , ym) is just p(ym+1, . . . , yn|θ), which in turn
is just the sampling distribution under IID B(θ) sampling for the binary
observables ym+1, . . . , yn, namely

∏n
i=m+1 θyi(1− θ)1−yi .

And finally p(θ|y1, . . . , ym) is recognizable as just the posterior distribu-
tion for θ given the first m of the binary outcomes.

Putting this all together gives

p(ym+1, . . . , yn|y1, . . . , ym) = (2.35)

=

∫ 1

0

n∏

i=m+1

θyi(1− θ)1−yi p(θ|y1, . . . , ym) dθ

(we can’t compute (35) yet because p(θ|y1, . . . , ym) depends on p(θ), which
we haven’t specified so far).

This also brings up a key difference between a parameter like θ on the one
hand and the Yi, before you’ve observed any data, on the other: parameters
are inherently unobservable.

This makes it harder to evaluate the quality of your uncertainty assess-
ments about θ than to do so about the observable yi: to see how well you’re
doing in predicting observables you can just compare your predictive distri-
butions for them with how they actually turn out, but of course this isn’t
possible with things like θ which you’ll never actually see.

Inference and prediction. Coherence and calibration The de
Finetti approach to modeling emphasizes the prediction of observables as
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a valuable adjunct to inference about unobservable parameters, for at least
two reasons:
• Key scientific questions are often predictive in nature: e.g., rather than

asking “Is drug A better than B (on average across many patients) for low-
ering blood pressure?” (inference) the ultimate question is “How much more
will drug A lower this patient’s blood pressure than drug B?” (prediction);
and
•Good diagnostic checking is predictive: An inference about an unobserv-

able parameter can never be directly verified, but often you can reasonably
conclude that inferences about the parameters of a model which produces
poor predictions of observables are also suspect.

With the predictive approach parameters diminish in importance, espe-
cially those that have no physical meaning—such parameters (unlike θ above)
are just place-holders for a particular kind of uncertainty on your way to
making good predictions.

It’s arguable (e.g., Draper, 1995) that the discipline of statistics, and
particularly its applications in the social sciences, would be improved by a
greater emphasis on predictive feedback.

This is not to say that parametric thinking should be abolished.
As the calculations on the previous pages emphasized, parameters play

an important simplifying role in forming modeling judgments: the single
strongest simplifier of a joint distribution is independence of its components,
and whereas, e.g., in the mortality example the Yi are not themselves inde-
pendent, they become so conditional on θ.

Where Does the Prior Come From? de Finetti’s Theorem for 0–1
outcomes says informally that if you’re trying to make coherent (internally
consistent) probability judgments about a series of 1s and 0s that you judge
exchangeable, you may as well behave like a frequentist—IID B(θ)—with a
prior distribution p(θ).

But where does this prior come from?
NB Coherence doesn’t help in answering this question—it turns out that

any prior p(θ) could be part of somebody’s coherent probability judgments.
Some people regard the need to answer this question in the Bayesian

approach as a drawback, but it seems to me (and to many other people) to
be a positive feature, as follows.

From Bayes’ Theorem the prior is supposed to be a summary of what you
know (and don’t know) about θ before the yi start to arrive: from previous
datasets of which you’re aware, from the relevant literature, from expert
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opinion, ... from all “good” source(s), if any exist.
Such information is almost always present, and should presumably be

used when available—the issue is how to do so “well.”

The goal is evidently to choose a prior that you’ll retrospectively
be proud of, in the sense that your predictive distributions for
the observables (a) are well-centered near the actual values and
(b) have uncertainty bands that correspond well to the realized
discrepancies between actual and predicted values. This is a form
of calibration of your probability judgments.

There is no guaranteed way to do this, just as there is no guaranteed way
to arrive at a “good” frequentist model (see “Where does the likelihood come
from?” below).

Choosing a “good” prior. Some general comments on arriving at a
“good” prior:
• There is a growing literature on methodology for elicitation of prior

information (e.g., Kadane et al., 1980; Craig et al., 1997; Kadane and Wolf-
son, 1997; O’Hagan, 1997), which brings together ideas from statistics and
perceptual psychology (e.g., people turn out to be better at estimating per-
centiles of a distribution than they are at estimating standard deviations
(SDs)).
• Bayes’ Theorem on the log scale says (apart from the normalizing con-

stant)
log(posterior) = log(prior) + log(likelihood), (2.36)

i.e., (posterior information) = (data information) + (prior information). This
means that close attention should be paid to the information content of the
prior by, e.g., density-normalizing the likelihood and plotting it on the same
scale as the prior: it’s possible for small n for the prior to swamp the data,
and in general you shouldn’t let this happen without a good reason for doing
so.

Comfort can also be taken from the other side of this coin: with large n
(in many situations, at least) the data will swamp the prior, and specification
errors become less important.
•When you notice you’re quite uncertain about how to specify the prior,

you can try sensitivity or (pre-posterior) analysis: exploring the mapping
from prior to posterior, before the data are gathered, by (a) generating some
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possible values for the observables, (b) writing down several plausible forms
for the prior, and (c) carrying these forward to posterior distributions.

If the resulting distributions are similar (i.e., if “all reasonable roads lead
to Rome”), you’ve uncovered a useful form of stability in your results; if not
you can try to capture the prior uncertainty hierarchically, by, e.g., adding
another layer to a model like (30) above.
• Calibration can be estimated by a form of cross-validation: with a given

prior you can (a) repeatedly divide the data at random into modeling and
validation subsets, (b) update to posterior predictive distributions based on
the modeling data, and (c) compare these distributions with the actual values
in the validation data.

I’ll illustrate some examples of this idea later.
Note that calibration is inherently frequentist in spirit (e.g., “What per-

centage of the time do your 95% central predictive intervals include the actual
value?”). This leads to a useful synthesis of Bayesian and frequentist think-
ing:

Coherence keeps you internally honest; calibration keeps you in
good contact with the world.

2.3.6 Conjugate analysis. Comparison with frequen-

tist modeling

Example: Prior specification in the mortality data. Let’s say (a) you
know (from the literature) that the 30-day AMI mortality rate given average
care and average sickness at admission in the U.S. is about 15%, (b) You know
little about care or patient sickness at the DH, but (c) You’d be somewhat
surprised (e.g., on Central Limit Theorem grounds) if the “underlying rate”
at the DH was much less than 5% or more than 30% (note the asymmetry).
To quantify these judgments you seek a flexible family of densities on (0,1),
one of whose members has mean .15 and (say) 95% central interval (.05,.30).

A convenient family for this purpose is the beta distributions,

Beta(θ|α, β) = c θα−1(1− θ)β−1, (2.37)

defined for (α > 0, β > 0) and for 0 < θ < 1.
Maple can be used to evaluate the normalizing constant c. I define the

un-normalized density, and ask Maple to symbolically integrate it:
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> assume( alpha > 0, beta > 0, theta > 0, theta < 1 );

> p1 := ( theta, alpha, beta ) -> theta^( alpha - 1 ) *

( 1 - theta )^( beta - 1 );

p1 := (theta, alpha, beta) ->

(alpha - 1) (beta - 1)

theta (1 - theta)

> integrate( p1( theta, alpha, beta ), theta = 0 .. 1 );

Beta(alpha~, beta~)

Well, that’s interesting; what’s the Beta function?

> help( Beta );

Beta - The Beta function

Calling Sequence:

Beta( x, y )

Parameters:

x - an expression

y - an expression

Description:

- The Beta function is defined as follows:

Beta( x, y ) = ( GAMMA( x ) * GAMMA( y ) ) / GAMMA( x + y )

Thank you very much, Maple; what’s the GAMMA function?

> help( GAMMA );

GAMMA - The Gamma and Incomplete Gamma Functions

lnGAMMA - The log-Gamma function

Calling Sequence:
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GAMMA( z )

GAMMA( a, z )

lnGAMMA( z )

Parameters:

z - an expression

a - an expression

Description:

- The Gamma function is defined for Re( z ) > 0 by

GAMMA(z) = int( exp( -t ) * t^( z - 1 ), t = 0 ..

infinity )

and is extended to the rest of the complex plane,

less the non-positive integers, by analytic continuation.

GAMMA has a simple pole at each of the points

z = 0, -1, -2, ... .

- For positive real arguments z, the lnGAMMA function is

defined by:

lnGAMMA( z ) = ln( GAMMA( z ) )

> plotsetup( x11 );

> plot( GAMMA( x ), x = 0 .. 5, color = black );

Notice that Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(4) = 6, and Γ(5) = 24—the
pattern here is that

Γ(n) = (n− 1)! for integer n. (2.38)

Thus the Gamma function is a kind of continuous generalization of the
factorial function.

What all of this has shown is that the normalizing constant in the beta
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Figure 2.6: Γ(x) for x ∈ (0, 5).

distribution is

c =

[∫ 1

0

θα−1 (1− θ)β−1 dθ

]−1

=
Γ(α + β)

Γ(α) Γ(β)
, (2.39)

so that the full definition of the beta distribution is

Beta(θ|α, β) =
Γ(α + β)

Γ(α) Γ(β)
θα−1(1− θ)β−1, (2.40)

for (α > 0, β > 0) and for 0 < θ < 1.
The beta family is convenient for two reasons:

(1) It exhibits a wide variety of distributional shapes (e.g., Johnson and
Kotz, 1970):



48 David Draper

> p := ( theta, alpha, beta ) -> ( GAMMA( alpha + beta ) /

( GAMMA( alpha ) * GAMMA( beta ) ) ) *

theta^( alpha - 1 ) * ( 1 - theta )^( beta - 1 );

p := (theta, alpha, beta) ->

(alpha - 1) (beta - 1)

GAMMA(alpha + beta) theta (1 - theta)

----------------------------------------------------------

GAMMA(alpha) GAMMA(beta)

> plot( { p( theta, 0.5, 0.5 ), p( theta, 1, 1 ),

p( theta, 2, 3 ), p( theta, 30, 20 ) }, theta = 0 .. 1,

color = black );

(2) As we saw above, the likelihood in this problem comes from the Ber-
noulli sampling distribution for the Yi,

p(y1, . . . , yn|θ) = l(θ|y) = θs(1− θ)n−s, (2.41)

where s is the sum of the yi.

Now Bayes’ Theorem says that to get the posterior distribution p(θ|y)
you multiply the prior p(θ) and the likelihood—in this case θs(1 − θ)n−s—
and renormalize so that the product integrates to 1.

Rev. Bayes himself noticed back in the 1740s that if you take the prior to
be of the form c θu (1− θ)v, the product of the prior and the likelihood will
also be of this form, which makes the computations more straightforward.

The beta family is said to be conjugate to the Bernoulli/binomial likeli-
hood.

Conjugacy of a family of prior distributions to a given likelihood is a
bit hard to define precisely, but the basic idea—given a particular likelihood
function—is to try to find a family of prior distributions so that the product
of members of this family with the likelihood function will also be in the
family.

Conjugate analysis—finding conjugate priors for standard likelihoods and
restricting attention to them on tractability grounds—is one of only two fairly
general methods for getting closed-form answers in the Bayesian approach
(the other is asymptotic analysis; see Bernardo and Smith, 1994).



Bayesian Modeling, Inference and Prediction 49

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1
theta~

Figure 2.7: The Beta (0.5, 0.5) (U-shaped), Beta (1, 1) (flat), Beta (2, 3)
(skewed right, with a mode at around 0.3), and Beta (30, 20) (skewed left,
with a mode at around 0.6) densities.

Suppose we restrict attention (for now) to members of the beta family in
trying to specify a prior distribution for θ in the AMI mortality example.

I want a member of this family which has mean 0.15 and 95% central
interval (0.05, 0.30).

> mean := integrate( theta * p( theta, alpha, beta ),

theta = 0 .. 1 );

alpha~

mean := --------------

alpha~ + beta~

> variance :=simplify( integrate( ( theta - alpha /

( alpha + beta ) )^2 * p( theta, alpha, beta ),

theta = 0 .. 1 ) );
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alpha~ beta~

variance := --------------------------------------

2

(alpha~ + beta~) (alpha~ + beta~ + 1)

As Maple has demonstrated,

If θ ∼ Beta(α, β), then E(θ) =
α

α + β
(2.42)

and V (θ) =
αβ

(α + β)2(α + β + 1)
.

> solve( mean = 15 / 100, beta );

17/3 alpha~

> solve( integrate( p( theta, alpha, 17 * alpha / 3 ),

theta = 0.05 .. 0.30 ) = 0.95, alpha );

bytes used=3005456, alloc=1834672, time=0.82

bytes used=4006628, alloc=2293340, time=1.18

bytes used=5007408, alloc=2489912, time=1.58

Maple can’t solve this equation symbolically (and neither could you), but
it can do so numerically:

> fsolve( integrate( p( theta, alpha, 17 * alpha / 3 ),

theta = 0.05 .. 0.30 ) = 0.95, alpha );

bytes used=7083468, alloc=2686484, time=2.50

(output suppressed)

bytes used=27099104, alloc=3538296, time=11.99

4.506062414

> 17 * 4.506062414 / 3;

25.53435368
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Figure 2.8: The Beta (4.5, 25.5) density as a prior distribution in the hospital
mortality case study.

Thus the beta distribution with (α, β) = (4.5, 25.5) meets my two prior
specifications.

> plot( p( theta, 4.5, 25.5 ), theta = 0 .. 0.4 );

This prior distribution looks just like I want it to: it has a long right-
hand tail and is quite spread out: the prior SD with this choice of (α, β) is√

(4.5)(25.5)
(4.5+25.5)2(4.5+25.5+1)

.
= 0.064, i.e., my prior says that I think the underlying

AMI mortality rate at the DH is around 15%, give or take about 6 or 7%.
In the usual jargon α and β are called hyperparameters since they’re

parameters of the prior distribution.
Written hierarchically the model we’ve arrived at is

(α, β) = (4.5, 25.5) (hyperparameters)

(θ|α, β) ∼ Beta(α, β) (prior) (2.43)

(Y1, . . . , Yn|θ) IID∼ Bernoulli(θ) (likelihood)
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(43) suggests what to do if you’re not sure about the specifications that
led to (α, β) = (4.5, 25.5): hierarchically expand the model by placing a
distribution on (α, β) centered at (4.5, 25.5).

This is an important Bayesian modeling tool: if the model is inadequate
in some way, expand it hierarchically in directions suggested by the nature
of its inadequacy (I’ll give more examples of this later).

Q: Doesn’t this set up the possibility of an infinite regress, i.e., how do
you know when to stop adding layers to the hierarchy?

A: (1) In practice people stop when they run out of (time, money), after
having made sure that the final model passes diagnostic checks, and comfort
may be taken from the empirical fact that (2) there tends to be a kind of
diminishing returns principle: the farther a given layer in the hierarchy is
from the likelihood (data) layer, the less it tends to affect the answer.

The conjugacy of the prior leads to a simple closed form for the posterior
here: with y as the vector of observed Yi, i = 1, . . . , n and s as the sum of
the yi (a sufficient statistic for θ with the Bernoulli likelihood),

p(θ|y, α, β) = c l(θ|y) p(θ|α, β)

= c θs (1− θ)n−s θα−1(1− θ)β−1 (2.44)

= c θ(s+α)−1(1− θ)(n−s+β)−1,

i.e., the posterior for θ is Beta(α + s, β + n− s).
This gives the hyperparameters a nice interpretation in terms of effective

information content of the prior: it’s as if the data (Beta(s + 1, n − s + 1))
were worth (s + 1) + (n− s + 1)

.
= n observations and the prior (Beta(α, β))

were worth (α + β) observations.
This can be used to judge whether the prior is “too informative”—here

it’s equivalent to (4.5 + 25.5) = 30 binary observables with a mean of 0.15.
(44) can be summarized by saying




θ ∼ Beta(α, β)

(Yi|θ) IID∼ Bernoulli(θ),
i = 1, . . . , n



→ (θ|y) ∼ Beta(α + s, β + n− s), (2.45)

where y = (y1, . . . , yn) and s =
∑n

i=1 yi.
Suppose the n = 400 observed mortality indicators consist of s = 72 1s

and (n− s) = 328 0s.
Then the prior is Beta(4.5,25.5), the likelihood is Beta(73,329), the pos-

terior for θ is Beta(76.5,353.5), and the three densities plotted on the same
graph come out as follows:
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Figure 2.9: Prior (Beta (4.5, 25.5)), likelihood (Beta (73.0, 329.0)), and pos-
terior (Beta (76.5, 353.5)) densities.

> plot( { p( theta, 4.5, 25.5 ), p( theta, 73.0, 329.0 ),

p( theta, 76.5, 353.5 ) }, theta = 0 .. 0.4, color = black );

In this case the posterior and the likelihood nearly coincide, because the
data information outweighs the prior information by 400

30
= more than 13 to

1.
The mean of a Beta(α, β) distribution is α

α+β
; with this in mind the

posterior mean has a nice expression as a weighted average of the prior mean
and data mean, with weights determined by the effective sample size of the
prior, (α + β), and the data sample size n:

α + s

α + β + n
=

(
α + β

α + β + n

) (
α

α + β

)
+

(
n

α + β + n

) ( s

n

)

posterior
mean

=

(
prior

weight

)(
prior
mean

)
+

(
data

weight

)(
data
mean

)
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.178 = (.070) (.15) + (.93) (.18) .

Another way to put this is that the data mean, ȳ = s
n

= 72
400

= .18, has
been shrunk toward the prior mean .15 by (in this case) a modest amount:
the posterior mean is about .178, and the shrinkage factor is 30

30+400
= about

.07.
Comparison with frequentist modeling. As we saw back on pp. 9–

10, to analyze these data as a frequentist you would appeal to the Central
Limit Theorem: n = 400 is big enough so that the sampling distribution of

Ȳ is approximately N
[
θ, θ(1−θ)

n

]
, so an approximate 95% confidence interval

for θ would be centered at θ̂ = ȳ = 0.18, with an estimated standard error of√
θ̂(1−θ̂)

n
= 0.0192, and would run roughly from 0.142 to 0.218.

By contrast the posterior for θ is also approximately Gaussian (see the
graph on the next page), with a mean of 0.178 and an SD of

√
α∗β∗

(α∗ + β∗)2(α∗ + β∗ + 1)
= 0.0184,

where α∗ and β∗ are the parameters of the beta posterior distribution; a
95% central posterior interval for θ would then run from about 0.178 −
(1.96)(0.0184) = 0.142 to 0.178 + (1.96)(0.0184) = 0.215.

> g := ( theta, mu, sigma ) -> exp( - ( theta - mu )^2 /

( 2 * sigma^2 ) ) / ( sigma * sqrt( 2 * Pi ) );

2

(theta - mu)

exp(- 1/2 -------------)

2

sigma

g := (theta, mu, sigma) -> ------------------------

sigma sqrt(2 Pi)

> plot( { p( theta, 76.5, 353.5 ), g( theta, 0.178, 0.0184 ) },

theta = 0.10 .. 0.26, color = black );

The Bayesian analysis here is equivalent to one in which a dataset con-
sisting of (0.15)(30) = 4.5 1s and (1 − 0.15)(30) = 25.5 0s is appended to
the observed data, and a frequentist analysis is carried out on this merged
dataset.
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Figure 2.10: The (Beta (76.5, 353.5)) posterior and the Gaussian distribution,
with the same mean and variance, as an approximation to it.

The two approaches (frequentist based only on the sample, Bayesian
based on the sample and the prior I’m using) give almost the same answers in
this case, a result that’s typical of situations with fairly large n and relatively
diffuse prior information.

Note, however, that the interpretation of the two analyses differs some-
what:

• In the frequentist approach θ is fixed but unknown and Ȳ is random,
with the analysis based on imagining what would happen if the hypothetical
random sampling were repeated, and appealing to the fact that across these
repetitions (Ȳ − θ)

·∼ N(0, .0192); whereas

• In the Bayesian approach ȳ is fixed at its observed value and θ is treated
as random, as a means of quantifying your posterior uncertainty about it:
(θ − ȳ|ȳ)

·∼ N(0, .0182).

This means among other things that, while it’s not legitimate with the
frequentist approach to say that Pf (.14 ≤ θ ≤ .22)

.
= .95, which is what many
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users of confidence intervals would like them to mean, the corresponding
statement PB(.14 ≤ θ ≤ .22|y, diffuse prior information)

.
= .95 is a natural

consequence of the Bayesian approach.
In the case of diffuse prior information this justifies the fairly common

practice of computing inferential summaries in a frequentist way and then
interpreting them Bayesianly.

When nondiffuse prior information is available and you use it, your answer
will differ from a frequentist analysis based on the same likelihood.

If your prior is retrospectively seen to have been well-calibrated you will
get a better answer than with the frequentist approach; if poorly calibrated,
a worse answer (Samaniego and Reneau, 1994):

“bad” Bayesian ≤ frequentist ≤ “good” Bayesian
What you make of this depends on your risk-aversion: Is it better to try

to land on the right in this box, running some risk of landing on the left, or
to steer a middle course?

(NB I’ll give several examples later in which a Bayesian analysis is better
even with diffuse prior information.)

Bernoulli Prediction. The predictive distribution for future Yi in the
Bernoulli model was shown back on p. 33 (equation (35)) to be

p(Ym+1 = ym+1, . . . , Yn = yn|y1, . . . , ym) = (2.46)

=

∫ 1

0

n∏

i=m+1

θyi(1− θ)1−yi p(θ|y1, . . . , ym) dθ

We’ve seen that if the prior is taken to be Beta(α, β) the posterior p(θ|y1,
. . . , ym) in this expression is Beta(α∗, β∗), where α∗ = α + s and β∗ =
β + (n− s).

As an example of an explicit calculation with (46) in this case, suppose
that we’ve observed n of the Yi, obtaining data vector y = (y1, . . . , yn), and
we want to predict Yn+1.

Obviously p(Yn+1 = yn+1|y) has to be a Bernoulli(θ∗) distribution for
some θ∗, and intuition says that θ∗ should just be the mean α∗

α∗+β∗
of the

posterior distribution for θ given y.
(46) and an application of (39) in this case give for p(Yn+1 = yn+1|y) the

expressions

∫ 1

0

θyn+1(1− θ)1−yn+1
Γ(α∗ + β∗)

Γ(α∗) Γ(β∗)
θα∗−1(1− θ)β∗−1 dθ (2.47)
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=
Γ(α∗ + β∗)

Γ(α∗) Γ(β∗)

∫ 1

0

θα∗+yn+1−1(1− θ)(β∗−yn+1+1)−1 dθ

=

[
Γ(α∗ + yn+1)

Γ(α∗)

] [
Γ(β∗ − yn+1 + 1)

Γ(β∗)

] [
Γ(α∗ + β∗)

Γ(α∗ + β∗ + 1)

]

Now it’s a fact about the Gamma function, which you can verify with
Maple, that for any real number x, Γ(x+1)

Γ(x)
= x:

> assume( x, real );

> simplify( GAMMA( x + 1 ) / GAMMA( x ) );

x~

So (47), for example in the case yn+1 = 1, becomes

p(Yn+1 = 1|y) =

[
Γ(α∗ + 1)

Γ(α∗)

] [
Γ(α∗ + β∗)

Γ(α∗ + β∗ + 1)

]

=
α∗

α∗ + β∗ , (2.48)

confirming intuition.
For example, with (α, β) = (4.5, 25.5) and n = 400 with s = 72, we

saw earlier that the posterior for θ was Beta(76.5, 353.5), and this posterior
distribution has mean α∗

α∗+β∗
= 0.178.

In this situation you would expect the next AMI patient who comes along
to die within 30 days of admission with probability 0.178, so the predictive
distribution above makes good sense.

The Binomial Distribution. We’ve seen that a sufficient statistic for
θ with a Bernoulli likelihood is the sum s =

∑n

i=1 yi of the 1s and 0s.

This means that if you buy into the model (Yi|θ) IID∼ Bernoulli(θ) you
don’t care whether you observe the entire data vector Y = (Y1, . . . , Yn) or its
sum S =

∑n
i=1 Yi.

The distribution of S in repeated sampling has a familiar form: it’s just
the binomial distribution Binomial(n, θ), which counts the number of suc-
cesses in a series of IID success/failure trials.

Recall that if S ∼ Binomial(n, θ) then S has discrete density

p(S = s|θ) =

{ (
n

s

)
θs (1− θ)n−s if s = 0, . . . , n

0 otherwise

}
.
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Thus we’ve learned another conjugate updating rule in simple Bayesian
modeling, more or less for free: if the data set just consists of a single draw
S from a binomial distribution, then the conjugate prior for the success
probability θ is Beta(α, β), and the updating rule, which follows directly
from (45), is

{
θ ∼ Beta(α, β)

(S|θ) ∼ Binomial(n, θ)

}
→ (θ|s) ∼ Beta(α + s, β + n− s). (2.49)

Two important general points.
1 (the sequential nature of Bayesian learning) Suppose you and I are

observing data (y1, . . . , yn) to learn about a parameter θ, and we have no
reason throughout this observation process to change (the sampling distri-
bution/likelihood part of) our model.

We both start with the same prior p1(θ) before any of the data arrive,
but we adopt what appear to be different analytic strategies:
• You wait until the whole data set (y1, . . . , yn) has been observed and

update p1(θ) directly to the posterior distribution p(θ|y1, . . . , yn), whereas
• I stop after seeing (y1, . . . , ym) for some m < n, update p1(θ) to an

intermediate posterior distribution p(θ|y1, . . . , ym), and then I want to go on
from there, observing (ym+1, . . . , yn) and finally updating to a posterior on θ
that takes account of the whole data set (y1, . . . , yn).

Q1 What should I use for my intermediate prior distribution p2(θ)?
A1 Naturally enough, the right thing to do is to set p2(θ) to the current

posterior p(θ|y1, . . . , ym).
The informal way people refer to this is to say that yesterday’s posterior

distribution is today’s prior distribution.
Q2 If I use the posterior in A1, do you and I get the same answer for

p(θ|y1, . . . , yn) in the end?
A1 Yes (you can check this).
2 (the generality of conjugate analysis) Having seen conjugate priors used

with binary outcomes, you can see that conjugate analysis has a variety of
advantages:
• It’s mathematically straightforward;
• The posterior mean turns out to be a weighted average of the prior and

data means; and
• You get the nice interpretation of the prior as an information source

that’s equivalent to a data set, and it’s easy to figure out the prior sample
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size.
It’s natural to wonder, though, what’s lost in addition to what’s gained

by adopting a conjugate prior.
The main disadvantage of conjugate priors is that in their simplest form

they’re not flexible enough to express all possible forms of prior information.
For example, in the AMI mortality case study, what if you wanted to

combine a bimodal prior distribution with the Bernoulli likelihood?
This isn’t possible when using a single member of the Beta(α, β) family.
However, it’s possible to prove the following:
Theorem (Diaconis and Ylvisaker 1985). Given a particular likelihood

that’s a member of the exponential family (this will be covered in Section 2.7
below), any prior distribution can be expressed as a mixture of priors that
are conjugate to that likelihood.

For example, in the AMI case study the model could be

J ∼ p(J)

(θ|J) ∼ Beta(αJ , βJ) (2.50)

(Yi|θ) IID∼ B(θ), i = 1, . . . , n,

for some distribution p(J) on the positive integers—this is completely general
but loses some of the advantages of simple conjugate analysis (e.g., closed-
form computations are no longer possible).

The exponential family. In our first (and only, so far) example of
conjugate analysis, with the Bernoulli/binomial likelihood (41), we worked
out the form of the conjugate prior just by looking at the likelihood function.

This works in simple problems, but it would be nice to have a general
way of figuring out what the conjugate prior has to be (if it exists) once the
likelihood is specified.

It was noticed a long time ago that many of the standard sampling distri-
butions that you’re likely to want to use in constructing likelihood functions
in parametric Bayesian modeling have the same general form, which is re-
ferred to as the exponential family.

I bring this up here because there’s a simple theorem which specifies the
conjugate prior for likelihoods that belong to the exponential family.

With the Bernoulli likelihood (41) in the hospital mortality case study, the
unknown quantity θ in the likelihood function was a scalar (1–dimensional;
univariate), but this will not always be true: more generally and more usually
θ is a vector of length (say) k.
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We’ll begin to look at problems with multivariate θ (k > 1) in Section
2.9, but—for continuity with the later material—here I’m going to give the
definition of the exponential family for vector θ.

Definition (e.g., Bernardo and Smith, 1994): Given data y1 (a sample
of size 1) and a parameter vector θ = (θ1, . . . , θk), the (marginal) sampling
distribution p(y1|θ) belongs to the k-dimensional exponential family if it can
be expressed in the form

p(y1|θ) = c f1(y1) g1(θ) exp

[
k∑

j=1

φj(θ) hj(y1)

]
(2.51)

for y1 ∈ Y and 0 otherwise; if Y doesn’t depend on θ the family is called
regular.

The vector [φ1(θ), . . . , φk(θ)] in (51) is called the natural parameterization
of the exponential family.

In this case the joint distribution p(y|θ) of a sample y = (y1, . . . , yn) of
size n which is conditionally IID from (51) (which also defines, as usual, the
likelihood function l(θ|y)) will be

p(y|θ) = l(θ|y) =
n∏

i=1

p(yi|θ) (52)

= c

[
n∏

i=1

f1(yi)

]
[g1(θ)]

n exp

[
k∑

j=1

φj(θ)
n∑

i=1

hj(yi)

]
.

This leads to another way to define the exponential family: in (52) take
f(y) =

∏n
i=1 f1(yi) and g(θ) = [g1(θ)]

n to yield
Definition: Given data y = (y1, . . . , yn) (a conditionally IID sample of size

n) and a parameter vector θ = (θ1, . . . , θk), the (joint) sampling distribution
p(y|θ) belongs to the k-dimensional exponential family if it can be expressed
in the form

p(y|θ) = c f(y) g(θ) exp

[
k∑

j=1

φj(θ)

n∑

i=1

hj(yi)

]
. (2.53)

Either way you can see that {
∑n

i=1 h1(yi), . . . ,
∑n

i=1 hk(yi)} is a set of
sufficient statistics for θ under this sampling model, because the likelihood
l(θ|y) depends on y only through the values of {h1, . . . , hk}.
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Now here’s the theorem about the conjugate prior: if the likelihood l(θ|y)
is of the form (53), then in searching for a conjugate prior p(θ)—that is,
a prior of the same functional form as the likelihood—you can see directly
what will work:

p(θ) = c g(θ)τ0 exp

[
k∑

j=1

φj(θ) τj

]
, (2.54)

for some τ = (τ0, . . . , τk).
With this choice the posterior for θ will be

p(θ|y) = c g(θ)1+τ0 exp

{
k∑

j=1

φj(θ)

[
τj +

n∑

i=1

hj(y)

]}
, (2.55)

which is indeed of the same form (in θ) as (53).
As a first example, with s =

∑n
i=1 yi, the Bernoulli/binomial likelihood

in (41) can be written

l(θ|y) = c θs(1− θ)n−s

= c (1− θ)n

(
θ

1− θ

)s

(2.56)

= c (1− θ)n exp

[
s log

(
θ

1− θ

)]
,

which shows (a) that this sampling distribution is a member of the exponen-
tial family with k = 1, g(θ) = (1− θ)n, φ1(θ) = log

(
θ

1−θ

)
(NB the natural

parameterization, and the basis of logistic regression), and h1(yi) = yi, and
(b) that

∑n
i=1 h1(yi) = s is sufficient for θ.

Then (54) says that the conjugate prior for the Bernoulli/binomial likeli-
hood is

p(θ) = c (1− θ)nτ0 exp

[
τ1 log

(
θ

1− θ

)]

= c θα−1(1− θ)β−1 = Beta(α, β) (2.57)

for some α and β, as we’ve already seen is true.

2.4 Integer-valued outcomes

Case Study: Hospital length of stay for birth of premature babies. As a small
part of a study I worked on at the Rand Corporation in the late 1980s, we
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obtained data on a random sample of n = 14 women who came to a hospital
in Santa Monica, CA, in 1988 to give birth to premature babies.

One (integer-valued) outcome of interest was y = length of hospital stay
(LOS).

Here’s a preliminary look at the data in an excellent freeware statisti-
cal package called R (see http://www.r-project.org/ for more details and
instructions on how to download the package).

greco 2740> R

R : Copyright 2005, The R Foundation for Statistical Computing

Version 2.1.0 Patched (2005-05-12), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for a HTML browser interface to help.

Type ’q()’ to quit R.

[Previously saved workspace restored]

> y

[1] 1 2 1 1 1 2 2 4 3 6 2 1 3 0

> sort( y )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> table( y )

0 1 2 3 4 6

1 5 4 2 1 1



Bayesian Modeling, Inference and Prediction 63

> stem( y, scale = 2 )

The decimal point is at the |

0 | 0

1 | 00000

2 | 0000

3 | 00

4 | 0

5 |

6 | 0

> mean( y )

[1] 2.071429

> sd( y )

[1] 1.54244

> q( )

Save workspace image? [y/n/c]: y

rosalind 1777>

One possible model for non-negative integer-valued outcomes is the Pois-
son distribution

P (Yi = yi|λ) =

{
λyie−λ

yi!
for yi = 0, 1, . . .

0 otherwise

}
, (2.58)

for some λ > 0.
As usual Maple can be used to work out the mean and variance of this

distribution:

> assume( lambda > 0 );

> p := ( y, lambda ) -> lambda^y * exp( - lambda ) / y!;
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y

lambda exp(-lambda)

p := (y, lambda) -> --------------------

y!

> simplify( sum( p( y, lambda ), y = 0 .. infinity ) );

1

> simplify( sum( y * p( y, lambda ), y = 0 .. infinity ) );

lambda~

> simplify( sum( ( y - lambda )^2 * p( y, lambda ),

y = 0 .. infinity ) );

lambda~

Thus if Y ∼ Poisson(λ), E(Y ) = V (Y ) = λ, which people sometimes
express by saying that the variance-to-mean ratio (VTMR) for the Poisson
is 1.

R can be used to check informally whether the Poisson is a good fit to the
LOS data:

> dpois( 0:7, mean( y ) )

[1] 0.126005645 0.261011693 0.270333539 0.186658872 0.096662630

[6] 0.040045947 0.013825386 0.004091186

> print( n <- length( y ) )

[1] 14

> table( y ) / n

0 1 2 3 4 6

0.07142857 0.35714286 0.28571429 0.14285714 0.07142857 0.07142857

> cbind( c( dpois( 0:6, mean( y ) ),

1 - sum( dpois( 0:6, mean( y ) ) ) ),

apply( outer( y, 0:7, ’==’ ), 2, sum ) / n )
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[,1] [,2]

[1,] 0.126005645 0.07142857

[2,] 0.261011693 0.35714286

[3,] 0.270333539 0.28571429

[4,] 0.186658872 0.14285714

[5,] 0.096662630 0.07142857

[6,] 0.040045947 0.00000000

[7,] 0.013825386 0.07142857

[8,] 0.005456286 0.00000000

The second column in the above table records the values of the Poisson
probabilities for λ = 2.07, the mean of the yi, and the third column is the
empirical relative frequencies; informally the fit is reasonably good.

Another informal check comes from the fact that the sample mean and
variance are 2.07 and 1.5422 .

= 2.38, which are reasonably close.
Exchangeability. As with the AMI mortality case study, before the data

arrive I recognize that my uncertainty about the Yi is exchangeable, and
you would expect from a generalization of the binary-outcomes version of de
Finetti’s Theorem that the structure of a plausible Bayesian model for the
data would then be

θ ∼ p(θ) (prior) (2.59)

(Yi|θ) IID∼ F (θ) (likelihood),

where θ is some parameter (vector) and F (θ) is some parametric family of
distributions on the non-negative integers indexed by θ.

Thus, in view of the preliminary examination of the data above, a plau-
sible Bayesian model for these data is

λ ∼ p(λ) (prior) (2.60)

(Yi|λ)
IID∼ Poisson(λ) (likelihood),

where λ is a positive real number.
NB (1) This approach to model-building involves a form of cheating,

because we’ve used the data twice: once to choose the model, and again to
draw conclusions conditional on the chosen model.

The result in general can be a failure to assess and propagate model
uncertainty (Draper 1995).
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(2) Frequentist modeling often employs this same kind of cheating in
specifying the likelihood function.

(3) There are two Bayesian ways out of this dilemma: cross-validation
and Bayesian non-parametric/semi-parametric methods.

The latter is beyond the scope of this course; I’ll give examples of the
former later.

To get more practice with Bayesian calculations I’m going to ignore the
model uncertainty problem for now and pretend that somehow we knew that
the Poisson was a good choice.

The likelihood function in model (2.60) is

l(λ|y) = c pY1,...,Yn(y1, . . . , yn|λ)

= c

n∏

i=1

pYi
(yi|λ) (2.61)

= c
n∏

i=1

λyie−λ

yi!

= c λs e−nλ,

where y = (y1, . . . , yn) and s =
∑n

i=1 yi; here (
∏n

i=1 yi!)
−1

can be absorbed
into the generic positive c because it doesn’t involve λ.

Thus (as was true in the Bernoulli model) s =
∑n

i=1 yi is sufficient for λ
in the Poisson model, and we can write l(λ|s) instead of l(λ|y) if we want.

If a conjugate prior p(λ) for λ exists it must be such that the product
p(λ) l(λ|s) has the same mathematical form as p(λ).

Examination of (61) reveals that the same trick works here as with Ber-
noulli data, namely taking the prior to be of the same form as the likelihood:

p(λ) = c λα−1e−βλ (2.62)

for some α > 0, β > 0—this is the Gamma distribution λ ∼ Γ(α, β) for λ > 0
(see Gelman et al., 2003, Appendix A).

As usual Maple can work out the normalizing constant:

> assume( lambda > 0, alpha > 0, beta > 0 );

> p1 := ( lambda, alpha, beta ) -> lambda^( alpha - 1 ) *

exp( - beta * lambda );
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p1 := (lambda, alpha, beta) ->

(alpha - 1)

lambda exp(-beta lambda)

> simplify( integrate( p1( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

(-alpha~)

beta~ GAMMA(alpha~)

Thus c−1 = β−α Γ(α) and the proper definition of the Gamma distribution
is

If λ ∼ Γ(α, β) then p(λ) =
βα

Γ(α)
λα−1 e−β λ (2.63)

for α > 0, β > 0.

As usual Maple can also be used to explore the behavior of this family of
distributions as a function of its inputs α and β:

> p := ( lambda, alpha, beta ) -> beta^alpha *

lambda^( alpha - 1 ) * exp( - beta * lambda ) /

GAMMA( alpha );

p := (lambda, alpha, beta) ->

alpha (alpha - 1)

beta lambda exp(-beta lambda)

---------------------------------------------

GAMMA(alpha)

> plotsetup( x11 );

> plot( { p( lambda, 1, 1 ), p( lambda, 2, 1 ),

p( lambda, 3, 1 ), p( lambda, 6, 1 ) },

lambda = 0 .. 14, color = black );

α evidently controls the shape of the Gamma family.
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Figure 2.11: Gamma (α, β) densities with β = 1 and α = {1, 2, 3, 6}; the
distributions change shape, becoming more Gaussian, as α increases.

When α = 1 the Gamma distributions have a special form which you’ll
probably recognize—they’re the exponential distributions E(β): for β > 0

If λ ∼ E(β) then p(λ) =

{
β e−β λ for λ > 0

0 otherwise

}
. (2.64)

> plot( { p( lambda, 2, 1 ), p( lambda, 2, 2 ),

p( lambda, 2, 3 ) }, lambda = 0 .. 7, color = black );

In the Gamma family the parameter β controls the spread or scale of the
distribution.

Definition Given a random quantity y whose density p(y|σ) depends on a
parameter σ > 0, if it’s possible to express p(y|σ) in the form 1

σ
f( y

σ
), where

f(·) is a function which does not depend on y or σ, then σ is called a scale
parameter for the parametric family p.
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Figure 2.12: Gamma (α, β) densities with α = 2 and β = {1, 2, 3}; as β goes
up the spread of the distributions decreases.

Letting f(t) = e−t and taking σ = 1
β
, you can see that the Gamma

family can be expressed in this way, so 1
β

is a scale parameter for the Gamma
distribution.

As usual Maple can also work out the mean and variance of this family:

> simplify( integrate( p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

1

> simplify( integrate( lambda * p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

alpha~

------

beta~
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> simplify( integrate( ( lambda - alpha / beta )^2 *

p( lambda, alpha, beta ), lambda = 0 .. infinity ) );

alpha~

------

2

beta~

Thus if λ ∼ Γ(α, β) then E(λ) = α
β

and V (λ) = α
β2 .

Conjugate updating is now straightforward: with y = (y1, . . . , yn) and
s =

∑n
i=1 yi, by Bayes’ Theorem

p(λ|y) = c p(λ) l(λ|y)

= c
(
c λα−1 e−βλ

) (
c λs e−nλ

)
(2.65)

= c λ(α+s)−1 e−(β+n)λ,

and the resulting distribution is just Γ(α + s, β + n).
Conjugate Poisson analysis. This can be summarized as follows:





(λ|α, β) ∼ Γ(α, β)

(Yi|λ)
IID∼ Poisson(λ),

i = 1, . . . , n



→ (λ|s) ∼ Γ(α∗, β∗), (2.66)

where (α∗, β∗) = (α + s, β + n) and s =
∑n

i=1 yi is a sufficient statistic for λ
in this model.

The posterior mean of λ here is evidently α∗

β∗
= α+s

β+n
, and the prior and

data means are α
β

and ȳ = s
n
, so (as was the case in the Bernoulli model) the

posterior mean can be written as a weighted average of the prior and data
means:

α + s

β + n
=

(
β

β + n

)(
α

β

)
+

(
n

β + n

)( s

n

)
. (2.67)

Thus the prior sample size n0 in this model is just β (which makes sense
given that 1

β
is the scale parameter for the Gamma distribution), and the

prior acts like a dataset consisting of β observations with mean α
β
.

LOS data analysis. Suppose that, before the current data set is scheduled
to arrive, I know little about the mean length of hospital stay of women giving
birth to premature babies.
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Figure 2.13: The Gamma (ε, ε) prior with ε = 0.001.

Then for my prior on λ I’d like to specify a member of the Γ(α, β) fam-
ily which is relatively flat in the region in which the likelihood function is
appreciable.

The Γ(ε, ε) prior. A convenient and fairly all-purpose default choice of
this type is Γ(ε, ε) for some small ε like 0.001.

When used as a prior this distribution has prior sample size ε; it also has
mean 1, but that usually doesn’t matter when ε is tiny.

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4,

color = black );

With the LOS data s = 29 and n = 14, so the likelihood for λ is like a

Γ(30, 14) density, which has mean 30
14

.
= 2.14 and SD

√
30
142

.
= 0.39.

Thus by the Empirical Rule the likelihood is appreciable in the range
(mean ± 3 SD)

.
= (2.14 ± 1.17)

.
= (1.0, 3.3), and you can see from the plot

above that the prior is indeed relatively flat in this region.



72 David Draper

From the Bayesian updating in (66), with a Γ(0.001, 0.001) prior the
posterior is Γ(29.001, 14.001).

LOS data analysis. It’s useful, in summarizing the updating from
prior through likelihood to posterior, to make a table that records measures
of center and spread at each point along the way.

For example, the Γ(0.001, 0.001) prior, when regarded (as usual) as a
density for λ, has mean 1.000 and SD

√
1000

.
= 31.6 (i.e., informally, as far

as we’re concerned, before the data arrive λ could be anywhere between 0
and (say) 100).

And the Γ(29.001, 14.001) posterior has mean 29.001
14.001

.
= 2.071 and SD√

29.001
14.0012

.
= 0.385, so after the data have arrived we know quite a bit more

than before.
There are two main ways to summarize the likelihood—Fisher’s approach

based on maximizing it, and the Bayesian approach based on regarding it as
a density and integrating it—and it’s instructive to compute them both and
compare.

The likelihood-integrating approach (which, at least in one-parameter
problems, is essentially equivalent to Fisher’s (1935) attempt at so-called
fiducial inference) treats the Γ(30, 14) likelihood as a density for λ, with

mean 30
14

.
= 2.143 and SD

√
30
142

.
= 0.391.

As for the likelihood-maximizing approach, from (61) the log likelihood
function is

ll(λ|y) = ll(λ|s) = log
(
c λse−nλ

)
= c + s log λ− nλ, (2.68)

and this is maximized as usual (check that it’s the max) by setting the
derivative equal to 0 and solving:

∂

∂λ
ll(λ|s) =

s

λ
− n = 0 iff λ = λ̂MLE =

s

n
= ȳ. (2.69)

Since the MLE λ̂MLE turns out to be our old friend the sample mean ȳ,

you might be tempted to conclude immediately that ŜE
(
λ̂MLE

)
= σ̂√

n
, where

σ̂ = 1.54 is the sample SD, and indeed it’s true in repeated sampling that
V
(
Ȳ
)

= V(Y1)
n

; but the Poisson distribution has variance V (Y1) = λ, so that√
V
(
Ȳ
)

=
√

λ√
n
, and there’s no guarantee in the Poisson model that the best

way to estimate
√

λ in this standard error calculation is with the sample SD



Bayesian Modeling, Inference and Prediction 73

σ̂ (in fact we have a strong hint from the above MLE calculation that the
sample variance is irrelevant to the estimation of λ in the Poisson model).

The right (large-sample) likelihood-based standard error for λ̂MLE, using
the Fisher information logic we examined earlier, is obtained from the fol-
lowing calculation:

∂2

∂λ2
log l(λ|y) = − s

λ2
, so (2.70)

Î
(
λ̂MLE

)
=

[
− ∂2

∂λ2
log l(λ|y)

]

λ=λ̂MLE

=
( s

λ2

)
λ=ȳ

=
s

ȳ2
=

n

ȳ
, and

V̂
(
λ̂MLE

)
= Î−1

(
λ̂MLE

)
=

ȳ

n
=

λ̂MLE

n
.

So in this case study Fisher’s likelihood-maximizing approach would es-

timate λ by λ̂MLE = ȳ = 29
14

.
= 2.071, with a give-or-take of ŜE

(
λ̂MLE

)
=

√
λ̂MLE√

n
= 1.44√

14

.
= 0.385.

All of this may be summarized in the following table:
Likelihood

Prior Maximizing Integrating Posterior
Mean/Estimate 1.00 2.071 2.143 2.071

SD/SE 31.6 0.385 0.391 0.385
The discrepancies between the likelihood-maximizing and likelihood-in-

tegrating columns in this table would be smaller with a larger sample size
and would tend to 0 as n→∞.

The prior-likelihood-posterior plot comes out like this:

> plot( { p( lambda, 0.001, 0.001 ), p( lambda, 30, 14 ),

p( lambda, 29.001, 14.001 ) }, lambda = 0 .. 5,

color = black );

For interval estimation in the maximum-likelihood approach the best we
could do, using the technology I’ve described to you so far, would be to appeal
to the CLT (even though n is only 14) and use λ̂MLE ± 1.96 ŜE(λ̂MLE)

.
=

2.071 ± (1.96)(0.385)
.
= (1.316, 2.826) as an approximate 95% confidence

interval for λ.
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Figure 2.14: Prior (almost flat, barely visible toward the left of the plot),
likelihood (the right-most density), and posterior (the central density) distri-
butions in the length of stay case study.

You can see from the previous plot that the likelihood function is skewed,
so a more careful method (e.g., the bootstrap; Efron 1979) would be needed
to create a better interval estimate from the likelihood point of view.

Some trial and error with Maple can be used to find the lower and upper
limits of the central 95% posterior interval for λ:

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 0 .. 1.316 ) );

.01365067305

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.4 ) );

.02764660367
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> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 0 .. 1.387 ) );

.02495470339

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 2.826 .. infinity ) );

.03403487851

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 2.890 .. 5 ) );

.02505306648

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 2.890 .. infinity ) );

.02505307631

Thus a 95% (central) posterior interval for λ, given a diffuse prior, runs
from 1.387 to 2.890, and is (correctly) asymmetric around the posterior mean
of 2.071.

R can be used to work out the limits of this interval even more readily:

> help( qgamma )

GammaDist package:base R Documentation

The Gamma Distribution

Description:

Density, distribution function, quantile function and random

generation for the Gamma distribution with parameters ‘shape’

and ‘scale’.

Usage:

dgamma(x, shape, scale=1, log = FALSE)

pgamma(q, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
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qgamma(p, shape, scale=1, lower.tail = TRUE, log.p = FALSE)

rgamma(n, shape, scale=1)

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations.

shape, scale: shape and scale parameters.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are

P[X <= x], otherwise, P[X > x].

Details:

If ‘scale’ is omitted, it assumes the default value of ‘1’.

The Gamma distribution with parameters ‘shape’ = a and

‘scale’ = s has density

f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)

for x > 0, a > 0 and s > 0. The mean and variance are

E(X) = a*s and Var(X) = a*s^2.

> qgamma( 0.025, 29.001, 1 / 14.001 )

[1] 1.387228

> qgamma( 0.975, 29.001, 1 / 14.001 )

[1] 2.890435

Maple or R can also be used to obtain the probability content, according to
the posterior distribution, of the approximate 95% (large-sample) likelihood-
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based interval:

> evalf( Int( p( lambda, 29.001, 14.001 ),

lambda = 1.316 .. 2.826 ) );

.9523144484

So the maximization approach has led to decent approximations here
(later I’ll give examples where maximum likelihood doesn’t do so well in
small samples).

Predictive distributions in this model can be computed by Maple in the
usual way: for instance, to compute p(yn+1|y) for y = (y1, . . . , yn) we want
to evaluate

p(yn+1|y) =

∫ ∞

0

p(yn+1, λ|y) dλ

=

∫ ∞

0

p(yn+1|λ, y) p(λ|y) dλ (2.71)

=

∫ ∞

0

p(yn+1|λ) p(λ|y) dλ

=

∫ ∞

0

λyn+1e−λ

yn+1!

(β∗)α∗

Γ(α∗)
λα∗−1 e−β∗λ dλ,

=
(β∗)α∗

Γ(α∗) yn+1!

∫ ∞

0

λ(α∗+yn+1)−1 e−(β∗+1)λ dλ,

where α∗ = α+ s and β∗ = β +n; in these expressions yn+1 is a non-negative
integer.

> assume( astar > 0, bstar > 0, yf > 0 );

> simplify( bstar^astar * int( lambda^( astar + yf - 1 ) *

exp( - ( bstar + 1 ) * lambda ), lambda = 0 .. infinity ) /

( GAMMA( astar ) * yf! ) );

astar~ (-astar~ - yf~)

bstar~ (bstar~ + 1) GAMMA(astar~ + yf~)

------------------------------------------------------------

GAMMA(astar~) GAMMA(yf~ + 1)
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Predictive distributions. A bit of rearranging then gives that for
yn+1 = 0, 1, . . .,

p(yn+1|y) =
Γ(α∗ + yn+1)

Γ(α∗) Γ(yn+1 + 1)

(
β∗

β∗ + 1

)α∗ (
1

β∗ + 1

)yn+1

. (2.72)

This is called the Poisson-Gamma distribution, because (71) is asking us
to take a mixture (weighted average) of Poisson distributions, using proba-
bilities from a Gamma distribution as the mixing weights.

(72) is a generalization of the negative binomial distribution (e.g., Johnson
and Kotz 1994), which you may have encountered in your earlier probability
study.

Maple can try to get simple expressions for the mean and variance of this
distribution:

> pg := ( y, alpha, beta ) -> GAMMA( alpha + y ) *

( beta / ( beta + 1 ) )^alpha * ( 1 / ( beta + 1 ) )^y /

( GAMMA( alpha ) * GAMMA( y + 1 ) );

pg := (y, alpha, beta) ->

/ beta \alpha / 1 \y

GAMMA(alpha + y) |--------| |--------|

\beta + 1/ \beta + 1/

--------------------------------------------

GAMMA(alpha) GAMMA(y + 1)

> simplify( sum( pg( y, alpha, beta ), y = 0 .. infinity ) );

1

> simplify( sum( y * pg( y, alpha, beta ), y = 0 .. infinity ) );

alpha

-----

beta

So the mean of the distribution in (72) is E(yn+1|y) = α∗

β∗
.



Bayesian Modeling, Inference and Prediction 79

> simplify( sum( ( y - alpha / beta )^2 * pg( y, alpha, beta ),

y = 0 .. infinity ) );

2 / beta \alpha alpha - beta

alpha |--------| hypergeom([alpha, - ------------, ... ],

\beta + 1/ beta

alpha alpha 1 / 2

[- -----, - -----], --------) / beta

beta beta beta + 1 /

Maple has failed to realize that this expression may be considerably sim-
plified: Bernardo and Smith (1994) note that the variance of the distribution
in (72) is just

V (yn+1|y) =
α∗

β∗

(
1 +

1

β∗

)
. (2.73)

Inference and prediction. This provides an interesting contrast be-
tween inference and prediction: we’ve already seen in this model that the
posterior mean and variance of λ are α∗

β∗
= α+s

β+n
and α∗

(β∗)2
= α+s

(β+n)2
, respec-

tively.
Posterior

Quantity Mean Variance

λ α+s
β+n

α+s
(β+n)2

= α+s
β+n

(
0 + 1

β+n

)

yn+1
α+s
β+n

α+s
β+n

(
1 + 1

β+n

)

Thus λ (the inferential objective) and yn+1 (the predictive objective) have
the same posterior mean, but the posterior variance of yn+1 is much larger,
as can be seen by the following argument.

(1) Denoting by µ the mean of the population from which the Yi are
thought of as (like) a random sample, when n is large α and β will be small
in relation to s and n, respectively, and the ratio ȳ = s

n
should more and

more closely approach µ—thus for large n,

E(λ|y) = E(yn+1|y)
.
= µ. (2.74)

(2) For the Poisson distribution the (population) mean µ and variance σ2

are equal, meaning that for large n the ratio α+s
β+n

will be close both to µ and

to σ2.
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Thus for large n,

V (λ|y)
.
=

σ2

n
but V (yn+1|y)

.
= σ2. (2.75)

An informal way to restate (75) is to say that accurate prediction of new
data is an order of magnitude harder (in powers of n) than accurate inference
about population parameters.

Bayesian model-checking with predictive distributions. One way
to check a model like (58) is as follows.

for ( i in 1:n ) {

Temporarily set aside observation yi, obtaining a new dataset y−i =
(y1, . . . , yi−1, yi+1, . . . , yn) with (n− 1) observations.

Use the current Bayesian model applied to y−i to predict yi, and summa-
rize the extent to which the actual value of yi is surprising in view of this
predictive distribution.

}

One possible measure of surprise is predictive z–scores:

zi =
yi − E[yi|y−i]√

V [yi|y−i]
. (2.76)

Compare the surprise measure with its expected behavior if the model
had been “correct” (e.g., z = (z1, . . . , zn) should have mean 0 and SD 1).

Example: the LOS data. Here’s some R code to carry out this program
on the LOS data.

> poisson.gamma <- function( y, alpha, beta ) {

log.density <- lgamma( alpha + y ) + alpha *

log( beta / ( beta + 1 ) ) + y * log( 1 / ( beta + 1 ) ) -

lgamma( alpha ) - lgamma( y + 1 )

return( exp( log.density ) )

}
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> print( y <- sort( y ) )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( y.current <- y[ -1 ] )

[1] 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( n.current <- length( y.current ) )

[1] 13

> alpha <- beta <- 0.001

> print( s.current <- sum( y.current ) )

[1] 29

> print( alpha.star <- alpha + s.current )

[1] 29.001

> print( beta.star <- beta + n.current )

[1] 13.001

> print( pg.current <- poisson.gamma( 0:9, alpha.star,

beta.star ) )

[1] 0.116595340 0.241509997 0.258750854 0.190975293 0.109124354

[6] 0.051442223 0.020820977 0.007435744 0.002389956 0.000701781

This predictive distribution is plotted in Figure 2.15

> postscript( "pg1.ps" )

> plot( 0:9, pg.current, type = ’n’, xlab = ’y’,

ylab = ’Density’ )
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Figure 2.15: The Poisson-Gamma predictive distribution with 0 omitted.

> for ( i in 0:9 ) {

segments( i, 0, i, pg.current[ i + 1 ] )

}

> dev.off( )

null device

1

The omitted observed value of 0 is not too unusual in this predictive
distribution.

The following R code loops through the whole dataset to get the predictive
z–scores.

alpha <- beta <- 0.001
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z <- rep( 0, n )

for ( i in 1:n ) {

y.current <- y[ -i ]

n.current <- length( y.current )

s.current <- sum( y.current )

alpha.star <- alpha + s.current

beta.star <- beta + n.current

predictive.mean.current <- alpha.star / beta.star

predictive.SD.current <- sqrt( ( alpha.star / beta.star ) *

( 1 + 1 / beta.star ) )

z[ i ] <- ( y[ i ] - predictive.mean.current ) /

predictive.SD.current

}

And the predictive z–scores are:

> z

[1] -1.43921925 -0.75757382 -0.75757382 -0.75757382 -0.75757382

[6] -0.75757382 -0.05138023 -0.05138023 -0.05138023 -0.05138023

[11] 0.68145253 0.68145253 1.44329065 3.06513271

> mean( z )

[1] 0.03133708

> sqrt( var( z ) )

[1] 1.155077
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Figure 2.16: Normal qqplot of the predictive z–scores.

> postscript( "pg2.ps" )

> qqnorm( z )

> abline( 0, 1 )

The 14 predictive z–scores have mean 0.03 (about right) and SD 1.16
(close enough to 1 when sampling variability is considered?), and the normal
qqplot above shows that the only really surprising observation in the data,
as far as the Poisson model was concerned, is the value of 6, which has a
z–score of 3.07.

NB The figure above is only a crude approximation to the right qqplot,
which would have to be created by simulation; even so it’s enough to suggest
how the model might be improved.

I would conclude informally (a) that the Poisson is a decent model for
these data, but (b) if you wanted to expand the model in a direction suggested



Bayesian Modeling, Inference and Prediction 85

0

0.01

0.02

0.03

0.04

0.05

v

1 2 3 4

lambda~

Figure 2.17: The Gamma (0.001, 0.001) prior for λ ∈ (0, 4).

by this diagnostic you should look for a model with extra-Poisson variation:
the sample VTMR in this dataset was about 1.15.

Diffuse priors in the LOS case study. In specifying a diffuse prior for
λ in the LOS case study, several alternatives to Γ(ε, ε) might occur to you,
including Γ(1, ε), Γ(α, β) for some large α (like 20, to get a roughly normal
prior) and small β (like 1, to have a small prior sample size), and U(0, C) for
some cutoff C (like 4) chosen to avoid truncation of the likelihood function,
where U(a, b) denotes the uniform distribution on (a, b).

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );

> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, color = black );

Γ(1, ε) doesn’t look promising initially as a flat prior, but that’s a conse-
quence of Maple’s default choice of vertical axis.
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Figure 2.18: The Gamma (1.0, 0.001) prior for λ ∈ (0, 4), with Maple’s de-
fault choice of vertical axis.

> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );

> plot( p( lambda, 20, 1 ), lambda = 0 .. 4, color = black );

> plot( p( lambda, 20, 1 ), lambda = 0 .. 40, color = black );

Γ(20, 1) does indeed look not far from Gaussian, and at first it may appear
that it is indeed relatively flat in the region where the likelihood is appreciable
(λ ∈ (1.0, 3.3)), but we’ll see below that it’s actually rather more informative
than we intend.

Recalling that the mean and SD of a Γ(α, β) random quantity are α
β

and√
α
β2 , respectively, and that when used as a prior with the Poisson likelihood
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Figure 2.19: The Gamma (1.0, 0.001) prior for λ ∈ (0, 4), with the same
vertical axis as in Figure 2.17.

the Γ(α, β) distribution acts like a dataset with prior sample size β, you can
construct the following table:

Prior Posterior
β =

α Sample Size Mean SD α∗ β∗ Mean SD
0.001 0.001 1 31.6 29.001 14.001 2.071 0.385

1 0.001 1000 1000 30 14.001 2.143 0.391
20 1 20 4.47 49 15 3.267 0.467
20 0.001 20000 4472 49 14.001 3.500 0.500
U(0, C) for C > 4 C

2
C√
12

30 14 2.143 0.391

The Γ(1, ε) prior leads to an analysis that’s essentially equivalent to the
integrated likelihood (fiducial) approach back on p. 72, and the U(0, C) prior
for C > 4 (say) produces similar results: U(0, C) yields the Γ(s + 1, n)
posterior truncated to the right of C (and this truncation has no effect if you
choose C big enough).
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Figure 2.20: The Gamma (20, 1) prior, with the same horizontal and vertical
axes as in the previous two figures.

You might say that the U(0, C) distribution has a prior sample size of
0 in this analysis, and its prior mean C

2
and SD C√

12
(both of which can

be made arbitrarily large by letting C grow without bound) are irrelevant
(an example of how intuition can change when you depart from the class of
conjugate priors).

> plot( { p( lambda, 29.001, 14.001 ), p( lambda, 30, 14.001 ),

p( lambda, 49, 15 ), p( lambda, 49, 14.001 ) },

lambda = 0 .. 6, color = black );

The moral is that with only n = 14 observations, some care is needed
(e.g., through pre-posterior analysis) to achieve a prior that doesn’t affect
the posterior very much, if that’s your goal.
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Figure 2.21: The Gamma (20, 1) prior, for λ ∈ (0, 40).

2.5 Continuous outcomes

For continuous outcomes there’s an analogue of de Finetti’s Theorem that’s
equally central to Bayesian model-building (e.g., Bernardo and Smith, 1994):

de Finetti’s Theorem for Continuous Outcomes. If Y1, Y2, . . . is an in-
finitely exchangeable sequence of real-valued random quantities with proba-
bility measure p, there exists a probability measure Q over D, the space of
all distribution functions on R, such that the joint distribution function of
Y1, . . . , Yn has the form

p(y1, . . . , yn) =

∫

D

n∏

i=1

F (yi) dQ(F ), (2.77)

where Q(F )
P
= limn→∞ p(Fn) and Fn is the empirical distribution function

based on Y1, . . . , Yn.
In other words, exchangeability of real-valued observables is equivalent to
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Figure 2.22: The four posteriors arising from the five priors in Table xxx.

the hierarchical model

F ∼ p(F ) (prior)

(Y1, . . . , Yn|F )
IID∼ F (likelihood) (2.78)

for some prior distribution p on the set D of all possible distribution
functions.

This prior makes the continuous form of de Finetti’s Theorem consider-
ably harder to apply: to take the elicitation task seriously is to try to specify
a probability distribution on a function space (F is in effect an infinite-
dimensional parameter).

(NB This task is not unique to Bayesians; it’s equivalent to asking “Where
does the likelihood come from?” in frequentist analyses of observational
data.)

What people often do in practice is to appeal to considerations that nar-
row down the field, such as an a priori judgment that the Yi ought to be
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symmetrically distributed about a measure of center µ, and then try to use
a fairly rich parametric family satisfying (e.g.) the symmetry restriction as
a substitute for all of D.

Strictly speaking you’re not supposed to look at the Yi while specifying
your prior on D—this can lead to a failure to fully assess and propagate
model uncertainty—but not doing so can permit the data to surprise you in
ways that would make you want to go back and revise your prior (an example
of Cromwell’s Rule in action).

As mentioned earlier, I’ll suggest two potential ways out of this dilemma,
based on out-of-sample predictive validation (the model-checking in the LOS
data above was an example of this) and Bayesian nonparametrics.

Case Study: Measurement of physical constants. What used to be called
the National Bureau of Standards (NBS) in Washington, DC, conducts ex-
tremely high precision measurement of physical constants, such as the actual
weight of so-called check-weights that are supposed to serve as reference
standards (like the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of a block of
metal called NB10, which was supposed to weigh exactly 10g, were made
under conditions as close to IID as possible (Freedman et al., 1998).

Value 375 392 393 397 398 399 400 401
Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409
Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437
Frequency 4 1 3 1 1 1 1 1

NB10 modeling. Q: (a) How much does NB10 really weigh? (b) How
certain are you given the data that the true weight of NB10 is less than (say)
405.25? And (c) How accurately can you predict the 101st measurement?

The graph below is a normal qqplot of the 100 measurements y = (y1, . . . ,
yn), which have a mean of ȳ = 404.6 (the units are micrograms below 10g)
and an SD of s = 6.5.

Evidently it’s plausible in answering these questions to assume symmetry
of the “underlying distribution” F in de Finetti’s Theorem.

One standard choice, for instance, is the Gaussian:

(µ, σ2) ∼ p(µ, σ2)

(Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
. (2.79)
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Figure 2.23: Normal qqplot of the 100 NB10 measurements.

Here N(µ, σ2) is the familiar normal density

p(yi|µ, σ2) =
1

σ
√

2π
exp

[
−1

2

(
yi − µ

σ

)2
]

. (2.80)

Gaussian modeling. Even though you can see from the previous graph
that (79) is not a good model for the NB10 data, I’m going to fit it to the
data for practice in working with the normal distribution from a Bayesian
point of view (later we’ll improve upon the Gaussian).

(79) is more complicated than the models in the AMI and LOS case
studies because the parameter θ here is a vector: θ = (µ, σ2).

To warm up for this new complexity let’s first consider a cut-down version
of the model in which we pretend that σ is known to be σ0 = 6.5 (the sample
SD).
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This simpler model is then

{
µ ∼ p(µ)

(Yi|µ)
IID∼ N(µ, σ2

0)

}
. (2.81)

The likelihood function in this model is

l(µ|y) =
n∏

i=1

1

σ0

√
2π

exp

[
− 1

2σ2
0

(yi − µ)2

]

= c exp

[
− 1

2σ2
0

n∑

i=1

(yi − µ)2

]
(2.82)

= c exp

[
− 1

2σ2
0

(
n∑

i=1

y2
i − 2 µ

n∑

i=1

yi + nµ2

)]

= c exp


− 1

2
(

σ2
0

n

)(µ− ȳ)2


 .

Thus the likelihood function, when thought of as a density for µ, is a
normal distribution with mean ȳ and SD σ0√

n
.

Notice that this SD is the same as the frequentist standard error for Ȳ
based on an IID sample of size n from the N(µ, σ2

0) distribution.

(82) also shows that the sample mean ȳ is a sufficient statistic for µ in
model (81).

In finding the conjugate prior for µ it would be nice if the product of
two normal distributions is another normal distribution, because that would
demonstrate that the conjugate prior is normal.

Suppose therefore, to see where it leads, that the prior for µ is (say)
p(µ) = N

(
µ0, σ

2
µ

)
.

Then Bayes’ Theorem would give

p(µ|y) = c p(µ) l(µ|y) (2.83)

= c exp

[
− 1

2σ2
µ

(µ− µ0)
2

]
exp

[
− n

2σ2
0

(µ− ȳ)2

]

= c exp

{
−1

2

[
(µ− µ0)

2

σ2
µ

+
n(µ− ȳ)2

σ2
0

]}
,
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and we want this to be of the form

p(µ|y) = c exp

{
−1

2

[
A(µ− B)2 + C

]}

= c exp

{
−1

2

[
Aµ2 − 2ABµ + (AB2 + C)

]}
(2.84)

for some B, C, and A > 0.
Maple can help see if this works:

> collect( ( mu - mu0 )^2 / sigmamu^2 +

n * ( mu - ybar )^2 / sigma0^2, mu );

/ 1 n \ 2 / mu0 n ybar \

|-------- + -------| mu + |-2 -------- - 2 -------| mu

| 2 2| | 2 2|

\sigmamu sigma0 / \ sigmamu sigma0 /

2 2

mu0 n ybar

+ -------- + -------

2 2

sigmamu sigma0

Matching coefficients for A and B (we don’t really care about C) gives

A =
1

σ2
µ

+
n

σ2
0

and B =

µ0

σ2
µ

+ nȳ

σ2
0

1
σ2

µ
+ n

σ2
0

. (2.85)

Since A > 0 this demonstrates two things: (1) the conjugate prior for µ
in model (81) is normal, and (2) the conjugate updating rule (when σ0 is
assumed known) is





µ ∼ N
(
µ0, σ

2
µ

)

(Yi|µ)
IID∼ N(µ, σ2

0) ,
i = 1, . . . , n



→ (µ|y) = (µ|ȳ) = N

(
µ∗, σ

2
∗
)
, (2.86)

where the posterior mean and variance are given by

µ∗ = B =

(
1

σ2
µ

)
µ0 +

(
n
σ2
0

)
ȳ

1
σ2

µ
+ n

σ2
0

and σ2
∗ = A−1 =

1
1

σ2
µ

+ n
σ2
0

. (2.87)
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It becomes useful in understanding the meaning of these expressions to
define the precision of a distribution, which is just the reciprocal of its vari-
ance: whereas the variance and SD scales measure uncertainty, the precision
scale quantifies information about an unknown.

With this convention (87) has a series of intuitive interpretations, as fol-
lows:
• The prior, considered as an information source, is Gaussian with mean

µ0, variance σ2
µ, and precision 1

σ2
µ
, and when viewed as a data set consists of

n0 (to be determined below) observations;
• The likelihood, considered as an information source, is Gaussian with

mean ȳ, variance
σ2
0

n
, and precision n

σ2
0

, and when viewed as a data set consists

of n observations;
• The posterior, considered as an information source, is Gaussian, and

the posterior mean is a weighted average of the prior mean and data mean,
with weights given by the prior and data precisions;
• The posterior precision (the reciprocal of the posterior variance) is just

the sum of the prior and data precisions (this is why people invented the idea
of precision—on this scale knowledge about µ in model (81) is additive); and
• Rewriting µ∗ as

µ∗ =

(
1

σ2
µ

)
µ0 +

(
n
σ2
0

)
ȳ

1
σ2

µ
+ n

σ2
0

=

(
σ2
0

σ2
µ

)
µ0 + nȳ

σ2
0

σ2
µ

+ n
, (2.88)

you can see that the prior sample size is

n0 =
σ2

0

σ2
µ

=
1

(
σµ

σ0

)2 , (2.89)

which makes sense: the bigger σµ is in relation to σ0, the less prior information
is being incorporated in the conjugate updating (86).

Bayesian inference with multivariate θ. Returning now to (79) with
σ2 unknown, (as mentioned above) this model has a (p = 2)-dimensional
parameter vector θ = (µ, σ2).

When p > 1 you can still use Bayes’ Theorem directly to obtain the joint
posterior distribution,

p(θ|y) = p(µ, σ2|y) = c p(θ) l(θ|y)

= c p(µ, σ2) l(µ, σ2|y), (2.90)
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where y = (y1, . . . , yn), although making this calculation directly requires
a p-dimensional integration to evaluate the normalizing constant c; for ex-
ample, in this case

c = [p(y)]−1 =

(∫∫
p(µ, σ2, y) dµ dσ2

)−1

=

(∫∫
p(µ, σ2) l(µ, σ2|y) dµ dσ2

)−1

. (2.91)

Usually, however, you’ll be more interested in the marginal posterior dis-
tributions, in this case p(µ|y) and p(σ2|y).

Obtaining these requires p integrations, each of dimension (p − 1), a
process that people refer to as marginalization or integrating out the nuisance
parameters—for example,

p(µ|y) =

∫ ∞

0

p(µ, σ2|y) dσ2 . (2.92)

Predictive distributions also involve a p-dimensional integration: for ex-
ample, with y = (y1, . . . , yn),

p(yn+1|y) =

∫∫
p(yn+1, µ, σ2|y) dµ dσ2 (2.93)

=

∫∫
p(yn+1|µ, σ2) p(µ, σ2|y) dµ dσ2.

And, finally, if you’re interested in a function of the parameters, you have
some more hard integrations ahead of you.

For instance, suppose you wanted the posterior distribution for the coef-

ficient of variation λ = g1(µ, σ2) =
√

σ2

µ
in model (79).

Then one fairly direct way to get this posterior (e.g., Bernardo and
Smith, 1994) is to (a) introduce a second function of the parameters, say
η = g2(µ, σ2), such that the mapping f = (g1, g2) from (µ, σ2) to (λ, η)
is invertible; (b) compute the joint posterior for (λ, η) through the usual
change-of-variables formula

p(λ, η|y) = pµ,σ2

[
f−1(λ, η)|y

]
|Jf−1(λ, η)| , (2.94)

where pµ,σ2(·, ·|y) is the joint posterior for µ and σ2 and |Jf−1 | is the deter-
minant of the Jacobian of the inverse transformation; and (c) marginalize in
λ by integrating out η in p(λ, η|y), in a manner analogous to (92).
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Here, for instance, η = g2(µ, σ2) = µ would create an invertible f , with
inverse defined by (µ = η, σ2 = λ2η2); the Jacobian determinant comes out
2λη2 and (94) becomes p(λ, η|y) = 2λη2 pµ,σ2(η, λ2η2|y).

This process involves two integrations, one (of dimension p) to get the
normalizing constant that defines (94) and one (of dimension (p− 1)) to get
rid of η.

You can see that when p is a lot bigger than 2 all these integrals may
create severe computational problems—this has been the big stumbling block
for applied Bayesian work for a long time.

More than 200 years ago Laplace (1774)—perhaps the second applied
Bayesian in history (after Bayes himself)—developed, as one avenue of solu-
tion to this problem, what people now call Laplace approximations to high-
dimensional integrals of the type arising in Bayesian calculations (see, e.g.,
Tierney and Kadane, 1986).

Starting in the next case study after this one, we’ll use another, compu-
tationally intensive, simulation-based approach: Markov chain Monte Carlo
(MCMC).

Back to model (79). The conjugate prior for θ = (µ, σ2) in this model
(e.g., Gelman et al., 2003) turns out to be most simply described hierarchi-
cally:

σ2 ∼ SI-χ2(ν0, σ
2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
. (2.95)

Here saying that σ2 ∼ SI-χ2(ν0, σ
2
0), where SI stands for scaled inverse,

amounts to saying that the precision τ = 1
σ2 follows a scaled χ2 distribution

with parameters ν0 and σ2
0.

The scaling is chosen so that σ2
0 can be interpreted as a prior estimate of

σ2, with ν0 the prior sample size of this estimate (i.e., think of a prior data
set with ν0 observations and sample SD σ0).

Since χ2 is a special case of the Gamma distribution, SI-χ2 must be a
special case of the inverse Gamma family—its density (see Gelman et al.,
2003, Appendix A) is

σ2 ∼ SI-χ2(ν0, σ
2
0)↔ (2.96)

p(σ2) =

(
1
2
ν0

) 1
2
ν0

Γ
(

1
2
ν0

) (σ2
0

) 1
2
ν0
(
σ2
)−(1+ 1

2
ν0)

exp

(−ν0 σ2
0

2σ2

)
.
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As may be verified with Maple, this distribution has mean (provided that
ν0 > 2) and variance (provided that ν0 > 4) given by

E
(
σ2
)

=
ν0

ν0 − 2
σ2

0 and V
(
σ2
)

=
2ν2

0

(ν0 − 2)2(ν0 − 4)
σ4

0. (2.97)

The parameters µ0 and κ0 in the second level of the prior model (95),

(µ|σ2) ∼ N
(
µ0,

σ2

κ0

)
, have simple parallel interpretations to those of σ2

0 and

ν0: µ0 is the prior estimate of µ, and κ0 is the prior effective sample size of
this estimate.

The likelihood function in model (79), with both µ and σ2 unknown, is

l(µ, σ2|y) = c
n∏

i=1

1√
2πσ2

exp

[
− 1

2σ2
(yi − µ)2

]

= c
(
σ2
)− 1

2
n
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
(2.98)

= c
(
σ2
)− 1

2
n
exp

[
− 1

2σ2

(
n∑

i=1

y2
i − 2 µ

n∑

i=1

yi + nµ2

)]
.

The expression in brackets in the last line of (98) is

[ · ] = − 1

2σ2

[
n∑

i=1

y2
i + n(µ− ȳ)2 − nȳ2

]
(2.99)

= − 1

2σ2

[
n(µ− ȳ)2 + (n− 1)s2

]
,

where s2 = 1
n−1

∑n

i=1 (yi − ȳ)2 is the sample variance. Thus

l(µ, σ2|y) = c
(
σ2
)− 1

2
n
exp

{
− 1

2σ2

[
n(µ− ȳ)2 + (n− 1)s2

]}
,

and it’s clear that the vector (ȳ, s2) is sufficient for θ = (µ, σ2) in this model,
i.e., l(µ, σ2|y) = l(µ, σ2|ȳ, s2).

Maple can be used to make 3D and contour plots of this likelihood function
with the NB10 data:



Bayesian Modeling, Inference and Prediction 99

> l := ( mu, sigma2, ybar, s2, n ) -> sigma2^( - n / 2 ) *

exp( - ( n * ( mu - ybar )^2 + ( n - 1 ) * s2 ) /

( 2 * sigma2 ) );

l := (mu, sigma2, ybar, s2, n) ->

2

(- 1/2 n) n (mu - ybar) + (n - 1) s2

sigma2 exp(- 1/2 ---------------------------)

sigma2

> plotsetup( x11 );

> plot3d( l( mu, sigma2, 404.6, 42.25, 100 ), mu = 402.6 .. 406.6,

sigma2 = 25 .. 70 );

You can use the mouse to rotate 3D plots and get other useful views of
them:

The projection or shadow plot of µ looks a lot like a normal (or maybe a
t) distribution.

And the shadow plot of σ2 looks a lot like a Gamma (or maybe an inverse
Gamma) distribution.

> plots[ contourplot ]( 10^100 * l( mu, sigma2, 404.6, 42.25,

100 ), mu = 402.6 .. 406.6, sigma2 = 25 .. 70,

color = black );

The contour plot shows that µ and σ2 are uncorrelated in the likelihood
distribution, and the skewness of the marginal distribution of σ2 is also evi-
dent.

Posterior analysis. Having adopted the conjugate prior (95), what I’d like
next is simple expressions for the marginal posterior distributions p(µ|y) and
p(σ2|y) and for predictive distributions like p(yn+1|y).

Fortunately, in model (79) all of the integrations (such as (92) and (93))
may be done analytically (see, e.g., Bernardo and Smith 1994), yielding the
following results:

(σ2|y,G) ∼ SI-χ2(νn, σ2
n),

(µ|y,G) ∼ tνn

(
µn,

σ2
n

κn

)
, and (2.100)
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Figure 2.24: 3D plot of the Gaussian likelihood function with both µ and σ2

unknown.

(yn+1|y,G) ∼ tνn

(
µn,

κn + 1

κn

σ2
n

)
.

NB10 Gaussian analysis. In the above expressions

νn = ν0 + n,

σ2
n =

1

νn

[
ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2

]
, (2.101)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, and

κn = κ0 + n,

ȳ and s2 are the usual sample mean and variance of y, and G denotes the
assumption of the Gaussian model.
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Figure 2.25: Shadow plot of the Gaussian likelihood along the µ axis.

Here tν(µ, σ2) is a scaled version of the usual tν distribution, i.e., W ∼
tν(µ, σ2) ⇐⇒ W−µ

σ
∼ tν .

The scaled t distribution (see, e.g., Gelman et al., 2003, Appendix A) has
density

η ∼ tν(µ, σ2)↔ p(η) =
Γ
[

1
2
(ν + 1)

]

Γ
(

1
2
ν
)√

νπσ2

[
1 +

1

νσ2
(η − µ)2

]− 1
2
(ν+1)

. (2.102)

This distribution has mean µ (as long as ν > 1) and variance ν
ν−2

σ2 (as
long as ν > 2).

Notice that, as with all previous conjugate examples, the posterior mean
is again a weighted average of the prior mean and data mean, with weights
determined by the prior sample size and the data sample size:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ. (2.103)
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Figure 2.26: Shadow plot of the Gaussian likelihood along the σ2 axis.

NB10 Gaussian Analysis. Question (a): I don’t know anything about
what NB10 is supposed to weigh (down to the nearest microgram) or about
the accuracy of the NBS’s measurement process, so I want to use a diffuse
prior for µ and σ2.

Considering the meaning of the hyperparameters, to provide little prior
information I want to choose both ν0 and κ0 close to 0.

Making them exactly 0 would produce an improper prior distribution
(which doesn’t integrate to 1), but choosing positive values as close to 0 as
you like yields a proper and highly diffuse prior.

You can see from (100, 101) that the result is then

(µ|y,G) ∼ tn

[
ȳ,

(n− 1)s2

n2

]
.
= N

(
ȳ,

s2

n

)
, (2.104)

i.e., with diffuse prior information (as with the Bernoulli model in the AMI
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Figure 2.27: Contour plot of the Gaussian likelihood, which is like looking at
Figure 2.24 from above.

case study) the 95% central Bayesian interval virtually coincides with the
usual frequentist 95% confidence interval ȳ±t.975

n−1
s√
n

= 404.6±(1.98)(0.647) =

(403.3, 405.9).

Thus both {frequentists who assume G} and {Bayesians who assume G
with a diffuse prior} conclude that NB10 weighs about 404.6µg below 10g,
give or take about 0.65µg.

Question (b). If interest focuses on whether NB10 weighs less than
some value like 405.25, when reasoning in a Bayesian way you can answer
this question directly: the posterior distribution for µ is shown below, and
PB(µ < 405.25|y,G, diffuse prior)

.
= .85, i.e., your betting odds in favor of

the proposition that µ < 405.25 are about 5.5 to 1.

When reasoning in a frequentist way PF (µ < 405.25) is undefined; about
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Figure 2.28: Marginal posterior distribution for µ, with shaded region corre-
sponding to PB(µ < 405.25 | y,G, diffuse prior).

the best you can do is to test H0 : µ < 405.25, for which the p-value would (ap-
proximately) be p = PF,µ=405.25(ȳ > 405.59) = 1− .85 = .15, i.e., insufficient
evidence to reject H0 at the usual significance levels (note the connection be-
tween the p-value and the posterior probability, which arises in this example
because the null hypothesis is one-sided).

NB The significance test tries to answer a different question: in Bayesian
language it looks at P (ȳ|µ) instead of P (µ|ȳ).

Many people find the latter quantity more interpretable.
Question (c). We saw earlier that in this model

(yn+1|y,G) ∼ tνn

[
µn,

κn + 1

κn

σ2
n

]
, (2.105)

and for n large and ν0 and κ0 close to 0 this is (yn+1|y,G) ·∼ N(ȳ, s2), i.e., a
95% posterior predictive interval for yn+1 is (392, 418).
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Figure 2.29: Standardized predictive distribution p(yn+1 | y,G, diffuse prior),
with the standardized data values superimposed.

Model expansion. A standardized version of this predictive distribution
is plotted below, with the standardized NB10 data values superimposed.

It’s evident from this plot (and also from the normal qqplot given earlier)
that the Gaussian model provides a poor fit for these data—the three most
extreme points in the data set in standard units are −4.6, 2.8, and 5.0.

With the symmetric heavy tails indicated in these plots, in fact, the
empirical CDF looks quite a bit like that of a t distribution with a rather
small number of degrees of freedom.

This suggests revising the previous model by expanding it: embedding
the Gaussian in the t family and adding a parameter k for tail-weight.

Unfortunately there’s no standard closed-form conjugate choice for the
prior on k.

A more flexible approach to computing is evidently needed—this is where
Markov chain Monte Carlo methods (our next main topic) come in.
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Postscript on the exponential family. Two more examples of the use
of the exponential family:

(1) An example of a non-regular exponential family: suppose (as in the
case study in homework 3 problem 2) that a reasonable model for the data
is to take the observed values (yi|θ) to be conditionally IID from the uniform
distribution U(0, θ) on the interval (0, θ) for unknown θ:

p(y1|θ) =

{
1
θ

for 0 < y1 < θ
0 otherwise

}
=

1

θ
I(0, θ), (2.106)

where I(A) = 1 if A is true and 0 otherwise.
θ in this model is called a range-restriction parameter; such parameters

are fundamentally different from location and scale parameters (like the mean
µ and variance σ2 in the N(µ, σ2) model, respectively) or shape parameters
(like the degrees of freedom ν in the tν model).

(106) is an example of (51) with c = 1, f1(y) = 1, g1(θ) = 1
θ
, h1(y) = 0,

and φ1(θ) = anything you want (e.g., 1), but only when the set Y = (0, θ) is
taken to depend on θ.

(Truncated distributions with unknown truncation point also lead to non-
regular exponential families.)

As you’ll see in homework 3, inference in non-regular exponential families
is similar in some respects to the story when the exponential family is regular,
but there are some important differences too.

(2) For an example with p > 1, take θ = (µ, σ2) with the Gaussian
likelihood:

l(θ|y) =
n∏

i=1

1

σ
√

2π
exp

[
− 1

2σ2
(yi − µ)2

]
(2.107)

= c
(
σ2
)−n

2 exp

[
− 1

2σ2

(
n∑

i=1

y2
i

−2µ

n∑

i=1

yi + nµ2

)]
.

This is of the form (2.53) with k = 2, f(y) = 1, g(θ) = (σ2)
−n

2 exp
(
−nµ2

2σ2

)
,

φ1(θ) = − 1
2σ2 , φ2(θ) = µ

σ2 , h1(yi) = y2
i , and h2(yi) = yi, which shows that

[h1(y) =
∑n

i=1 y2
i , h2(y) =

∑n
i=1 yi] or equivalently (ȳ, s2) is sufficient for θ.
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Some unpleasant algebra then demonstrates that an application of the
conjugate prior theorem (54) in the exponential family leads to (95) as the
conjugate prior for the Gaussian likelihood when both µ and σ2 are unknown.

2.6 Appendix on hypothesis testing

Setup: Controlled (phase III) clinical trial of new versus old treatment, with
n (human) subjects randomized, n

2
to old, n

2
to new, n (fairly) large.

θ = the mean difference (new − old), on the most important outcome
of interest (scaled [without loss of generality] so that large values are better
than small), in the population P of subjects judged exchangeable with those
in the trial.

(This is like imagining that the n trial subjects were randomly sampled
from P [of course this is typically not how subjects are actually enlisted
in the trial] and then randomized to new or old, which gives θ a causal
interpretation as the mean improvement per person caused by receiving the
new treatment instead of the old.)

As Spiegelhalter et al. note (Section 4.2), two frequentist schools of infer-
ence about θ developed in the twentieth century:
• The Fisherian approach, which has two parts:
(a) Point and interval estimates of θ based on the likelihood function; and
(b) Summarization of the evidence against a null hypothesis like H0: θ = 0

via P -values (the chance, if the null is true, of getting data as extreme as, or
more extreme than, what you got).
• The Neyman-Pearson approach, which also has two parts:
(c) Testing H0: θ = 0 against H1: θ 6= 0 by developing rules (as a function

of n) that reject H0 with a pre-specified Type I error probability α (the chance
of incorrectly rejecting H0), and then (having first specified α) choosing n
so that the Type II error probability β (the chance of incorrectly failing to
reject H0) is no more than some pre-specified threshold when θ actually is
some pre-specified positive value θ1 (this is equivalent to choosing n so that
the power (1− β) of the test is not less than a pre-specified threshold when
θ = θ1); and

(d) Constructing a confidence interval for θ with some pre-specified con-
fidence level 100(1− γ)%.

As Spiegelhalter et al. note, in practice a combined frequentist approach
has somehow evolved in which clinical trials are often designed from the
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Neyman-Pearson point of view (c) but then summarized with Fisherian P -
values (b) as measures of evidence against H0.

From a Bayesian point of view this approach perversely emphasizes the
worst of both the Fisherian and Neyman-Pearson schools, by failing to focus
on the most scientifically relevant summary of any given trial: an (interval)
estimate of θ on the scale of the clinically most important outcome variable
(recall de Finetti’s Bayesian emphasis on predicting data values on the scales
on which they’re measured).

A good rule of thumb: don’t wander off onto the probability scale (as P -
values do) when you can stay on the data scale (as interval estimates do), be-
cause it’s harder to think about whether probabilities are important scientifi-
cally (“Is P = 0.03 small enough?”) than it is to think about whether changes
on the main outcome scale of interest are scientifically relevant (“Would it
positively affect this hypertensive patient’s health for her mean systolic blood
pressure over time to go down by 10 mmHg?”).

Standard example: I’ve run my trial and the P -value comes out 0.02,
which is “small enough to publish”; but can I tell from this whether the
difference I’ve found is clinically meaningful?

In a two-tailed test of H0: θ = 0 against H1: θ 6= 0 I can work backwards
from P = 0.02 to figure out that the value of the standard test statistic

z =
new− old

ŜE
(
new− old

) (2.108)

that gave rise to P = 0.02 was ±2.3 (taking n to be large), but (1) I can’t
even tell from the P -value whether the new treatment was better or worse
than the old, (2) the thing I really want to know to judge the practical signif-
icance of this finding is the numerator of (108), (3) the thing I really want to
know to judge the statistical significance of this finding is the denominator
of (108), and (4) the P -value has thrown away crucial information by (in
effect) specifying only the ratio of (2) and (3) rather than their separate, and
separately important, values.

If I have to work out the numerator and denominator of (108) separately
to pin down both the practical and statistical significance of my result, both
of which are key scientific summaries, then what’s the point of calculating P
at all?

Why not dispense with it altogether and go directly to the (e.g., 95%)
interval estimate (

new− old
)
± 2 ŜE

(
new− old

)
? (2.109)
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(This is a large-n approximation to the Bayesian solution to the inference
problem when prior information is diffuse.)

For me the above argument demolishes the use of P -values in inference
(although in part 4 I will make better use of them in diagnostic checking of
a statistical model, which is another task altogether.)

The Fisherian point and interval estimates (a) and the Neyman-Pearson
confidence intervals (d) are much more in keeping with the scientifically com-
pelling idea of staying on the data scale, but they have the following two
drawbacks in relation to the Bayesian approach:
• They fail to incorporate relevant prior information about θ when it’s

available, and
• They don’t necessarily work very well (i.e., they don’t necessarily live

up to their advertised frequentist properties) when the likelihood function is
heavily skewed and/or when n is small.

As Spiegelhalter et al. note (section 6.3), the standard testing of H0: θ = 0
against H1 : θ 6= 0 is often naive in a realistic clinical trial setting: (to
paraphrase these authors) increased costs, toxicity, etc. will often mean that
a particular level of mean improvement θS would be necessary for the new
treatment to be considered clinically superior, and the new treatment will
often not be considered clinically inferior unless the true benefit were less
than some threshold θI .

To paraphrase Spiegelhalter et al., the Bayesian interval-estimation ap-
proach then leads to one of six conclusions, corresponding to the six possi-
bilities in the figure on the previous page:

A: We are confident that the old treatment is clinically superior (if, say,
the 95% central posterior interval for θ lies entirely below θI);

B: The new treatment is not superior, but the treatments could be clin-
ically equivalent;

C: We are substantially uncertain as to the two treatments (“equipoise”);
C+: We are confident that the two treatments are clinically equivalent;
D: The old treatment is not superior, but the treatments could be clini-

cally equivalent;
E: We are confident that the new treatment is clinically superior.
This leads to an arguably better approach to sample size determination

in experimental design than the usual way the Neyman-Pearson significance-
level-and-power approach is employed: plan your experiment so that if many
investigators were to compare new and old using the same protocol, a high
percentage of them (this corresponds to (1−α)) would find that their central
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95% posterior intervals for θ lie in region E if indeed the true value of θ is
some pre-specified θ∗ > θS (this corresponds to (1− β)).

Because θ∗ will tend to be larger than typical values of θ1 in the Neyman-
Pearson part (c) approach above, this will require increased sample sizes,
but this will help to combat the empirical (and regrettable) tendency of the
Neyman-Pearson part (c) approach to produce false positives rather more
often than we would like (Spiegelhalter et al., Section 3.10):

2.7 Problems

1. (the Exchange Paradox) You are playing the following game against an
opponent, with a referee also taking part. The referee has two envelopes
(numbered 1 and 2 for the sake of this problem, but when the game
is played the envelopes have no markings on them), and (without you
or your opponent seeing what she does) she puts $m in envelope 1
and $2m in envelope 2 for some m > 0 (treat m as continuous in
this problem even though in practice it would have to be rounded to
the nearest dollar or penny). You and your opponent each get one of
the envelopes at random. You open your envelope secretly and find $x
(your opponent also looks secretly in her envelope), and the referee then
asks you if you want to trade envelopes with your opponent. You reason
that if you trade, you will get either $x

2
or $2x, each with probability

1
2
. This makes the expected value of the amount of money you’ll get

if you trade equal to
(

1
2

) (
$x
2

)
+
(

1
2

)
($2x) = $5x

4
, which is greater than

the $x you currently have, so you offer to trade. The paradox is that
your opponent is capable of making exactly the same calculation. How
can the trade be advantageous for both of you?

The point of this problem is to demonstrate that the above reasoning
is flawed from a Bayesian point of view; the conclusion that trading
envelopes is always optimal is based on the assumption that there is
no information obtained by observing the contents of the envelope you
get, and this assumption can be seen to be false when you reason in a
Bayesian way. At a moment in time before the game begins, let p(m)
be your prior distribution on the amount of money M the referee will
put in envelope 1, and let X be the amount of money you will find in
your envelope when you open it (when the game is actually played, the
observed x, of course, will be data that can be used to decrease your
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uncertainty about M).

(a) Explain why the setup of this problem implies that P (X = m|M =
m) = P (X = 2m|M = m) = 1

2
, and use this to show that

P (M = x|X = x) =
p(x)

p(x) + p
(

x
2

) and (2.110)

P
(
M =

x

2

∣∣∣X = x
)

=
p
(

x
2

)

p(x) + p
(

x
2

) .

Demonstrate from this that the expected value of the amount Y
of money in your opponent’s envelope, given than you’ve found
$x in the envelope you’ve opened, is

E(Y |X = x) =
p(x)

p(x) + p
(

x
2

)2x +
p
(

x
2

)

p(x) + p
(

x
2

) x

2
. (2.111)

(b) Suppose that for you in this game, money and utility coincide (or
at least suppose that utility is linear in money for you with a pos-
itive slope). Use Bayesian decision theory, through the principle
of maximizing expected utility, to show that you should offer to
trade envelopes only if

p
(x

2

)
< 2p(x). (2.112)

If you and two friends (one of whom would serve as the referee)
were to actually play this game with real money in the envelopes, it
would probably be the case that small amounts of money are more
likely to be chosen by the referee than big amounts, which makes it
interesting to explore condition (3) for prior distributions that are
decreasing (that is, for which p(m2) < p(m1) for m2 > m1). Make
a sketch of what condition (3) implies for a decreasing p. One
possible example of a continuous decreasing family of priors on M
is the exponential distribution, with density (4) below, indexed
by the parameter λ which represents the mean of the distribution.
Identify the set of conditions in this family of priors, as a function
of x and λ, under which it’s optimal for you to trade. Does the
inequality you obtain in this way make good intuitive sense (in
terms of both x and λ)? Explain briefly.
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Extra credit: Looking carefully at the correct argument in para-
graph 2 of this problem, identify precisely the point at which the
argument in the first paragraph breaks down, and specify what
someone who believes the argument in paragraph 1 is implicitly
assuming about p.

2. (a) (exchangeability) Suppose Y1 and Y2 are identically distributed
Bernoulli random variables with success probability 0 < θ < 1.
Show that independence of Y1 and Y2 implies exchangeability but
not conversely. The simplest way to do this is to specify their joint
distribution by making a 2×2 table cross-tabulating Y1 against Y2,
labeling all of the probabilities symbolically. What does this table
have to look like in terms of θ if Y1 and Y2 are independent? What
about when they’re exchangeable? (In the latter case you’ll have
to choose a new symbol for some of the relevant probabilities.)

Extra credit: See if you can quantify how far away from indepen-
dence Y1 and Y2 can be (in some sense of distance in the space of
possible joint distributions) and still be exchangeable.

(b) Can you give another simple example, involving a comparison of
random sampling with and without replacement from a finite pop-
ulation, of a set of random variables that are exchangeable but not
independent? Explain briefly.

3. (Bayesian conjugate inference in the exponential distribution) In a con-
sulting project that one of my Ph.D. students and I worked on at the
University of Bath in England in the late 1990s, a researcher from the
Department of Electronic and Electrical Engineering (EEE) at Bath
wanted help in analyzing some data on failure times for a particular
kind of metal wire (in this problem, failure time was defined to be the
number of times the wire could be mechanically stressed by a machine
at a given point along the wire before it broke). The n = 14 raw data
values yi in one part of his experiment, arranged in ascending order,
were

495 541 1461 1555 1603 2201 2750
3468 3516 4319 6622 7728 13159 21194
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Probably the simplest model for failure time data is the exponential
distribution E(λ):

(yi|λ)
IID∼ p(yi|λ) =

{
1
λ

exp(−yi

λ
) yi > 0

0 otherwise

}
(2.113)

for some λ > 0. (NB This distribution can be parameterized either
in terms of λ or 1

λ
; whenever it occurs in print you need to be careful

which parameterization is in use.)

(a) To see if this model fits the data above, you can make an expo-
nential probability plot, analogous to a Gaussian quantile-quantile
plot to check for normality. In fact the idea works for more or less
any distribution: you plot

y(i) versus F−1

(
i− 0.5

n

)
, (2.114)

where y(i) are the sorted y values and F is the CDF of the distri-
bution (the 0.5 is in there to avoid problems at the edges of the
data). In so doing you’re graphing the data values against an ap-
proximation of what you would have expected for the data values
if the CDF of the yi really had been F , so the plot should resemble
the 45◦ line if the fit is good.

(i) Show that the inverse CDF of the E(λ) distribution (param-
eterized as in equation (4)) is given by

FY (y|λ) = p ⇐⇒ y = F−1(p) = −λ log(1− p). (2.115)

(ii) To use equation (6) to make the plot we need a decent es-
timate of λ. Show that the maximum likelihood estimate of
λ in this model is λ̂MLE = ȳ, the sample mean, and use this
(in Maple, or freehand, or with whatever other software you
might like) to make an exponential probability plot of the 14
data values above. Informally, does the exponential model
appear to provide a good fit to the data? Explain briefly.

(b) (exponential family and conjugate prior; prior to posterior updat-
ing)
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(i) Show that the exponential sampling model (4) is a member
of the one-parameter exponential family, and use this to show
that the conjugate family for the E(λ) likelihood (parame-
terized as in (4)) is the set of Inverse Gamma distributions
Γ−1(α, β) for α > 0, β > 0 (NB W ∼ Γ−1(α, β) just means
that 1

W
∼ Γ(α, β); see Table A.1 from Appendix A in Gelman

et al. for details): λ ∼ Γ−1(α, β) if and only if

p(λ) =

{
βα

Γ(α)
λ−(α+1) exp

(
−β

λ

)
λ > 0

0 otherwise

}
. (2.116)

(ii) By directly using Bayes’ Theorem (and ignoring constants),
show that the prior-to-posterior updating rule in this model
is

{
λ ∼ Γ−1(α, β)

(Yi|λ)
IID∼ E(λ)

}
=⇒ (λ|y) ∼ Γ−1(α + n, β + nȳ).

(2.117)

(iii) It turns out that the mean and variance of the Γ−1(α, β) distri-

bution are β

α−1
and β2

(α−1)2(α−2)
, respectively (as long as α > 2).

Use this to write down an explicit formula which shows that
the posterior mean is a weighted average of the prior and sam-
ple means, and deduce from this formula that n0 = (α − 1)
is the prior effective sample size. Note also from the formula
for the likelihood in this problem that, when thought of as
a distribution in λ, it’s equivalent to a constant times the
Γ−1(n− 1, nȳ) distribution.

(c) The guy from EEE has prior information from another experiment
he judges to be comparable to this one: from this other experiment
the prior for λ should have a mean of about µ0 = 4500 and an SD
of about σ = 1800.

(i) Show that this corresponds to a Γ−1(α0, β0) prior with (α0, β0)
= (8.25, 32625), and therefore to a prior sample size of about
7.

(ii) The next step is to work on filling in the entries in the follow-
ing table:
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Likelihood
Prior Maximizing Integrating Posterior

Mean/Estimate 4500
SD/SE 1800

Show that the Fisher information provided by the MLE in
this model is

Î
(
λ̂MLE

)
=

n

ȳ2
, (2.118)

so that a large-sample standard error for the MLE is

ŜE
(
λ̂MLE

)
=

ȳ√
n

. (2.119)

In the “Likelihood Maximizing” column put the numerical
values of the MLE and its standard error; in the “Likelihood
Integrating” column put the mean and SD of the likelihood
function, interpreted as the Γ−1(n − 1, nȳ) distribution; and
in the “Posterior” column put the posterior mean and SD
using the (α0, β0) and data values above. By examining the
formulas for the relevant quantities, show that the discrep-
ancies between the “Likelihood Maximizing” and “Likelihood
Integrating” columns in this table will diminish as n increases.

(iii) What kind of compromise, if any, gives rise to the posterior
SD as a function of the prior and likelihood SDs, at least
approximately? Explain briefly.

(iv) Make a plot with Maple, or an approximate freehand sketch,
of the prior, likelihood (Γ−1(n− 1, nȳ)), and posterior distri-
butions on the same graph, and summarize what all of this
has to say about the failure times of the metal wire samples
with which the problem began.

(d) (comparing Bayesian and [large-sample] maximum likelihood in-
terval estimates) From the Fisher information calculation above,
an approximate 95% interval estimate for λ in this model based
on the (large-sample) likelihood approach has the form

ȳ ± 1.96
ȳ√
n

. (2.120)

By using the numerical integration features in Maple I’ve com-
puted the endpoints of 95% central intervals based both on the
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posterior distribution in (c) and the Γ−1(n− 1, nȳ) likelihood dis-
tribution, obtaining (3186, 7382) and (3369, 10201), respectively.
(NB (a, b) is a 100(1− α)% central interval for a real-valued pa-
rameter θ with respect to an inferential density p(θ) if

∫ a

−∞ p(θ) dθ

=
∫∞

b
p(θ) dθ = α

2
.) Compute the (large-sample) likelihood in-

terval (11) above on this dataset and explain briefly why it’s not
directly comparable to the 95% posterior interval. In what way
does your plot of the likelihood function in (c) suggests that the
central likelihood interval might be better than interval (11) for a
value of n as small as the one in this problem? Explain briefly.

Extra credit: Compute the predictive distribution for the next
observation Yn+1 given y = (y1, . . . , yn) in model (8). Apply this
to the data set on page 2 with the largest observation (21194) set
aside, using a diffuse Inverse Gamma prior (e.g., pick that member
of the Inverse Gamma family that has mean 1 and precision ε for
some small ε like 0.001, by analogy with the Γ(ε, ε) prior), and
compute a numerical measure of how surprising this observation
is under the exponential model. How strongly, if at all, do your
calculations call into question this model for these data? Explain
briefly.

4. (Bayesian transformation of variables) Continuing problem 2.3, let’s
again consider the n = 14 failure time values yi given in the statement
of that problem, for which we saw that a reasonable (initial) model is
based on the exponential distribution for the yi,
{

λ ∼ Γ−1(α, β)

(yi|λ)
IID∼ E(λ)

}
=⇒ (λ|y) ∼ Γ−1(α + n, β + nȳ). (2.121)

Here, as before, (i) ȳ = 1
n

∑n

i=1 yi, (ii) the sampling distribution for the
yi is given by

(yi|λ)
IID∼ p(yi|λ) =

{
1
λ

exp(−yi

λ
) yi > 0

0 otherwise

}
(2.122)

for some λ > 0, and (iii) the conjugate prior for λ is

λ ∼ Γ−1(α, β) ⇐⇒ p(λ) =

{
βα

Γ(α)
λ−(α+1) exp

(
−β

λ

)
λ > 0

0 otherwise

}
.

(2.123)
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In that problem I mentioned that the exponential model can either be
parameterized in terms of λ or 1

λ
. In this problem we’ll explore what

happens when you’re more interested in η = g(λ) = 1
λ

than in λ itself.

(a) Use the change-of-variables formula derived below to show
that the prior and posterior distributions for η are Γ(α, β) and
Γ(α + n, β + nȳ), respectively (which justifies the name inverse
gamma for the distribution of λ).

(b) Write out the likelihood function in terms of η instead of λ (just
substitute η everywhere you see 1

λ
), and use Maple (or some other

environment of your choosing) to plot the prior, likelihood, and
posterior distributions for η on the same graph, using the data
and prior values given in problem 3.

(c) Use the fact that the Γ(α, β) distribution has mean α
β

and vari-
ance α

β2 to numerically compute the prior, likelihood, and poste-

rior means and SDs for η (you don’t have to give the likelihood-
maximizing summaries if you don’t want to; it’s enough to give
results based on the likelihood-integrating approach). Is the pos-
terior mean a weighted average of the prior and data means in
this model, and if so what interpretation would you give to α and
β in the Γ(α, β) prior for η? Explain briefly.

The change-of-variables formula. Consider a real-valued con-
tinuous random variable Y with CDF FY (y) = P (Y ≤ y) and den-
sity fY (y), related as usual to the CDF by FY (y) =

∫ y

−∞ fY (t) dt

and fY (y) = d
dy

FY (y). Suppose you’re interested mainly in a ran-

dom variable X which is a transformed version of Y : X = h(Y )
for some invertible (strictly monotonic) function h. Such functions
have to be either strictly increasing or decreasing; as a first case
assume the former. Then the CDF of X, FX(x) = P (X ≤ x),
satisfies

FX(x) = P (X ≤ x) = P [h(Y ) ≤ x] (2.124)

= P [Y ≤ h−1(x)] = FY

[
h−1(x)

]
,

from which the density of X is

fX(x) =
d

dx
FX(x) =

d

dx
FY

[
h−1(x)

]
(2.125)
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= fY

[
h−1(x)

] d

dx
h−1(x) = fY

[
h−1(x)

] ∣∣∣∣
d

dx
h−1(x)

∣∣∣∣ ,

the last equality holding because h, and therefore h−1, are strictly
increasing (and therefore both have positive derivatives). Simi-
larly, if h is strictly decreasing,

FX(x) = P (X ≤ x) = P [h(Y ) ≤ x] (2.126)

= P [Y ≥ h−1(x)] = 1− FY

[
h−1(x)

]
,

from which the density of X is

fX(x) =
d

dx
FX(x) =

d

dx
FY

[
h−1(x)

]
= fY

[
h−1(x)

] [
− d

dx
h−1(x)

]
.

(2.127)
But since h is strictly decreasing, so is h−1, and both therefore
have negative derivatives, so that

− d

dx
h−1(x) =

∣∣∣∣
d

dx
h−1(x)

∣∣∣∣ . (2.128)

Thus the conclusion is that in either case

fX(x) = fY

[
h−1(x)

] ∣∣∣∣
d

dx
h−1(x)

∣∣∣∣ , (2.129)

which is the change-of-variables formula. (Since y = h−1(x), a
simple mnemonic for this formula, using a slightly old-fashioned
notation for derivatives, is fX(x) |dx| = fY (y) |dy|.)

5. (Inference with the uniform distribution) Paleobotanists estimate the
moment in the remote past when a given species became extinct by
taking cylindrical, vertical core samples well below the earth’s sur-
face and looking for the last occurrence of the species in the fossil
record, measured in meters above the point P at which the species was
known to have first emerged. Letting {yi, i = 1, . . . , n} denote a sam-

ple of such distances above P at a random set of locations, the model
(yi|θ) IID∼ Uniform(0, θ) (∗) emerges from simple and plausible assump-

tions. In this model the unknown θ > 0 can be used, through carbon
dating, to estimate the species extinction time. This problem is about
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Bayesian inference for θ in model (∗), and it will be seen that some of
our usual intuitions (derived from the Bernoulli, Poisson, and Gaussian
case studies) do not quite hold in this case.

The marginal sampling distribution of a single observation yi in this
model may be written

p(yi|θ) =

{
1
θ

if 0 ≤ yi ≤ θ
0 otherwise

}
=

1

θ
I (0 ≤ yi ≤ θ) , (2.130)

where I(A) = 1 if A is true and 0 otherwise.

(a) Use the fact that {0 ≤ yi ≤ θ for all i = 1, . . . , n} if and only if
{m = max (y1, . . . yn) ≤ θ} to show that the likelihood function in
this model is

l(θ|y) = θ−nI(θ ≥ m). (2.131)

Briefly explain why this demonstrates that m is sufficient for θ in
this model.

(b) As we have seen in this chapter, the maximum likelihood estima-
tor (MLE) of a parameter θ is the value of θ (which will be a
function of the data) that maximizes the likelihood function, and
this maximization is usually performed by setting the derivative of
the likelihood (or log likelihood) function to 0 and solving. Show
by means of a rough sketch of the likelihood function in (a) that
m is the maximum likelihood estimator (MLE) of θ, and briefly
explain why the usual method for finding the MLE fails in this
case.

(c) A positive quantity θ follows the Pareto distribution (written
θ ∼ Pareto(α, β)) if, for parameters α, β > 0, it has density

p(θ) =

{
α βα θ−(α+1) if θ ≥ β

0 otherwise

}
. (2.132)

This distribution has mean αβ

α−1
(if α > 1) and variance αβ2

(α−1)2(α−2)

(if α > 2). With the likelihood function viewed as (a constant mul-
tiple of) a density for θ, show that equation (2.131) corresponds
to the Pareto(n−1, m) distribution. Show further that if the prior
distribution for θ is taken to be (12), under the model (∗) above
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the posterior distribution is p(θ|y) = Pareto [α + n, max(β, m)],
thereby demonstrating that the Pareto distribution is conjugate
to the Uniform(0, θ) likelihood.

(d) In an experiment conducted in the Antarctic in the 1980s to study
a particular species of fossil ammonite, the following was a lin-
early rescaled version of the data obtained, in ascending order:
y = (y1, . . . , yn) = (0.4, 1.0, 1.5, 1.7, 2.0, 2.1, 2.8, 3.2, 3.7, 4.3, 5.1).
Prior information equivalent to a Pareto prior specified by the
choice (α, β) = (2.5, 4) was available. Plot the prior, likelihood,
and posterior distributions arising from this data set on the same
graph, explicitly identifying the three curves, and briefly discuss
what this picture implies about the updating of information from
prior to posterior in this case.

(e) Make a table summarizing the mean and standard deviation (SD)
for the prior (Pareto(α, β)), likelihood (Pareto(n−1, m)), and pos-
terior (Pareto[α + n, max(β, m)]) distributions, using the (α, β)
choices and the data in part (d) above (as in problem 1, it’s enough
to do this using the likelihood-integrating approach). In Bayesian
updating the posterior mean is usually (at least approximately) a
weighted average of the prior and likelihood means (with weights
between 0 and 1), and the posterior SD is typically smaller than
either the prior or likelihood SDs. Are each of these behaviors
true in this case? Explain briefly.

(f) You’ve shown in (c) that the posterior for θ based on a sample of
size n in model (∗) is p(θ|y) = Pareto [α + n, max(β, m)]. Write
down a symbolic expression for the posterior variance of θ in terms
of (α, β, m, n). When considered as a function of n, what’s unusual
about this expression in relation to the findings in our previous
case studies in this course? Explain briefly.

6. (Inference for the variance in the Gaussian model with known mean) As
we saw in problem 4 in Chapter 1, American football experts provide
a point spread for every football game before it occurs, as a measure
of the difference in ability between the two teams (and taking account
of where the game will be played). For example, if Denver is a 3.5–
point favorite to defeat San Francisco, the implication is that betting
on whether Denver’s final score minus 3.5 points exceeds or falls short
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Figure 2.30: Differences di between observed and predicted American football
scores, 1981–1984.

of San Francisco’s final score is an even-money proposition. Figure 1
below (based on data from Gelman et al. 2003) presents a histogram
of the differences d = (actual outcome – point spread) for a sample of
n = 672 professional football games in the early 1980s, with a normal
density superimposed having the same mean d̄ = 0.07 and standard
deviation (SD) s = 13.86 as the sample. You can see from this figure

that the model (Di|σ2)
IID∼ N(0, σ2) is reasonable for the observed

differences di (at least as a starting point in the modeling).

(a) Write down the likelihood and log likelihood functions for σ2 in
this model. Show that σ̂2 = 1

n

∑n

i=1 d2
i , which takes the value

191.8 with the data in Figure 1, is both sufficient and the maxi-
mum likelihood estimator (MLE) for σ2. Plot the log likelihood
function for σ2 in the range from 160 to 240 with these data,
briefly explaining why it should be slightly skewed to the right.

(b) The conjugate prior for σ2 in this model is the scaled inverse chi-
square distribution,

σ2 ∼ χ−2(ν0, σ
2
0), i.e., p(σ2) = c

(
σ2
)−(ν0

2
+1)

exp

(
−ν0σ

2
0

2σ2

)
,

(2.133)
where ν0 is the prior sample size and σ2

0 is a prior estimate of σ2.
In an attempt to be “non-informative” people sometimes work
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Figure 2.31: Prior, likelihood, and posterior densities for σ2 with the football
data of Figure 2.30.

with a version of (13) obtained by letting ν0 → 0, namely p(σ2) =
c0 (σ2)

−1
. The resulting prior is improper in that it integrates

to ∞, but it turns out that posterior inferences will be sensible
nonetheless (even with sample sizes as small as n = 1). Show that
with this prior, the posterior distribution is χ−2(n, σ̂2).

Figure 2 below plots the prior, likelihood, and posterior densities
on the same graph using the data in Figure 1 and taking c0 = 2.5
for convenience in the plot. Get R (or some equivalent environ-
ment) to reproduce this figure (NB Maple has a hard time doing
this). You’ll need to be careful to use the correct normalizing con-
stant c in (13), which can be found either in the lecture notes or in
Appendix A of Gelman et al. (2003); and because the data values
in this example lead to astoundingly large and small numbers on
the original scale, it’s necessary to do all possible computations on
the log scale and wait to transform back to the original scale until
the last possible moment (you’ll need to use the built-in function
lgamma in R, or something like it in your favorite environment).
Explicitly identify the three curves, and briefly discuss what this
plot implies about the updating of information from prior to pos-
terior in this case.



Chapter 3

Simulation-based computation

3.1 IID sampling

Computation via conjugate analysis (part 2 of the lecture notes) produces
closed-form results (good) but is limited in scope to a fairly small set of
models for which straightforward conjugate results are possible (bad).

This was a severe limitation for Bayesians for almost 250 years (from the
1750s to the 1980s).

Over the past 10 years the Bayesian community has “discovered” and
developed an entirely new computing method, Markov chain Monte Carlo
(MCMC) (“discovered” because the physicists first figured it out about 50
years ago: Metropolis and Ulam, 1949; Metropolis et al., 1953).

We’ve seen that the central Bayesian practical challenge is the computa-
tion of high-dimensional integrals.

People working on the first atom bomb in World War II faced a similar
challenge, and noticed that digital computers (which were then passing from
theory (Turing, 1943) to reality) offered an entirely new approach to solving
the problem.

The idea (Metropolis and Ulam, 1949) was based on the observation that
anything you want to know about a probability distribution can be learned
to arbitrary accuracy by sampling from it.

Suppose, for example, that you’re interested in a posterior distribution
p(θ|y) which cannot be worked with (easily) in closed form, and initially (to
keep things simple) think of θ as a scalar (real number) rather than vector.

Four things of direct interest to you about p(θ|y) would be

123
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• its mean µ = E(θ|y) and standard deviation σ =
√

V (θ|y),
• its shape (basically you’d like to be able to trace out (an estimate of)

the entire density curve), and
• one or more of its quantiles (e.g., to construct a 95% central posterior

interval for θ you need to know the 2.5% and 97.5% quantiles, and sometimes
the posterior median (the 50th percentile) is of interest too).

Suppose you could take an arbitrarily large random sample from p(θ|y),
say θ∗1, . . . , θ

∗
m.

Then each of the above four aspects of p(θ|y) can be estimated from the
θ∗ sample:
• Ê(θ|y) = θ̄∗ = 1

m

∑m
j=1 θ∗j ,

•
√

V̂ (θ|y) =
√

1
m−1

∑m
j=1

(
θ∗j − θ̄∗

)2
,

• the density curve can be estimated by a histogram or kernel density
estimate, and
• percentiles can be estimated by counting how many of the θ∗ values

fall below a series of specified points—e.g., to find an estimate of the 2.5%
quantile you solve the equation

F̂θ(t) =
1

m

m∑

j=1

I(θ∗j ≤ t) = 0.025 (3.1)

for t, where I(A) is the indicator function (1 if A is true, otherwise 0).
These are called Monte Carlo estimates of the true summaries of p(θ|y)

because they’re based on the controlled use of chance.
Theory shows that with large enough m, each of the Monte Carlo (or

simulation-based) estimates can be made arbitrarily close to the truth with
arbitrarily high probability, under some reasonable assumptions about the
nature of the random sampling.

One way to achieve this, of course, is to make the sampling IID (this
turns out to be sufficient but not necessary—see below).

If, for example, θ̄∗ = 1
m

∑m

j=1 θ∗j is based on an IID sample of size m from

p(θ|y), we can use the frequentist fact that in repeated sampling V
(
θ̄∗
)

= σ2

m
,

where (as above) σ2 is the variance of p(θ|y), to construct a Monte Carlo
standard error (MCSE) for θ̄∗:

ŜE
(
θ̄∗
)

=
σ̂√
m

, (3.2)
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where σ̂ is the sample SD of the θ∗ values.
This can be used, possibly after some preliminary experimentation, to

decide on m, the Monte Carlo sample size, which later we’ll call the length
of the monitoring run.

An IID example. Consider the posterior distribution

p(λ|y) = Γ(λ; 29.001, 14.001)

in the LOS example in part 2.
We already know that the posterior mean of λ in this example is 29.001

14.001

.
=

2.071; let’s see how well the Monte Carlo method does in estimating this
known truth.

Here’s an R function to construct Monte Carlo estimates of the posterior
mean and MCSE values for these estimates.

gamma.sim <- function( m, alpha, beta, n.sim, seed ) {

set.seed( seed )

theta.out <- matrix( 0, n.sim, 2 )

for ( i in 1:n.sim ) {

theta.sample <- rgamma( m, alpha, 1 / beta )

theta.out[ i, 1 ] <- mean( theta.sample )

theta.out[ i, 2 ] <- sqrt( var( theta.sample ) / m )

}

return( theta.out )

}

This function simulates, n.sim times, the process of taking an IID sample
of size m from the Γ(α, β) distribution and calculating θ̄∗ and ŜE

(
θ̄∗
)
.

rosalind 296> R
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R : Copyright 2005, The R Foundation

for Statistical Computing

Version 2.1.0 Patched (2005-05-12), ISBN 3-900051-07-0

> m <- 1000

> alpha <- 29.001

> beta <- 14.001

> n.sim <- 500

> seed <- c( 6425451, 9626954 )

> theta.out <- gamma.sim( m, alpha, beta, n.sim, seed )

# This took about 1 second at 550 Unix MHz.

> theta.out[ 1:10, ]

[,1] [,2]

[1,] 2.082105 0.01166379

[2,] 2.072183 0.01200723

[3,] 2.066756 0.01247277

[4,] 2.060785 0.01200449

[5,] 2.078591 0.01212440

[6,] 2.050640 0.01228875

[7,] 2.071706 0.01182579

[8,] 2.063158 0.01176577

[9,] 2.058440 0.01186379

[10,] 2.068976 0.01220723

The θ̄∗ values fluctuate around the truth with a give-or-take of about
0.012, which agrees well with the theoretical SE σ√

m
=

√
α

β
√

m

.
= 0.01216 (recall

that the variance of a Gamma distribution is α
β2 ).

> postscript( "gamma-sim1.ps" )

> theta.bar <- theta.out[ , 1 ]
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Figure 3.1: Normal qqplot of the 500 θ̄∗ values.

> qqnorm( ( theta.bar - mean( theta.bar ) ) /

sqrt( var( theta.bar ) ) )

> abline( 0, 1 )

> dev.off( )

null device

1

Each of the θ̄∗ values is the mean of m = 1, 000 IID draws, so (by the CLT)
the distribution of the random variable θ̄∗ should be closely approximated
by a Gaussian.

> truth <- alpha / beta

> theta.bar.SE <- theta.out[ , 2 ]

> qnorm( 0.025 )
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[1] -1.959964

> sum( ( theta.bar - 1.96 * theta.bar.SE < truth ) *

( truth < theta.bar + 1.96 * theta.bar.SE ) ) / n.sim

[1] 0.972

Thus we can use frequentist ideas to work out how big m needs to be to
have any desired Monte Carlo accuracy for θ̄∗ as an estimate of the posterior
mean E(θ|y).

In practice, with p(θ|y) unknown, you would probably take an initial
sample (of size m = 1, 000, say) and look at the MCSE to decide how big m
really needs to be.

> theta.bar <- gamma.sim( m, alpha, beta, 1, seed )

> theta.bar

[,1] [,2]

[1,] 2.082105 0.01166379

(1) Suppose you wanted the MCSE of θ̄∗ to be (say) ε = 0.001. Then you
could solve the equation

σ̂√
m

= ε ↔ m =
σ2

ε2
, (3.3)

which says (unhappily) that the required m goes up as the square of the
posterior SD and as the inverse square of ε.

The previous calculation shows that σ̂√
1000

.
= 0.01166379, from which

σ̂
.
= 0.3688414, meaning that to get ε = 0.001 you need a sample of size

0.36884142

0.0012

.
= 136, 044

.
= 136k (!).

(2) Suppose instead that you wanted θ̄∗ to differ from the true posterior
mean µ by no more than ε1 with Monte Carlo probability at least (1− ε2):

P
(∣∣θ̄∗ − µ

∣∣ ≤ ε1

)
≥ 1− ε2, (3.4)

where P (·) here is based on the (frequentist) Monte Carlo randomness inher-
ent in θ̄∗.
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We know from the CLT and the calculations above that in repeated sam-
pling θ̄∗ is approximately normal with mean µ and variance σ2

m
; this leads to

the inequality

m ≥ σ2
[
Φ−1

(
1− ε2

2

)]2

ε2
1

, (3.5)

where Φ−1(q) is the place on the standard normal curve where 100q% of the
area is to the left of that place (the qth quantile of the standard normal
distribution).

(5) is like (3) except that the value of m from (3) has to be multiplied by[
Φ−1

(
1− ε2

2

)]2
, which typically makes the required sample sizes even bigger.

For example, with ε1 = 0.001 and ε2 = 0.05—i.e., to have at least 95%
Monte Carlo confidence that reporting the posterior mean as 2.071 will be
correct to about four significant figures—(5) says that you would need a
monitoring run of at least 136, 044(1.959964)2 .

= 522, 608
.
= 523k (!).

(On the other hand, this sounds like a long monitoring run but only
takes about 2.5 seconds at 550 Unix MHz on a SunBlade 100, yielding[
θ̄∗, ŜE

(
θ̄∗
)]

= (2.0709, 0.00053).)

It’s evident from calculations like these that people often report simula-
tion-based answers with numbers of significant figures far in excess of what
is justified by the actual accuracy of the Monte Carlo estimates.

A Closer Look at IID Sampling. I was able to easily perform the
above simulation study because R has a large variety of built-in functions like
rgamma for pseudo-random-number generation.

How would you go about writing such functions yourself?
There are a number of general-purpose methods for generating random

numbers (I won’t attempt a survey here); the one we need to look closely at,
to understand the algorithms that arise later in this section, is rejection sam-
pling (von Neumann, 1951), which is often one of the most computationally
efficient ways to make IID draws from a distribution.

3.1.1 Rejection sampling

Example. In the spring of 1993 a survey was taken of bicycle and other traf-
fic in the vicinity of the University of California, Berkeley, campus (Gelman,
Carlin et al. 2003).

As part of this survey 10 city blocks on residential streets with bike routes
were chosen at random from all such blocks at Berkeley; on one of those blocks
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n vehicles were observed on a randomly chosen Tuesday afternoon from 3 to
4pm, and s of them were bicycles.

To draw inferences about the underlying proportion θ of bicycle traffic
(PBT) on blocks similar to this one at times similar to Tuesday afternoons
from 3 to 4pm, it’s natural (as in the AMI mortality case study) to employ
the model
{

θ ∼ Beta(α0, β0)
(S|θ) ∼ Binomial(n, θ)

}
→ (θ|s) ∼ Beta(α0 + s, β0 + n− s), (3.6)

provided that whatever prior information I have about θ can be meaningfully
captured in the Beta family.

After reflection I realize that I’d be quite surprised if the PBT in residen-
tial city blocks with bike routes in Berkeley on Tuesday afternoons from 3 to
4pm was less than 5% or greater than 50%.

Making this operational by assuming that in the prior p(0.05 ≤ θ ≤ 0.5) =
0.9, and putting half of the remaining prior probability in each of the left and
right tails of the Beta distributions, yields (via numerical methods similar to
those in the AMI case study) (α0, β0) = (2.0, 6.4) (this Beta distribution has
prior mean and SD 0.24 and 0.14, respectively).

In the city block in question the data came out (n, s) = (74, 16), so that
the data mean was 0.216, and the posterior is then Beta(α0 +s, β0 +n−s) =
Beta(18.0, 64.4).

Pretend for the sake of illustration of rejection sampling that you didn’t
know the formulas for the mean and SD of a Beta distribution, and suppose
that you wanted to use IID Monte Carlo sampling from the Beta(α0 +s, β0 +
n− s) posterior to estimate the posterior mean.

Here’s von Neumann’s basic idea: suppose the target density p(θ|y) is
difficult to sample from, but you can find an integrable envelope function
G(θ|y) such that (a) G dominates p in the sense that G(θ|y) ≥ p(θ|y) ≥ 0
for all θ and (b) the density g obtained by normalizing G—later to be called
the proposal distribution—is easy and fast to sample from.

Then to get a random draw from p, make a draw θ∗ from g instead and
accept or reject it according to an acceptance probability αR(θ∗|y); if you
reject the draw, repeat this process until you accept.

von Neumann showed that the choice

αR(θ∗|y) =
p(θ∗|y)

G(θ∗|y)
(3.7)
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correctly produces IID draws from p, and you can intuitively see that he’s
right by the following argument.

Making a draw from the posterior distribution of interest is like choosing
a point at random (in two dimensions) under the density curve p(θ|y) in such
a way that all possible points are equally likely, and then writing down its θ
value.

If you instead draw from G so that all points under G are equally likely,
to get correct draws from p you’ll need to throw away any point that falls
between p and G, and this can be accomplished by accepting each sampled
point θ∗ with probability p(θ∗|y)

G(θ∗|y)
, as von Neumann said.

A summary of this method is as follows.

Algorithm (rejection sampling). To make m IID draws at
random from the density p(θ|y) for real-valued θ, select an
integrable envelope function G—which when normalized
to integrate to 1 is the proposal distribution g—such that
G(θ|y) ≥ p(θ|y) ≥ 0 for all θ; define the acceptance proba-

bility αR(θ∗|y) = p(θ∗|y)
G(θ∗|y)

; and
Initialize t← 0
Repeat {

Sample θ∗ ∼ g(θ|y)
Sample u ∼ Uniform(0, 1)
If u ≤ αR(θ∗|y) then

{ θt+1 ← θ∗; t← (t + 1) }
}
until t = m.

(3.8)

choosing a θ∗ from g locates the horizontal coordinate according to G;
choosing a u as above is equivalent to picking a point at random vertically
on the line segment from (θ∗, 0) to (θ∗, G(θ∗)) and seeing whether it’s below
p or not

The figure below demonstrates this method on the Beta(18.0, 64.4) den-
sity arising in the Beta-Bernoulli example above.

Rejection sampling permits considerable flexibility in the choice of enve-
lope function; here, borrowing an idea from Gilks and Wild (1992), I’ve noted
that the relevant Beta density is log concave (a real-valued function is log
concave if its second derivative on the log scale is everywhere non-positive),



132 David Draper

0.10 0.15 0.20 0.25 0.30 0.35 0.40

−
1

0
1

2
3

theta

Lo
g 

D
en

si
ty

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
5

10
15

theta

D
en

si
ty

Figure 3.2: Top panel: piecewise linear rejection sampling envelope function
for the log posterior; bottom panel: top panel transformed back to the density
scale.

meaning that it’s easy to construct an envelope on that scale in a piece-
wise linear fashion, by choosing points on the log density and constructing
tangents to the curve at those points.

The simplest possible such envelope involves two line segments, one on
either side of the mode.

The optimal choice of the tangent points would maximize the marginal
probability of acceptance of a draw in the rejection algorithm, which can be
shown to be [∫

G(θ) dθ

]−1

; (3.9)

in other words, you should minimize the area under the (un-normalized)
envelope function subject to the constraint that it dominates the target den-
sity p(θ|y) (which makes eminently good sense).

Here this optimum turns out to be attained by locating the two tangent
points at about 0.17 and 0.26, as in the figure above; the resulting acceptance
probability of about 0.75 could clearly be improved by adding more tangents.
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Piecewise linear envelope functions on the log scale are a good choice
because the resulting envelope density on the raw scale is a piecewise set of
scaled exponential distributions (see the bottom panel in the figure above),
from which random samples can be taken quickly.

A preliminary sample of m0 = 500 IID draws from the Beta(18.0, 64.4)
distribution using the above rejection sampling method yields θ̄∗ = 0.2197
and σ̂ = 0.04505, meaning that the posterior mean has already been esti-
mated with an MCSE of only σ̂√

m0
= 0.002 even with just 500 draws.

Suppose, however, that—as in equation (4) above—I want θ̄∗ to differ
from the true posterior mean µ by no more than some (perhaps even smaller)
tolerance ε1 with Monte Carlo probability at least (1− ε2); then equation (5)
tells me how long to monitor the simulation output.

For instance, to pin down three significant figures (sigfigs) in the pos-
terior mean in this example with high Monte Carlo accuracy I might take
ε1 = 0.0005 and ε2 = 0.05, which yields a recommended IID sample size of
(0.045052)(1.96)2

0.00052

.
= 31, 200.

So I take another sample of 30,700 (which is virtually instantaneous at
550 Unix MHz) and merge it with the 500 draws I already have; this yields
θ̄∗ = 0.21827 and σ̂ = 0.04528, meaning that the MCSE of this estimate of
µ is 0.04528√

31200

.
= 0.00026.

I might announce that I think E(θ|y) is about 0.2183, give or take about
0.0003, which accords well with the true value 0.2184.

Of course, other aspects of p(θ|y) are equally easy to monitor; for example,
if I want a Monte Carlo estimate of p(θ ≤ q|y) for some q, as noted above
I just work out the proportion of the sampled θ∗ values that are no larger
than q.

Or, even better, I recall that P (A) = E[I(A)] for any event or proposition
A, so to the Monte Carlo dataset (see p. 26 below) consisting of 31,200 rows
and one column (the θ∗t ) I add a column monitoring the values of the derived
variable which is 1 whenever θ∗t ≤ q and 0 otherwise; the mean of this derived
variable is the Monte Carlo estimate of p(θ ≤ q|y), and I can attach an MCSE
to it in the same way I did with θ̄∗.

By this approach, for instance, the Monte Carlo estimate of p(θ ≤ 0.15|y)
based on the 31,200 draws examined above comes out p̂ = 0.0556 with an
MCSE of 0.0013.

Percentiles are typically harder to pin down with equal Monte Carlo accu-
racy (in terms of sigfigs) than means or SDs, because the 0/1 scale on which



134 David Draper

they’re based is less information-rich than the θ∗ scale itself; if I wanted an
MCSE for p̂ of 0.0001 I would need an IID sample of more than 5 million
draws (which would still only take a few seconds at contemporary workstation
speeds).

Beyond rejection sampling: IID sampling is not necessary. Noth-
ing in the Metropolis-Ulam idea of Monte Carlo estimates of posterior sum-
maries requires that these estimates be based on IID samples from the pos-
terior.

This is lucky, because in practice it’s often difficult, particularly when θ
is a vector of high dimension (say k), to figure out how to make such an IID
sample, via rejection sampling or other methods (e.g., imagine trying to find
an envelope function for p(θ|y) when k is 10 or 100 or 1,000).

Thus it’s necessary to relax the assumption that θ∗j
IID∼ p(θ|y), and to

consider samples θ∗1, . . . , θ
∗
m that form a time series: a series of draws from

p(θ|y) in which θ∗j may depend on θ∗j′ for j ′ < j.
In their pioneering paper Metropolis et al. (1953) allowed for serial de-

pendence of the θ∗j by combining von Neumann’s idea of rejection sampling
(which had itself only been published a few years earlier in 1951) with con-
cepts from Markov chains, a subject in the theory of stochastic processes.

Combining Monte Carlo sampling with Markov chains gives rise to the
name now used for this technique for solving the Bayesian high-dimensional
integration problem: Markov chain Monte Carlo (MCMC).

3.2 Markov chains

Markov chains. A stochastic process is just a collection of random variables
{θ∗t , t ∈ T} for some index set T , usually meant to stand for time.

In practice T can be either discrete, e.g., {0, 1, . . .}, or continuous, e.g.,
[0,∞).

Markov chains are a special kind of stochastic process that can either
unfold in discrete or continuous time—we’ll talk here about discrete-time
Markov chains, which is all you need for MCMC.

The possible values that a stochastic process can take on are collectively
called the state space S of the process—in the simplest case S is real-valued
and can also either be discrete or continuous.

Intuitively speaking, a Markov chain (e.g., Feller, 1968; Roberts, 1996;
Gamerman, 1997) is a stochastic process unfolding in time in such a way that
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the past and future states of the process are independent given the present
state—in other words, to figure out where the chain is likely to go next you
don’t need to pay attention to where it’s been, you just need to consider
where it is now.

More formally, a stochastic process {θ∗t , t ∈ T}, T = {0, 1, . . .}, with state
space S is a Markov chain if, for any set A ∈ S,

P (θ∗t+1 ∈ A|θ∗0, . . . , θ∗t ) = P (θ∗t+1 ∈ A|θ∗t ). (3.10)

The theory of Markov chains is harder mathematically if S is continuous
(e.g., Tierney, 1996), which is what we need for MCMC with real-valued
parameters, but most of the main ideas emerge with discrete state spaces,
and I’ll assume discrete S in the intuitive discussion here.

Example. For a simple example of a discrete-time Markov chain with a
discrete state space, imagine a particle that moves around on the integers
{. . . ,−2,−1, 0, 1, 2, . . .}, starting at 0 (say).

Wherever it is at time t—say at i—it tosses a (3-sided) coin and moves to
(i−1) with probability p1, stays at i with probability p2, and moves to (i+1)
with probability p3, for some 0 < p1, p2, p3 < 1 with p1 + p2 + p3 = 1—these
are the transition probabilities for the process.

This is a random walk (on the integers), and it’s clearly a Markov chain.
Nice behavior. The most nicely-behaved Markov chains satisfy three

properties:
• They’re irreducible, which basically means that no matter where it

starts the chain has to be able to reach any other state in a finite number of
iterations with positive probability;
• They’re aperiodic, meaning that for all states i the set of possible so-

journ times, to get back to i having just left it, can have no divisor bigger
than 1 (this is a technical condition; periodic chains still have some nice
properties, but the nicest chains are aperiodic).
• They’re positive recurrent, meaning that (a) for all states i, if the

process starts at i it will return to i with probability 1, and (b) the expected
length of waiting time til the first return to i is finite.

Notice that this is a bit delicate: wherever the chain is now, we insist
that it must certainly come back here, but we don’t expect to have to wait
forever for this to happen.

The random walk defined above is clearly irreducible and aperiodic, but
it may not be positive recurrent (depending on the pi): it’s true that it has
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positive probability of returning to wherever it started, but (because S is
unbounded) this probability may not be 1, and on average you may have to
wait forever for it to return.

We can fix this by bounding S: suppose instead that S = {−k,−(k −
1), . . . ,−1, 0, 1, . . . , k}, keeping the same transition probabilities except re-
jecting any moves outside the boundaries of S.

This bounded random walk now satisfies all three of the nice properties.
The value of nice behavior. Imagine running the bounded random walk

for a long time, and look at the distribution of the states it visits—over
time this distribution should settle down (converge) to a kind of limiting,
steady-state behavior.

This can be demonstrated by simulation, for instance in R, and using the
bounded random walk as an example:

rw.sim <- function( k, p, theta.start, n.sim, seed ) {

set.seed( seed )

theta <- rep( 0, n.sim + 1 )

theta[ 1 ] <- theta.start

for ( i in 1:n.sim ) {

theta[ i + 1 ] <- move( k, p, theta[ i ] )

}

return( table( theta ) )

}

move <- function( k, p, theta ) {

repeat {

increment <- sample( x = c( -1, 0, 1 ), size = 1, prob = p )

theta.next <- theta + increment
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if ( abs( theta.next ) <= k ) {

return( theta.next )

break

}

}

}

rosalind 17> R

R : Copyright 2005, The R Foundation

Version 2.1.0 Patched (2005-05-12), ISBN 3-900051-07-0

> p <- c( 1, 1, 1 ) / 3

> k <- 5

> theta.start <- 0

> seed <- c( 6425451, 9626954 )

> rw.sim( k, p, theta.start, 10, seed )

theta

0 1 2

5 5 1

> rw.sim( k, p, theta.start, 100, seed )

-2 -1 0 1 2 3 4 5

7 9 16 17 23 14 8 7

> rw.sim( k, p, theta.start, 1000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

65 115 123 157 148 123 106 82 46 21 15
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> rw.sim( k, p, theta.start, 10000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

581 877 941 976 959 1034 1009 982 1002 959 681

> rw.sim( k, p, theta.start, 100000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9631 9376 9712 9965 9749 9672 9352 6274

> rw.sim( k, p, theta.start, 1000000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

65273 98535 97715 96708 95777 96607 96719 96361 96836 95703 63767

You can see that the distribution of where the chain has visited is con-
verging to something close to uniform on {−5,−4, . . . , 4, 5}, except for the
effects of the boundaries.

Letting q1 denote the limiting probability of being in one of the 9 non-
boundary states (−4,−3, . . . , 3, 4) and q2 be the long-run probability of being
in one of the 2 boundary states (−5, 5), on grounds of symmetry you can guess
that q1 and q2 should satisfy

9q1 + 2q2 = 1 and q1 =
3

2
q2, (3.11)

from which (q1, q2) =
(

3
31

, 2
31

) .
= (0.096774, 0.064516).

Based on the run of 1,000,001 iterations above we would estimate these
probabilities empirically as

[
98535 + . . . + 95703

(9)(1000001)
,
65273 + 63767

(2)(1000001)

]
.
= (0.096773, 0.064520) .

It should also be clear that the limiting distribution does not depend on
the initial value of the chain:

> rw.sim( k, p, 5, 100000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9624 9374 9705 9959 9738 9678 9365 6288
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Of course, you get a different limiting distribution with a different choice
of (p1, p2, p3):

> p <- c( 0.2, 0.3, 0.5 )

> rw.sim( k, p, 0, 10, seed )

0 1 2 3

1 3 4 3

> rw.sim( k, p, 0, 100, seed )

0 1 2 3 4 5

1 3 6 13 30 48

> rw.sim( k, p, 0, 1000, seed )

0 1 2 3 4 5

1 18 71 157 336 418

> rw.sim( k, p, 0, 10000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 16 19 30 28 74 215 583 1344 3470 4217

> rw.sim( k, p, 0, 100000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 22 53 132 302 834 2204 5502 13489 34460 42998

> rw.sim( k, p, 0, 1000000, seed )

-5 -4 -3 -2 -1 0 1 2 3 4 5

61 198 511 1380 3398 8591 22117 54872 137209 343228 428436

Stationary distributions. A positive recurrent and aperiodic chain is
called ergodic, and it turns out that such chains possess a unique stationary
(or equilibrium, or invariant) distribution π, characterized by the relation

π(j) =
∑

i

π(i)Pij(t) (3.12)
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for all states j and times t ≥ 0, where Pij(t) = P (θ∗t = j|θ∗t−1 = i) is the
transition matrix of the chain.

Informally, the stationary distribution characterizes the behavior that the
chain will settle into after it’s been run for a long time, regardless of its initial
state.

The point of all of this. Given a parameter vector θ and a data vector y,
the Metropolis et al. (1953) idea is to simulate random draws from the pos-
terior distribution p(θ|y), by constructing a Markov chain with the following
three properties:
• It should have the same state space as θ,
• It should be easy to simulate from, and
• Its equilibrium distribution should be p(θ|y).
If you can do this, you can run the Markov chain for a long time, gener-

ating a huge sample from the posterior, and then use simple descriptive sum-
maries (means, SDs, correlations, histograms or kernel density estimates) to
extract any features of the posterior you want.

There is a fourth desirable condition as well:
• It should not be necessary to work out the normalizing constant for

p(θ|y) to implement the algorithm, which is equivalent to saying that p(θ|y)

should appear in the calculations only through ratios of the form p(θ|y)
p(θ′|y)

.
The Ergodic Theorem. The mathematical fact that underpins this

strategy is the ergodic theorem: if the Markov chain {θ∗
t } is ergodic and f is

any real-valued function for which Eπ|f(θ)| is finite, then with probability 1
as m→∞

1

m

m∑

t=1

f(θ∗t )→ Eπ[f(θ)] =
∑

i

f(i) π(i), (3.13)

in which the right side is just the expectation of f(θ) under the stationary
distribution π.

In plain English this means that—as long as the stationary distribution
is p(θ|y)—you can learn (to arbitrary accuracy) about things like posterior
means, SDs, and so on just by waiting for stationarity to kick in and moni-
toring thereafter for a long enough period.

Of course, as Roberts (1996) notes, the theorem is silent on the two key
practical questions it raises: how long you have to wait for stationarity, and
how long to monitor after that.

A third practical issue is what to use for the initial value θ∗0: intuitively
the closer θ∗0 is to the center of p(θ|y) the less time you should have to wait
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for stationarity.

The standard way to deal with waiting for stationarity is to (a) run the
chain from a good starting value θ∗0 for b iterations, until equilibrium has
been reached, and (b) discard this initial burn-in period.

All of this motivates the topic of MCMC diagnostics, which are intended
to answer the following questions:

• What should I use for the initial value θ∗0?

• How do I know when I’ve reached equilibrium? (This is equivalent to
asking how big b should be.)

• Once I’ve reached equilibrium, how big should m be, i.e., how long
should I monitor the chain to get posterior summaries with decent accuracy?

3.2.1 The Monte Carlo and MCMC datasets

The basis of the Monte Carlo approach to obtaining numerical approxima-
tions to posterior summaries like means and SDs is the (weak) Law of Large
Numbers: with IID sampling the Monte Carlo estimates of the true sum-
maries of p(θ|y) are consistent, meaning that they can be made arbitrarily
close to the truth with arbitrarily high probability as the number of moni-
toring iterations m→∞.

Before we look at how Metropolis et al. attempted to achieve the same
goal with a non-IID Monte Carlo approach, let’s look at the practical conse-
quences of switching from IID to Markovian sampling.

Running the IID rejection sampler on the Berkeley PBT example above
for a total of m monitoring iterations would produce something that might
be called the Monte Carlo dataset, with one row for each iteration and one
column for each monitored quantity; in that example it might look like this
(MCSEs in parenthesis):

Iteration θ I(θ ≤ 0.15)
1 θ∗1 = 0.244 I∗

1 = 0
2 θ∗2 = 0.137 I∗

2 = 1
...

...
...

m = 31, 200 θ∗m = 0.320 I∗
m = 0

Mean 0.2183 (0.003) 0.0556 (0.0013)
SD 0.04528 —

Density (like the bottom
Trace plot on p. 14) —
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Running the Metropolis sampler on the same example would produce
something that might be called the MCMC dataset.

It would have a similar structure as far as the columns are concerned, but
the rows would be divided into three phases:
• Iteration 0 would be the value(s) used to initialize the Markov chain;
• Iterations 1 through b would be the burn-in period, during which the

chain reaches its equilibrium or stationary distribution (as mentioned above,
iterations 0 through b are generally discarded); and
• Iterations (b + 1) through (b + m) would be the monitoring run, on

which summaries of the posterior (means, SDs, density traces, ...) will be
based.

In the Berkeley PBT example the MCMC dataset might look like this:
Iteration Phase θ I(θ ≤ 0.15)

0 Initialization θ∗0 = 0.200 —
1 Burn-in θ∗1 = 0.244 —
...

...
...

...
b = 500 Burn-in θ∗b = 0.098 —

(b + 1) = 501 Monitoring θ∗b+1 = 0.275 I∗
b+1 = 0

...
...

...
...

(b + m) = 31, 700 Monitoring θ∗b+m = 0.120 I∗
b+m = 1

Mean (Monitoring 0.2177 (0.009) 0.0538 (0.004)
SD Phase 0.04615 —

Density Only) (like the bottom
Trace plot on p. 14) —

Think of iteration number i in the Monte Carlo sampling process as a
discrete index of time t, so that the columns of the MC and MCMC datasets
can be viewed as time series.

An important concept from time series analysis is autocorrelation: the
autocorrelation ρk of a stationary time series θ∗t at lag k (see, e.g., Chatfield
(1996)) is γk

γ0
, where γk is C(θ∗t , θ

∗
t−k), the covariance of the series with itself

k iterations in the past—this measures the degree to which the time series
at any given moment depends on its past history.

IID draws from p(θ|y) correspond to white noise: a time series with zero
autocorrelations at all lags.

This is the behavior of the columns in the MC data set on p. 26, produced
by ordinary rejection sampling.

Because of the Markov character of the columns of the MCMC data
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set on p. 27, each column, when considered as a time series, will typically
have non-zero autocorrelations, and because Markov chains use their present
values to decide where to go next it shouldn’t surprise you to hear that
the typical behavior will be (substantial) positive autocorrelations—in other
words, every time you get another draw from the Markov chain you get some
new information about the posterior and a rehash of old information mixed
in.

It’s a marvelous result from time series analysis (the Ergodic Theorem for
Markov chains on p. 25 is an example of this fact) that all of the usual de-
scriptive summaries of the posterior are still consistent as long as the columns
of the MCMC data set form stationary time series.

In other words, provided that you can achieve the four goals back on
p. 24 which Metropolis et al. set for themselves, and provided that you only
do your monitoring after the Markov chain has reached equilibrium, the
MCMC approach and the IID Monte Carlo approach are equally valid (they
both get the right answers), but they may well differ on their efficiency (the
rate per iteration, or per CPU second, at which they learn about the posterior
may not be the same); and if, as is typically true, the columns of the MCMC
dataset have positive autocorrelations, this will translate into slower learning
(larger MCSEs) than with IID sampling (compare the MCSEs on pages 26
and 27).

3.3 The Metropolis algorithm

Metropolis et al. were able to create what people would now call a successful
MCMC algorithm by the following means (see the excellent book edited by
Gilks et al. (1996) for many more details about the MCMC approach).

Consider the rejection sampling method given above in (8) as a mecha-
nism for generating realizations of a time series (where as above time indexes
iteration number).

At any time t in this process you make a draw θ∗ from the proposal distri-
bution g(θ|y) (the normalized version of the envelope function G) and either
accept a “move” to θ∗ or reject it, according to the acceptance probability
p(θ∗|y)
G(θ∗|y)

; if accepted the process moves to θ∗, if not you draw again and discard
the rejected draws until you do make a successful move.

As noted above, the stochastic process thus generated is an IID (white
noise) series of draws from the target distribution p(θ|y).
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Metropolis et al. had the following beautifully simple idea for how this
may be generalized to situations where IID sampling is difficult: they allowed
the proposal distribution at time t to depend on the current value θt of the
process, and then—to get the right stationary distribution—if a proposed
move is rejected, instead of discarding it the process is forced to stay where
it is for one iteration before trying again.

The resulting process is a Markov chain, because (a) the draws are now
dependent but (b) all you need to know in determining where to go next is
where you are now.

3.3.1 Metropolis-Hastings sampling

Letting θt stand for where you are now and θ∗ for where you’re thinking of go-
ing, in this approach there is enormous flexibility in the choice of the proposal
distribution g(θ∗|θt, y), even more so than in ordinary rejection sampling.

The original Metropolis et al. idea was to work with symmetric proposal
distributions, in the sense that g(θ∗|θt, y) = g(θt|θ∗, y), but Hastings (1970)
pointed out that this could easily be generalized; the resulting method is the
Metropolis-Hastings (MH) algorithm.

Building on the Metropolis et al. results, Hastings showed that you’ll get
the correct stationary distribution p(θ|y) for your Markov chain by making
the following choice for the acceptance probability:

αMH(θ∗|θt, y) = min

{
1,

p(θ∗|y)
g(θ∗|θt,y)

p(θt|y)
g(θt|θ∗,y)

}
. (3.14)

It turns out that the proposal distribution g(θ∗|θt, y) can be virtually any-
thing and you’ll get the right equilibrium distribution using the acceptance
probability (14); see, e.g., Roberts (1996) and Tierney (1996) for the mild
regularity conditions necessary to support this statement.

A summary of the method is on the next page.
It’s instructive to compare (15) with (8) to see how heavily the MH algo-

rithm borrows from ordinary rejection sampling, with the key difference that
the proposal distribution is allowed to change over time.

Notice how (14) generalizes von Neumann’s acceptance probability ratio
p(θ∗|y)
G(θ∗|y)

for ordinary rejection sampling: the crucial part of the new MH accep-
tance probability becomes the ratio of two von-Neumann-like ratios, one for
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where you are now and one for where you’re thinking of going (it’s equivalent
to work with g or G since the normalizing constant cancels in the ratio).

Algorithm (Metropolis-Hastings sampling). To construct a
Markov chain whose equilibrium distribution is p(θ|y), choose
a proposal distribution g(θ∗|θt, y), define the acceptance prob-
ability αMH(θ∗|θt, y) by (14), and

Initialize θ0; t← 0
Repeat {

Sample θ∗ ∼ g(θ|θt, y)
Sample u ∼ Uniform(0, 1)
If u ≤ αMH(θ∗|θt, y) then θt+1 ← θ∗

else θt+1 ← θt

t← (t + 1)
}

(3.15)

When the proposal distribution is symmetric in the Metropolis sense,
the acceptance probability ratio reduces to p(θ∗|y)

p(θt|y)
, which is easy to motivate

intuitively: whatever the target density is at the current point θt, you want to
visit points of higher density more often and points of lower density less often,
and it turns out that (14) does this for you in the natural and appropriate
way.

As an example of the MH algorithm in action, consider a Gaussian model
with known mean µ and unknown variance σ2 applied to the NB10 data in
part 2 of the lecture notes.

The likelihood function for σ2, derived from the sampling model (Yi|σ2)
IID∼

N(µ, σ2) for i = 1, . . . , n, is

l(σ2|y) = c
n∏

i=1

(σ2)−
1
2 exp

[
−(yi − µ)2

2σ2

]
(3.16)

= c (σ2)−
n
2 exp

[
−
∑n

i=1(yi − µ)2

2σ2

]
.

This is recognizable as a member of the Scaled Inverse χ2 family χ−2(ν, s2)
(e.g., Gelman, Carlin et al. (2003)) of distributions, which (as we saw in part
2 of the lecture notes) is a rescaled version of the Inverse Gamma family
chosen so that s2 is an estimate of σ2 based upon ν “observations.”
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You can now convince yourself that if the prior for σ2 in this model is
taken to be χ−2(ν, s2), then the posterior for σ2 will also be Scaled Inverse
χ2: with this choice of prior

p(σ2|y) = χ−2

[
ν + n,

νs2 +
∑n

i=1(yi − µ)2

ν + n

]
. (3.17)

This makes good intuitive sense: the prior estimate s2 of σ2 receives ν votes
and the sample estimate σ̂2 = 1

n

∑n
i=1(yi−µ)2 receives n votes in the posterior

weighted average estimate νs2+nσ̂2

ν+n
.

Equation (17) provides a satisfying closed-form solution to the Bayesian
updating problem in this model (e.g., it’s easy to compute posterior moments
analytically, and you can use numerical integration or well-known approxi-
mations to the CDF of the Gamma distribution to compute percentiles).

For illustration purposes suppose instead that you want to use MH sam-
pling to summarize this posterior.

Then your main choice as a user of the algorithm is the specification of
the proposal distribution (PD) g(σ2|σ2

t , y).
The goal in choosing the PD is getting a chain that mixes well (moves

freely and fluidly among all of the possible values of θ = σ2), and nobody has
(yet) come up with a sure-fire strategy for always succeeding at this task.

Having said that, here are two basic ideas that often tend to promote
good mixing:

(1) Pick a PD that looks like a somewhat overdispersed version of the
posterior you’re trying to sample from (e.g., Tierney (1996)).

Some work is naturally required to overcome the circularity inherent in
this choice (if I fully knew p(θ|y) and all of its properties, why would I be
using this algorithm in the first place?).

(2) Set up the PD so that the expected value of where you’re going to
move to (θ∗), given that you accept a move away from where you are now
(θt), is to stay where you are now: Eg(θ

∗|θt, y) = θt.
That way, when you do make a move, there will be an approximate left-

right balance, so to speak, in the direction you move away from θt, which
will encourage rapid exploration of the whole space.

Using idea (1), a decent choice for the PD in the Gaussian model with un-
known variance might well be the Scaled Inverse χ2 distribution: g(σ2|σ2

t , y)
= χ−2(ν∗, σ

2
∗).

This distribution has mean ν∗
ν∗−2

σ2
∗ for ν∗ > 2.
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Figure 3.3: Output of the Metropolis sampler with a Scaled Inverse χ2 pro-
posal distribution with three values of the tuning constant ν∗ = {2.5, 20, 500}
(reading from top to bottom).

To use idea (2), then, I can choose any ν∗ greater than 2 that I want, and
as long as I take σ2

∗ = ν∗−2
ν∗

σ2
t that will center the PD at σ2

t as desired.

So I’ll use

g
(
σ2|σ2

t , y
)

= χ−2

(
ν∗,

ν∗ − 2

ν∗
σ2

t

)
. (3.18)

This leaves ν∗ as a kind of potential tuning constant—the hope is that I can
vary ν∗ to improve the mixing of the chain.

The above figure (motivated by an analogous plot in Gilks et al. (1996))
presents time series traces of some typical output of the MH sampler with
ν∗ = (2.5, 20, 500).

The acceptance probabilities with these values of ν∗ are (0.07, 0.44, 0.86),
respectively.

The SD of the χ−2
(
ν∗,

ν∗−2
ν∗

σ2
t

)
distribution is proportional to ν2

∗

(ν2
∗
−2)2

√
ν∗−4

,

which decreases as ν∗ increases, and this turns out to be crucial: when the
proposal distribution SD is too large (small ν∗, as in the top panel in the



148 David Draper

figure), the algorithm tries to make big jumps around θ space (good), but al-
most all of them get rejected (bad), so there are long periods of no movement
at all, whereas when the PD SD is too small (large ν∗; see the bottom panel
of the figure), the algorithm accepts most of its proposed moves (good), but
they’re so tiny that it takes a long time to fully explore the space (bad).

Gelman, Roberts, et al. (1995) have shown that in simple problems with
approximately normal target distributions, the optimal acceptance rate for
MH samplers like the one illustrated here is about 44% when the vector of
unknowns is one-dimensional, and this can serve as a rough guide: you can
modify the proposal distribution SD until the acceptance rate is around the
Gelman et al. target figure.

The central panel of the figure displays the best possible MH behavior in
this problem in the family of PDs chosen.

Even with this optimization you can see that the mixing is not wonderful,
but contemporary computing speeds enable huge numbers of draws to be
collected in a short period of time, compensating for the comparatively slow
rate at which the MH algorithm learns about the posterior distribution of
interest.

In this example the unknown quantity θ = σ2 was real-valued, but there’s
nothing in the MH method that requires this; in principle it works equally
well when θ is a vector of any finite dimension (look back at the algorithm
in (15) to verify this).

Notice, crucially, that to implement this algorithm you only need to know
how to calculate p(θ|y) up to a constant multiple, since any such constant
will cancel in computing the acceptance probability (15)—thus you’re free
to work with unnormalized versions of p(θ|y), which is a great advantage in
practice.

There’s even more flexibility in this algorithm than might first appear:
it’s often possible to identify a set A of auxiliary variables—typically these
are latent (unobserved) quantities—to be sampled along with the parameters,
which have the property that they improve the mixing of the MCMC output
(even though extra time is spent in sampling them).

When the set (θ, A) of quantities to be sampled is a vector of length k,
there is additional flexibility: you can block update all of (θ, A) at once,
or with appropriate modifications of the acceptance probability you can di-
vide (θ, A) up into components, say (θ, A) = (λ1, . . . , λl), and update the
components one at a time (as Metropolis et al. originally proposed in 1953).

The idea in this component-by-component version of the algorithm, which
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Gilks et al. (1996) call single-component MH sampling, is to have k different
proposal distributions, one for each component of θ.

Each iteration of the algorithm (indexed as usual by t) has k steps, in-
dexed by i; at the beginning of iteration t you scan along, updating λ1 first,
then λ2, and so on until you’ve updated λk, which concludes iteration t.

Let λt,i stand for the current state of component i at the end of iteration
t, and let λ−i stand for the (θ, A) vector with component i omitted (the
notation gets awkward here; it can’t be helped).

The proposal distribution gi(λ
∗
i |λt,i, λt,−i, y) for component i is allowed to

depend on the most recent versions of all components of (θ, A); here λt,−i is
the current state of λ−i after step (i − 1) of iteration t is finished, so that
components 1 through (i− 1) have been updated but not the rest.

3.3.2 Gibbs sampling

The acceptance probability for the proposed move to λ∗
i that creates the

correct equilibrium distribution turns out to be

αMH(λ∗
i |λt,−i, λt,i, y) = min

[
1,

p(λ∗
i |λt,−i, y) gi(λt,i|λ∗

i , λt,−i, y)

p(λt,i|λt,−i, y) gi(λ∗
i |λt,i, λt,−i, y)

]
. (3.19)

The distribution p(λi|λ−i, y) appearing in (19), which is called the full
conditional distribution for λi, has a natural interpretation: it represents the
posterior distribution for the relevant portion of (θ, A) given y and the rest
of (θ, A).

The full conditional distributions act like building blocks in constructing
the complete posterior distribution p(θ|y), in the sense that any multivari-
ate distribution is uniquely determined by its set of full conditionals (Besag
(1974)).

An important special case of single-component MH sampling arises when
the proposal distribution gi(λ

∗
i |λt,i, λt,−i, y) for component i is chosen to be

the full conditional p(λ∗
i |λt,−i, y) for λi: you can see from (19) that when this

choice is made a glorious cancellation occurs and the acceptance probability
is 1.

This is Gibbs sampling, independently (re)discovered by Geman and Ge-
man (1984): the Gibbs recipe is to sample from the full conditionals and
accept all proposed moves.

Even though it’s just a version of MH, Gibbs sampling is important
enough to merit a summary of its own.
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Single-element Gibbs sampling, in which each real-valued coordinate (θ1,
. . . , θk) gets updated in turn, is probably the most frequent way Gibbs sam-
pling gets used, so that’s what I’ll summarize ((20) details Gibbs sampling
in the case with no auxiliary variables A, but the algorithm works equally
well when θ is replaced by (θ, A) in the summary).

Algorithm (Single-element Gibbs sampling). To con- struct a
Markov chain whose equilibrium distribution is p(θ|y) with
θ = (θ1, . . . , θk),

Initialize θ∗0,1, . . . , θ
∗
0,k; t← 0

Repeat {
Sample θ∗t+1,1 ∼ p(θ1|y, θ∗t,2, θ

∗
t,3, θ

∗
t,4, . . . , θ

∗
t,k)

Sample θ∗t+1,2 ∼ p(θ2|y, θ∗t+1,1, θ
∗
t,3, θ

∗
t,4, . . . , θ

∗
t,k)

Sample θ∗t+1,3 ∼ p(θ3|y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t,4, . . . , θ

∗
t,k)

...
...

...
...

...
...

Sample θ∗t+1,k ∼ p(θk|y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t+1,3, . . . , θ

∗
t+1,k−1)

t← (t + 1)
}

(3.20)

We noted from the predictive plot toward the end of part 2 of the lecture
notes that the Gaussian model for the NB10 data was inadequate: the tails
of the data distribution are too heavy for the Gaussian.

It was also clear from the normal qqplot that the data are symmetric.
This suggests thinking of the NB10 data values yi as like draws from a t

distribution with fairly small degrees of freedom ν.
One way to write this model is

(µ, σ2, ν) ∼ p(µ, σ2, ν)

(yi|µ, σ2, ν)
IID∼ tν(µ, σ2), (3.21)

where tν(µ, σ2) denotes the scaled t-distribution with mean µ, scale param-
eter σ2, and shape parameter ν.

This distribution has variance σ2
(

ν
ν−2

)
for ν > 2 (so that shape and

scale are mixed up, or confounded in tν(µ, σ2)) and may be thought of as the
distribution of the quantity µ + σ e, where e is a draw from the standard t
distribution that is tabled at the back of all introductory statistics books.
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Model expansion. However, a better way to think about model (21) is
as follows.

Example: the NB10 Data. Recall from the posterior
It’s a fact from basic distribution theory, probably of more interest to

Bayesians than frequentists, that the t distribution is an Inverse Gamma
mixture of Gaussians.

This just means that to generate a t random quantity you can first draw
from an Inverse Gamma distribution and then draw from a Gaussian condi-
tional on what you got from the Inverse Gamma.

(As noted in homework 2, λ ∼ Γ−1(α, β) just means that λ−1 = 1
λ
∼

Γ(α, β)).
In more detail, (y|µ, σ2, ν) ∼ tν(µ, σ2) is the same as the hierarchical

model

(λ|ν) ∼ Γ−1
(ν

2
,
ν

2

)

(y|µ, σ2, λ) ∼ N
(
µ, λ σ2

)
. (3.22)

Putting this together with the conjugate prior for µ and σ2 we looked at
earlier in the Gaussian model gives the following HM for the NB10 data:

ν ∼ p(ν)

σ2 ∼ SI-χ2
(
ν0, σ

2
0

)

(
µ|σ2

)
∼ N

(
µ0,

σ2

κ0

)
(3.23)

(λi|ν)
IID∼ Γ−1

(ν

2
,
ν

2

)

(
yi|µ, σ2, λi

)
indep∼ N

(
µ, λi σ

2
)
.

Remembering also from introductory statistics that the Gaussian distri-
bution is the limit of the t family as ν → ∞, you can see that the idea
here has been to expand the Gaussian model by embedding it in the richer t
family, of which it’s a special case with ν =∞.

Model expansion is often the best way to deal with uncertainty in the
modeling process: when you find deficiencies of the current model, embed
it in a richer class, with the model expansion in directions suggested by the
deficiencies (we’ll also see this method in action again later).

Implementing Gibbs: the MCMC dataset. Imagine trying to do
Gibbs sampling on model (21), with the parameter vector θ = (µ, σ2, ν).
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Carrying out the iterative program described in (20) above would produce
the following MCMC Dataset:

Iteration Phase µ σ2 ν
0 Initializing µ0 σ2

0 ν0

1 Burn-In µ1(y, σ2
0, ν0) σ2

1(y, µ1, ν0) ν1(y, µ1, σ
2
1)

2 Burn-In µ2(y, σ2
1, ν1) σ2

2(y, µ2, ν1) ν1(y, µ2, σ
2
2)

· · · · ·
b Burn-In µb σ2

b νb

(b + 1) Monitoring µb+1 σ2
b+1 νb+1

(b + 2) Monitoring µb+2 σ2
b+2 νb+2

· · · · ·
(b + m) Monitoring µb+m σ2

b+m νb+m

Looking at iterations 1 and 2 you can see that, in addition to y, the sam-
pler makes use only of parameter values in the current row and the previous
row (this illustrates the Markov character of the samples).

As we’ve seen above, at the end of the (b+m) iterations, if you want (say)
the marginal posterior for µ, p(µ|y), all you have to do is take the m values
µb+1, . . . , µb+m and summarize them in any ways that interest you: their
sample mean is your simulation estimate of the posterior mean of µ, their
sample histogram (or, better, their kernel density trace) is your simulation
estimate of p(µ|y), and so on.

Practical issues: implementation details. (1) How do you figure out
the full conditionals, and how do you sample from them?

(2) What should you use for initial values?

(3) How large should b and m be?

(4) More generally, how do you know when the chain has reached equi-
librium?

Questions (3–4) fall under the heading of MCMC diagnostics, which I’ll
cover a bit later, and I’ll address question (2) in the case studies below.

Computing the full conditionals. For a simple example of working out
the full conditional distributions, consider the conjugate Gaussian model we
looked at earlier:

σ2 ∼ SI-χ2(ν0, σ
2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
(3.24)

(Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
.
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The full conditional distribution for µ in this model is p(µ|σ2, y), consid-
ered as a function of µ for fixed σ2 and y—but this is just

p(µ|σ2, y) =
p(µ, σ2, y)

p(σ2, y)

= c p(µ, σ2, y) (3.25)

= c p(σ2) p(µ|σ2) p(y|µ, σ2)

= c exp
[
− κ0

2σ2
(µ− µ0)

2
] n∏

i=1

exp

[
− 1

2σ2
(yi − µ)2

]
.

Full conditionals. From this

p(µ|σ2, y) = c exp
[
− κ0

2σ2
(µ− µ0)

2
]
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
.

Expanding out the squares, collecting powers of µ, and completing the
square in µ gives

p(µ|σ2, y) = c exp

[
−κ0 + n

2σ2

(
µ− κ0µ0 + nȳ

κ0 + n

)2
]

, (3.26)

from which it’s clear that the full conditional for µ in model (24) is

(µ|σ2, y) ∼ N

(
κ0µ0 + nȳ

κ0 + n
,

σ2

κ0 + n

)
. (3.27)

Similarly, the full conditional for σ2 in this model, p(σ2|µ, y), considered
as a function of σ2 for fixed µ and y, is just

p(σ2|µ, y) =
p(σ2, µ, y)

p(µ, y)

= c p(σ2, µ, y) (3.28)

= c p(σ2) p(µ|σ2) p(y|µ, σ2)

= c
(
σ2
)−(1+ 1

2
ν0)

exp

(−ν0 σ2
0

2σ2

)
·

(
σ2
)− 1

2 exp
[
− κ0

2σ2
(µ− µ0)

2
]
·

(
σ2
)−n

2 exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
.
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When this is simplified you get

p(σ2|µ, y) = c
(
σ2
)−(1+

ν0+1+n

2 )
exp

[
−

ν0σ
2
0 + κ0(µ− µ0)

2 + ns2
µ

2σ2

]
,

where s2
µ = 1

n

∑n
i=1(yi − µ)2.

From the form of this distribution it becomes clear that

(σ2|µ, y) ∼ SI-χ2

(
ν0 + 1 + n,

ν0σ
2
0 + κ0(µ− µ0)

2 + ns2
µ

ν0 + 1 + n

)
. (3.29)

Thus in conjugate situations the full conditional distributions have con-
jugate forms, which are tedious but straightforward to compute.

Both the directness and the tedium of this calculation suggest that it
should be possible to write a computer program to work out the full condi-
tionals for you, and indeed at least two such programs now exist:
• BUGS, a fairly general-purpose Gibbs sampling program produced by

David Spiegelhalter and others at the MRC Biostatistics Unit in Cambridge,
UK (Spiegelhalter et al., 1997), and
• MLwiN, a program that does both maximum-likelihood and Bayesian

calculations in hierarchical (multilevel) models (Rasbash et al. 2000).
BUGS runs under Unix or DOS in a wide variety of hardware configura-

tions, and a Windows version called WinBUGS is also available; we’ll look here
at both Unix BUGS and WinBUGS (together with MLwiN if there’s time).

BUGS and WinBUGS are available for free downloading at
www.mrc-bsu.cam.ac.uk/bugs;
MLwiN has a nominal charge and can be downloaded from the web page

of the Multilevel Models Project,
multilevel.ioe.ac.uk

3.3.3 Why the Metropolis algorithm works

Here’s a sketch of the crucial part of the proof, based on an argument in
Gamerman (1997), of the validity of the Metropolis algorithm, in the case of
a discrete (finite or countably infinite) state space S (see chapter 1 in Gilks
et al. 1996 for a proof sketch when S is continuous).

It will be helpful in looking at the proof sketch to specialize the Markov
chain notation we’ve been using so far to the case of discrete state spaces, as
follows.
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A stochastic process {θ∗t , t ∈ T}, T = {0, 1, . . .} on a discrete state space
S is a Markov chain iff

P (θ∗t+1 = y|θ∗t = x, θ∗t−1 = xn−1, . . . , θ
∗
0 = x0) = P (θ∗t+1 = y|θ∗t = x) (3.30)

for all t = 0, 1, . . . and x0, . . . , xt−1, x, y ∈ S.
In general P (θ∗t+1 = y|θ∗t = x) depends on x, y, and t, but if the probability

of transitioning from x to y at time t is constant in t things will clearly be
simpler; such chains are called homogeneous (confusingly, some sources call
them stationary, but that terminology seems well worth avoiding).

The random walk described earlier is obviously a homogeneous Markov
chain, and so are any Markov chains generated by the MH algorithm; I’ll
assume homogeneity in what follows.

Under homogeneity it makes sense to talk about the transition probability

P (x, y) = P (θ∗t+1 = y|θ∗t = x) for all t, (3.31)

which satisfies

P (x, y) ≥ 0 for all x, y ∈ S and
∑

y∈S

P (x, y) = 1 for all x ∈ S. (3.32)

When S is discrete a transition matrix P can be defined with element (i, j)
given by P (xi, xj), where xi is the ith element in S according to whatever
numbering convention you want to use (the second part of (32) implies that
the row sums of such a matrix are always 1; this is the defining condition for
a stochastic matrix).

Suppose the chain is initialized at time 0 by making a draw from a prob-
ability distribution π0(x) = P (θ∗0 = x) on S (deterministically starting it
at some point x0 is a special case of this); then the probability distribution
π1(y) for where it will be at time 1 is

π1(y) = P (θ∗1 = y)

=
∑

x∈S

P (θ∗0 = x, θ∗1 = y)

=
∑

x∈S

P (θ∗0 = x) P (θ∗1 = y|θ∗0 = x) (3.33)

=
∑

x∈S

π0(x) P (x, y),
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which can be written in vector and matrix notation as

π1 = π0 P, (3.34)

where π0 and π1 are regarded as row vectors.
Then by the same reasoning

π2 = π1 P = (π0 P )P = π0 P 2, (3.35)

and in general
πt = π0 P t. (3.36)

For simple Markov chains this can be used to work out the long-run
behavior of the chain as t → ∞, but this becomes algebraically prohibitive
as the transition behavior of the chain increases in complexity.

In any case for ergodic Markov chains the limiting behavior π(y) is inde-
pendent of π0 and turns out to be characterized by the relation

π(y) =
∑

x∈S

π(x) P (x, y), or π = πP, (3.37)

which defines the stationary distribution π of the chain.
As we’ve seen above, the hard bit in verifying the validity of the Metropo-

lis algorithm is demonstrating that the Markov chain created by running the
algorithm has the correct stationary distribution, namely the target posterior
p(θ|y); one way to do this is the following.

It’s possible to imagine running any homogeneous Markov chain {θ∗
t , t =

0, 1, . . .} with transition probabilities P (x, y) backwards in time.
This new reverse-time stochastic process can be shown also to be a Markov

chain, although it may not be homogeneous.
If it is homogeneous, and if in addition the reverse-time process has the

same transition probabilities as the original process, the Markov chain is said
to be reversible; all such chains satisfy the detailed balance equation

π(x) P (x, y) = π(y) P (y, x) for all x, y ∈ S. (3.38)

It turns out that if there’s a distribution π satisfying (38) for an irreducible
Markov chain, then the chain is positive recurrent (and therefore ergodic) and
reversible, and its stationary distribution is π (sum (38) over y to get (37)).

In other words, if you’re trying to create an ergodic Markov chain and
you want it to have some target stationary distribution π, one way to achieve
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this goal is to ensure that the chain is irreducible and that its transition
probabilities P (x, y) satisfy detailed balance with respect to the target π.

Any reasonable proposal distribution in the Metropolis algorithm will
yield an irreducible Markov chain, so the interesting bit is to verify detailed
balance; the argument proceeds as follows.

Consider a given target distribution px on S; we’re trying to construct
a Markov chain with stationary distribution π such that π(x) = px for all
x ∈ S.

The Metropolis algorithm—(15), with the special case of the acceptance

probabilities (14) reducing to the simpler form min
[
1, p(θ∗|y)

p(θt|y)

]
by the as-

sumption of a symmetric proposal distribution—actually involves two related
Markov chains: the (less interesting) chain that you could create by accepting
all proposed moves, and the (more interesting) chain created by the actual
algorithm.

Let Q(x, y) be any irreducible transition matrix on S such that Q(x, y) =
Q(y, x) for all x, y ∈ S; this is the transition matrix for the (less interesting)
chain induced by the proposal distribution.

Define the (more interesting) chain {θ∗t , t = 0, 1, . . .} (the actual Metropo-
lis chain) as having transitions from x to y proposed according to Q(x, y), ex-

cept that the proposed value for θ∗t+1 is accepted with probability min
(
1, py

px

)

and rejected otherwise, leaving the chain in state x.
The transition probabilities P (x, y) for the Metropolis chain are as follows:

for y 6= x, and denoting by Axy the event that the proposed move from x to
y is accepted,

P (x, y) = P
(
θ∗t+1 = y|θ∗t = x

)

= P
(
θ∗t+1 = y, Axy|θ∗t = x

)
+ P

(
θ∗t+1 = y, not Axy|θ∗t = x

)

= P
(
θ∗t+1 = y|Axy, θ

∗
t = x

)
P (Axy|θ∗t = x) (3.39)

= Q(x, y) min

(
1,

py

px

)
.

A similar calculation shows that for y = x

P (x, x) = Q(x, x) +
∑

y 6=x

Q(x, y)

[
1−min

(
1,

py

px

)]
, (3.40)

but this is not needed to show detailed balance because (38) is trivially
satisfied when y = x.
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When y 6= x there are two cases: py ≥ px > 0 (I’ll give details in this
case) and 0 < py < px (the other case follows analogously).

If py ≥ px, note that min
(
1, py

px

)
= 1 and

min

(
1,

px

py

)
py = min

(
py,

px

py

py

)
= min(py, px) = px;

then

px P (x, y) = px Q(x, y) min

(
1,

py

px

)
= px Q(x, y)

= px Q(y, x) = Q(y, x) min

(
1,

px

py

)
py (3.41)

= py P (y, x)

and the proof of detailed balance, and with it the validity of the Metropolis
algorithm, is complete.

3.3.4 Directed acyclic graphs

BUGS achieves its generality by means of two ideas:

(1) Viewing Bayesian models as directed (acyclic) graphs (DAGs).

The conditional independence nature of Bayesian hierarchical models—
in which quantities in the model depend on things one layer higher in the
hierarchy but no higher (e.g., in the NB10 t model (23) the yi depend on
(µ, σ2, λi) but not on ν)—lends itself to thinking of all quantities in such
models as nodes in a directed graph.

A DAG can be thought of as a picture in which known and unknown
quantities are represented either by squares (for knowns) or circles (for un-
knowns), connected by arrows (from the parents to the children) that indicate
the direction of the stochastic dependence.

The acyclic assumption means that by following the directions of the
arrows it’s impossible to return to a node once you’ve left it, and stacked
sheets indicate repetition (e.g., across conditionally IID data values).
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this can be done efficiently), and you get a lower squeezing function for free.
The useful thing about this idea is that the envelope can be constructed

adaptively, by adding points to S as new θ are sampled—thus the envelope
improves as more samples are drawn.

BUGS uses a hierarchy of methods to sample from the full conditionals: it
first tries to verify conjugacy; if that fails it then tries to verify log concavity of
the full conditionals and uses ARS if so; and if that fails “classic” BUGS quits
and winBUGS switches over to (non-Gibbs) Metropolis-Hastings sampling.

Log concavity includes many, but not all, distributions occurring in stan-
dard models, e.g., a uniform U(a, b) prior on the degrees of freedom parameter
ν in the NB10 t model fails log-concavity.

In classic BUGS such distributions must be discretized (BUGS allows discrete
variables to have 500 possible values, which generally leads to quite accurate
approximations).

Running classic BUGS. You make four kinds of files:
(1) a program file, with suffix .bug, containing the specification of your

model;
(2) one or more data files, with suffix .dat;
(3) an initial values file, with suffix .in; and
(4) a command file with suffix .cmd, containing instructions that specify

the burn-in and monitoring phases.
Here’s the data file in the NB10 example.

list( y = c(409., 400., 406., 399., 402., 406., 401., 403.,

401., 403., 398., 403., 407., 402., 401., 399., 400., 401.,

[ several lines omitted ]

401., 407., 412., 375., 409., 406., 398., 406., 403., 404.),

grid = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

[ several lines omitted ]

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )

And here are the BUGS program (.bug) and initial values (.in) files in
the NB10 example.

model nb10;

const
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n = 100, g = 100;

var

mu, tau, u, grid[ g ], nu, y[ n ], sigma;

data in "nb10.dat";

inits in "nb10.in";

{

mu ~ dnorm( 0.0, 1.0E-6 );

tau ~ dgamma( 0.001, 0.001 ); # specifying the

u ~ dcat( grid[ ] ); # prior distributions

nu <- 2.0 + u / 10.0;

for ( i in 1:n ) {

# specifying the

y[ i ] ~ dt( mu, tau, nu ); # likelihood

}

# defining any other

sigma <- 1.0 / sqrt( tau ); # quantities to be

# monitored

}

Initial values

list( mu = 404.59, u = 30, tau = 0.04,

seed = 90915314 )

Implementation details. Here are two BUGS command (.cmd) files in
the NB10 example.

compile( "nb10-1.bug" ) | compile( "nb10-1.bug" )

update( 1000 ) | update( 2000 )

monitor( mu ) | monitor( mu, 8 )

monitor( sigma ) | monitor( sigma, 8 )

monitor( nu ) | monitor( nu, 8 )

update( 5000 ) | update( 40000 )

q( ) | q( )
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Some Details. (1) The priors: (a) I want to use a diffuse prior for µ, since
I don’t know anything about the true weight of NB10 a priori.

The phrase mu ∼ dnorm( 0.0, 1.0E-6 ) in BUGS-speak means that µ
has a Gaussian prior with mean 0 and precision 10−6, i.e.,

SD = 1/
√

precision = 1, 000,

i.e., as far as I’m concerned a priori µ could be just about anywhere between
−3, 000 and 3, 000.

(b) Similarly I want a diffuse prior for σ2, or equivalently for the precision
τ = 1

σ2 .

As we saw in the Poisson LOS case study, one popular conventional choice
is τ ∼ Γ(ε, ε) for a small ε like 0.001, which in BUGS-speak is said tau ∼

dgamma( 0.001, 0.001 ).

This distribution is very close to flat over an extremely wide range of the
interval (0,∞), although it does have a nasty spike at 0 (as τ ↓ 0, Γ(ε, ε)(τ) ↑
∞).

As noted earlier, the idea behind diffuse priors is to make them approxi-
mately constant in the region in which the likelihood is appreciable.

For this purpose it’s useful to remember what the frequentist answers for
µ and σ would be, at least in the Gaussian model we looked at earlier.

Recall that the 95% confidence interval (CI) for µ came out (403.3, 405.9),
so you can guess that the likelihood for µ would be non-negligible in the range
from (say) 402 to 407.

Diffuse priors. As for σ (or σ2 or τ), in the model (Yi|µ, σ2)
IID∼ N(µ, σ2),

it’s a standard result from frequentist distribution theory that in repeated
sampling

(n− 1)s2

σ2
∼ χ2

n−1, (3.43)

where s2 = 1
n−1

∑n

i=1(yi − ȳ)2 is random and σ2 is fixed, from which

Pf

[
A ≤ (n− 1)s2

σ2
≤ B

]
= 0.99 (3.44)

for A, B such that

Pf

(
χ2

n−1 ≤ A
)

= Pf

(
χ2

n−1 ≥ B
)

= 0.005. (3.45)
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Thus, using Neyman’s confidence trick,

Pf

[
(n− 1)s2

B
≤ σ2 ≤ (n− 1)s2

A

]
= 0.99; (3.46)

in other words,
[

(n−1)s2

B
, (n−1)s2

A

]
is a 99% confidence interval for σ2.

With the NB10 data n = 100 and s2 = 41.82, and you can use R to do
this analysis:

> y

[1] 409 400 406 399 402 406 401 403 401 403 398 403 407 402 401

[16] 399 400 401 405 402 408 399 399 402 399 397 407 401 399 401

[31] 403 400 410 401 407 423 406 406 402 405 405 409 399 402 407

[46] 406 413 409 404 402 404 406 407 405 411 410 410 410 401 402

[61] 404 405 392 407 406 404 403 408 404 407 412 406 409 400 408

[76] 404 401 404 408 406 408 406 401 412 393 437 418 415 404 401

[91] 401 407 412 375 409 406 398 406 403 404

> print( n <- length( y ) )

[1] 100

> print( s2 <- var( y ) )

[1] 41.8201

> qchisq( 0.005, 99 )

[1] 66.5101

> qchisq( 0.995, 99 )

[1] 138.9868

> ( n - 1 ) * s2 / qchisq( 0.995, 99 )

[1] 29.78837

> ( n - 1 ) * s2 / qchisq( 0.005, 99 )
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Figure 3.4: Priors for µ (top) and τ (bottom), plotted globally (left) and
locally in the region in which the likelihood is appreciable (right).

[1] 62.24904

> qchisq( 0.005, 99 ) / ( ( n - 1 ) * s2 )

[1] 0.01606451

> qchisq( 0.995, 99 ) / ( ( n - 1 ) * s2 )

[1] 0.03357015

So the conclusion is that the likelihood for τ = 1
σ2 should be non-negligible

roughly in the region from about 0.015 to 0.035.

The figure below plots the prior distributions for µ and τ and verifies
their diffuseness in the relevant regions.
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1. (c) As for the prior on ν, you can tell from the normal qqplot of
the NB10 data that the degrees of freedom parameter in the underlying t
distribution is fairly small.

I’m going to use a uniform U(c1, c2) prior, where c1 is small but not too
small (as noted earlier, with ν < 2 the variance is infinite, which is not
realistic as a model for actual data) and c2 is big enough not to truncate the
likelihood function (experience tells me that c2 = 12 will suffice; this can also
be determined via MCMC experimentation).

Classic BUGS can’t figure out how to sample from a continuous U(c1, c2)
prior on ν, however, so instead I’ve used a discrete uniform prior on a g =
100–point grid from 2.1 to 12.0 in steps of 0.1 (that’s what u ∼ dcat( grid[

] ); nu <- 2.0 + u / 10.0; does when grid[ ] is a vector of 100 1s).
WinBUGS has a more elegant solution to this problem which we’ll look at

later.
(2) Initial Values. I can make fairly decent guesses at all the parameters

as starting values for the Markov chain:
(a) The sample mean is 404.59, which should be close to the posterior

mean for µ in the t model;
(b) I’m just going to guess that ν is around 5, which is specified by taking

u = 30.
(c) Earlier I said that V [tν(µ, σ2)] = σ2

(
ν

ν−2

)
, so with ν

.
= 5 and a sample

variance of 41.82 you get τ = 1
σ2

.
= 0.04.

A Running Strategy. With a problem like this with relatively few param-
eters, I often start off with a burn-in of 1,000 and a monitoring run of 5,000
and then look at the MCMC diagnostics (to be covered below).

The left-hand part of the table at the top of page 54 shows the BUGS

commands that carry out this run.
You can either type in these commands interactively one at a time at the

keyboard or put them in a .cmd file and run BUGS in the background (this
is useful when you’re interested in simulating the Bayesian analysis of many
similar datasets for research purposes; the latest release of WinBUGS now also
has this capability).

This run took about 5 minutes on a not particularly fast workstation (a
SunBlade 150 running Solaris Unix at 600 Mhz), which is actually fairly
slow for a 3-parameter problem (the discrete grid sampling for ν slows things
down a lot).

rosalind 61> bugs
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Welcome to BUGS on 20 th Feb 2003 at 16:38:29

BUGS : Copyright (c) 1992 .. 1995 MRC Biostatistics Unit.

All rights reserved.

Version 0.603 for unix systems.

For general release: please see documentation for disclaimer.

The support of the Economic and Social Research Council (UK)

is gratefully acknowledged.

Bugs>compile( "nb10-1.bug" )

model nb10;

[here BUGS just echoes the model shown on page 53]

}

Parsing model declarations.

Loading data value file(s).

Loading initial value file(s).

Parsing model specification.

Checking model graph for directed cycles.

Generating code.

Generating sampling distributions.

Checking model specification.

Choosing update methods.

compilation took 00:00:00

Bugs> update( 1000 )

time for 1000 updates was 00:00:47

Bugs>monitor( mu )

Bugs>monitor( sigma )

Bugs>monitor( nu )

Bugs>update( 5000 )
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time for 5000 updates was 00:03:56

Bugs>q( ) # (output file created; more about this later)

3.3.5 Practical MCMC monitoring and convergence
diagnostics

Remember questions (3) and (4) awhile ago?—(3) How large should b and
m be? (4) More generally, how do you know when the chain has reached
equilibrium?

A large body of research has grown up just in the last eight years or so
to answer these questions (some good reviews are available in Gelman et
al. 2003, Gilks et al. 1995, and Cowles and Carlin 1996).

The theoretical bottom line is unpleasant: you can’t ever be sure you’ve
reached equilibrium, in the sense that every MCMC diagnostic invented so
far has at least one example in which it failed to diagnose problems.

However, a collection of four of the best diagnostics has been brought
together in a set of R functions called CODA by Best, Cowles, and Vines
(1995) (downloadable from the R web site).

I will briefly discuss each of these in the context of the NB10 analysis.
Geweke (1992) proposed a simple diagnostic based on time series ideas.
Thinking of each column of the MCMC dataset as a time series (with

iterations indexing time), he reasoned that, if the chain were in equilibrium,
the means of the first (say) 10% and the last (say) 50% of the iterations
should be nearly equal.

His diagnostic is a z-score for testing this equality, with a separate value
for each quantity being monitored: Geweke z-scores a lot bigger than 2 in
absolute value indicate that the mean level of the time series is still drifting,
even after whatever burn-in you’ve already done.

GEWEKE CONVERGENCE DIAGNOSTIC (Z-score):

========================================

Iterations used = 1002:6001 Fraction in

Thinning interval = 1 1st window = 0.1

Sample size per chain = 5000 Fraction in

2nd window = 0.5

-+----------+-------------+-

| VARIABLE | bugs1 |
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| ======== | ===== |

| | |

| mu | 2.39 |

| nu | 1.78 |

| sigma | 1.14 |

| | |

-+----------+-------------+-

Here for run 1 with the NB10 data (the left-hand set of commands in the
table on p. 54) there is some evidence of nonstationarity with a burn-in of
only 1,000 (although a z-value of 2.4 is not overwhelming).

Gelman-Rubin (1992) have suggested a diagnostic that looks for multi-
modality of the posterior distribution.

If the posterior has (say) two major modes that are far away from each
other in parameter space, and you initialize the chain near one of the modes,
you may never find the other one.

The idea is to run the chain two or more times from widely-dispersed
starting points and see if you always converge to the same place.

Gelman and Rubin do what amounts to an analysis of variance within and
between the chains, looking for evidence of large variability between them.

Gelman-Rubin shrink factors. “This comparison is used to estimate
the factor by which the scale parameter of the marginal posterior distribution
of each [quantity being monitored] might [shrink] if the chain were run to
infinity” (Best et al., 1995).

The output is the 50% and 97.5% quantiles of the distributions of shrink
factors, one for each quantity monitored.

If these quantiles are both close to 1.0 then there is little evidence of
dispersion between the distributions to which the chains are converging.

GELMAN AND RUBIN 50% AND 97.5% SHRINK FACTORS:

==============================================

Iterations used for diagnostic = 2501:5000

Thinning interval = 1

Sample size per chain = 5000

-+----------+-----------------------------+-

| VARIABLE | Point est. 97.5% quantile |

| ======== | ========== ============== |
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| | |

| mu | 1.00 1.00 |

| nu | 1.00 1.01 |

| sigma | 1.00 1.00 |

| | |

-+----------+-----------------------------+-

Here, with initial values as different as (µ, τ, ν) = (405.0, 0.1823, 5.0) and
(402.0, 0.03, 11.0) there is no evidence of multimodality at all.

(To be really safe I should run a number of additional chains—Gelman
and Rubin (1992) give advice on how to generate the set of initial values
to try—but with even modest sample sizes (like n = 100) the posterior in t
models is unimodal so there would be no point in this case.)

Raftery-Lewis dependence factors. Raftery and Lewis (1992) sug-
gested a diagnostic that directly helps to answer question (3)—How do you
pick b and m?

The answer to this question depends on how accurate you want your
posterior summaries to be, so Raftery and Lewis require you to input three
values:

(a) Which quantiles of the marginal posteriors are you most interested
in?

Usually the answer is the 2.5% and 97.5% points, since they’re the basis
of a 95% interval estimate.

(b) How close to the nominal levels would you like the estimated quantiles
to be?

The CODA default is 0.5%, e.g., if the left-hand value of your 95% interval
is supposed to be at the 2.5% point of the distribution, CODA will recommend
a length of monitoring run so that the actual level of this quantile will be
between 2.0% and 3.0%.

(NB This is sometimes more, and often less, Monte Carlo accuracy than
you really need.)

(c) With what minimum probability do you want to achieve these accu-
racy goals? The default is 95%.

Having input these values, the output is of five kinds for each quantity
monitored:

(a) A recommended thinning interval. When the Gibbs sampler is per-
forming poorly people say the output is not mixing well, and what they mean
is that the Markovian nature of the time series for each quantity has led to
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large positive serial autocorrelations in time, e.g., µ1000 depends highly on
µ999, µ998, and so on.

This is another way to say that the random draws in the simulation
process are not moving around the parameter space quickly.

When this happens, one way to reduce the autocorrelation is to run the
chain a lot longer and only record every kth iteration—this is the thinning
interval (NB this only reduces the autocorrelation of the saved MCMC data
set; the underlying Markov chain is of course unaffected by this).

(b) A recommended length of burn-in to use, above and beyond whatever
you’ve already done.

(c) A recommended total length of run N (including burn-in) to achieve
the desired accuracy.

(d) A lower bound Nmin on run length—what the minimum would have
needed to be if the quantity in question had an IID time series instead of an
autocorrelated series.

(e) And finally, the ratio I = N/Nmin, which Raftery and Lewis call the
dependence factor—values of I near 1 indicate good mixing.

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

=========================================

Iterations used = 1001:6000

Thinning interval = 1

Sample size per chain = 5000

Quantile = 0.025

Accuracy = +/- 0.005

Probability = 0.95

-+----------+--------------------------------------------------+-

| | Thin Burn-in Total Lower bound Dependence |

| VARIABLE | (k) (M) (N) (Nmin) factor (I) |

| ======== | ==== ======= ===== =========== ========== |

| | |

| mu | 1 3 4533 3746 1.21 |

| nu | 3 18 39720 3746 10.6 |

| sigma | 3 12 13308 3746 3.55 |

| | |

-+----------+--------------------------------------------------+-
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Here µ is mixing well—5,000 iterations are sufficient to achieve the default
accuracy goal—but σ and (especially) ν require longer monitoring periods:
the recommendation is to run for about 40,000 iterations and store every
third.

Heidelberger-Welch Diagnostic. Heidelberger and Welch (1983) pro-
pose a diagnostic approach that uses the Cramér-von Mises statistic to test
for stationarity.

If overall stationarity fails for a given quantity being monitored, CODA

discards the first 10% of the series for that quantity and recomputes the
C-vonM statistic, continuing in this manner until only the final 50% of the
data remain.

If stationarity still fails with the last half of the data then CODA reports
overall failure of the stationarity test.

CODA also computes a half-width test, which tries to judge whether the
portion of the series that passed the stationarity test is sufficient to estimate
the posterior mean with a particular default accuracy (NB this default is
often not stringent enough for careful numerical work).

Here the table below shows that the first run with the NB10 data clears
the Heidelberger-Welch hurdle with ease.

Autocorrelations and Cross-correlations. CODA also computes the auto-
correlations for each monitored quantity at lags from 1 to 50 and the cross-
correlations between all of the variables.

As mentioned previously, the autocorrelation at lag k of a time series
{θ∗t , t = 1, . . . , m} (e.g., Chatfield 1996) measures the extent to which the
series at time (t + k) and at time t are linearly related, for k = 1, 2, . . ..

HEIDELBERGER AND WELCH STATIONARITY AND INTERVAL HALFWIDTH TESTS:

=================================================================

Precision of halfwidth test = 0.1

-+----------+--------------------------------------------------+-

| | Stationarity # of iters. # of iters. C-vonM |

| VARIABLE | test to keep to discard stat. |

| ======== | ============ =========== =========== ====== |

| | |

| mu | passed 5000 0 0.126 |

| nu | passed 5000 0 0.349 |

| sigma | passed 5000 0 0.176 |
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| | |

-+----------+--------------------------------------------------+-

| | Halfwidth |

| VARIABLE | test Mean Halfwidth |

| ======== | ========= ==== ========= |

| | |

| mu | passed 404.00 0.0160 |

| nu | passed 3.75 0.1500 |

| sigma | passed 3.89 0.0344 |

| | |

-+----------+---------------------------------+-

The usual sample estimate of this quantity is

rk =
ck

c0
, where ck =

1

m− k

m−k∑

t=1

(
θ∗t − θ̄∗

) (
θ∗t+k − θ̄∗

)
(3.47)

and θ̄∗ = 1
m

∑m
t=1 θ∗t .

The cross-correlation at lag k of two time series {θ∗
t , t = 1, . . . , m} and

{η∗
t , t = 1, . . . , m} measures the extent to which the first series at time (t+k)

and the second at time t are linearly related, for k = 1, 2, . . ..
A natural sample estimate of this quantity is

rθη(k) =
cθη(k)√

cθθ(0)cηη(0)
, where

cθη(k) =
1

m− k

m−k∑

t=1

(
θ∗t − θ̄∗

) (
η∗

t+k − η̄∗
)
. (3.48)

LAGS AND AUTOCORRELATIONS WITHIN EACH CHAIN:

============================================

-+---------+------------+-------------------------------+-

| Chain | Variable | Lag 1 Lag 10 Lag 50 |

| ===== | ======== | ===== ====== ====== |

| | | |

-+---------+------------+-------------------------------+-

| bugs1 | mu | 0.29400 0.00118 -0.01010 |

| | nu | 0.97200 0.78900 0.32100 |

| | sigma | 0.62100 0.30300 0.10800 |
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| | | |

-+---------+------------+-------------------------------+-

CROSS-CORRELATION MATRIX:

=========================

-+----------+-------------------------------+-

| VARIABLE | mu nu sigma |

| ======== | |

| | |

| mu | 1.0000 |

| nu | 0.0946 1.0000 |

| sigma | 0.0534 0.5540 1.0000 |

| | |

-+----------+-------------------------------+-

You can see (a) that the series for ν is especially strongly autocorrelated,
and (b) that ν and σ are fairly strongly positively correlated, which connects
with the observation earlier about confounding of scale and shape in the t
family.

Diagnostic and Summary Plots. The figure below presents four plots
that are useful as MCMC diagnostics and for graphical summaries of poste-
rior distributions, in the case of the parameter ν with run 1 from the NB10
data.

The upper left panel is a time series trace, which documents the poor
mixing that has been evident from several of the numerical diagnostics.

The lower left panel is a plot of the autocorrelation function (ACF) for ν,
and the lower right panel plots the partial autocorrelation function (PACF).

One of the most common behaviors observed in time series in general, and
in the output of MCMC samplers in particular, is that of an autoregressive
process.

Letting et denote an IID (or white-noise or purely random) process with
mean 0 and variance σ2

e , the time series θ∗t is said to be an autoregressive
process of order p (ARp) if

θ∗t = α1θ
∗
t−1 + . . . + αpθ

∗
t−p + et. (3.49)

Equation (49) is like a multiple regression model except that θ∗
t is being

regressed on past values of itself instead of on other predictor variables; this
gives rise to the term autoregressive.
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Figure 3.5: MCMC four-plot for ν in the NB10 t model.

The partial autocorrelation function (PACF) measures the excess corre-
lation between θ∗t and θ∗t+k not accounted for by the autocorrelations r1, . . . ,
rk−1, and is useful in diagnosing the order of an ARp process: if θ∗t is ARp

then the PACF at lags 1, . . . , p will be significantly different from 0 and then
close to 0 at lags larger than p.

The lower right-hand plot above shows the characteristic single spike at
lag 1 which diagnoses an AR1 series (the dotted lines in the ACF and PACF
plots represent 2 standard error traces around 0, indicating how big an ACF
or PACF value needs to be to be significantly different from 0).

This is reinforced by the ACF plot: if θ∗t is AR1 with positive first-
order autocorrelation ρ1 then the autocorrelation function should show a
slow geometric decay (a ski-slope shape), which it clearly does in this case.

We would conclude that the Gibbs sampling output for ν, when thought of
as a time series, behaves like an AR1 process with first-order autocorrelation
roughly r1 = 0.972 (from the table above).
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MCMC Accuracy. Suppose that θ∗t is a stationary time series with un-
derlying true mean µθ and variance σ2

θ .

3.3.6 MCMC accuracy

It can be shown that if {θ∗t , t = 1, . . . , m} is AR1 with first-order autocorre-
lation ρ1 then in repeated sampling the uncertainty about µθ on the basis of
the sample mean θ̄∗ is quantified by

V
(
θ̄∗
)

=
σ2

θ

m

(
1 + ρ1

1− ρ1

)
. (3.50)

Thus if you want to use MCMC to estimate the posterior mean of a given
quantity θ with sufficient accuracy that the standard error of the Monte Carlo
mean estimate θ̄∗ based on a monitoring run of length m is no larger than a
specified tolerance T , and the MCMC output θ∗ behaves like an AR1 series
with first-order autocorrelation ρ1, you would need m to satisfy

ŜE
(
θ̄∗
)

=
σ̂θ√
m

√
1 + ρ̂1

1− ρ̂1
≤ T, (3.51)

from which

m ≥ σ̂2
θ

T 2

(
1 + ρ̂1

1− ρ̂1

)
. (3.52)

This formula explains why monitoring runs with MCMC often need to be
quite long: as ρ1 → 1 the required m→∞.

For example, we’ve seen that ρ̂1 = r1 for ν in the NB10 t model is +0.972,
and we’ll see below that the sample mean and SD based on the output for ν
are roughly 3.628 and 1.161, respectively.

If you wanted to be able to report the posterior mean of ν to 3–significant-
figure accuracy (3.63) with reasonably high Monte Carlo probability, you
would want T to be on the order of 0.01, giving an enormous monitoring
run:

m ≥
(

1.161

0.01

)2(
1 + 0.972

1− 0.972

)
.
= (13, 479)(70.4)

.
= 949, 322 (3.53)

This is much larger than the Raftery-Lewis default recommendation above
(there is no conflict in this fact; the two diagnostics are focusing on different
posterior summaries).
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Note from (52) that if you could figure out how to sample in an IID

manner from the posterior for θ you would only need mIID ≥ σ̂2
θ

T 2 , which in
this case is about 13,500 draws.

The term
(

1+ρ̂1

1−ρ̂1

)
in (52) represents the amount by which mIID would need

to be multiplied to get the same accuracy from MCMC output—it’s natural
to call this the sample size inflation factor (SSIF), which for ν comes out a
whopping 70.4.

The upper right panel in the diagnostic plots above gives a density trace
for ν, which shows a mode at about 3 degrees of freedom and a long right-
hand tail.

Round 2. From all of this I decided to run the chain again with the BUGS

commands in the right-hand part of the table on page 54: a burn-in of 2,000
and a monitoring run of 40,000, thinning the output by writing out to disk
only every 8th draw (thus ending up with 5,000 stored values).

The MCMC diagnostics were much better: Raftery-Lewis total N recom-
mendations all less than 5,000, all other summaries fine.

All the parameters are mixing well now, so numerical posterior summaries
are worth making, as in the table below.

Posterior Posterior 95%
Parameter Mean SD Interval

µ 404.3 0.4641 (403.4, 405.2)
ν 3.63 1.16 (2.2, 6.6)
σ 3.873 0.4341 (3.100, 4.778)

I read in three files—the model, the data, and the initial values—and
used the Specification Tool from the Model menu to check the model,
load the data, compile the model, load the initial values, and generate

additional initial values for uninitialized nodes in the graph.

I then used the Sample Monitor Tool from the Inference menu to set

the mu, sigma, nu, and y.new nodes, and clicked on Dynamic Trace plots for
mu and nu.

Then choosing the Update Tool from the Model menu, specifying 2000 in
the updates box, and clicking update permitted a burn-in of 2,000 iterations
to occur with the time series traces of the two parameters displayed in real
time.

After minimizing the model, data, and inits windows and killing the
Specification Tool (which are no longer needed until the model is respec-
ified), I typed 10000 in the updates box of the Update Tool and clicked
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Figure 3.6: MCMC four-plot for µ.

update to generate a monitoring run of 10,000 iterations (you can watch the
updating of mu and nu dynamically to get an idea of the mixing, but this
slows down the sampling).

After killing the Dynamic Trace window for nu (to concentrate on mu for
now), in the Sample Monitor Tool I selected mu from the pull-down menu,
set the beg and end boxes to 2001 and 12000, respectively (to summarize
only the monitoring part of the run), and clicked on history to get the time
series trace of the monitoring run, density to get a kernel density trace of
the 10,000 iterations, stats to get numerical summaries of the monitored
iterations, quantiles to get a trace of the cumulative estimates of the 2.5%,
50% and 97.5% points in the estimated posterior, and autoC to get the
autocorrelation function.

You can see that the output for µ is mixing fairly well—the ACF looks
like that of an AR1 series with first-order serial correlation of only about 0.3.

σ is mixing less well: its ACF looks like that of an AR1 series with first-
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Figure 3.7: WinBUGS screen, NB10 t model, with dynamic traces for µ and ν.
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Figure 3.8: Posterior summaries for µ after 10,000 monitoring iterations.
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Figure 3.9: Posterior summaries for σ.
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order serial correlation of about 0.6.
This means that a monitoring run of 10,000 would probably not be enough

to satisfy minimal Monte Carlo accuracy goals—for example, from the Node

statistics window the estimated posterior mean is 3.878 with an estimated
MC error of 0.0128, meaning that we’ve not yet achieved three-significant-
figure accuracy in this posterior summary.

And ν’s mixing is the worst of the three: its ACF looks like that of an
AR1 series with first-order serial correlation of a bit less than +0.9.

WinBUGS has a somewhat complicated provision for printing out the au-
tocorrelations; alternately, you can approximately infer ρ̂1 from an equation
like (51) above: assuming that the WinBUGS people are taking the output of
any MCMC chain as (at least approximately) AR1 and using the formula

ŜE
(
θ̄∗
)

=
σ̂θ√
m

√
1 + ρ̂1

1− ρ̂1
, (3.54)

you can solve this equation for ρ̂1 to get

ρ̂1 =
m
[
ŜE
(
θ̄∗
)]2
− σ̂2

θ

m
[
ŜE
(
θ̄∗
)]2

+ σ̂2
θ

. (3.55)

Plugging in the relevant values here gives

ρ̂1 =
(10, 000)(0.04253)2 − (1.165)2

(10, 000)(0.04253)2 + (1.165)2

.
= 0.860, (3.56)

which is smaller than the corresponding value of 0.972 generated by the
classicBUGS sampling method (from CODA, page 67).

To match the classicBUGS strategy outlined above (page 71) I typed
30000 in the updates window in the Update Tool and hit update, yielding
a total monitoring run of 40,000.

Remembering to type 42000 in the end box in the Sample Monitoring

Tool window before going any further, to get a monitoring run of 40,000
after the initial burn-in of 2,000, the summaries below for µ are satisfactory
in every way.

A monitoring run of 40,000 also looks good for σ: on this basis, and
conditional on this model and prior, I think σ is around 3.87 (posterior
mean, with an MCSE of 0.006), give or take about 0.44 (posterior SD), and
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Figure 3.10: Posterior summaries for ν.
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Figure 3.11: Posterior summaries for µ after 40,000 monitoring iterations.
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Figure 3.12: Posterior summaries for σ after 40,000 monitoring iterations.
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my 95% central posterior interval for σ runs from about 3.09 to about 4.81
(the distribution has a bit of skewness to the right, which makes sense given
that σ is a scale parameter).

If the real goal were ν I would use a longer monitoring run, but the
main point here is µ, and we saw back on p. 67 that µ and ν are close to
uncorrelated in the posterior, so this is good enough.

If you wanted to report the posterior mean of ν with an MCSE of 0.01
(to come close to 3-sigfig accuracy) you’d have to increase the length of the

monitoring run by a multiplicative factor of
(

0.02213
0.01

)2 .
= 4.9, which would

yield a recommended length of monitoring run of about 196,000 iterations
(the entire monitoring phase would take about 3 minutes at 2.0 (PC) GHz).

The posterior predictive distribution for yn+1 given (y1, . . . , yn) is inter-
esting in the t model: the predictive mean and SD of 404.3 and 6.44 are
not far from the sample mean and SD (404.6 and 6.5, respectively), but the
predictive distribution has very heavy tails, consistent with the degrees of
freedom parameter ν in the t distribution being so small (the time series
trace has a few simulated values less than 300 and greater than 500, much
farther from the center of the observed data than the most outlying actual
observations).

Gaussian comparison. The posterior SD for µ, the only parameter
directly comparable across the Gaussian and t models for the NB10 data,
came out 0.47 from the t modeling, versus 0.65 with the Gaussian, i.e., the
interval estimate for µ from the (incorrect) Gaussian model is about 40%
wider that that from the (much better-fitting) t model.

A model uncertainty anomaly? NB Moving from the Gaussian to
the t model involves a net increase in model uncertainty, because when you
assume the Gaussian you’re in effect saying that you know the t degrees of
freedom are∞, whereas with the t model you’re treating ν as unknown. And
yet, even though there’s been an increase in model uncertainty, the inferential
uncertainty about µ has gone down.

This is relatively rare—usually when model uncertainty increases so does
inferential uncertainty (Draper 2004)—and arises in this case because of two
things: (a) the t model fits better than the Gaussian, and (b) the Gaussian
is actually a conservative model to assume as far as inferential accuracy for
location parameters is concerned.

Two more items on MCMC accuracy. (1) A stringent but poten-
tially useful diagnostic for deciding how long the monitoring run should be for



Bayesian Modeling, Inference and Prediction 187

Figure 3.13: Posterior summaries for ν after 40,000 monitoring iterations.
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Figure 3.14: Posterior summaries for yn+1 after 40,000 monitoring itera-
tions.
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Figure 3.15: MCMC four-plot for ν.

a given component θ′ of the parameter vector θ, if the output of your MCMC
sampler for θ′ behaves like an AR1 series with first-order autocorrelation ρ1,
can be derived as follows.

Suppose, after a burn-in that’s long enough to reach stationarity, you’ve
done a preliminary monitoring run, obtaining mean θ̄′, SD σ̂θ′ , and first-order
autocorrelation ρ̂1 as estimates of the corresponding summaries for θ′.

Writing θ′ = a·10b for 1 ≤ a < 10, if you want at least k significant figures
(sigfigs) of accuracy for the posterior mean summary for θ′ with Monte Carlo
probability of at least 100(1− α), you can check that you’ll need

2Φ−1
(
1− α

2

)
ŜE
(
θ̄′
)
≤ 10b−k+1; (3.57)

then substituting in the relevant expression from equation (51) above,

ŜE
(
θ̄′
)

=
σ̂θ′√
m

√
1 + ρ̂1

1− ρ̂1
, (3.58)



190 David Draper

0 1000 2000 3000 4000 5000

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

sigma

D
en

si
ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sigma

Lag

P
ar

tia
l A

C
F

0 10 20 30

0.
0

0.
1

0.
2

0.
3

 Series : sigma

Figure 3.16: MCMC four-plot for σ2.

and solving (58) for m yields

m ≥ 4
[
Φ−1

(
1− α

2

)]2( σ̂θ′

10b−k+1

)2(
1 + ρ̂1

1− ρ̂1

)
. (3.59)

This is referred to in the MLwiN documentation as the Brooks-Draper diag-
nostic (Brooks and Draper 2002).

Comments. (a) This diagnostic is sensitive to the scale chosen by the
user for reporting results, as far as choosing the target number of sigfigs is
concerned.

Example. In my initial monitoring run of 5,000 iterations in the NB10
case study, the posterior mean of µ, on the micrograms below 10g scale, was
θ̄′ = 404.3 (to 4 sigfigs); the other relevant quantities for µ were as follows:
posterior SD σ̂θ′

.
= 0.464 and first-order autocorrelation ρ̂1

.
= 0.294 (NB the

MCSE for µ is already down to 0.009 with 5,000 iterations, so I already have
a bit more than 4 sigfigs of accuracy).



Bayesian Modeling, Inference and Prediction 191

Suppose (just for the sake of illustration; it’s hard to imagine setting
an accuracy goal this stringent in practice) that I want to ensure 5 sigfigs
with at least 95% Monte Carlo probability for the posterior mean—write
θ̄′ = 4.043 · 102, so that b = 2, take α = 0.05 and substitute into (14) to yield

m ≥ 4(1.96)2

(
0.464

102−5+1

)2(
1 + 0.294

1− 0.294

)
.
= 60, 600. (3.60)

Now, if you instead subtracted 404 from all of the data values (on the
micrograms below 10g scale) and made a similar MCMC run, everything
would be the same as above except that your current posterior mean for µ
would be 0.3 to 1 sigfig, and (with the same MCSE of 0.009) you would
regard yourself as already having a bit more than 1 sigfig of accuracy from
the initial monitoring run of 5,000.

Then to apply (59) to get 2 sigfigs of accuracy you would write θ̄′ =
3.0 · 10−1 and obtain

m ≥ 4(1.96)2

(
0.464

10(−1)−2+1

)2(
1 + 0.294

1− 0.294

)
.
= 60, 600. (3.61)

These two sets of results from (59) are consistent—by subtracting 404
from all of the data values you (at least temporarily) threw away 3 sigfigs—
but you can see that care needs to be taken in thinking about how much
accuracy you want, and this question is closely tied to the scale of measure-
ment.

(b) Note from (59) that every time you want to add 1 new sigfig of
accuracy in the posterior mean the required length of monitoring run goes
up multiplicatively by (101)2 = 100.

(2) I’ve concentrated so far on the MCMC accuracy of the posterior
mean—what about other posterior summaries like the SD?

Suppose as above that you’re interested in a given component θ′ of the
parameter vector θ, and that the output of your MCMC sampler for θ′ be-
haves like an AR1 series with first-order autocorrelation ρ1; and suppose as
above that after a burn-in that’s long enough to reach stationarity, you’ve
done a preliminary monitoring run, obtaining mean θ̄′, SD σ̂θ′ , and first-order
autocorrelation ρ̂1 as estimates of the corresponding summaries for θ′.

Then it can be shown, in an expression analogous to (58), that if the
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marginal posterior for θ′ is approximately Gaussian

ŜE(σ̂θ′) =
σ̂θ′√
2m

√
1 + ρ̂2

1

1− ρ̂2
1

. (3.62)

Note that with a parameter with MCMC output that’s approximately
AR1 and roughly Gaussian this implies that

ŜE
(
θ̄′
)

ŜE(σ̂θ′)

.
=

√
2(1 + ρ̂1)2

1 + ρ̂2
1

, (3.63)

which goes from
√

2 to 2 as ρ̂1 ranges from 0 to +1, i.e., the mean is harder
to pin down than the SD with Gaussian data (a reflection of how light the
tails are).

CODA in R. If you go to http://www.r-project.org/, click on CRAN (the
Comprehensive R Archive Network), click on one of the CRAN mirror sites,
and click on Package Sources, you’ll find a lot of contributed packages, one
of which is CODA.

Clicking on coda will get you the source code for CODA (you can also
visit http://www-fis.iarc.fr/coda/, a web site maintained by Martyn
Plummer, the guy who ported CODA from S+ to R).

In this way you can download the source for R-CODA and follow the in-
structions for installing it.

An easier way, if you’re running R on a machine that’s connected to the
internet, is to go into R and just type

install.packages( "coda" )

If everything goes smoothly this will automatically install R-CODA on your
machine (you’ll need to do this on your laptop to get CODA; it’s already
installed in the Engineering School version of R).

Once you have it in your local library you can invoke it from inside R with
the command

library( coda )

and you can find out what it can do with the command

help( package = coda )
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The idea is to run classicBUGS or WinBUGS, store the MCMC dataset
somewhere handy, go into R, and use R-CODA to read the MCMC dataset in
and analyze it.

All of the MCMC diagnostics I showed you described above are available
to you with this approach.

3.4 Problems

1. (The gambler’s ruin; review of basic ideas in Markov chains) Consider
a gambler at a casino who at each play of a game has probability
0 < p < 1 of winning $1 and probability (1 − p) of losing $1. If the
successive plays of the game are assumed independent, the question
this problem addresses is as follows: what is the probability P that if
she (the gambler) starts with $M > $0 she will break the bank (reach
$N > $M , for integer M and N ; here $N represents the initial capital
of the casino against which she’s playing1) before going broke (reaching
$0)?

(a) If we let Yt denote her fortune after the tth play of the game,
explain why the process {Yt} is a Markov chain on the state space
{$0, $1, . . . , $N}, and identify the possible states the process could
be in at times t = 0, 1, . . ..

(b) My intent is that this problem should be a somewhat playful en-
vironment within which you can learn more about Markov chains
than you already know. Therefore, using whatever combination
you like of {simulation (R is a good language for this), looking
around on the web, reading probability books, etc.}, see how much
progress you can make on the basic question posed at the begin-
ning of the problem. A fully satisfying mathematical answer to
the question would be symbolic in p, M , and N , but you’ll get
nearly full credit for doing a good job of answering it for a few
(well-chosen) specific values of these quantities and speculating
about the nature of the dependence of P on p, M , and N . Ex-

1For the sake of this problem let’s pretend that once she reaches $N the casino judges
that it has lost enough money to her that it does not wish to continue playing against her,
which is what “breaking the bank” means.
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plore the sensitivity of P to small changes in p, M , and N : on
which of these quantities does P depend most sensitively?

(c) Let N →∞ and show that under these conditions, if p > 1
2

there
is a positive probability (specify it if you can) of the gambler’s
fortune increasing indefinitely, but if p ≤ 1

2
she will go broke with

probability 1 against an infinitely rich adversary (this last fact is
not surprising for p < 1

2
, but what about p = 1

2
?).

2. (First practice with BUGS) Write a classic BUGS or WinBUGS program
to use Gibbs sampling to analyze the data in the length-of-stay case
study, using the same Gamma prior and Poisson likelihood as in that
example. Obtain MCMC approximations both for the posterior dis-
tribution of λ given the data vector y and the predictive distribution
p(yn+1|y), and compare summaries of these distributions (means, SDs,
histograms or density traces) with the theoretical conjugate results we
got in the case study. You don’t need to worry about MCMC diagnos-
tics in this simple example, because Gibbs sampling when there’s only
one parameter amounts to IID sampling from the relevant posterior
and predictive distributions. Justify your choices of initial values for
the Markov chain and length of burn-in period. Use one of the formulas
given in class to work out how long you need to monitor the chain to
report 3-significant-figure accuracy of the posterior mean estimates for
both λ and yn+1, and verify that you do indeed achieve that level of
accuracy (at least up to Monte Carlo noise) in your simulation. What
length of monitoring run is necessary to report 3-significant-figure ac-
curacy of the posterior SD estimate? Explain briefly, and report all
relevant calculations (simulation or otherwise).

3. (Second practice with BUGS) In problem 3 of homework 2 we used conju-
gate inference to fit an Exponential sampling model to the wire failure
data given in that problem, and you may remember noticing that the
biggest data value (21194) seemed a bit large in the Exponential con-
text, which tentatively called the Exponential distribution into ques-
tion. Recalling that the basic Bayesian idea for improving a model is
to expand it by embedding it in a richer class of models of which it’s
a special case, the natural thing to try is to fit a model to this data
set in which the sampling distribution is Gamma (we saw in part 2 of
the lecture notes that the Exponential is a special case of the Γ(α, β)
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family with α = 1). Write a classic BUGS or WinBUGS program to use
MCMC to fit the model

(α, β) ∼ p(α, β) (3.64)

(yi|α, β)
IID∼ Γ(α, β), i = 1, . . . , n

to the wire failure data. For this problem, by way of prior information
(unlike the situation in homework 2) I’d like you to use a diffuse prior on
α and β. Since they both live on (0,∞) it’s natural to try independent
Γ(ε, ε) priors for both of them, with (as usual) a small value for ε like
0.001; or you could use an initial run with Γ(ε, ε) priors to see where
the likelihood is appreciable and then use U(0, cα) and U(0, cβ) priors
for α and β, where cα and cβ are chosen to be big enough not to
truncate the likelihood but not much larger than that. Summarize the
posterior distribution on α and β to an appropriate degree of Monte
Carlo accuracy. Does the Γ(α, β) family appear to provide a better
fit to the wire failure data than the Exponential sampling distribution
used in homework 2? Explain briefly.

4. (Multinomial data and the Dirichlet distribution as a prior; based on
Section 3.5 in Gelman et al.) In late October 1988, CBS News con-
ducted a survey which was equivalent to a simple random sample of
n = 1, 447 American adults to learn about voter preferences in the
Presidential election which was to be held a few weeks later. y1 = 727
of these people supported George Bush (the elder), y2 = 583 sup-
ported Michael Dukakis, and y3 = 137 supported other candidates or
responded “no opinion.” This situation is a lot like the AMI mortal-
ity case study in class except that there are three outcome categories
(Bush, Dukakis, other) instead of two (died, lived): before any data ar-
rives you would probably agree that your uncertainty about the string
of 1,447 individual outcomes from each sampled person (which is sum-
marized by the counts y = (y1, y2, y3) = (727, 583, 137)) is exchange-
able. This leads by an easy generalization of de Finetti’s representation
theorem for binary outcomes to the following model for the summary
counts:

(θ1, . . . , θk) ∼ p(θ1, . . . , θk) (3.65)

p(y1, . . . , yk|θ1, . . . , θk) = c
k∏

j=1

θ
yj

j ,
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where 0 < θj < 1 for all j = 1, . . . , k and
∑k

j=1 θj = 1. The second
line of (2) (the sampling distribution of the vector y, which defines the
likelihood function) is the multinomial distribution, an obvious gener-
alization of the binomial to k > 2 categories (in this voting problem
k = 3). Evidently in this model the conjugate prior for the vector
θ = (θ1, . . . , θk) is of the form

p(θ1, . . . , θk|α1, . . . , αk) = c

k∏

j=1

θ
αj−1
j ; (3.66)

this distribution turns out to be well-behaved for any choice of the
hyperparameter vector α = (α1, . . . , αk) such that αj > 0 for all j =
1, . . . , k. This is the Dirichlet(α) distribution, a kind of generalization
of the Beta distribution to more than two categories. With this prior
the model becomes

(θ1, . . . , θk) ∼ Dirichlet(α1, . . . , αk) (3.67)

(y1, . . . , yk|θ1, . . . , θk) ∼ Multinomial(n; θ1, . . . , θk)

(see Appendix A in Gelman et al. for the normalizing constants). As
with the Beta distribution, the αj can clearly be seen in this model to
represent prior sample sizes; in the voting example, choosing a partic-
ular (α1, α2, α3) is equivalent to assuming that the prior is equivalent
to a data set with α1 preferences for Bush, α2 for Dukakis, and α3 for
other. To create a diffuse prior, which would be a natural choice in
the absence of any earlier sampling data (and even with earlier data
it’s not clear that voter opinion is sufficiently stable over time to make
simple use of any previous polling results), we evidently want the αj

to be small; an easy choice that avoids complications with improper
priors is to take α = (1, . . . , 1), a kind of multivariate generalization of
the uniform distribution. The main scientific interest in this problem
focuses on γ = (θ1− θ2), the margin by which Bush is leading Dukakis.

(a) Write out the likelihood function for the vector θ in the Multino-
mial sampling model above, and compute the maximum likelihood
estimates of the θi and of γ. You can either do this by (i) express-
ing the log likelihood as a function of θ1, θ2, and θ3 and performing
a constrained maximization of it using Lagrange multipliers, or (ii)
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substituting θ3 = (1− θ1 − θ2) and y3 = (n− y1− y2) into the log
likelihood and carrying out an unconstrained maximization in the
usual way (by setting first partial derivatives to 0 and solving).
Do the MLEs have reasonable intuitive forms? Explain briefly.

(extra credit) On the web or in a statistics text, read about how
Fisher information generalizes when the parameter θ of interest is
a vector and use this to compute approximate large-sample stan-
dard errors for the MLEs of the θi and of γ.

(b) Use BUGS or WinBUGS with the diffuse prior mentioned above to
simulate m draws from the marginal posterior distributions for
the θi and for γ, where m is large enough to yield results that
seem accurate enough to you given the context of the problem
(briefly justify your choice of m). How do the posterior means
of the θi compare with the MLEs? Explain briefly. Report the
posterior mean and SD of γ, and compare your estimated posterior
density with the plot below, which is taken from Gelman et al.
Use your MCMC output to estimate p(γ > 0|y), the chance that
Bush would win the election if it were held shortly after the data
were gathered and the “other” (non-Bush, non-Dukakis) voters
behaved appropriately (briefly explain what has to be assumed
about these other voters so that p(γ > 0|y) is the chance that Bush
would win the election), and attach a Monte Carlo standard error
to your estimate of p(γ > 0|y). Describe your MCMC sampling
strategy (mainly your starting values and the length b of your
burnin run; you’ve already justified your choice of m) and briefly
explain why you believe that this strategy has accurately extracted
the posterior distribution of interest.

(c) (extra credit) Use Maple or some equivalent environment (or paper
and pen, if you’re brave) to see if you can derive a closed-form
expression for p(γ|y), and compare your mathematical result with
your simulation-based findings in (a), using the actual data in this
example.

5. Write your own Metropolis-Hastings sampler to analyze the data in the
length-of-stay case study, using the same Gamma prior and Poisson
likelihood as in that example; using your MH sampler, complete as
many of the steps in problem 1 of this assignment as you have time
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and patience for, and compare the results you obtained in problem 1
with Gibbs sampling. In choosing a proposal distribution for your MH
sampler there are two main ways to go: you can either (i) transform λ
to the log scale so that it lives on the entire real line and use (something
like) a Gaussian proposal distribution for η = log(λ) (in this case you’ll
be using the simpler Metropolis form for the acceptance probability), or
(ii) pick a proposal distribution for λ that simulates from the positive
part of the real line (a natural choice would be the family of Gamma
distributions; in this case you’ll be using the more complicated MH
form for the acceptance probability). In either (i) or (ii) you’ll find
that some measure of scale for the proposal distribution acts like a
tuning constant that can be adjusted to achieve optimal MH Monte
Carlo efficiency. If you have time it would be good to make a small
study of how the MCSE of the posterior mean for λ or η depends on
this tuning constant, so that you can find the optimal scaling of the
proposal distribution.



Chapter 4

Bayesian model specification

4.1 Hierarchical model selection: An exam-

ple with count data

Case Study: In-home geriatric assessment (IHGA). In an experiment con-
ducted in the 1980s (Hendriksen et al. 1984), 572 elderly people living in a
number of villages in Denmark were randomized, 287 to a control (C) group
(who received standard care) and 285 to an experimental (E) group (who re-
ceived standard care plus IHGA: a kind of preventive medicine in which each
person’s medical and social needs were assessed and acted upon individually).

One important outcome was the number of hospitalizations during the
two-year life of the study (Table 4.1).

Table 4.1. Distribution of number of hospitalizations in the IHGA study
over a two-year period.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Experimental 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered the mean hospitalization rate (for these el-
derly Danish people, at least) by (0.944 − 0.768) = 0.176, which is about
a 100

(
0.768−0.944

0.944

)
= 19% reduction from the control level, a difference that’s

large in clinical terms.

Modeling the IHGA data. An off-the-shelf analysis of this experiment

199
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might pretend (Model 0) that the data are Gaussian,

(
Ci|µC , σ2

C

)
IID∼ N

(
µC, σ2

C

)
, i = 1, . . . , nC ,

(
Ej|µE, σ2

E

)
IID∼ N

(
µE, σ2

E

)
, j = 1, . . . , nE, (4.1)

and use the ordinary frequentist two-independent-samples “z-machinery”:

rosalind 15> R

R : Copyright 2005, The R Foundation

Version 2.1.0 Patched (2005-05-12), ISBN 3-900051-07-0

> C <- c( rep( 0, 138 ), rep( 1, 77 ), rep( 2, 46 ),

rep( 3, 12 ), rep( 4, 8 ), rep( 5, 4 ), rep( 7, 2 ) )

> print( n.C <- length( C ) )

[1] 287 # sample size in the control group

> mean( C )

[1] 0.9442509 # control group mean

> sd( C )

[1] 1.239089 # control group

# standard deviation (SD)

> table( C )

0 1 2 3 4 5 7 # control group

138 77 46 12 8 4 2 # frequency distribution

> E <- c( rep( 0, 147 ), rep( 1, 83 ), rep( 2, 37 ),

rep( 3, 13 ),rep( 4, 3 ), rep( 5, 1 ), rep( 6, 1 ) )

> print( n.E <- length( E ) )

[1] 285 # sample size in the

# experimental group

> mean( E )
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[1] 0.7684211 # experimental group mean

> sd( E )

[1] 1.008268 # experimental group SD

> table( E )

0 1 2 3 4 5 6 # experimental group

147 83 37 13 3 1 1 # frequency distribution

> print( effect <- mean( E ) - mean( C ) )

[1] -0.1758298 # mean difference ( E - C )

> effect / mean( C )

[1] -0.1862109 # relative difference ( E - C ) / C

> SE.effect <- sqrt( var( C ) / n.C + var( E ) / n.E )

[1] 0.09442807 # standard error of the difference

> print( CI <- c( effect - 1.96 * SE.effect,

effect + 1.96 * SE.effect ) )

[1] -0.3609 0.009249 # the 95% confidence interval from

# model 0 runs from -.36 to +.01

Deficiencies of model 0. The frequentist analysis of Model 0 is equiv-
alent to a Bayesian analysis of the same model with diffuse priors on the
control and experimental group means and SDs (µC, σC , µE, σE), and is sum-
marized in Table 4.2.

Table 4.2. Summary of analysis of Model 0.
Posterior

Mean SD 95% Interval
Treatment effect

(µE − µC)
−0.176 0.0944 (−0.361, 0.009)

However, both distributions have long right-hand tails; in fact they look
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Figure 4.1: Histograms of control and experimental numbers of hospitaliza-
tions.

rather Poisson.

4.1.1 Poisson fixed-effects modeling

R code to make the histograms:

> x11( ) # to open a

# graphics window

> par( mfrow = c( 1, 2 ) ) # to plot two histograms

> hist( C, nclass = 8, probability = T,

xlab = ’Days Hospitalized’, ylab = ’Density’,

xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Control’ )
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> hist( E, nclass = 8, probability = T,

xlab = ’Days Hospitalized’, ylab = ’Density’,

xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Experimental’ )

So I created a classicBUGS file called poisson1.bug that looked like
this:

model poisson1;

const

n.C = 287, n.E = 285;

var

lambda.C, lambda.E, C[ n.C ], E[ n.E ], effect;

data C in "poisson-C.dat", E in "poisson-E.dat";

inits in "poisson1.in";

{

lambda.C ~ dgamma( 0.001, 0.001 );

lambda.E ~ dgamma( 0.001, 0.001 );

for ( i in 1:n.C ) {

C[ i ] ~ dpois( lambda.C );

}

for ( j in 1:n.E ) {

E[ j ] ~ dpois( lambda.E );

}
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effect <- lambda.E - lambda.C;

}

poisson1.in initializes both λC and λE to 1.0; the Γ(0.001, 0.001) priors
for λC and λE are chosen (as usual to create diffuseness) to be flat in the
region in which the likelihood is appreciable:

> sqrt( var( C ) / n.C )

[1] 0.07314114

> sqrt( var( E ) / n.E )

[1] 0.05972466

> c( mean( C ) - 3.0 * sqrt( var( C ) / n.C ),

mean( C ) + 3.0 * sqrt( var( C ) / n.C ) )

[1] 0.7248275 1.1636743

> c( mean( E ) - 3.0 * sqrt( var( E ) / n.E ),

mean( E ) + 3.0 * sqrt( var( E ) / n.E ) )

[1] 0.5892471 0.9475950

> lambda.grid <- seq( 0.01, 2.0, 0.01 )

> plot( lambda.grid, 0.001 * dgamma( lambda.grid, 0.001 ),

type = ’l’, xlab = ’Lambda’, ylab = ’Density’ )

The likelihood under the Gaussian model is concentrated for λC from
about 0.7 to 1.2, and that for λE from about 0.6 to 1; you can see from the
plot that across those ranges the Γ(0.001, 0.001) prior is essentially constant.

Figure 4.3 presents part of the results of fitting the 2-independent-samples
additive Poisson model detailed earlier in WinBUGS. A burn-in of 2,000 was
almost instantaneous at 2.0 PC GHz and revealed good mixing for the three
main quantities of interest.
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Figure 4.2: The Γ(0.001, 0.001) distribution in the region in which the likeli-
hoods for λC and λE are appreciable.

A monitoring run of 8,000 reveals that the effect parameter in the 2-
independent-samples Poisson model is behaving like white noise, so that
already with only 8,000 iterations the posterior mean has a Monte Carlo
standard error of less than 0.001.

Thus a burn-in of 2,000 and a monitoring run of 8,000 yields good MCMC
diagnostics and permits a comparison between model 0 (Gaussian) and model
1 (Poisson), as in Table 4.3.

Table 4.3. Comparison of inferential conclusions from models 0 and 1.
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Figure 4.3: Fitting the 2–independent-samples additive Poisson model to the
IHGA data in WinBUGS.
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Figure 4.4: Posterior monitoring for the effect parameter.
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λC Posterior Posterior Central 95%
Model Mean SD Interval

Gaussian 0.944 0.0731 (0.801, 1.09)
Poisson 0.943 0.0577 (0.832, 1.06)

λE Posterior Posterior Central 95%
Model Mean SD Interval

Gaussian 0.768 0.0597 (0.651, 0.885)
Poisson 0.769 0.0521 (0.671, 0.875)

∆ = λE − λC Posterior Posterior Central 95%
Model Mean SD Interval

Gaussian -0.176 0.0944 (−0.361, 0.009)
Poisson -0.174 0.0774 (−0.325,−0.024)

The two models produce almost identical point estimates, but the Poisson
model leads to sharper inferences (e.g., the posterior SD for the treatment
effect ∆ = λE − λC is 22% larger in model 0 than in model 1).

4.1.2 Additive and multiplicative treatment effects

This is the same point we noticed with the NB10 data—when a location
parameter is the only thing at issue, the Gaussian is a conservative modeling
choice (intuitively, the Poisson gains its “extra accuracy” from the variance
and the mean being equal, which permits second-moment information to help
in estimating the λ values along with the usual first-moment information).

Both the Gaussian and Poisson models so far implicitly assume that the
treatment effect is additive:

E
st

= C + effect, (4.2)

where
st

= means is stochastically equal to; in other words, apart from random
variation the effect of the IHGA is to add or subtract a constant to or from
each person’s underlying rate of hospitalization.

However, since the outcome variable is non-negative, it is plausible that
a better model for the data is

E
st

= (1 + effect)C. (4.3)

Here the treatment effect is multiplicative—in other words, apart from
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random variation the effect of the IHGA is to multiply each person’s under-
lying rate of hospitalization by a constant above or below 1.

A qqplot of the control and experimental outcome values can in some
cases be helpful in choosing between additive and multiplicative models:

> CEqq <- qqplot( C, E, plot = F )

> table( CEqq$y, CEqq$x )

Interpolated C values

0 0.965 1 1.5 2 2.82 3 3.91 4 4.96 5 6.99 7

0 137 1 9 0 0 0 0 0 0 0 0 0 0

1 0 0 66 1 16 0 0 0 0 0 0 0 0

2 0 0 0 0 29 1 7 0 0 0 0 0 0

E 3 0 0 0 0 0 0 4 1 7 1 0 0 0

4 0 0 0 0 0 0 0 0 0 0 3 0 0

5 0 0 0 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 0 0 0 0 0 1

> symbols( c( 0, 0.964798, 1, 1, 1.5, 2, 2, 2.823944, 3, 3,

3.908447, 4, 4.964813, 5, 6.985962, 7 ), c( rep( 0, 3 ),

rep( 1, 3 ), rep( 2, 3 ), rep( 3, 4 ), 4, 5, 6 ),

circles = c( 137, 1, 9, 66, 1, 16, 29, 1, 7, 4, 1, 7, 1,

3, 1, 1 ), xlab = ’C’, ylab = ’E’ )

> abline( 0, 1 ) # E = C (no effect)

> abline( 0, 0.793, lty = 2 ) # E = 0.816 C

# (multiplicative)

> abline( -0.174, 1, lty = 3 ) # E = C - 0.174 (additive)

Here, because the Poisson model has only one parameter for both location
and scale, the multiplicative and additive formulations fit equally well, but
the multiplicative model generalizes more readily (see below).

A multiplicative Poisson model. A simple way to write the multiplicative
model is to re-express the data in the form of a regression of the outcome
y on a dummy variable x which is 1 if the person was in the experimental
group and 0 if he/she was in the control group:
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Figure 4.5: QQplot of E versus C values, with the radii of the plotted circles
proportional to the number of observations at the indicated point. The solid
line corresponds to no treatment effect, the small dotted line to the best-
fitting multiplicative model (E

st

= 0.816 C), and the large dotted line to the

best-fitting additive model (E
st

= C − 0.174).

i 1 2 · · · 287 288 289 · · · 572
xi 0 0 · · · 0 1 1 · · · 1
yi 1 0 · · · 2 0 3 · · · 1

Then for i = 1, . . . , n = 572 the
multiplicative model can be written

(yi |λi )
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi (4.4)

(γ0, γ1) ∼ diffuse
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In this model the control people have

log(λi) = γ0 + γ1(0) = γ0, i.e., λC = eγ0 , (4.5)

and the experimental people have

log(λi) = γ0 + γ1(1) = γ0 + γ1, i.e.,

λE = eγ0+γ1 = eγ0eγ1 = λCeγ1 . (4.6)

Now you may remember from basic Taylor series that for γ1 not too far from
0

eγ1
.
= 1 + γ1, (4.7)

so that finally (for γ1 fairly near 0)

λE
.
= (1 + γ1)λC , (4.8)

which is a way of expressing equation (3) in
Poisson language.

Fitting this model in classicBUGS is easy:

model poisson2;

const

n = 572;

var

gamma.0, gamma.1, lambda[ n ], x[ n ], y[ n ], lambda.C,

lambda.E, mult.effect;

data x in "poisson-x.dat", y in "poisson-y.dat";

inits in "poisson2.in";

{

gamma.0 ~ dnorm( 0.0, 1.0E-4 ); # flat priors for

gamma.1 ~ dnorm( 0.0, 1.0E-4 ); # gamma.0 and gamma.1

for ( i in 1:n ) {
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log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ];

y[ i ] ~ dpois( lambda[ i ] );

}

lambda.C <- exp( gamma.0 );

lambda.E <- exp( gamma.0 + gamma.1 );

mult.effect <- exp( gamma.1 );

}

The multiplicative Poisson model (11) takes longer to run—2,000 burn-in
iterations now take about 4 seconds at 2.0 PC GHz—but still exhibits fairly
good mixing, as we’ll see below.

A total of 10,000 iterations (the chain started essentially in equilibrium,
so the burn-in can be absorbed into the monitoring run) reveals that the
multiplicative effect parameter eγ1 in model (11) behaves like an AR1 series
with ρ̂1

.
= 0.5, but the Monte Carlo standard error for the posterior mean is

still only about 0.001 with a run of this length.
A burn-in of 2,000 and a monitoring run of 8,000 again yields good MCMC

diagnostics and permits a comparison between the additive and multiplicative
Poisson models, as in Table 4.4.

Comparison of inferential conclusions from the additive and multiplicative
Poisson models.

λC Posterior Posterior Central 95%
Model Mean SD Interval

additive 0.943 0.0577 (0.832, 1.06)
multiplicative 0.945 0.0574 (0.837, 1.06)

λE Posterior Posterior Central 95%
Model Mean SD Interval

additive 0.769 0.0521 (0.671, 0.875)
multiplicative 0.768 0.0518 (0.671, 0.872)

effect Posterior Posterior Central 95%
Model Mean SD Interval

additive -0.174 0.0774 (−0.325,−0.024)
multiplicative -0.184 0.0743 (−0.324,−0.033)



Bayesian Modeling, Inference and Prediction 213

Figure 4.6: Fitting a multiplicative-effect Poisson model to the IHGA data in
WinBUGS.



214 David Draper

Figure 4.7: Monitoring the multiplicative effect parameter.
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With this model it is as if the experimental people’s average underlying
rates of hospitalization have been multiplied by 0.82,
give or take about 0.07.

The additive and multiplicative effects are similar here, because both are
not too far from zero.

Extra-Poisson variability. However, none of this has verified that the
Poisson model is reasonable for these data—the histograms show that the
Gaussian model is clearly unreasonable, but the diagnostic plots in WinBUGS

and CODA only check on the adequacy of the MCMC sampling, not the model.
In fact we had a good clue that the data are not Poisson back on page 2:

as noted in part 2, the Poisson(λ) distribution has mean λ and also variance
λ—in other words, the variance-to-mean-ratio (VTMR) for the Poisson is 1.
But

> var( C ) / mean( C )

[1] 1.62599

> var( E ) / mean( E )

[1] 1.322979

i.e., the data exhibit extra-Poisson variability (VTMR > 1).
This actually makes good sense if you think about it, as follows.
The Poisson model assumes that everybody in the control group has the

same underlying rate λC of hospitalization, and similarly everybody in the
experimental group has the same rate λE.

In reality it’s far more reasonable to think that each person has his/her
own underlying rate of hospitalization that depends on baseline health status,
age, and various other things.

Now Hendriksen forgot to measure (or at least to report on) these other
variables (he may have hoped that the randomization would balance them
between C and E)—the only predictor we have is x, the experimental sta-
tus dummy variable—so the best we can do is to lump all of these other
unobserved predictor variables together into a kind of “error” term e.

This amounts to expanding the second Poisson model (11) above: for
i = 1, . . . , n = 572 the new model is

(yi |λi )
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi + ei (4.9)
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ei
IID∼ N

(
0, σ2

e

)
(
γ0, γ1, σ

2
e

)
∼ diffuse.

4.1.3 Random-effects Poisson regression modeling

The Gaussian choice for the error distribution is conventional, not dictated
by the science of the problem (although if there were a lot of unobserved
predictors hidden inside the ei their weighted sum would be close to normal
by the Central Limit Theorem).

Model (16) is an expansion of the earlier model (11) because you can
obtain model (11) from (16) by setting σ2

e = 0, whereas with (16) we’re
letting σ2

e vary and learning about it from the data.
The addition of the random effects ei to the model is one way to address

the extra-Poisson variability: this model would be called a lognormal mix-
ture of Poisson distributions (or a random effects Poisson regression (REPR)
model) because it’s as if each person’s λ is drawn from a lognormal distribu-
tion and then his/her number of hospitalizations y is drawn from a Poisson
distribution with his/her λ, and this mixing process will make the variance
of y bigger than its mean.

The new WinBUGS model is

{

gamma.0 ~ dnorm( 0.0, 1.0E-4 )

gamma.1 ~ dnorm( 0.0, 1.0E-4 )

tau.e ~ dgamma( 0.001, 0.001 )

for ( i in 1:n ) {

e[ i ] ~ dnorm( 0.0, tau.e )

log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ] +

e[ i ]

y[ i ] ~ dpois( lambda[ i ] )

}

lambda.C <- exp( gamma.0 )

lambda.E <- exp( gamma.0 + gamma.1 )

mult.effect <- exp( gamma.1 )
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sigma.e <- 1.0 / sqrt( tau.e )

}

I again use a diffuse Γ (ε, ε) prior (with ε = 0.001) for the precision τe of
the random effects.

With a model like that in equation (16), there are n random effects ei that
need to be sampled as nodes in the graph (the ei play the role of auxiliary
variables in the MCMC) along with the fixed effects (γ0, γ1) and the variance
parameter σ2

e .
In earlier releases of the software, at least, this made it more crucial to

give WinBUGS good starting values.
Here WinBUGS release 1.3 has figured out that random draws like 1.66 ·

10−316 result from the generic (and quite poor) initial values (γ0, γ1, τe) =
(0.0, 0.0, 1.0) and has refused to continue sampling.

Sensitivity to initial values. Warning: WinBUGS can fail, particularly
in random-effects models, when you give it initial values that are not very
close to the final posterior means; an example in release 1.3 is the REPR
model (16) on the IHGA data with the “generic” starting values (γ0, γ1, τe) =
(0.0, 0.0, 1.0).

When this problem arises there are two ways out in WinBUGS: trial and
error, or a calculation (see below).

NB MLwiN does not have this problem—it gets its starting values from
maximum likelihood (the mode of the likelihood function is often a decent
approximation to the mean or mode of the posterior).

Technical note. To get a decent starting value for τe in model (16) you
can calculate as follows: renaming the random effects ηi to avoid confusion
with the number e, (1) V (yi) = V [E(yi |ηi )] + E[V (yi |ηi )], where
(2) (yi |ηi ) ∼ Poisson (eγ0+γ1xi+ηi), so E(yi |ηi ) = V (yi |ηi ) = eγ0+γ1xi+ηi .
Then (3) V [E(yi |ηi )] = V (eγ0+γ1xi+ηi) = e2(γ0+γ1xi)V (eηi) and E[V (yi |ηi )] =
E(eγ0+γ1xi+ηi) = eγ0+γ1xiE(eηi). Now (4) eηi is lognormal with mean 0 and

variance σ2
e on the log scale, so E(eηi) = e

1
2
σ2

e and V (eηi) = eσ2
e

(
eσ2

e − 1
)
,

yielding finally V (yi) = e2(γ0+γ1xi)+
1
2
σ2

e + eγ0+γ1xi+σ2
e

(
eσ2

e − 1
)
. (5) Plugging

in xi = 0 for the C group, whose sample variance is 1.54, and using the value
γ0 = −0.29 from runs with previous models, gives an equation for σ2

e that
can be solved numerically, yielding σ2

e

.
= 0.5 and τe

.
= 2.

Interestingly, WinBUGS release 1.4 is able to sample successfully with the
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Figure 4.8: Bad initial values yielding the dreaded Trap window.
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Figure 4.9: WinBUGS release 1.4 will refuse to sample with truly absurd initial
values.
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generic starting values (γ0, γ1, τe) = (0.0, 0.0, 1.0), although of course a longer
burn-in period would be needed when they’re used; you have to try truly
absurd initial values to get it to fall over, and when it does so the error
message (“Rejection1”) in the lower left corner is more discreet.

With a better set of initial values—(γ0, γ1, τe) = (−0.058,−0.21, 2.0),
obtained from (a) the earlier Poisson models (in the case of the regression
parameters γj) and (b) either a calculation like the one on the bottom of
page 29 or trial and error—WinBUGS is able to make progress, although this
model takes a fairly long time to fit in release 1.4: a burn-in of 1,000 takes
11 seconds at 1.0 PC GHz (the code runs about twice as fast in release 1.3
for some reason).

A monitoring run of 5,000 iterations reveals that the random effects make
everything mix more slowly: λC (this page) and λE and the multiplicative
effect (next page) all behave like AR1 series with ρ̂1

.
= 0.7, 0.5, and 0.6,

respectively.

Learning about σe in this model is slow: its autocorrelation function is
that of an AR1 with a high value of ρ̂1 (equation (55) on page 76 of part 3
of the lecture notes gives ρ̂1

.
= 0.92).

The MCSE of the posterior mean for σe based on 5,000 draws is 0.005182;
to get this down to (say) 0.001 I need to increase the length of the moni-

toring run by a factor of
(

0.005182
0.001

)2 .
= 26.9, meaning a total run of about

(26.9)(5, 000)
.
= 134, 000 iterations (this takes about half an hour at 1 PC

GHz).

There is clear evidence that σe is far from 0—its posterior mean and SD
are estimated as 0.675 (with an MCSE of about 0.001 after 134,000 iterations)
and 0.074, respectively—meaning that the model expansion from (11) to (16)
was amply justified.

(Another way to achieve the goal of describing the extra-Poisson variabil-
ity would be to fit different negative binomial distributions to the observed
counts in the C and E groups—the negative binomial is a gamma mixture
of Poissons, and the gamma and lognormal distributions often fit long-tailed
data about equally well, so you would not be surprised to find that the two
approaches give similar results.)

Table 4.5. Comparison of inferential conclusions about the multiplica-
tive effect parameter eγ1 from the fixed-effects and random-effects Poisson
regression models.
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Figure 4.10: Monitoring λC in the REPR model.
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Figure 4.11: Monitoring λE in the REPR model.
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Figure 4.12: Monitoring the multiplicative effect parameter in the REPR
model.
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Figure 4.13: Monitoring σe in the REPR model.
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Figure 4.14: There is clear evidence that σe is far from 0.
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Posterior Posterior Central 95%
Model Mean SD Interval
FEPR 0.816 0.0735 (0.683, 0.969)
REPR 0.830 0.0921 (0.665, 1.02)

Table 4.5 compares the REPR model inferential results with those from
model (11), which could also be called a fixed-effects Poisson regression
(FEPR) model.

The “error” SD σe has posterior mean 0.68, give or take about 0.07 (on the
log(λ) scale), corresponding to substantial extra-Poisson variability, which
translates into increased uncertainty about the multiplicative effect parame-
ter eγ1 .

I’ll argue later that the REPR model fits the data well, so the conclusion
I’d publish from these data is that IHGA reduces the average number of
hospitalizations per two years by about 100 (1− 0.083)% = 17% give or take
about 9% (ironically this conclusion is similar to that from the Gaussian
model, but this is coincidence).

4.2 Bayesian model choice

What is a Bayesian model?
I’d like model to arise as much as possible from contextual information

(scientific, policy, business, ...).
de Finetti (1970): Bayesian model = joint predictive distribution

p(y) = p(y1, . . . , yn) (4.10)

for as-yet-unobserved observables y = (y1, . . . , yn).
Example 1: Data = health outcomes for all patients at one hospital with

heart attack admission diagnosis.
Simplest possible: yi = 1 if patient i dies within 30 days of admission, 0

otherwise.
de Finetti (1930): in absence of any other information, predictive uncer-

tainty about yi is exchangeable.
Representation theorem for binary data: if (y1, . . . , yn) part of infinitely

exchangeable sequence, all coherent joint predictive distributions p(y1, . . . ,
yn) must have simple hierarchical form

θ ∼ p(θ) (4.11)

(yi|θ) IID∼ Bernoulli(θ),
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where θ = P (yi = 1) = limiting value of mean of yi in infinite sequence.
Mathematically p(θ) is mixing distribution in

p(y1, . . . , yn) =

∫ 1

0

θs(1− θ)n−s p(θ) dθ, (4.12)

where s =
∑n

i=1 yi; statistically, p(θ) provides opportunity to quantify prior
information about θ and combine with information in y.

Thus, in simplest situation, Bayesian model specification = choice of sci-
entifically appropriate prior distribution p(θ).

Example 2 (elaborating Example 1): Now I want to predict real-valued
sickness-at-admission score instead of mortality (still no covariates).

Uncertainty about yi still exchangeable; de Finetti’s (1937) representation
theorem for real-valued data: if (y1, . . . , yn) part of infinitely exchangeable
sequence, all coherent joint predictive distributions p(y1, . . . , yn) must have
(no longer quite so simple) hierarchical form

F ∼ p(F ) (4.13)

(yi|F )
IID∼ F,

where F = limiting empirical cumulative distribution function (CDF) of
infinite sequence (y1, y2, . . .).

Bayesian nonparametrics. Thus here Bayesian model specification =
choosing scientifically appropriate mixing (prior) distribution p(F ) for F .

However, F is infinite-dimensional parameter; putting probability distri-
bution on D = {all possible CDFs} is harder.

Specifying distributions on function spaces is task of Bayesian nonpara-
metric (BNP) modeling (e.g., Dey et al. 1998).

Example 3 (elaborating Example 2): In practice, in addition to outcomes
yi, covariates xij will typically be available.

For instance (Hendriksen et al. 1984), 572 elderly people randomized, 287
to control (C) group (standard care) and 285 to treatment (T ) group (stan-
dard care plus in-home geriatric assessment (IHGA): preventive medicine in
which each person’s medical/social needs assessed, acted upon individually).

One important outcome was number of hospitalizations (in two years).
yT

i , yC
j = numbers of hospitalizations for treatment person i, control per-

son j, respectively.
Suppose treatment/control (T/C) status is only available covariate.
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Conditional exchangeability. Unconditional judgment of exchange-
ability across all 572 outcomes no longer automatically scientifically appro-
priate.

Instead design of experiment compels (at least initially) judgment of con-
ditional exchangeability given T/C status (e.g., de Finetti 1938, Draper et
al. 1993), as in

(FT , FC) ∼ p(FT , FC)

(yT
i |FT , FC)

IID∼ FT (yC
j |FT , FC)

IID∼ FC

(14)

It will later be necessary to decide if FT , FC are sufficiently similar that
data are consistent with judgment of unconditional exchangeability (to see
if treatment has effect or not).

This framework, in which (a) covariates specify conditional exchange-
ability judgments, (b) de Finetti’s representation theorem reduces model
specification task to placing appropriate prior distributions on CDFs, covers
much of field of statistical inference/prediction; thus BNP/BSP modeling
seem crucial to entire Bayesian enterprise over next 10–20 years.

4.2.1 Data-analytic model specification

However, placing prior distributions on CDFs is hard work, we don’t have
much experience with it yet; in meantime, in parallel with efforts to accumu-
late experience, people will still do parametric modeling, we need good tools
for specifying such models.

Basic problem: Given future observables y = (y1, . . . , yn), I’m uncertain
about y (first-order), but I’m also uncertain about how to specify my uncer-
tainty about y (second-order).

Standard (data-analytic) approach to model specification involves initial
choice, for structure of model, of standard parametric family, followed by
modification of initial choice—once data begin to arrive—if data suggest
deficiencies in original specification.

This approach (e.g., Draper 1995) is incoherent: it uses data both to spec-
ify prior distribution on structure space and to update using data-determined
prior (result will typically be uncalibrated (too narrow) predictive distribu-
tions for future data).

Dilemma is example of Cromwell’s Rule: initial model choice placed 0
prior probability on large regions of model space; formally all such regions
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must also have 0 posterior probability even if data indicate different prior on
model space would have been better.

Two possible solutions.

• If use prior on F that places non-zero probability on all Kullback-Leibler
neighborhoods of all densities (Walker et al. 2003; e.g., Pólya trees, Dirichlet
process mixture priors, when chosen well), then BNP/BSP directly avoids
Cromwell’s Rule dilemma, at least for large n: as n→∞ posterior on F will
shrug off any incorrect details of prior specification, will fully adapt to actual
data-generating F (NB this assumes correct exchangeability judgments).

• Three-way cross-validation (3CV; Draper and Krnjajić 2005): taking
usual cross-validation idea one step further,

(1) Divide data at random into three (non-overlapping) subsets Si.

(2) Fit tentative {likelihood + prior} to S1. Expand initial model in all
feasible ways suggested by data exploration using S1. Iterate until you’re
happy.

(3) Use final model (fit to S1) from (2) to create predictive distributions
for all data points in S2. Compare actual outcomes with these distributions,
checking for predictive calibration. Go back to (2), change likelihood as
necessary, retune prior as necessary, to get good calibration. Iterate until
you’re happy.

(4) Announce final model (fit to S1, S2) from (3), and report predictive
calibration of this model on data points in S3 as indication of how well it
would perform with new data.

With large n probably only need to do this once; with small and moderate
n probably best to repeat (1–4) several times and combine results in some
appropriate way (e.g., model averaging).

4.2.2 Model selection as a decision problem

Given method like 3CV which permits hunting around in model space with-
out forfeiting calibration, how do you know when to stop?

It would seem self-evident that to choose model you have to say to what
purpose model will be put, for how else will you know whether model is good
enough?

Specifying this purpose demands decision-theoretic basis for model choice
(e.g., Draper 1996; Key et al. 1998).

To take two examples,
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(1) If you’re going to choose which of several ways to behave in future,
then model has to be good enough to reliably aid in choosing best behavior
(see, e.g., Draper and Fouskakis example below); or

(2) If you wish to make scientific summary of what’s known, then—
remembering that hallmark of good science is good prediction—the model
has to be good enough to make sufficiently accurate predictions of observable
outcomes (in which dimensions along which accuracy is to be monitored are
driven by what’s scientifically relevant; see, e.g., log score results below).

Utility-based variable selection. Example 4: Draper and Fouskakis
(2000, 2004) (also see Fouskakis and Draper 2002) give one example of
decision-theoretic model choice in action, demonstrating that variable se-
lection in regression models should often be governed by principle that final
model should only contain variables that predict well enough given how much
they cost to collect (see the figure below, which compares 214 = 16,384 mod-
els).

Choosing the utility function. Any reasonable utility function in
Example 4 will have two components, one quantifying data collection costs
associated with construction of given sickness scale, other rewarding and
penalizing scale’s predictive successes, failures.

This requires intimate knowledge of real-world consequences of correct
choices, mistakes—a level of understanding that’s always desirable but is
frequently costly in time, money to acquire.

Sometimes the main goal instead is summary of scientific knowledge,
which suggests (as noted above) a utility function that rewards predictive
accuracy.

On calibration grounds it’s mistake, however, to use data twice in mea-
suring this sort of thing (once to make predictions, again with same data to
see how good they are).

Out-of-sample predictive validation (e.g., Geisser and Eddy 1979, Gelfand
et al. 1992) solves this problem: e.g., successively remove each observation
yj one at a time, construct predictive distribution for yj based on y−j (data
vector with yj removed), see where yj falls in this distribution.

Log score as utility. This motivates log scoring rule (e.g., Good 1950;
Bernardo and Smith 1994): with n data values yj, when choosing among k
models Mi, i ∈ I, find that model Mi which maximizes

1

n

n∑

j=1

log p(yj|Mi, y−j). (4.15)
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Figure 4.15: Estimated expected utility as function of number of predictor
variables, in problem involving construction of cost-effective scale to measure
sickness at hospital admission of elderly pneumonia patients. Best models
only have 4–6 sickness indicators out of 14 possible predictors.

This can be given direct decision-theoretic justification: with utility func-
tion for model i

U(Mi|y) = log p(y∗|Mi, y), (4.16)

where y∗ is future data value, expectation in MEU is over uncertainty about
y∗; this expectation can be estimated (assuming exchangeability) by (15).

It can also be revealing to compute predictive z–scores, for observation j
under model i:

zij =
yj − E(yj|Mi, y−j)√

V (yj|Mi, y−j)
. (4.17)

For good predictive calibration of Mi, {zij, j = 1, . . . , n} should have
mean 0, standard deviation (SD) 1; often find instead that SD is larger than
1 (predictive uncertainty bands not wide enough).



232 David Draper

Approximating log score utility. With large data sets, in situations
in which predictive distribution has to be estimated by MCMC, log score
expected utility (15) is computationally expensive; need fast approximation
to it.

To see how this might be obtained, examine log score in simplest possible
model M0: for i = 1, . . . , n,

µ ∼ N
(
µ0, σ

2
µ

)

(Yi|µ)
IID∼ N(µ, σ2) (4.18)

with σ known, take highly diffuse prior on µ so that posterior for µ is ap-
proximately

(µ|y) = (µ|ȳ)
·∼ N

(
ȳ,

σ2

n

)
, (4.19)

where y = (y1, . . . , yn).
Then predictive distribution for next observation is approximately

(yn+1|y) = (yn+1|ȳ)
·∼ N

[
ȳ, σ2

(
1 +

1

n

)]
, (4.20)

and log score, ignoring linear scaling constants, is

LS(M0|y) =

n∑

j=1

ln p(yj|y−j) , (4.21)

where as before y−j is y with observation j set aside.
But by same reasoning

p(yj|y−j)
.
= N

(
ȳ−j, σ

2
n

)
, (4.22)

where ȳ−j is sample mean with observation j omitted, σ2
n = σ2

(
1 + 1

n−1

)
, so

that

ln p(yj|y−j)
.
= c− 1

2σ2
n

(yj − ȳ−j)
2 and

LS(M0|y)
.
= c1 − c2

n∑

j=1

(yj − ȳ−j)
2 (4.23)
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for some constants c1 and c2 with c2 > 0.
Now it’s interesting fact (related to behavior of jackknife), which you can

prove by induction, that

n∑

j=1

(yj − ȳ−j)
2 = c

n∑

j=1

(yj − ȳ)2 (4.24)

for some c > 0, so finally for c2 > 0 the result is that

LS(M0|y)
.
= c1 − c2

n∑

j=1

(yj − ȳ)2, (4.25)

i.e., in this model log score is almost perfectly negatively correlated with
sample variance.

But in this model the deviance (minus twice the log likelihood) is

D(µ) = −2 ln l(µ|y) = c0 − 2 ln p(y|µ)

= c0 + c3

n∑

j=1

(yj − µ)2 (4.26)

for some c3 > 0, encouraging suspicion that log score should be strongly
related to deviance.

Deviance Information Criterion (DIC). Given parametric model
p(y|θ), Spiegelhalter et al. (2002) define deviance information criterion (DIC)
(by analogy with other information criteria) to be estimate D(θ̄) of model
(lack of) fit (as measured by deviance) plus penalty for complexity equal to
twice effective number of parameters pD of model:

DIC(M |y) = D(θ̄) + 2 p̂D, (4.27)

where θ̄ is posterior mean of θ; they suggest that models with low DIC value
are to be preferred over those with higher value.

When pD is difficult to read directly from model (e.g., in complex hi-
erarchical models, especially those with random effects), they motivate the
following estimate, which is easy to compute from standard MCMC output:

p̂D = D(θ)−D(θ̄), (4.28)

i.e., difference between posterior mean of deviance and deviance evaluated
at posterior mean of parameters (WinBUGS release 1.4 will estimate these
quantities).
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In model M0, pD is of course 1, and θ̄ = ȳ, so

DIC(M0|y) = c0 + c3

n∑

j=1

(yj − ȳ)2 + 2 (4.29)

and conclusion is that

−DIC(M0|y)
.
= c1 + c2LS(M0|y) (4.30)

for c2 > 0, i.e., (if this generalizes) choosing model by maximizing log score
and by minimizing DIC are approximately equivalent behaviors.

(This connection was hinted at in discussion of Spiegelhalter et al. 2002
but never really made explicit.)

4.2.3 The log score and the deviance information cri-
terion

We’re now (work in progress) exploring the scope of (30); in several simple
models M so far we find for c2 > 0 that

−DIC(M |y)
.
= c1 + c2LS(M |y), (4.31)

i.e., across repeated data sets generated from given model, even with small
n DIC and LS can be fairly strongly negatively correlated.

Above argument generalizes to any situation in which predictive distri-
bution is approximately Gaussian (e.g., Poisson(λ) likelihood with large λ,
Beta(α, β) likelihood with large (α + β), etc.).

Example 3 continued. With one-sample count data (like number of hos-
pitalizations in the T and C portions of IHGA data), people often choose be-
tween fixed- and random-effects Poisson model formulations: for i = 1, . . . , n,
and, e.g., with diffuse priors,

M1:

{
λ ∼ p(λ)

(yi|λ)
IID∼ Poisson(λ)

}
versus (4.32)

M2:





(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)





(4.33)
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M1 is special case of M2 with
(
σ2 = 0, λ = eβ0

)
; likelihood in M2 is Log-

normal mixture of Poissons (often similar to fitting negative binomial distri-
bution, which is Gamma mixture of Poissons).

We conducted partial-factorial simulation study with factors {n = 18, 32,
42, 56, 100}, {β0 = 0.0, 1.0, 2.0}, {σ2 = 0.0, 0.5, 1.0, 1.5, 2.0} in which
(data-generating mechanism, assumed model) = {(M1, M1), (M1, M2), (M2,
M1), (M2, M2)}; in each cell of this grid we used 100 simulation replications.

When assumed model is M1 (fixed-effects Poisson), LS and DIC are al-
most perfectly negatively correlated (we have mathematical explanation of
this).

When assumed model is M2 (random-effects Poisson), LS and DIC are
less strongly negatively correlated, but correlation increases with n.

Example 3. As example of correspondence between LS and DIC in real
problem, IHGA data were as follows:

Distribution of number of hospitalizations in IHGA study over two-year
period:

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered mean hospitalization rate (for these elderly Dan-
ish people, at least) by (0.944− 0.768) = 0.176, which is about a

100

(
0.768− 0.944

0.944

)
% = 19%

reduction from control level, a difference that’s large in clinical terms.
Four possible models for these data (not all of them good):
• Two-independent-sample Gaussian (diffuse priors);
• One-sample Poisson (diffuse prior), pretending treatment and control

λs are equal;
• Two-independent-sample Poisson (diffuse priors), which is equivalent

to fixed-effects Poisson regression (FEPR); and
• Random-effects Poisson regression (REPR), because C and T variance-

to-mean ratios (VTMRs) are 1.63 and 1.32, respectively:

(yi |λi )
indep∼ Poisson(λi)

log(λi) = β0 + β1xi + ei (4.34)
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Figure 4.16: When the assumed model is M1 (fixed-effects Poisson), LS and
DIC are almost perfectly negatively correlated.
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Figure 4.17: When the assumed model is M2 (random-effects Poisson), LS
and DIC are less strongly negatively correlated, but correlation increases with
n.
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ei
IID∼ N

(
0, σ2

e

)
(
β0, β1, σ

2
e

)
∼ diffuse ,

where xi = 1 is a binary indicator for T/C status.
DIC and LS results on these four models:

Model D(θ) D(θ̄) p̂D DIC LS

1 (Gaussian) 1749.6 1745.6 3.99 1753.5 −1.552
2 (Poisson,
common λ)

1499.9 1498.8 1.02 1500.9 −1.316

3 (FEPR,
different λs)

1495.4 1493.4 1.98 1497.4 −1.314

4 (REPR)
1275.7
1274.7
1274.4

1132.0
1131.3
1130.2

143.2
143.5
144.2

1418.3
1418.2
1418.6

−1.180

(3 REPR rows were based on different monitoring runs, all of length
10,000, to give idea of Monte Carlo noise level.)

As σe → 0 in REPR model, you get FEPR model, with pD = 2 parame-
ters; as σe →∞, in effect all subjects in study have their own λ and pD would
be 572; in between at σe

.
= 0.675 (posterior mean), WinBUGS estimates that

there are about 143 effective parameters in REPR model, but its deviance
D(θ̄) is so much lower that it wins DIC contest hands down.

To use the DIC feature in WinBUGS to produce the screen shot above, I fit
the REPR model as usual, did a burn-in of 1,000, selected DIC as a pull-down
option from the Inference menu, clicked the set button in the DIC Tool

window that popped up, changed the 1,000 to 10,000 in the updates window
of the Update Tool, clicked update, and then clicked DIC in the DIC Tool

when the monitoring run of 10,000 was finished—the DIC results window
appears, with the Dbar (D(θ)), Dhat (D(θ̄)), pD (p̂D), and DIC (DIC(y))
values.

NB You will usually want to base the estimates in DIC on a monitoring
run that’s considerably longer than 10,000 iterations (more like 100,000 would
be good); this was just to illustrate the basic DIC mouse-click sequence in
WinBUGS.

DIC can be sensitive to parameterization.
y = (0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6) is a data set generated from the
negative binomial distribution with parameters (p, r) = (0.82, 10.8) (in Win-

BUGS notation); y has mean 2.35 and VTMR 1.22.
Using standard diffuse priors for p and r as in the BUGS examples manuals,
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Figure 4.18: The correlation between LS and DIC across these four models
is –0.98.

the effective number of parameters pD for the negative binomial model (which
fits the data quite well) is estimated at –66.2:

The basic problem here is that the MCMC estimate of pD can be quite
poor if the marginal posteriors for one or more of the parameters given prior
distributions in the modeling are far from normal; reparameterization helps
but can still lead to poor estimates of pD.

Reparameterization and DIC. Here the marginal posteriors for both
p and r were very heavily skewed; the idea in trying to improve the DIC
estimate of the effective number of parameters is to find transformed versions
of p and r whose posterior distributions are closer to normal.

Since p and r live on (0, 1) and (0,∞), respectively, it’s natural to try

working with logit(p) = log
(

p

1−p

)
and log(r).

You can see with these transformed parameters that the DIC estimate of
pD is about 1.1, which is a great improvement over –66.2 (the right answer
is of course 2.0).

To be fair to DIC, it’s clear from the plots above that we’re trying to
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Figure 4.19: Using the DIC feature in WinBUGS.
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Figure 4.20: Sometimes close attention must be paid to parameterization
when using DIC.
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Figure 4.21: With transformed parameters the DIC estimate of model com-
plexity is greatly improved.
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ask it to evaluate a model in which there is very little likelihood information
about the parameters.

LS model discrimination. On-going work: DIC calculated with single
MCMC run; in one-sample setting with n observations and no closed form
for predictive distribution, brute-force LS requires n parallel MCMC runs;
how exactly is DIC approximating LS with far less computation?

Tentative conclusions: With large n (when LS can be expensive), DIC
may provide acceptable approximation to model choice based on LS, but for
small and moderate n direct calculation of LS may be safer.

With LS utility function and two models M1 and M2 to choose between,
MEU says compute

Ê [U(Mi|y)] =
1

n

n∑

j=1

log p(yj|Mi, y−j) (4.35)

and choose M1 if Ê [U(M1|y)] ≥ Ê [U(M2|y)], otherwise M2.

How accurately does this behavioral rule discriminate between M1 and
M2?

Example: Recall that in earlier simulation study, for i = 1, . . . , n, and
with diffuse priors, we considered

M1:

{
λ ∼ p(λ)

(yi|λ)
IID∼ Poisson(λ)

}
versus

M2:





(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)





As extension of previous simulation study, we generated data from M2

and computed LS for models M1 and M2 in full-factorial grid {n = 32, 42, 56,
100}, {β0 = 0.0, 1.0}, σ2 = 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, with 100 simulation
replications in each cell, and monitored percentages of correct model choice
(here M2 is always correct).

Examples of results:
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n = 32

% Correct Decision Mean Absolute Difference in LS
β0 β0

σ2 0 1 σ2 0 1
0.10 31 47 0.10 0.001 0.002
0.25 49 85 0.25 0.002 0.013
0.50 76 95 0.50 0.017 0.221
1.00 97 100 1.00 0.237 4.07
1.50 98 100 1.50 1.44 17.4
2.00 100 100 2.00 12.8 63.9

Even with n only 32, the right model choice is made more than 90% of
the time when σ2 > 0.5 for β0 = 1 and when σ2 > 1.0 for β0 = 0.

Graphical summary of these simulations (Bayesian decision-theoretic
power curves):

NB Food for thought: In previous table mean absolute LS difference
between M1 and M2 can be tiny even when this approach to model choice is
performing well.

E.g., with (n, σ2, β0) = (32, 0.25, 1), M2 is correctly identified 85% of the
time, but its typical LS edge over M1 is only about 0.013—is this difference
large in either practical or statistical terms?

4.2.4 Connections with Bayes factors

Much has been written about use of Bayes factors for model choice (e.g.,
Jeffreys 1939, Kass and Raftery 1995; excellent recent book by O’Hagan and
Forster 2004 devotes almost 40 pages to this topic).

After all, why not use probability scale to choose between M1 and M2?
[
p(M1|y)

p(M2|y)

]
=

[
p(M1)

p(M2)

]
·
[
p(y|M1)

p(y|M2)

]
(4.36)

(
posterior

odds

)
=

(
prior
odds

)
·
(

Bayes
factor

)

In fact, Kass and Raftery (1995) note that

log

[
p(y|M1)

p(y|M2)

]
= log p(y|M1)− log p(y|M2) (4.37)

= LS∗(M1|y)− LS∗(M2|y),
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Figure 4.22: Bayesian decision-theoretic power curves for LS.
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where

LS∗(Mi|y) ≡ log p(y|Mi)

= log [p(y1|Mi) p(y2|y1, Mi) · · · p(yn|y1, . . . , yn−1, Mi)]

= log p(y1|M) +

n∑

j=2

log p(yj|y1, . . . , yj−1, Mi).

Thus log Bayes factor equals difference between models in something
that looks like previous log score, i.e., isn’t previous procedure equivalent to
choosing Mi whenever the Bayes factor in favor of Mi exceeds 1?

Out-of-sample LS 6= BF. No; crucially, LS∗ is defined via sequential
prediction of y2 from y1, y3 from (y1, y2), etc., whereas LS is based on aver-
aging over all possible out-of-sample predictions:

nLS(Mi|y) =
n∑

j=1

log p(yj|Mi, y−j).

This distinction really matters: as is well known, with diffuse priors Bayes fac-
tors are hideously sensitive to particular form in which diffuseness is specified,
but this defect is entirely absent from LS (and from other properly-defined
utility-based model choice criteria).

(Various attempts have been made to fix this defect of Bayes factors,
e.g., {partial, intrinsic, fractional} Bayes factors, well calibrated priors, con-
ventional priors, intrinsic priors, expected posterior priors, ... (e.g., Pericchi
2004); all of these methods appear to require an appeal to ad-hockery which
is not required by LS.)

Example: Integer-valued data y = (y1, . . . , yn);
M1 = Geometric(θ1) likelihood with Beta(α1, β1) prior on θ1;
M2 = Poisson(θ2) likelihood with Gamma(α2, β2) prior on θ2.
Bayes factor in favor of M1 over M2 is

Γ(α1 + β1)Γ(n + α1)Γ(nȳ + β1)Γ(α2)(n + β2)
nȳ+α2 (

∏n

i=1 yi!)

Γ(α1)Γ(β1)Γ(n + nȳ + α1 + β1)Γ(nȳ + α2)β
α2

2 .

Diffuse priors: take (α1, β1) = (1, 1) and (α2, β2) = (ε, ε) for some ε > 0.
Bayes factor reduces to

Γ(n + 1)Γ(nȳ + 1)Γ(ε)(n + ε)nȳ+ε (
∏n

i=1 yi!)

Γ(n + nȳ + 2)Γ(nȳ + ε)εε
.
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This goes to +∞ as ε ↓ 0, i.e., you can make the evidence in favor of the
Geometric model over the Poisson as large as you want as a function of a
quantity near 0 that scientifically you have no basis to specify.

By contrast

LS(M1|y) = log
[(α1 + n− 1)Γ(β1 + s)

Γ(α1 + n + β1 + s)

]

+
1

n

n∑

i=1

log
[Γ(α1 + n− 1 + β1 + si)

Γ(β1 + si)

]

and

LS(M2|y) =
1

n

n∑

i=1

log

[
Γ(α2 + s)

Γ(yi + 1)Γ(α2 + si)

·
( β2 + n

β2 + n + 1

)α2+si
( 1

β2 + n + 1

)yi
]

and both of these quantities are entirely stable as a function of (α1, β1) and
(α2, β2) near zero.

4.2.5 When is a model good enough?

LS method described here (not LS∗ method) can stably and reliably help in
choosing between M1 and M2; but suppose M2 has a (substantially) higher
LS than M1.

This doesn’t say that M2 is adequate—it just says that M2 is better than
M1.

As mentioned above, a full judgment of adequacy requires real-world in-
put (to what purpose will the model be put?), but you can answer a some-
what related question—could the data have arisen from a given model?—by
simulating from that model many times, developing a distribution of (e.g.)
LS values, and seeing how unusual the actual data set’s log score is in this
distribution (Draper and Krnjajić 2004).

This is related to the posterior predictive model-checking method of Gel-
man, Meng and Stern (1996).

However, this sort of thing cannot be done naively, or result will be poor
calibration—indeed, Robins et al. (2000) demonstrated that the Gelman et
al. procedure may be (sharply) conservative.
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Using modification of idea in Robins et al., we have developed method
for accurately calibrating the log score scale.

Inputs to our procedure: (1) A data set (e.g., with regression structure);
(2) A model (can be parametric, non-parametric, or semi-parametric).

Simple example: data set y = (1, 2, 2, 3, 3, 3, 4, 6, 7, 11), n = 10.
Given model (∗)

(λ) ∼ Gamma(0.001, 0.001) (4.38)

(yi|λ)
IID∼ Poisson(λ)

Calibrating the LS scale.
Step 1:
Calculate log score for this data set; say get LS = −1.1; call this actual

log score (ALS).
Obtain posterior for λ given y based on this data set; call this actual

posterior.
Step 2:

for ( i in 1:m1 ) {

make a lambda draw from the actual posterior;

call it lambda[ i ]

generate a data set of size n from the second

line of model (*) above, using

lambda = lambda[ i ]

compute the log score for this generated

data set; call it LS[ i ]

}

Output of this loop is a vector of log scores; call this V.LS.
Locate ALS in distribution of LS values by computing percentage of LS

values in V.LS that are ≤ ALS; call this percentage unadjusted actual tail
area (say this is 0.22).

So far this is just Gelman et al. with LS as the discrepancy function.
We know from our own simulations and the literature (Robins et al. 2000)

that this tail area (a p-value for a composite null hypothesis, e.g., Poisson(λ)
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with λ unspecified) is conservative, i.e., with the 0.22 example above an
adjusted version of it that is well calibrated would be smaller.

We’ve modified and implemented one of the ways suggested by Robins et
al., and we’ve shown that it does indeed work even in rather small-sample
situations, although our approach to implementing the basic idea can be
computationally intensive.

Step 3:

for ( j in 1:m2 ){

make a lambda draw from the actual posterior;

call it lambda*.

generate a data set of size n from the second line

of model (*) above, using lambda = lambda*;

call this the simulated data set

repeat steps 1, 2 above on this

simulated data set

}

The result will be a vector of unadjusted tail areas; call this V.P.
Compute the percentage of tail areas in V.P that are ≤ the unadjusted

actual tail area; this is the adjusted actual tail area.
The claim is that the 3-step procedure above is well-calibrated, i.e., if the

sampling part of model (∗) really did generate the observed data, the distri-
bution of adjusted actual tail areas obtained in this way would be uniform,
apart from simulation noise.

Step 3 in this procedure solves the calibration problem by applying the
old idea that if X ∼ FX then FX(X) ∼ U(0, 1).

This claim can be verified by building a big loop around steps 1–3 as
follows:

Choose a lambda value of interest; call it lambda.sim

for ( k in 1:m3 ) {

generate a data set of size n from the
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second line of model (*) above, using

lambda = lambda.sim; call this the

validation data set

repeat steps 1-3 on the validation data set

}

The result will be a vector of adjusted P-values; call this V.Pa.
We have verified (via simulation) in several simple (and some less simple)

situations that the values in V.Pa are close to U(0, 1) in distribution.
Two examples—Poisson(λ) and Gaussian(µ, σ2):
Conclusions
• {Exchangeability judgments plus nonparametric (BNP) modeling} =

Bayesian model specification in many problems, but we need to develop a lot
more experience in practical problems in putting distributions on functions.
• BNP/BSP is one way to avoid the dilemma posed by Cromwell’s Rule

in Bayesian model specification; three-way cross-validation (3CV) is another.
• Model choice is really a decision problem and should be approached via

MEU, with a utility structure that’s sensitive to the real-world context.
• The leave-one-out predictive log score (LS) has a sound utility basis,

and can yield stable and accurate model specification decisions.
• DIC is a good and fast approximation to LS in some models, but some-

times it misbehaves.
• Bayes factors are a bad choice for model specification when context

suggests diffuse priors.
• The basic Gelman et al. (1996) method of posterior predictive model-

checking can be badly calibrated: when it gives you a tail area of, e.g., 0.4,
the calibrated equivalent may well be 0.04.
• We have modified an approach suggested by Robins et al. (2000) to

help answer the question “Could the data have arisen from model M?” in a
well-calibrated way.

4.3 Problems

1. (Bayesian analysis of proportions (based on problems 3.8 and 5.11 from
Gelman et al.) In the spring of 1993 a survey was taken of bicycle
and other vehicular traffic in the neighborhood of the campus of the
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Figure 4.23: Null Poisson model: uncalibrated p–values.
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Figure 4.24: Null Poisson model: calibrated p–values.
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Figure 4.25: Null Gaussian model: uncalibrated p–values.
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Figure 4.26: Null Gaussian model: calibrated p–values.
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Table 4.2: Summaries of the proportions of vehicular traffic taken up by
bicycles.

Means, Standard Deviations and Frequencies of PBT

| Street Type |

Bike | |

Route? |Residential Fairly Busy Busy | Total

-----------+-----------------------------------+----------

Yes | .19614125 | .13676775

| .10545459 | .10636461

| 10 10 10 | 30

-----------+-----------------------------------+----------

No | .01152844 |

| .00727029 |

| 10 10 10 | 30

-----------+-----------------------------------+----------

Total | .08780747 | .09233102

| .10339536 | .09489362

| 20 20 20 | 60

busy, or busy); as entries in this table put the mean, standard
deviation (SD), and sample size of the proportions in each cell of
the 2 × 3 grid, and complete the table by computing {row and
column means, SDs, and sample sizes and the overall mean, SD,
and sample size} and adding these values as row, column, and
overall margins to the table. I’ve given you a headstart by filling
in some of what I’m asking for below in Table 2.

Study your completed version of Table 2. What kind of street
has the highest proportion of bicycle traffic (PBT) on average?
the lowest? Summarize the effect of the presence or absence of a
bike route on PBT, and the effect of street type. An interaction
between the bike route and street type factors is said to be present
if the effect of bike route is different for different street types, and
vice versa; does this seem to be true here? Do the differences
you observe in this table between mean PBT values across the
different kinds of streets seem large to you in practical terms?
Explain briefly.
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(b) Create a similar summary for the total number of vehicles. Do
the “fairly busy” streets indeed have more traffic than the “resi-
dential” blocks, and are the “busy” streets on average even busier
than the “fairly busy” ones? Is there a big difference in total
traffic on average between streets with and without a bike route?
Explain briefly.

(c) For the remainder of the problem let’s focus on models for PBT,
which will help to settle whether the differences in Table 2 be-
tween mean PBT values are large in statistical terms. Working
with the data in Table 2 in all of its glory involves the analysis
of variance, which we’ve not had time to cover (you’ll hear about
it in AMS 207 if you take it), so we’ll make do with a piece of
machinery we looked at in the IHGA case study: the comparison
of two independent samples. Consider first a comparison of the
(residential, bike route) and (residential, no bike route) samples,
and let’s agree to call the estimated PBT values in these samples
(y1, . . . , yn) and (z1, . . . , zn), respectively (here n = 10, and [for
example] y1 = 16

74

.
= 0.2162). As is often the case, it’s construc-

tive in getting warmed up to start with Gaussian modeling, even
though it can obviously be criticized here (and below I ask you to
list some criticisms). Use WinBUGS to fit the following model to
the PBT data:

(yi|µy, σ
2
y)

IID∼ N
(
µy, σ

2
y

)

(zj|µz, σ
2
z)

IID∼ N
(
µz, σ

2
z

)
(4.39)

(µy, σ
2
y, µz, σ

2
z) ∼ diffuse.

Summarize your inferences about the additive effect of a bike route
on PBT for residential streets in Berkeley in the early 1990s, in
the form of an approximate or exact posterior mean, SD, and
95% central interval for (µy − µz). According to this model, is
the mean difference addressed by these calculations statistically
meaningful (different from 0)? Having drawn this conclusion, give
several reasons why the Gaussian model (1) above is not entirely
appropriate for these data. Explain briefly. Calculate the DIC
value for this model based on a monitoring run of appropriate
length, and save it for later use. Does DIC seem to have estimated
the number of parameters in the model correctly? Explain briefly.
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(d) Looking at (µy − µz) focuses on the additive effect of the bike
route, but a model that incorporates a multiplicative effect might
be more reasonable. Because the sample sizes in the y and z
estimated PBT samples are the same, a quantile-quantile plot
(qqplot) can be made of the two data sets just by plotting the
sorted z values against the sorted y values (e.g., with the sorted y
values on the horizontal scale). Use R or some other good graphing
environment to make a qqplot for the data in (c), and superimpose
three lines on it: (i) the line z = y, which represents no effect of
the bike route; (ii) the line with slope 1 and intercept (z̄ − ȳ)
(where z̄ as usual is the mean of the z values), which represents
the best additive fit; and (iii) the line with intercept 0 and slope
z̄
ȳ
, which represents (a decent estimate of) the best multiplicative

fit. Is there evidence of an effect of any kind in this plot? Explain
why the qqplot supports a multiplicative fit, at least for the data
in (c), over an additive fit.

(e) Give several reasons justifying the view that a more appropriate
model for these data would be to take the yi and zj as conditionally
IID draws from Beta distributions rather than Gaussians. The
improved model I have in mind is

(yi|αy, βy)
IID∼ Beta(αy, βy)

(zj|αz, βz)
IID∼ Beta(αz, βz) (4.40)

(αy, βy, αz, βz) ∼ diffuse.

(Notice that this is a different use of the Beta distribution than
(for example) in the AMI mortality case study in class: here it’s
being used as the basis of the likelihood function rather than as a
prior.)

Use WinBUGS to fit model (2) to the data in (c). For diffuse priors
on the Beta hyperparameters you can use uniform U(0, c) distri-
butions, with c chosen just barely large enough so that no trun-
cation of the likelihood occurs (you will need to use a different c
for each hyperparameter). You can get some idea of how big the
c values should be by using a crude but often roughly effective
approach called the method of moments (MoM). Recalling that
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the Beta(α, β) distribution has

mean
α

α + β
and variance

αβ

(α + β)2(α + β + 1)
, (4.41)

the idea behind the method of moments is to equate the sample
mean and variance to the theoretical values in (3) and solve for
α and β (either with Maple or by hand) to get rough estimates
of these quantities. Use this approach on the y data from (c),
for which the sample mean and variance are 0.1961 and 0.01112,
respectively, to show that the MoM estimates based on y are(
α̂y, β̂y

)
.
= (2.58, 10.6), and repeat this calculation on the z data

from (c). The resulting MoM estimates will give you an idea of
the order of magnitude of the c values for α and β for each of the
y and z samples in your fitting of model (2) via BUGS with U(0, c)
priors, but even with this hint some experimentation is needed to
prevent truncation of the likelihood. Show, for instance, that with
(cαy , cβy , cαz , cβz) = (10, 20, 10, 40) the posteriors for βy and βz are
truncated at their upper values, so that larger c values are needed,
and show further by a bit of trial and error that (15, 60, 15, 90) are
approximately the smallest c values that do not lead to truncation.

To compare models (1) and (2), and also to obtain information
about both additive and multiplicative effects, monitor both of
the following quantities in your MCMC work: the difference of

means in the Beta model,
(

αy

αy+βy
− αz

αz+βz

)
, and the ratio of these

means, αy(αz+βz)
αz(αy+βy)

. Make a full report using CODA or the diagnostics

built into WinBUGS on what you think is an appropriate MCMC
strategy to get accurate posterior summaries for all of the α and
β parameters and the additive and multiplicative effects. How do
the Bayesian posterior mean estimates of (αy, βy, αz, βz) compare
with their MoM counterparts? How do the additive effect esti-
mate and its uncertainty band in the Beta model compare with
the corresponding values from the Gaussian model? Use WinBUGS

to compute the DIC value for model (2) based on a monitoring
run of appropriate length, and compare this with the DIC value
you got for the Gaussian model in (c). Did DIC get the number
of parameters right this time? According to the DIC approach to
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Bayesian model selection, which model is better? Explain briefly.
Conclude this part of the problem by summarizing the multiplica-
tive effect of a bike route on PBT for residential streets in Berkeley
in the early 1990s and its associated uncertainty band.

(f) Choose any two pairwise comparisons in Table 2 that interest you
(other than the one in (e)) and perform an analysis like (e) on each
of them, with an eye to learning more about the effect of a bike
route and/or the street type on PBT. An example of what I have
in mind would be to collect together all 30 PBT values for blocks
with a bike route and call that your y vector, and similarly let z be
all 30 PBT values for blocks without a bike route; this comparison
would summarize the overall effect of a bike route on PBT regard-
less of street type. Another interesting pairwise comparison would
involve using as y the 20 PBT values from residential blocks and
using as z the 20 PBT values from (say) busy blocks; this would
summarize the effect of (residential versus busy) on PBT regard-
less of presence or absence of a bike route. (You can see that
there are three possible pairwise comparisons that all bear on the
overall effect of street type on PBT; the cumbersome nature of an
approach based on lots of pairwise comparisons is what prompted
the invention of the analysis of variance back in the 1920s.) If your
choice of comparisons involves the (fairly busy, no) cell in Table
1, something unpleasant will happen when you try to fit model
(2) to the data. What is the cause of this unpleasant behavior,
and what is a simple approximate remedy? Explain briefly, and
conduct your analysis using that remedy.



Chapter 5

Hierarchical models for
combining information

5.1 The role of scientific context in formulat-

ing hierarchical models

Case Study: Meta-analysis of effects of aspirin on heart attacks. Table 5.1
(Draper et al., 1993a) gives the number of patients and mortality rate from
all causes, for six randomized controlled experiments comparing the use of
aspirin and placebo by patients following a heart attack.

Table 5.1. Aspirin meta-analysis data.
Aspirin Placebo

# of Mortality # of Mortality

Study (i) Patients Rate (%) Patients Rate (%)
UK-1 615 7.97 624 10.74
CDPA 758 5.80 771 8.30
GAMS 317 8.52 309 10.36
UK-2 832 12.26 850 14.82
PARIS 810 10.49 406 12.81
AMIS 2267 10.85 2257 9.70
Total 5599 9.88 5217 10.73

261
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Comparison
yi = Diff

√
Vi = SE

Study (i) (%) of Diff (%) Z‡
i p§i

UK-1 2.77 1.65 1.68 .047
CDPA 2.50 1.31 1.91 .028
GAMS 1.84 2.34 0.79 .216
UK-2 2.56 1.67 1.54 .062
PARIS 2.31 1.98 1.17 .129
AMIS –1.15 0.90 –1.27 .898
Total 0.86 0.59 1.47 .072

‡Zi denotes the ratio of the difference in mortality rates over its standard
error, assuming a binomial distribution. §pi is the one-sided
p value associated with Zi, using the normal approximation.

A Gaussian meta-analysis model. The first five trials are reason-
ably consistent in showing a (weighted average) mortality decline for aspirin
patients of 2.3 percentage points, a 20% drop from the (weighted average)
placebo mortality of 11.5% (this difference is highly clinically significant).

However, the sixth and largest trial, AMIS, went the other way: an in-
crease of 1.2 percentage points in aspirin mortality (a 12% rise from the
placebo baseline of 9.7%).

Some relevant questions (Draper, 1995):
Q1 Why did AMIS get such different results?
Q2 What should be done next to reduce the uncertainty about Q1?
Q3 If you were a doctor treating a patient like those eligible for the trials

in Table 5.1, what therapy should you employ while answers to Q1 and Q2

are sought?
One possible paraphrase of Q3: Q4 How should the information from

these six experiments be combined to produce a more informative summary
than those obtained from each experiment by itself?

The discipline of meta-analysis is devoted to answering questions like Q4.
One leading school of frequentist meta-analysis (e.g., Hedges and Olkin,

1985) looks for methods for combining the Z and p values in Table 5.1, an
approach that often leads only to an overall p value.

A Gaussian HM. A more satisfying form of meta-analysis (which has
both frequentist and Bayesian versions) builds a hierarchical model (HM)
that indicates how to combine information from the mortality differences in
the table.
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A Gaussian meta-analysis model for the aspirin data, for example (Draper
et al., 1993a), might look like

(
θ, σ2

)
∼ p

(
θ, σ2

)
(prior)

(θi|θ, σ2)
IID∼ N

(
θ, σ2

)
(underlying effects) (5.1)

(yi|θi)
indep∼ N(θi, Vi) (data) .

The bottom level of (1), the data level of the HM, says that—because of
relevant differences in patient cohorts and treatment protocols—each study
has its own underlying treatment effect θi, and the observed mortality dif-
ferences yi are like random draws from a normal distribution with mean θi

and variance Vi (the normality is reasonable because of the Central Limit
Theorem, given the large numbers
of patients).

In meta-analyses of data like those in Table 5.1 the Vi are typically taken
to be known (again because the patient sample sizes are so big), Vi = SE2

i ,
where SEi is the standard error of the mortality difference for study i in
Table 5.1.

The middle level of the HM is where you would bring in the study-level
covariates, if you have any, to try to explain why the studies differ in their
underlying effects.

Here there are no study-level covariates, so the middle level of (1) is
equivalent to a Gaussian regression with no predictor variables.

Why the “error” distribution should be Gaussian at this level of the HM
is not clear—it’s a conventional option, not a choice that’s automatically
scientifically reasonable (in fact I’ll challenge it later).

σ2 in this model represents study-level heterogeneity.
The top level of (1) is where the prior distribution on the regression

parameters from the middle level is specified.
Here, with only an intercept term in the regression model, a popular

conventional choice is the normal/scaled-inverse-χ2 prior we looked at earlier
in our first Gaussian case study.

Fixed effects and random effects. If σ2 were known somehow to be 0,
all of the θi would have to be equal deterministically to a common value θ,

yielding a simpler model: (yi|θ) indep∼ N(θ, Vi) , θ ∼ p(θ).
Meta-analysts call this a fixed-effects model, and refer to model (1) as a

random-effects model.
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When σ2 is not assumed to be 0, with this terminology the θi are called
random effects (this parallels the use of this term in the random-effects Pois-
son regression case study).

Approximate fitting of Gaussian hierarchical models: maximum
likelihood and empirical Bayes. Some algebra based on model (1) yields
that the conditional distributions of the study-level effects θi given the data
and the parameters (θ, σ2), have a simple and revealing form:

(
θi|yi, θ, σ

2
)

indep∼ N [θ∗i , Vi(1−Bi)] , (5.2)

with θ∗i = (1− Bi) yi + Bi θ and Bi =
Vi

Vi + σ2
. (5.3)

In other words, the conditional mean of the effect for study i given yi, θ,
and σ2 is a weighted average of the sample mean for that study, yi, and the
overall mean θ.

The weights are given by the so-called shrinkage factors Bi (e.g., Draper
et al., 1993a), which in turn depend on how the variability Vi within study
i compares to the between-study variability σ2: the more accurately yi es-
timates θi, the more weight the “local” estimate yi gets in the weighted
average.

The term shrinkage refers to the fact that, with this approach, unusually
high or low individual studies are drawn back or “shrunken” toward the
overall mean θ when making the calculation (1− Bi) yi + Bi θ.

Note that θ∗i uses data from all the studies to estimate the effect for study
i—this is referred to as borrowing strength in the estimation process.

Closed-form expressions for p(θ|y) and p(θi|y) with y = (y1, . . . , yk), k =
6 are not available even with a normal/scaled-inverse-χ2 prior for (θ, σ2);
MCMC is needed (see below).

5.1.1 Maximum likelihood and empirical Bayes

In the meantime maximum likelihood calculations provide some idea of what
to expect: the likelihood function based on model (1) is

l
(
θ, σ2|y

)
= c

k∏

i=1

1√
Vi + σ2

exp

[
−1

2

k∑

i=1

(yi − θ)2

Vi + σ2

]
. (5.4)
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The maximum likelihood estimates (MLEs)
(
θ̂, σ̂2

)
then turn out to be

the iterative solutions to the following equations:

θ̂ =

∑k
i=1 Ŵi yi∑k

i=1 Ŵi

and σ̂2 =

∑k
i=1 Ŵ 2

i

[
(yi − θ̂)2 − Vi

]

∑k

i=1 Ŵ 2
i

, (5.5)

where Ŵi =
1

Vi + σ̂2
. (5.6)

Start with σ̂2 = 0 and iterate (5–6) to convergence (if σ̂2 converges to a
negative value, σ̂2 = 0 is the MLE); the MLEs of the θi are then given by

θ̂i =
(
1− B̂i

)
yi + B̂i θ where B̂i =

Vi

Vi + σ̂2
. (5.7)

These are called empirical Bayes (EB) estimates of the study-level effects,
because it turns out that this analysis approximates a fully Bayesian solution
by (in effect) using the data to estimate the prior specifications for θ and σ2.

Large-sample (mainly meaning large k) approximations to the (frequen-
tist) distributions of the MLEs are given by

θ̂ ∼ N


θ,

[
k∑

i=1

1

Vi + σ̂2

]−1

 and θ̂i ∼ N

[
θi, Vi

(
1− B̂i

)]
. (5.8)

NB The variances in (8) don’t account fully for the uncertainty in σ2 and
therefore underestimate the actual sampling variances for small k (adjust-
ments are available; see, e.g., Morris (1983, 1988)).

MLEB estimation can be implemented simply in about 15 lines of R code
(Table 5.2).

Table 5.2. R program to perform MLEB calculations.

mleb <- function( y, V, m ) {

sigma2 <- 0.0

for ( i in 1:m ) {

W <- 1.0 / ( V + sigma2 )

theta <- sum( W * y ) / sum( W )

sigma2 <- sum( W^2 * ( ( y - theta )^2 - V ) ) / sum( W^2 )

B <- V / ( V + sigma2 )

effects <- ( 1 - B ) * y + B * theta

se.theta <- 1.0 / sqrt( sum( 1.0 / ( V + sigma2 ) ) )
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se.effects <- sqrt( V * ( 1.0 - B ) )

print( c( i, theta, se.theta, sigma2 ) )

print( cbind( W, ( W / sum( W ) ), B, y, effects,

se.effects ) )

}

}

With the aspirin data it takes 18 iterations (less than 0.1 second on a
400MHz UltraSPARC Unix machine) to get convergence to 4-digit accuracy,
leading to the summaries in Table 5.3 and the following estimates
(standard errors in parentheses):

θ̂ = 1.45 (0.809), σ̂2 = 1.53.
Table 5.3. Maximum likelihood empirical Bayes

meta-analysis of the aspirin data.

study(i) Ŵi normalized Ŵi B̂i yi θ̂i ŜE
(
θ̂i

)

1 0.235 0.154 0.640 2.77 1.92 0.990
2 0.308 0.202 0.529 2.50 1.94 0.899
3 0.143 0.0934 0.782 1.84 1.53 1.09
4 0.232 0.151 0.646 2.56 1.84 0.994
5 0.183 0.120 0.719 2.31 1.69 1.05
6 0.427 0.280 0.346 −1.15 −0.252 0.728

Aspirin meta-analysis: conclusions. Note that (1) AMIS gets much
less weight (normalized Ŵi) than would have been expected given its small
Vi; (2) the shrinkage factors (B̂i) are considerable, with AMIS shrunk almost
all the way into positive territory (see Figure 5.1); (3) there is considerable
study-level heterogeneity (σ̂

.
= 1.24 percentage points of mortality); and (4)

the standard errors of the effects are by and large smaller than the
√

Vi (from
the borrowing of strength) but are still considerable.

The 95% interval estimate of θ, the overall underlying effect of aspirin on
mortality, from this approach comes out

θ̂ ± 1.96 · ŜE
(
θ̂
)

.
= (−0.140, 3.03),

which if interpreted Bayesianly gives
P (aspirin reduces mortality|data)

.
= 1− Φ

(
0−1.45
0.809

)
= 0.96,

where Φ is the standard normal CDF.
Thus although the interval includes 0, so that in a frequentist sense the

effect is not statistically significant, in fact from a Bayesian point of view the
evidence is running strongly in favor of aspirin’s usefulness.
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Estimated Effects
-1 0 1 2 3

raw estimates (y)

shrunken estimates (theta.hat)

Figure 5.1: Shrinkage plot for the aspirin MLEB meta-analysis.

5.1.2 Incorporating study-level covariates

In many cases (as with this example) empirical Bayes methods have the
advantage of yielding closed-form solutions, but I view them at best as ap-
proximations to fully Bayesian analyses—which can in any case be carried
out with MCMC—so I won’t have any more to say about EB methods here
(see Carlin and Louis, 1996, for more on this topic).

Case Study: Meta-analysis of the effect of teacher expectancy on student
IQ (Bryk and Raudenbush, 1992). Do teachers’ expectations influence stu-
dents’ intellectual development,
as measured by IQ scores?

Table 5.4. Results from 19 experiments estimating the effects of teacher
expectancy on pupil IQ.
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Weeks of Estimated Standard
Prior Effect Error of

Study (i) Contact (xi) Size (yi) yi =
√

Vi

1. Rosenthal et al. (1974) 2 0.03 0.125
2. Conn et al. (1968) 3 0.12 0.147
3. Jose & Cody (1971) 3 -0.14 0.167
4. Pellegrini & Hicks (1972) 0 1.18 0.373
5. Pellegrini & Hicks (1972) 0 0.26 0.369
6. Evans & Rosenthal (1969) 3 -0.06 0.103
7. Fielder et al. (1971) 3 -0.02 0.103
8. Claiborn (1969) 3 -0.32 0.220
9. Kester & Letchworth (1972) 0 0.27 0.164

10. Maxwell (1970) 1 0.80 0.251
11. Carter (1970) 0 0.54 0.302
12. Flowers (1966) 0 0.18 0.223
13. Keshock (1970) 1 -0.02 0.289
14. Henrickson (1970) 2 0.23 0.290
15. Fine (1972) 3 -0.18 0.159
16. Greiger (1970) 3 -0.06 0.167
17. Rosenthal & Jacobson (1968) 1 0.30 0.139
18. Fleming & Anttonen (1971) 2 0.07 0.094
19. Ginsburg (1970) 3 -0.07 0.174

Teacher expectancy. Raudenbush (1984) found k = 19 experiments,
published between 1966 and 1974, estimating the effect of teacher expectancy
on student IQ (Table 5.4).

In each case the experimental group was made up of children for whom
teachers were (deceptively) encouraged to have high expectations (e.g., ex-
perimenters gave treatment teachers lists of students, actually chosen at ran-
dom, who allegedly displayed dramatic potential for intellectual growth),
and the controls were students about whom no particular expectations were
encouraged.

The estimated effect sizes yi = T̄i−C̄i

SDi:pooled
(column 3 in Table 5.4) ranged

from –.32 to +1.18; why?

One good reason: the studies differed in how well the experimental teach-
ers knew their students at the time they were given the deceptive information:
this time period xi (column 2 in Table 5.4) ranged from 0 to 3 weeks.

Figure 5.2 plots yi against xi—you can see that the studies with bigger
xi had smaller IQ effects on average.

Conditional exchangeability. Evidently model (1) will not do here—
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Figure 5.2: Scatterplot of estimated effect size against weeks of prior contact
in the IQ meta-analysis. Radii of circles are proportional to wi = V −1

i (see
column 4 in Table 5.4); fitted line is from weighted regression of yi on xi with
weights wi.

it says that your predictive uncertainty about all the studies is exchangeable
(similar, i.e., according to (1) the underlying study-level effects θi are like IID
draws from a normal distribution), whereas Figure 5.2 clearly shows that the
xi are useful in predicting the yi.

This is another way to say that your uncertainty about the studies is not
unconditionally exchangeable but conditionally exchangeable given x
(Draper et al., 1993b).

In fact Figure 5.2 suggests that the yi (and therefore the θi) are related
linearly to the xi.

Bryk and Raudenbush, working in the frequentist paradigm, fit the fol-
lowing HM to these data:

(θi|α, β, σ2
θ)

indep∼ N
(
α + β xi, σ

2
θ

)
(underlying effects)

(yi|θi)
indep∼ N(θi, Vi) (data). (5.9)

According to this model the estimated effect sizes yi are like draws from
a Gaussian with mean θi and variance Vi, the squared standard errors from
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column 4 of Table 5.4—here as in model (1) the Vi are taken to be known—
and the θi themselves are like draws from a Gaussian
with mean α + βxi and variance σ2

θ .

The top level of this HM in effect assumes, e.g., that the 5 studies with
x = 0 are sampled representatively from {all possible studies with x = 0},
and similarly for the other values of x.

This (and the Gaussian choice on the top level) are conventional assump-
tions, not automatically scientifically reasonable—for example, if you know
of some way in which (say) two of the studies with x = 3 differ from each
other that’s relevant to the outcome of interest, then you should include this
in the model as a study-level covariate along with x.

An MLEB drawback. Bryk and Raudenbush used MLEB methods,
based on the EM algorithm, to fit this model.

As in Section 5.2, this estimation method combines the two levels of
model (9) to construct a single likelihood for the yi, and then maximizes this
likelihood as usual in the ML approach.

They obtained (α̂, β̂) = (.407 ± .087,−.157± .036) and σ̂θ
2 = 0, naively

indicating that all of the study-level variability has been “explained” by the
covariate x.

However, from a Bayesian point of view, this model is missing a third
layer:

(α, β, σ2
θ) ∼ p(α, β, σ2

θ)

(θi|α, β, σ2
θ)

IID∼ N
(
α + β(xi − x̄), σ2

θ

)
(5.10)

(yi|θi)
indep∼ N(θi, Vi) .

(it will help convergence of the sampling-based MCMC methods to make α
and β uncorrelated by centering the xi at 0 rather than at x̄).

As will subsequently become clear, the trouble with MLEB is that in
Bayesian language it assumes in effect that the posterior for σ2

θ is point-mass
on the MLE. This is bad
(e.g., Morris, 1983) for two reasons:

• If the posterior for σ2
θ is highly skewed, the mode will be a poor sum-

mary; and

• Whatever point-summary you use, pretending the posterior SD for σ2

is zero fails to propagate uncertainty about σ2
θ through to uncertainty about

α, β, and the θi.
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The best way to carry out a fully Bayesian analysis of model (10) is with
MCMC methods.

For p(α, β, σ2
θ) in model (10) I’ve chosen the usual WinBUGS diffuse prior

p(α)p(β)p(σ2
θ): since α and β live on the whole real line I’ve taken marginal

Gaussian priors for them with mean 0 and precision 10−6, and since τθ = 1
σ2

is positive I use a Γ(0.001, 0.001) prior for it.
Model (10) treats the variances Vi of the yi as known (and equal to the

squares of column 4 in Table 5.4); I’ve converted these into precisions in the
data file (e.g., τ1 = 1

0.1252 = 64.0).
A burn-in of 1,000 (certainly longer than necessary) from default initial

values (α, β, τθ) = (0.0, 0.0, 1.0) and a monitoring run of 10,000 yield the
following preliminary MCMC results.

Because this is a random-effects model we don’t expect anything like IID
mixing: the output for α behaves like an AR1 time series with ρ̂1

.
= 0.86.

The posterior mean for α, 0.135 (with an MCSE of 0.002), shows that α in
model (10) and α in model (9) are not comparable because of the recentering
of the predictor x in model (10): the MLE of α in (9) was 0.41± 0.09.

But β means the same thing in both models (9) and (10): its posterior
mean in (10) is −0.161± 0.002, which is not far from the MLE −0.157.

Note, however, that the posterior SD for β, 0.0396, is 10% larger than
the standard error of the maximum likelihood estimate of β (0.036).

This is a reflection of the underpropagation of uncertainty about σθ in
maximum likelihood mentioned on page 15.

In these preliminary results σθ has posterior mean 0.064± 0.002 and SD
0.036, providing clear evidence that the MLE σ̂θ = 0 is a
poor summary.

Note, however, that the likelihood for σθ may be appreciable in the vicin-
ity of 0 in this case, meaning that some sensitivity analysis with diffuse priors
other than Γ(0.001, 0.001)—such as U(0, c) for c around 0.5—would be in or-
der.

When you specify node theta in the Sample Monitor Tool and then
look at the results, you see that WinBUGS presents parallel findings with a
single click for all elements of the vector θ.

Some of the θi are evidently
mixing better than others.

Shrinkage estimation. In a manner parallel to the situation with the
simpler model (1), the posterior means of the underlying study effects θi

should be at least approximately related to the raw effect sizes yi and the µi
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Figure 5.3: WinBUGS implementation of model (5.10) applied to the teacher
expectancy data.



Bayesian Modeling, Inference and Prediction 273

Figure 5.4: Posterior inference for α in model (5.10).
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Figure 5.5: Posterior inference for β in model (5.10).
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Figure 5.6: Posterior inference for σθ in model (5.10).
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Figure 5.7: Looking at the study-level underlying effects θi.
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Figure 5.8: The marginal density traces of the θi look rather like t distri-
butions with fairly low degrees of freedom (fairly heavy tails), which makes
sense since the number of studies is small.
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Figure 5.9: Many of the θi have posterior probability concentrated near 0, but
not all; θ4, θ5, θ9, θ11, and θ12 are particularly large (why?).
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Figure 5.10: Some of the θi are not far from white noise; others are mixing
quite slowly.
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Figure 5.11: It’s also useful to monitor the µi = α + β(xi − x̄), because they
represent an important part of the shrinkage story with model (5.10).
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via the shrinkage equation

E(θi|y)
.
=
(
1− B̂i

)
yi + B̂iE(µi|y) ; (5.11)

here B̂i = Vi

Vi+σ̂2
θ

and σ̂2
θ is the posterior mean of σ2

θ .

This is easy to check in R:

> mu <- c( 0.09231, -0.06898, -0.06898, 0.4149, 0.4149, -0.06898,

-0.06898, -0.06898, 0.4149, 0.2536, 0.4149, 0.4149, 0.2536,

0.09231, -0.06898, -0.06898, 0.2536, 0.09231, -0.06898 )

> y <- c( 0.03, 0.12, -0.14, 1.18, 0.26, -0.06, -0.02, -0.32, 0.27,

0.80, 0.54, 0.18, -0.02, 0.23, -0.18, -0.06, 0.30, 0.07,

-0.07 )

> theta <- c( 0.08144, -0.03455, -0.07456, 0.4377, 0.4076,

-0.0628, -0.05262, -0.08468, 0.3934, 0.289, 0.4196, 0.3938,

0.2393, 0.1014, -0.08049, -0.06335, 0.2608, 0.08756,

-0.06477 )

> V <- 1 / tau

> B.hat <- V / ( V + 0.064^2 )

> theta.approx <- ( 1 - B.hat ) * y + B.hat * mu

> cbind( y, theta, mu, sigma.2, B.hat, theta.approx )

y theta mu V B.hat theta.approx

[1,] 0.03 0.08144 0.09231 0.015625 0.7923026 0.07936838

[2,] 0.12 -0.03455 -0.06898 0.021609 0.8406536 -0.03886671

[3,] -0.14 -0.07456 -0.06898 0.027889 0.8719400 -0.07807482

[4,] 1.18 0.43770 0.41490 0.139129 0.9714016 0.43678060

[5,] 0.26 0.40760 0.41490 0.136161 0.9707965 0.41037637

[6,] -0.06 -0.06280 -0.06898 0.010609 0.7214553 -0.06647867

[7,] -0.02 -0.05262 -0.06898 0.010609 0.7214553 -0.05533688

[8,] -0.32 -0.08468 -0.06898 0.048400 0.9219750 -0.08856583

[9,] 0.27 0.39340 0.41490 0.026896 0.8678369 0.39574956

[10,] 0.80 0.28900 0.25360 0.063001 0.9389541 0.28695551

[11,] 0.54 0.41960 0.41490 0.091204 0.9570199 0.42027681



282 David Draper

[12,] 0.18 0.39380 0.41490 0.049729 0.9239015 0.39702447

[13,] -0.02 0.23930 0.25360 0.083521 0.9532511 0.24080950

[14,] 0.23 0.10140 0.09231 0.084100 0.9535580 0.09870460

[15,] -0.18 -0.08049 -0.06898 0.025281 0.8605712 -0.08445939

[16,] -0.06 -0.06335 -0.06898 0.027889 0.8719400 -0.06783002

[17,] 0.30 0.26080 0.25360 0.019321 0.8250843 0.26171609

[18,] 0.07 0.08756 0.09231 0.008836 0.6832663 0.08524367

[19,] -0.07 -0.06477 -0.06898 0.030276 0.8808332 -0.06910155

You can see that equation (11) is indeed a good approximation to what’s
going on: the posterior means of the θi (column 3 of this table, counting
the leftmost column of study indices) all fall between the yi (column 2) and
the posterior means of the µi (column 4), with the closeness to yi or E(µi|y)
expressed through the shrinkage factor B̂i.

Since σ̂2
θ is small (i.e., most—but not quite all—of the between-study vari-

ation has been explained by the covariate x), the raw yi values are shrunken
almost all of the way toward the regression line α + β(xi − x̄).

5.2 Problems

1. (hierarchical random-effects modeling) Continuing problem 1 from
Chapter 4, consider just the data from the residential streets with a bike
route, and let wi be the number of bicycles observed out of ni total ve-
hicles in block i = 1, . . . , nw = 10 (e.g., w1 = 16 and n1 = 74; we will
regard the ni as fixed known constants in this problem). Then by the
nature of the sampling wi should be binomially distributed with sam-
ple size ni and success probability θi, the true underlying PBT in block
i and other blocks similar to it. The 10 blocks were themselves cho-
sen randomly (exchangeably) from an underlying population of blocks
on residential streets with a bike route, so it’s natural to model the θi

themselves as like draws from a population distribution, which I argued
above should plausibly be Beta(α, β) for some values of the hyperpa-
rameters (α, β). Placing uniform U(0, cα) and U(0, cβ) priors on α and
β as in part (e) yields the following hierarchical random-effects model
for the wi:

(wi|θi)
IID∼ Binomial (ni, θi)

(θi|α, β)
IID∼ Beta(α, β) (5.12)
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α ∼ U(0, cα) and β ∼ U(0, cβ).

Use WinBUGS to fit this model to the data from the residential streets
with a bike route (as in (e) I got good results with (cα, cβ) = (15, 60)).
Monitor α, β, the underlying population mean α

α+β
, and all 10 of the

θi values in your Gibbs sampling. Make a full report using CODA or
the diagnostics built into WinBUGS on what you think is an appropriate
MCMC strategy to get accurate posterior summaries for all of these
quantities, and report posterior means, SDs, and 95% central intervals
for all of them. Make a table with 10 rows (one for each block) and
the following columns: the raw PBT estimates p̂i = wi

ni
(these were

earlier called the yi values in parts (a) and (c)); the shrunken estimates
θ̂i (the posterior means of the θi); the shrinkage factors B̂i (obtained
by solving the linear equations (1 − B̂i)p̂i + B̂iθ̂ = θ̂i, where θ̂ is the
posterior mean of α

α+β
); and the sample sizes ni. What relationship

do you notice between the shrinkage factors and the sample sizes, and
does this relationship make good intuitive sense? Explain briefly, and
summarize what all of this says about the proportion of bicycle traffic
on residential streets with a bike route in Berkeley in the early 1990s.
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Chapter 6

Bayesian nonparametric
modeling

6.1 de Finetti’s representation theorem re-

visited

6.2 The Dirichlet process

6.3 Dirichlet process mixture modeling

6.4 Pólya trees

6.5 Problems
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