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What is a Bayesian Model?

Definition: A Bayesian model is a mathematical framework

(embodying assumptions and judgments) for quantifying uncertainty

about unknown quantities by relating them to known quantities.

Desirable for the assumptions and judgments in the model to arise as

directly as possible from contextual information in the problem under study.

The most satisfying approach to achieving this goal appears to be that of de

Finetti (1930): a Bayesian model is a joint predictive distribution

p(y) = p(y1, . . . , yn) (1)

for as-yet-unobserved observables y = (y1, . . . , yn).

Example 1: Data = health outcomes for all patients at one hospital with

heart attack admission diagnosis.

Simplest possible: yi = 1 if patient i dies within 30 days of admission,

0 otherwise.
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Exchangeability

de Finetti (1930): in absence of any other information, my predictive

uncertainty about yi is exchangeable.

Representation theorem for binary data: if I’m willing to regard

(y1, . . . , yn) as part of an infinitely exchangeable sequence (meaning that I

judge all finite subsets exchangeable; this is like thinking of the yi as having

been randomly sampled from the population (y1, y2, . . . )), then to be

coherent my joint predictive distribution p(y1, . . . , yn) must have the simple

hierarchical form

θ ∼ p(θ) (2)

(yi|θ) IID∼ Bernoulli(θ),

where θ = P (yi = 1) = limiting value of mean of yi in infinite sequence.

Mathematically p(θ) is mixing distribution in

p(y1, . . . , yn) =

∫ 1

0

n
∏

i=1

p(yi|θ) p(θ) dθ . (3)
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Model = Exchangeability + Prior

Statistically, p(θ) provides opportunity to quantify prior information about

θ and combine with information in y.

Thus, in simplest situation, Bayesian model specification = choice of

scientifically appropriate prior distribution p(θ).

Example 2 (elaborating Example 1): Now I want to predict real-valued

sickness-at-admission score instead of mortality (still no covariates).

Uncertainty about yi still exchangeable; de Finetti’s (1937) representation

theorem for real-valued data: if (y1, . . . , yn) part of infinitely exchangeable

sequence, all coherent joint predictive distributions p(y1, . . . , yn) must have

hierarchical form

F ∼ p(F ) (4)

(yi|F )
IID∼ F,

where F = limiting empirical cumulative distribution function (CDF) of

infinite sequence (y1, y2, . . . ).
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Bayesian Nonparametrics

Thus here Bayesian model specification = choosing scientifically appropriate

mixing (prior) distribution p(F ) for F .

However, F is infinite-dimensional parameter; putting probability

distribution on D = {all possible CDFs} is harder.

Specifying distributions on function spaces is task of

Bayesian nonparametric (BNP) modeling (e.g., Dey et al. 1998).

Example 3 (elaborating Example 2): In practice, in addition to

outcomes yi, covariates xij will typically be available.

For instance (Hendriksen et al. 1984), 572 elderly people randomized, 287 to

control (C) group (standard care) and 285 to treatment (T ) group (standard

care plus in-home geriatric assessment (IHGA): preventive medicine in

which each person’s medical/social needs assessed, acted upon individually).

One important outcome was number of hospitalizations (in two years):

yT
i , yC

j = numbers of hospitalizations for treatment person i,

control person j, respectively.
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Conditional Exchangeability

Suppose treatment/control (T/C) status is only available covariate.

Unconditional judgment of exchangeability across all 572 outcomes no

longer automatically scientifically appropriate.

Instead design of experiment compels (at least initially) judgment of

conditional exchangeability given T/C status (e.g., de Finetti 1938,

Draper et al. 1993), as in

(FT , FC) ∼ p(FT , FC)

(yT
i |FT , FC)

IID∼ FT (yC
j |FT , FC)

IID∼ FC

(5)

This framework, in which (a) covariates specify conditional

exchangeability judgments, (b) de Finetti’s representation theorem

reduces model specification task to placing appropriate prior distributions on

CDFs, covers much of field of statistical inference/prediction.
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Data-Analytic Model Specification

Note that even in this rather general nonparametric framework it will be

necessary to have a good tool for discriminating between the quality of

two models (here: unconditional exchangeability (FT = FC ; T has same

effect as C) versus conditional exchangeability (FT 6= FC ;

T and C effects differ)).

Basic problem of Bayesian model choice: Given future observables

y = (y1, . . . , yn), I’m uncertain about y (first-order), but I’m also uncertain

about how to specify my uncertainty about y (second-order); I want to

cope with both of these kinds of uncertainty in a well-calibrated manner.

Standard (data-analytic) approach to model specification involves initial

choice, for structure of model, of standard parametric family, followed by

modification of initial choice—once data begin to arrive—if data suggest

deficiencies in original specification.

This approach (e.g., Draper 1995) is incoherent (unless I pay an appropriate

price for shopping around for the model).
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Cromwell’s Rule

The data-analytic approach uses data both to specify prior distribution on

structure space and to update using data-determined prior (result will

typically be uncalibrated (too narrow) predictive distributions

for future data).

Dilemma is example of Cromwell’s Rule (if p(θ) = 0 then p(θ|y) = 0 for all y):

initial model choice placed 0 prior probability on large regions of model

space; formally all such regions must also have 0 posterior probability

even if data indicate different prior on model space would have been better.

Two possible solutions:

• BNP (which solves the problem by “not putting zero probability

on anything”), and

• 3CV (a modification of the usual cross-validation approach, which solves

the problem by paying an appropriate price for model exploration).
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Two Solutions: BNP and 3CV

• If use prior on F that places non-zero probability on all

Kullback-Leibler neighborhoods of all densities (Walker et al. 2003; e.g.,

Pólya trees, Dirichlet process mixture priors, when chosen well), then BNP

directly avoids Cromwell’s Rule dilemma, at least for large n: as n→ ∞
posterior on F will shrug off any incorrect details of prior specification, will

fully adapt to actual data-generating F ( NB this assumes correct

exchangeability judgments).

• Three-way cross-validation (3CV; Draper and Krnjajić 2007): taking

usual cross-validation idea one step further,

(1) Partition data at random into three (non-overlapping and exhaustive)

subsets Si.

(2) Fit tentative {likelihood + prior} to S1. Expand initial model in all

feasible ways suggested by data exploration using S1. Iterate

until you’re happy.
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3CV (continued)

(3) Use final model (fit to S1) from (2) to create predictive distributions for all

data points in S2. Compare actual outcomes with these distributions, checking

for predictive calibration. Go back to (2), change likelihood as necessary,

retune prior as necessary, to get good calibration.

Iterate until you’re happy.

(4) Announce final model (fit to S1 ∪ S2) from (3), and report predictive

calibration of this model on data points in S3 as indication of how well it

would perform with new data.

With large n probably only need to do this once; with small and moderate

n probably best to repeat (1–4) several times and combine results in some

appropriate way (e.g., model averaging).

How large should the Si be? (Preliminary answer below.)
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Model Selection as Decision Problem

Given method like 3CV which permits hunting around in model space

without forfeiting calibration, two kinds of model specification questions (in

both parametric and nonparametric Bayesian modeling) arise:

(1) Is M1 better than M2? (this tells me when it’s OK to discard a

model in my search)

(2) Is M1 good enough? (this tells me when it’s OK to stop searching)

It would seem self-evident that to specify a model you have to say to

what purpose the model will be put, for how else can you answer these

two questions?

Specifying this purpose demands decision-theoretic basis for model choice

(e.g., Draper 1996; Key et al. 1998).

To take two examples,

(Case 1) If you’re going to choose which of several ways to behave in future,

then model has to be good enough to reliably aid in choosing best

behavior (e.g., Fouskakis and Draper 2005); or
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Choosing Utility Function

(Case 2) If you wish to make scientific summary of what’s known,

then—remembering that hallmark of good science is good prediction—the

model has to be good enough to make sufficiently accurate predictions

of observable outcomes (in which dimensions along which accuracy is to be

monitored are driven by what’s scientifically relevant).

How can a utility function driven by predictive accuracy be specified in a

reasonably general way to answer model specification question (1)

above? (Is M1 better than M2?)

Need scoring rule that measures discrepancy between observation y∗ and

predictive distribution p(·|y,Mi) for y∗ under model Mi given data y.

As noted (e.g.) by Good (1950) and O’Hagan and Forster (2004), the optimal

(impartial, symmetric, proper) scoring rules are linear functions of

log p(y∗|y) .
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Log Score as Utility

On calibration grounds it would seem to be a mistake to use data twice

in measuring this sort of thing (once to make predictions, again with same data

to see how good they are; but see below).

Out-of-sample predictive validation (e.g., Geisser and Eddy 1979, Gelfand

et al. 1992) addresses this apparent concern directly: e.g., successively remove

each observation yj one at a time, construct predictive distribution for yj based

on y−j (data vector with yj removed), see where yj falls in this distribution.

This motivates cross-validated version of log scoring rule (e.g., Gelfand and

Dey 1994; Bernardo and Smith 1994): with n data values yj , when choosing

among k models Mi, i ∈ I, find that model Mi which maximizes

LSCV (Mi|y) =
1

n

n
∑

j=1

log p(yj |Mi, y−j). (6)
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Approximating LSCV

It has been argued that this can be given direct

decision-theoretic justification: with utility function for model i

U(Mi|y) = log p(y∗|Mi, y), (7)

where y∗ is future data value, expectation in MEU is over uncertainty

about y∗; Gelfand et al. (1992) and Bernardo and Smith (1994) claim that this

expectation can be accurately estimated (assuming exchangeability) by LSCV

(I’ll revisit this claim below).

With large data sets, in situations in which predictive distribution has to

be estimated by MCMC, direct calculation of LSCV is

computationally expensive; need fast approximation to it.

To see how this might be obtained, examine log score in simplest possible

model M0: for i = 1, . . . , n,

µ ∼ N
(

µ0, σ
2
µ

)

, (Yi|µ)
IID∼ N(µ, σ2), σ

2 known; (8)
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Approximating LSCV (continued)

take highly diffuse prior on µ so that posterior for µ is approximately

(µ|y) = (µ|ȳ) ·∼ N

(

ȳ,
σ2

n

)

, (9)

where y = (y1, . . . , yn).

Then predictive distribution for next observation is approximately

(yn+1|y) = (yn+1|ȳ) ·∼ N

[

ȳ, σ
2

(

1 +
1

n

)]

, (10)

and LSCV , ignoring linear scaling constants, is

LSCV (M0|y) =
n

∑

j=1

ln p(yj |y−j) , (11)

where as before y−j is y with observation j set aside.

But by same reasoning

p(yj |y−j)
.
= N

(

ȳ−j , σ
2
n

)

, (12)
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Approximating LSCV (continued)

where ȳ−j is sample mean with observation j omitted, σ2
n = σ2

(

1 + 1
n−1

)

,

so that

ln p(yj |y−j)
.
= c− 1

2σ2
n

(yj − ȳ−j)
2 and

LSCV (M0|y) .
= c1 − c2

n
∑

j=1

(yj − ȳ−j)
2 (13)

for some constants c1 and c2 with c2 > 0. Now it’s interesting fact (related

to behavior of jackknife), which you can prove by induction, that

n
∑

j=1

(yj − ȳ−j)
2 = c

n
∑

j=1

(yj − ȳ)2 (14)

for some c > 0, so finally for c2 > 0 the result is that

LSCV (M0|y) .
= c1 − c2

n
∑

j=1

(yj − ȳ)2, (15)
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Deviance Information Criterion (DIC)

i.e., in this model log score is almost perfectly negatively correlated with

sample variance.

But in this model the deviance (minus twice the log likelihood) is

D(µ) = −2 ln l(µ|y) = c0 − 2 ln p(y|µ)

= c0 + c3

n
∑

j=1

(yj − µ)2 (16)

for some c3 > 0, encouraging suspicion that log score should be strongly

related to deviance.

Given parametric model p(y|θ), Spiegelhalter et al. (2002) define deviance

information criterion (DIC) (by analogy with other information criteria) to

be estimate D(θ̄) of model (lack of) fit (as measured by deviance) plus penalty

for complexity equal to twice effective number of parameters pD of

model:

DIC(M |y) = D(θ̄) + 2 p̂D, (17)
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DIC (continued)

where θ̄ is posterior mean of θ; they suggest that models with low DIC value

are to be preferred over those with higher value.

When pD is difficult to read directly from model (e.g., in complex

hierarchical models, especially those with random effects), they motivate

the following estimate, which is easy to compute from standard MCMC

output:

p̂D = D(θ) −D(θ̄), (18)

i.e., difference between posterior mean of deviance and deviance

evaluated at posterior mean of parameters (WinBUGS release 1.4.1 will

estimate these quantities).

In model M0, pD is of course 1, and θ̄ = ȳ, so

DIC(M0|y) = c0 + c3

n
∑

j=1

(yj − ȳ)2 + 2 (19)
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LSCV ↔ DIC?

and conclusion is that

−DIC(M0|y) .
= c1 + c2LSCV (M0|y) (20)

for c2 > 0, i.e., (in this simple example) choosing model by maximizing

LSCV and by minimizing DIC are

approximately equivalent behaviors.

Milovan and I have explored the scope of (20); in several simple models M

we find for c2 > 0 that

−DIC(M |y) .
= c1 + c2LSCV (M |y), (21)

i.e., across repeated data sets generated from given model, even with small n

DIC and LSCV can be fairly strongly negatively correlated.

Above argument generalizes to any situation in which predictive

distribution is approximately Gaussian (e.g., Poisson(λ) likelihood with

large λ, Beta(α, β) likelihood with large (α+ β), etc.).
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LSCV ↔ DIC? (continued)

Example 3 continued. With one-sample count data (like number of

hospitalizations in the T and C portions of IHGA data), people often choose

between fixed- and random-effects Poisson model formulations: for

i = 1, . . . , n, and, e.g., with diffuse priors,

M1:







λ ∼ p(λ)

(yi|λ)
IID∼ Poisson(λ)







versus (22)

M2:



























(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)



























(23)

We conducted partial-factorial simulation study with factors

{n = 18, 32, 42, 56, 100}, {β0 = 0.0, 1.0, 2.0}, {σ2 = 0.0, 0.5, 1.0, 1.5, 2.0} in which
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LSCV ↔ DIC? (continued)

(data-generating mechanism, assumed model) =

{(M1,M1), (M1,M2), (M2,M1), (M2,M2)}; in each cell of this grid we used 100

simulation replications.
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When assumed model is M1 (fixed-effects Poisson), LSCV and DIC are

almost perfectly negatively correlated.
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LSCV ↔ DIC? (continued)
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When assumed model is M2 (random-effects Poisson), LSCV and DIC are

less strongly negatively correlated (DIC can misbehave with mixture

models; see below), but correlation increases with n.
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Example 3

As example of correspondence between LSCV and DIC in real problem,

IHGA data were as follows:

Distribution of number of hospitalizations in IHGA study over two-year period:

Number of Hospitalizations

Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24

Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered mean hospitalization rate (for these elderly

Danish people, at least) by (0.944 − 0.768) = 0.176, which is about

100
(

0.768−0.944
0.944

)

= 19% reduction from control level, a difference that’s large

in clinical terms.

Four possible models for these data (not all of them good):

• Two-independent-sample Gaussian (diffuse priors);

• One-sample Poisson (diffuse prior), pretending treatment and control λs

are equal;
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Example 3 (continued)

• Two-independent-sample Poisson (diffuse priors), which is equivalent to

fixed-effects Poisson regression

(FEPR); and

• Random-effects Poisson regression (REPR), because C and T

variance-to-mean ratios (VTMRs) are 1.63 and 1.32, respectively:

(yi |λi )
indep∼ Poisson(λi)

log(λi) = β0 + β1xi + ei (24)

ei
IID∼ N

(

0, σ2
e

)

(

β0, β1, σ
2
e

)

∼ diffuse ,

where xi = 1 is a binary indicator for T/C status.

DIC and LSCV results on these four models:
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Example 3 (continued)

Model D(θ) D(θ̄) p̂D DIC LSCV

1 (Gaussian) 1749.6 1745.6 3.99 1753.5 −1.552

2 (Poisson,

common λ)
1499.9 1498.8 1.02 1500.9 −1.316

3 (FEPR,

different λs)
1495.4 1493.4 1.98 1497.4 −1.314

4 (REPR)

1275.7

1274.7

1274.4

1132.0

1131.3

1130.2

143.2

143.5

144.2

1418.3

1418.2

1418.6

−1.180

(3 REPR rows were based on different monitoring runs, all of length 10,000, to

give idea of Monte Carlo noise level.)

As σe → 0 in REPR model, you get FEPR model, with pD = 2 parameters; as

σe → ∞, in effect all subjects in study have their own λ and pD would be

572; in between at σe
.
= 0.675 (posterior mean), WinBUGS estimates that there

are about 143 effective parameters in REPR model, but its deviance

D(θ̄) is so much lower that it wins DIC contest hands down.
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Example 3 (continued)
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Correlation between LSCV and DIC across these four models is –0.98.

Bayesian Model Specification 26



But DIC Can Misbehave

y = (0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6) is a data set generated from the

negative binomial distribution with parameters (p, r) = (0.82, 10.8) (in

WinBUGS notation); y has mean 2.35 and VTMR 1.22.

Using standard diffuse priors for p and r as in the BUGS examples manuals,

the effective number of parameters pD for the negative binomial model

(which fits the data quite well) is estimated at –66.2.

The basic problem here is that the MCMC estimate of pD can be quite poor if

the marginal posteriors for one or more parameters (using the

parameterization that defines the deviance) are far from normal;

reparameterization helps but can still lead to poor estimates of pD.

It’s evident that DIC can sometimes provide an accurate and fast (indirect)

approximation to LSCV ; what about a fast direct approximation?
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Fast (Direct) Approximation to LSCV

An obvious thing to try is the following full-sample version of LS: in the

one-sample situation, for instance, compute a single predictive distribution

p∗(·|y,Mi) for a future data value with each model Mi under consideration,

based on the entire data set y (without omitting any observations), and

define (cf. Laud and Ibrahim 1995)

LSFS(Mi|y) =
1

n

n
∑

j=1

log p∗(yj |y,Mi). (25)

The naive approach to calculating LSCV , when MCMC is needed to compute

the predictive distributions, requires n MCMC runs, one for each omitted

observation; by contrast LSFS needs only a single MCMC run, making its

computational speed (a) n times faster than naive implementations of LSCV

and (b) equivalent to that of DIC.

• The log score approach works equally well with parametric and

nonparametric Bayesian models; DIC is only defined for

parametric models.
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Asymptotic Properties of LSFS

• When parametric model Mi is fit via MCMC the predictive ordinate

p(y∗|y,Mi) in LSFS is easy to approximate: with m identically distributed (not

necessarily independent) MCMC monitoring draws θk from p(θ|y,Mi),

p
∗(y∗|y,Mi) =

∫

p(y∗|θ,Mi) p(θ|y,Mi)dθ

= E(θ|y,Mi) [p(y∗|θ,Mi)] (26)

.
=

1

m

m
∑

k=1

p(y∗|θk,Mi).

Recall the claim that LSCV approximates expectation of

logarithmic utility:

E [U(Mi|y)] ≈ LSCV =
1

n

n
∑

j=1

log p(yj |Mi, y−j) (27)

Berger et al. (2005) recently proved that difference between LHS and RHS of

(27) does not vanish for large n but is instead Op(
√
n).
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Asymptotic Properties of LSFS (continued)

(However unpleasant, this fact does not automatically invalidate use of LSCV

as estimated expected utility, since when comparing two models we effectively

look at the difference between two LSCV values, and the discrepancy should

largely cancel out.)

We have proved in the same setting as Berger et al. (2005) that LSFS is free

from this deficiency: the difference between E[U(Mi|y)] and

LSFS = 1
n

n
∑

j=1

log p∗(yj |y,Mi) is Op(1).

Q: Does this asymptotic superiority of LSFS over LSCV translate into

better small-sample performance?

We now have three behavioral rules: maximize LSCV , maximize LSFS ,

minimize DIC.

With (e.g.) two models to choose between, how accurately do these

behavioral rules discriminate between M1 and M2?
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LSCV , LSFS and DIC Model Discrimination

Example: Recall that in earlier simulation study, for i = 1, . . . , n, and

with diffuse priors, we considered

M1:







λ ∼ p(λ)

(yi|λ)
IID∼ Poisson(λ)







versus

M2:



























(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)



























As extension of previous simulation study, we generated data from M2 and

computed LSCV , LSFS , and DIC for models M1 and M2 in full-factorial

grid {n = 32, 42, 56, 100}, {β0 = 0.0, 1.0}, σ2 = 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, with

100 simulation replications in each cell, and monitored percentages of

correct model choice (here M2 is always correct).
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Model Discrimination (continued)

Examples of results for (e.g.) LSCV :

n = 32

% Correct Decision Mean Absolute Difference in LSCV

β0 β0

σ2 0 1 σ2 0 1

0.10 31 47 0.10 0.001 0.002

0.25 49 85 0.25 0.002 0.013

0.50 76 95 0.50 0.017 0.221

1.00 97 100 1.00 0.237 4.07

1.50 98 100 1.50 1.44 17.4

2.00 100 100 2.00 12.8 63.9

Even with n only 32, LSCV makes the right model choice more than 90% of

the time when σ2 > 0.5 for β0 = 1 and when σ2 > 1.0 for β0 = 0.
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Model Discrimination (continued)
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LSCV (solid lines), LSFS (long dotted lines), and DIC (short dotted lines).
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Bayes Factors

Remarkably, not only is LSFS much quicker computationally than LSCV ,

it’s also more accurate with small and moderate sample sizes at identifying

the correct model than LSCV or DIC.

To summarize, in computational efficiency

LSCV < DIC
.
= LSFS (28)

and in fixed- and random-effects Poisson modeling the results in model

discrimination power are

LSCV
.
= DIC < LSFS (29)

Much has been written about use of Bayes factors for model choice (e.g.,

Jeffreys 1939, Kass and Raftery 1995; excellent recent book by O’Hagan and

Forster (2004) devotes almost 40 pages to this topic).

Why not use probability scale to choose between M1 and M2?
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Bayes Factors (continued)

[

p(M1|y)
p(M2|y)

]

=

[

p(M1)

p(M2)

]

·
[

p(y|M1)

p(y|M2)

]

(30)





posterior

odds



 =





prior

odds



 ·





Bayes

factor





Kass and Raftery (1995) note that

log

[

p(y|M1)

p(y|M2)

]

= log p(y|M1) − log p(y|M2) (31)

= LS
∗(M1|y) − LS

∗(M2|y),

where

LS
∗(Mi|y) ≡ log p(y|Mi)

= log [p(y1|Mi) p(y2|y1,Mi) · · · p(yn|y1, . . . , yn−1,Mi)]

= log p(y1|M) +

n
∑

j=2

log p(yj |y1, . . . , yj−1,Mi).
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Bayes Factors (continued)

Thus log Bayes factor equals difference between models in something that

looks like a log score, i.e., aren’t LSCV and LSFS equivalent to choosing Mi

whenever the Bayes factor in favor of Mi exceeds 1?

No ; crucially, LS∗ is defined via sequential prediction of y2 from y1, y3 from

(y1, y2), etc., whereas LSCV and LSFS are based on averaging over all

possible out-of-sample predictions.

This distinction really matters: as is well known, with diffuse priors Bayes

factors are hideously sensitive to particular form in which diffuseness is

specified, but this defect is entirely absent from LSCV and LSFS (and from

other properly-defined utility-based model choice criteria).

Example: Integer-valued data y = (y1, . . . , yn);

M1 = Geometric(θ1) likelihood with Beta(α1, β1) prior on θ1;

M2 = Poisson(θ2) likelihood with Gamma(α2, β2) prior

on θ2.
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Bayes Factors (continued)

Bayes factor in favor of M1 over M2 is

Γ(α1 + β1)Γ(n+ α1)Γ(nȳ + β1)Γ(α2)(n+ β2)
nȳ+α2

(
∏n

i=1 yi!
)

Γ(α1)Γ(β1)Γ(n+ nȳ + α1 + β1)Γ(nȳ + α2)β
α2
2 .

Diffuse priors: take (α1, β1) = (1, 1) and (α2, β2) = (ε, ε) for some ε > 0.

Bayes factor reduces to

Γ(n+ 1)Γ(nȳ + 1)Γ(ε)(n+ ε)nȳ+ε
(
∏n

i=1 yi!
)

Γ(n+ nȳ + 2)Γ(nȳ + ε)εε
.

This goes to +∞ as ε ↓ 0, i.e., you can make the evidence in favor of the

Geometric model over the Poisson as large as you want, no matter what

the data says, as a function of a quantity near 0 that scientifically you have

no basis to specify.
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Bayes Factors (continued)

By contrast, e.g.,

LSCV (M1|y) = log

[

(α1 + n− 1)Γ(β1 + s)

Γ(α1 + n+ β1 + s)

]

+
1

n

n
∑

i=1

log

[

Γ(α1 + n− 1 + β1 + si)

Γ(β1 + si)

]

and

LSCV (M2|y) =
1

n

n
∑

i=1

log

[

Γ(α2 + s)

Γ(yi + 1)Γ(α2 + si)

·
(

β2 + n

β2 + n+ 1

)α2+si
(

1

β2 + n+ 1

)yi

]

(with similar expressions for LSFS); both of these quantities are entirely

stable as a function of (α1, β1) and (α2, β2) near zero.
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What LSFS Is Not

(Various attempts have been made to fix this defect of Bayes factors, e.g.,

{partial, intrinsic, fractional} Bayes factors, well calibrated priors, conventional

priors, intrinsic priors, expected posterior priors, ... (e.g., Pericchi 2004); all of

these methods appear to require an appeal to ad-hockery which is not

required by the log score approach.)

(Some bridges can be built between LS and BF, e.g., Berger et al. (2005)

re-interpret LSCV as the “Gelfand-Dey (1994) predictive Bayes factor”

BFGD; connections like these are the subject of ongoing investigation.)

(1) Likelihood part of (parametric) model

Mj: (yi|θj ,Mj)
IID∼ p(yi|θj ,Mj)(j = 1, 2), with prior p(θj |Mj) for model Mj .

Ordinary Bayes factor involves comparing quantities of the form

p(y|Mj) =

∫

[

n
∏

i=1

p(yi|θj ,Mj)

]

p(θj |Mj) dθj,

= E(θj |Mj)L(θj |y,Mj), (32)
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What LSFS Is Not (continued)

i.e., Bayes factor involves comparing expectations of likelihoods with respect

to the priors in the models under comparison (this is why ordinary Bayes

factors behave so badly with diffuse priors).

Aitkin (1991; posterior Bayes factors): compute expectations instead with

respect to the posteriors, i.e., PBF: favor model M1 if log L̄A
1 > log L̄A

2 ,

where

log L̄A
j = log

∫

[

n
∏

i=1

p(yi|θj ,Mj)

]

p(θj |y,Mj) dθj . (33)

This solves the problem of sensitivity to a diffuse prior but creates new

problems of its own, e.g., it’s incoherent.

It may seem at first glance (e.g., O’Hagan and Forster (2004)) that PBF is

the same thing as LSFS : favor model M1 if

nLSFS(M1|y) > nLSFS(M2|y). (34)
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What LSFS Is Not (continued)

But not so:

nLSFS(Mj |y) = log
n

∏

i=1

[∫

p(yi|θj ,Mj) p(θj |y,Mj) dθj

]

, (35)

and this is not the same because the integral and product operators do

not commute.

Also, some people like to compare models based on the posterior

expectation of the log likelihood (this is one of the ingredients in DIC),

and this is not the same as LSFS either: by Jensen’s inequality

nLSFS(Mj |y) =

n
∑

i=1

log p(yi|y,Mj)

=
n

∑

i=1

log

∫

p(yi|θj ,Mj) p(θj |y,Mj) dθj

=

n
∑

i=1

logE(θj |y,Mj)L(θj |yi,Mj)
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When is a Model Good Enough?

>

n
∑

i=1

E(θj |y,Mj) logL(θj |yi,Mj)

= E(θj |y,Mj)

n
∑

i=1

logL(θj |yi,Mj) (36)

= E(θj |y,Mj) log

n
∏

i=1

L(θj |yi,Mj)

= E(θj |y,Mj) logL(θj |y,Mj).

LSFS method described here (not LS∗ method) can stably and reliably help

in choosing between M1 and M2; but suppose M1 has a (substantially) higher

LSFS than M2.

This doesn’t say that M1 is adequate—it just says that M1 is better than

M2, i.e., what about model specification question (2): Is M1 good enough?
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Calibrating LSFS Scale

As mentioned above, a full judgment of adequacy requires real-world

input (to what purpose will the model be put?), but you can answer a

somewhat related question—could the data have arisen from a given

model?—in a general way by simulating from that model many times,

developing a distribution of (e.g.) LSFS values, and seeing how unusual

the actual data set’s log score is in this distribution

(Draper and Krnjajić 2007).

This is related to the posterior predictive model-checking method of

Gelman, Meng and Stern (1996); however, this sort of thing cannot be done

naively, or result will be poor calibration—indeed, Robins et al. (2000)

demonstrated that the Gelman et al. procedure may be

(sharply) conservative.

Using modification of idea in Robins et al., we have developed method for

accurately calibrating the log score scale.

Inputs to our procedure: (1) A data set (e.g., with regression structure); (2)

A model (can be parametric, non-parametric, or semi-parametric).
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Calibrating LSFS Scale (continued)

Simple example: data set y = (1, 2, 2, 3, 3, 3, 4, 6, 7, 11), n = 10.

Given model (∗)

(λ) ∼ diffuse (37)

(yi|λ)
IID∼ Poisson(λ)

Step 1:

Calculate LSFS for this data set; say get LSFS = −1.1; call this

actual log score (ALS).

Obtain posterior for λ given y based on this data set; call this

actual posterior.
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Calibrating LSFS Scale (continued)

Step 2:

for ( i in 1:m1 ) {

make a lambda draw from the actual posterior;

call it lambda[ i ]

generate a data set of size n from the second

line of model (*) above, using

lambda = lambda[ i ]

compute the log score for this generated

data set; call it LS[ i ]

}

Output of this loop is a vector of log scores; call this V.LS.
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Calibrating LSFS Scale (continued)

Locate ALS in distribution of LSFS values by computing percentage of LSFS

values in V.LS that are ≤ ALS; call this percentage unadjusted actual tail

area (say this is 0.22).

So far this is just Gelman et al. with LSFS as the

discrepancy function.

We know from our own simulations and the literature (Robins et al. 2000) that

this tail area (a p-value for a composite null hypothesis, e.g., Poisson(λ)

with λ unspecified) is conservative, i.e., with the 0.22 example above an

adjusted version of it that is well calibrated would be smaller.

We’ve modified and implemented one of the ways suggested by Robins et al.,

and we’ve shown that it does indeed work even in rather small-sample

situations, although our approach to implementing the basic idea can be

computationally intensive.
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Calibrating LSFS Scale (continued)

Step 3:

for ( j in 1:m2 ){

make a lambda draw from the actual posterior;

call it lambda*.

generate a data set of size n from the second line

of model (*) above, using lambda = lambda*;

call this the simulated data set

repeat steps 1, 2 above on this

simulated data set

}

The result will be a vector of unadjusted tail areas; call this V.P.
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Calibrating LSFS Scale (continued)

Compute the percentage of tail areas in V.P that are ≤ the unadjusted actual

tail area; this is the adjusted actual tail area.

Step 3 in this procedure solves the calibration problem by applying the old

idea that if X ∼ FX then FX(X) ∼ U(0, 1).

The claim is that the 3-step procedure above is well-calibrated, i.e., if the

sampling part of model (∗) really did generate the observed data, the

distribution of adjusted actual tail areas obtained in this way would be

uniform, apart from simulation noise.

This claim can be verified by building a big loop around steps 1–3 as follows:
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Calibrating LSFS Scale (continued)

Choose a lambda value of interest; call it lambda.sim

for ( k in 1:m3 ) {

generate a data set of size n from the

second line of model (*) above, using

lambda = lambda.sim; call this the

validation data set

repeat steps 1-3 on the validation data set

}

The result will be a vector of adjusted P-values; call this V.Pa.

We have verified (via simulation) in several simple (and some less simple)

situations that the values in V.Pa are close to U(0, 1) in distribution.

Two examples—Poisson(λ) and Gaussian(µ, σ2):
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Calibrating LSFS Scale (continued)
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Calibrating LSFS Scale (continued)
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Calibrating LSFS Scale (continued)
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Calibrating LSFS Scale (continued)
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BNP Modeling: An Example

• We describe parametric and BNP approaches to modeling count data and

demonstrate advantages of BNP modeling using empirical, predictive, graphical

and formal model comparisons (LSCV and LSFS).

• We examine models suitable for analyzing data in control (C) and

treatment (T ) setting as in the IHGA case study (Hendriksen et al. 1984)

in which a number of elderly people were randomized in C group, receiving

standard care, and T group, which also received in-home geriatric

assessment (IHGA); the outcome of interest was number of

hospitalizations during two years.

• Parametric random-effects Poisson (PREP) model is natural choice for

C and T data sets (in parallel):

(yi|θi)
ind∼ Poisson[exp(θi)]

(θi|G)
iid∼ G

G ≡ N(µ, σ2)

(38)

assuming a parametric CDF G for latent variables θi (random effects).
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Dirichlet Process Mixture Model

• What if this assumption is wrong?

• Want to remove the parametric assumption on distribution of random

effects by building a prior model on CDF G that may be centered on N(µ, σ2),

but permits adaptation (learning from data).

• Specifying prior for an unknown distribution requires a stochastic

process with realizations (sample paths) that are CDFs.

• We use Dirichlet process (DP), in notation G ∼ DP (α,G0), where G0 is

the center or base distribution of the process and α a precision parameter

(Ferguson 1973, Antoniak 1974).

• Poisson DP mixture model:

(yi | θi)
ind∼ Poisson(exp(θi))

(θi | G)
iid∼ G

G ∼ DP(αG0), G0 ≡ G0(·;ψ),

(39)

where i = 1, ..., n (we refer to (39) as BNP model 1).
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Dirichlet Process Mixture Model (continued)

• Equivalent formulation of the Poisson DP mixture model:

(yi | G)
iid∼ f(·;G) =

∫

Poisson(yi; exp(θ))dG(θ), G ∼ DP(αG0), (40)

where i = 1, . . . , n and G0 = N(µ, σ2).

• MCMC implemented for a marginalized version of DP mixture. Key idea:

G is integrated out over its prior distribution, (Antoniak 1974, Escobar and

West 1995), resulting in [θ1, ..., θn | α, ψ] that follows Pólya urn structure

(Blackwell and MacQueen, 1973).

• Specifically, [θ1, ..., θn | α, ψ] is

gr0(θr1 | µr, σ
2
r)

nr
∏

i=2

{

αr

αr + i− 1
gr0(θri | µr, σ

2
r)+

1

αr + i− 1

i−1
∑

`=1

δθr`
(θri)

}

.
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DP Mixture Model with Stochastic Order

• There are cases when treatment always has an effect, only the extent of

which is unknown. This can be expressed by introducing stochastic order for

the random effects distributions: G1(θ) ≥ G2(θ), θ ∈ R, denoted by G1 ≤st G2.

• Posterior predictive inference can be improved under this assumption if we

incorporate stochastic order in the model. To that end we introduce a prior

over the space P = {(G1, G2) : G1 ≤st G2}.

• A convenient way to specify such a prior is to work with subspace P
′ of P,

where P
′ = {(G1, G2) : G1 = H1, G2 = H1H2}, with H1 and H2 d.f.-s on R, and

then place independent DP priors on H1 and H2.

• Note: to obtain a sample θ from G2 = H1H2, independently draw θ1 from

H1 and θ2 from H2, and then set θ = max(θ1, θ2).

• Specifying independent DP priors on mixing distributions H1 and H2

we obtain the following model:
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DPMM with Stochastic Order (continued)

Y1i | θi
ind∼ Poisson(exp(θi)), i = 1, n1

Y2k | θ1,n1+k, θ2k
ind∼ Poisson(exp(max(θ1,n1+k, θ2k))), k = 1, n2

θ1i | H1
iid∼ H1, i = 1, n1 + n2

θ2k | H2
iid∼ H2, k = 1, n2

Hr | αr, µr, σ
2
r ∼ DP (αrHr0)

(41)

where the base distributions of Dirichlet processes, H10 and H20, are again

Normal with parametric priors on hyperparameters. We refer to (41) as BNP

model 2.

• We implement a standard MCMC with an extension for stochastic order

(Gelfand and Kottas, 2002).

• To create a level playing field to compare quality of PREP and BNP models

we compute predictive distributions for future data, based on predictive

distribution for latent variables and posterior parameter samples.
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Posterior Predictive Distributions

• For BNP model 1 the posterior predictive for a

future Y new is

[Y new | data] =

∫∫

Poisson(Y new; exp(θnew))[θnew | η][η | data], (42)

where θnew is associated with Y new and η collects all model

parameters except θs (we use bracket notation of Gelfand and Smith

(1990) to denote distribution function).

• The posterior predictive for latent variables,

induced by Pólya urn structure of DP, is

[θnew | η] =
α

α+ n
Gr0(θ

new | µr, σ
2) +

1

α+ n

n
∑

`=1

n`δθ`
(θnew). (43)
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Predictive: PREP Versus BNP Model 1
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Prior (lower [blue] circles) and posterior (upper [red] circles) predictive

distributions for PREP model (top) and BNP model 1 (bottom) for data set

D3 with bimodal random effects.

The PREP model cannot adapt to the bimodality (without remodeling as,

e.g., a mixture of Gaussians on the latent scale), whereas the BNP modeling

smoothly adapts to the data-generating mechanism.
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Posterior Inference for G

• Perhaps more interestingly, using generic approach for inference about

random mixing distribution, we can obtain [G | data], based on which we

can compute posterior of any linear functional of G, e.g. [E(y|G)].

• With G ∼ DP (αG0), following Ferguson (1973) and Antoniak (1974),

[G|data] =

∫

[G|θ, α, ψ]d[θ, α, ψ|data]. (44)

where [G|θ, α, ψ] is also a DP with parameters α
′

= α+ n and

G
′

0(·|ψ) =
α

α+ n
G0(·|ψ) +

1

α+ n

∑n

i=1
1(−∞,θi](·), (45)

where θ = (θ1, ..., θn) and ψ collects parameters

of G0.

• Using (44), (45) and the definition of DP we develop computationally

efficient approach to obtaining posterior sample paths from [G | data].
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Normal Random Effects: PREP vs. BNP
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Normal random effects (data set D1): Posterior MCMC estimates of the

random effects distributions for PREP model (first row) and BNP model 1

(second row).

When PREP is correct it (naturally) yields narrower uncertainty bands

(but see below).
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Skewed and Bimodal Random Effects, PREP vs. BNP

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C

P
R

E
P

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B
N

P
 m

od
el

 1
1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Skewed and bimodal random effects (data set D2): Posterior MCMC

estimates of random effects distributions for PREP model (first row) and

BNP model 1 (second row).

When PREP is incorrect it continues to yield narrower uncertainty bands

that unfortunately fail to include the truth, whereas BNP model 1 adapts

successfully to the data-generating mechanism.
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BNP With and Without Stochastic Order
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Bimodal random effects in T (data set D3): Posterior MCMC estimates of

random effects distributions for BNP model 1 (first row) and BNP model

with stochastic order (second row).

Extra assumption of stochastic order, when true, yields narrower

uncertainty bands (as it should).
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LSCV and LSFS For PREP and BNP Models

LS
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LSCV (left panel) versus full-sample log-score LSFS (right panel) for PREP

and BNP models for all 3 data sets (C and T ), D1,C , . . . ,D3,T .

When PREP is correct (1C, 1T, 3C), it has small advantage in LSCV and

LSFS over BNP (as it should), but when PREP is incorrect (2C, 2T, 3T) both

kinds of LS give a clear preference for BNP model 1 (also as they should).
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Results in IHGA Case Study
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Results on IHGA data in case study: posterior mean and 90% intervals for

random-effects distribution G (first column is C sample, second column is

T ; first row is PREP model, second row is BNP model 1).

Uncertainty bands are wider from BNP model 1, but direct comparison not

fair because PREP model arrived at via data-analytic search on entire

data set.
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Results in IHGA Case Study (continued)

PREP: Posterior distribution of E(y.C | G)
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PREP: Posterior distribution of E(y.T | G)
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PREP: Distribution of the ratio E(y.T | G) / E(y.C | G)
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BNP Model: Posterior distribution of E(y.C | G)
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BNP Model: Posterior distribution of E(y.T | G)
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BNP Model: Distribution of the ratio E(y.T | G) / E(y.C | G)
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Results on IHGA data in case study: first row is posterior for C mean, second

row is posterior for T mean, third row is posterior for ratio of means; first

column is PREP model, second column is BNP model 1.

With suitable amount of data held out for calibration check in subset S3

in 3CV ( about 25% ), BNP and 3CV achieve comparable results.
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Conclusions

• Standard (data-analytic) (DA) approach to model specification “shops

around for the ‘right’ model,” thereby often yielding poorly calibrated

(too narrow) predictive intervals (a symptom of incoherence).

• I’m aware of two principled solutions to this problem:

– {Exchangeability judgments plus Bayesian nonparametric (BNP)

modeling} (this solves the problem by avoiding (some of) the shopping:

with BNP (and enough data), no need to use DA to specify many modeling

details (error distributions, response surfaces); but will often still need to

compare models with different sets of exchangeability judgments); and

– 3-way out-of-sample predictive cross-validation (3CV), a modification

of DA in which the data are partitioned into 3 (rather than the usual 2)

subsets S1, S2, S3; a DA search is undertaken iteratively, modeling with S1

and predictively validating with S2; and S3 is not used in quoting final

uncertainty assessments, but is instead used to evaluate predictive

calibration of the entire modeling process (this solves the problem by

paying the “right” price for shopping around).
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Conclusions (continued)

• Two basic kinds of model choices need to be made in

both BNP and 3CV:

Q1 Is M1 better than M2? Q2 Is M1 good enough?

• ( Q1 and Q2 ) Model choice is really a decision problem and should be

approached via MEU, with a utility structure that’s sensitive to the

real-world context.

• ( Q1 and Q2 ) When the goal is to make an accurate scientific summary

of what’s known about something, the predictive log score has a sound

generic utility basis and can yield stable and accurate

model specification decisions.

• ( Q1 ) DIC can be thought of as a fast approximation to the leave-one-out

predictive log score (LSCV ), but DIC can behave unstably

as a function of parameterization.
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Conclusions (continued)

• ( Q1 ) The full-sample log score (LSFS) is n times faster than naive

implementations of LSCV , has better small-sample model discrimination

accuracy than either LSCV or DIC, and has better asymptotic behavior

than LSCV .

• ( Q1 ) Generic Bayes factors are highly unstable when context suggests

diffuse prior information; many methods for fixing this have been proposed,

most of which seem to require an appeal to ad-hockery which is absent

from the LSFS approach.

• ( Q2 ) The basic Gelman et al. (1996) method of posterior predictive

model-checking is badly calibrated: when it gives you a tail area of, e.g.,

0.4, the calibrated equivalent may well be 0.04.

• ( Q2 ) We have modified an approach suggested by Robins et al. (2000) to

help answer the question “Could the data have arisen from M1?” in a

well-calibrated way.
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Conclusions (continued)

• People often talk about BNP modeling as providing “insurance” against

mis-specified parametric models:

(1) You can simulate from a known (“true”) parametric model M1 and fit

M1 and BNP to the simulated data sets; both will be valid (both will

reconstruct the right answer averaging across simulation replications)

but the BNP uncertainty bands will typically be wider.

(2) You can also simulate from a different parametric model M2 and fit M1

and BNP to the simulated data sets; often now only BNP will be valid.

People refer to the wider uncertainty bands for BNP in (1) as the

“insurance premium” you have to pay with BNP to get the extra

validity of BNP in (2).

But this is not a fair comparison: the simulation results in (1) and (2) were

all conditional on a known “true” model, and don’t immediately apply to

a real-world setting in which you don’t know what the “true” model is.
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Conclusions (continued)

When you pay an appropriate price for shopping around for the “right”

parametric model (as in 3CV), the discrepancy between the parametric

and BNP uncertainty bands vanishes.

• In preliminary results (with random-effects models in T versus C randomized

trials), the right amount of data to allocate to subset S3 to make this

happen with moderate sample sizes is about 25%, leading to a recommended

allocation of data across (S1, S2, S3) in the vicinity of (50%, 25%, 25%).

In other words, with n = 1,000 I should be prepared to pay about 250

observations worth of information in quoting my final uncertainty

assessments (i.e., make these uncertainty assessments about
√

n
0.75n

.
= 15%

wider than those based on the full data set), to account in a

well-calibrated manner for my search for a good model.

Bayesian Model Specification 73


