
VLDB Journal manuscript No.
(will be inserted by the editor)

An Annotation Management System for Relational Databases?

Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, Gaurav Vijayvargiya

UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
e-mail: {dbhagwat, laura, wctan, gaurav}@cs.ucsc.edu

The date of receipt and acceptance will be inserted by the editor

Abstract We present an annotation management system for re-
lational databases. In this system, every piece of data in a relation is
assumed to have zero or more annotations associated with it and an-
notations are propagated along, from the source to the output, as data
is being transformed through a query. Such an annotation manage-
ment system could be used for understanding the provenance (aka
lineage) of data, who has seen or edited a piece of data or the qual-
ity of data, which are useful functionalities for applications that deal
with integration of scientific and biological data.

We present an extension, pSQL, of a fragment of SQL that has
three different types of annotation propagation schemes, each use-
ful for different purposes. The default scheme propagates annota-
tions according to where data is copied from. The default-all scheme
propagates annotations according to where data is copied from among
all equivalent formulations of a given query. The custom scheme al-
lows a user to specify how annotations should propagate. We present
a storage scheme for the annotations and describe algorithms for
translating a pSQL query under each propagation scheme into one or
more SQL queries that would correctly retrieve the relevant annota-
tions according to the specified propagation scheme. For the default-
all scheme, we also show how we generate finitely many queries
that can simulate the annotation propagation behavior of the set of
all equivalent queries, which is possibly infinite. The algorithms are
implemented and the feasibility of the system is demonstrated by a
set of experiments that we have conducted.

Key words data provenance, lineage, annotation propaga-
tion, metadata

1 Introduction

For many scientific domains, new databases are often created
to support the data analysis needs of domain-specific scien-
tists. Some examples of such databases from biology include
UniProt [2] and SWISS-PROT [3]. Data that is collected from
other sources is often cleansed and reformatted before it is
compiled into a new database. Furthermore, it is common for

? Supported in part by an NSF CAREER Award IIS-0347065 and
an NSF grant IIS-0430994.

such newly created databases to contain new analysis or re-
sults that are derived by scientists. By associating old and new
data together in the new database, an integrated perspective
is provided to scientists and this is critical for further analy-
sis and scientific discovery. Very often, there is information
about data that is not kept in the database but one would like
to propagate this information along as data is being moved
around. Examples include information about the perceived
accuracy or reliability of experimental results by domain ex-
perts, or information about who has seen or edited a piece of
data. In fact, our initial motivation for the design of a sys-
tem that can propagate additional information around is to
propagate the provenance of data items along as data is being
copied. With the proliferation of many such inter-dependent
databases (see [11] for a catalog of biology databases), it
is natural to ask what is the provenance of a piece of data
(i.e., where that piece of data is copied or created from) in a
database. Understanding the provenance of data is important
towards understanding the quality of data which may help, for
example, a scientist to decide on the amount of trust to place
on a piece of information that she encounters in a database.

We describe an annotation management system for rela-
tional databases where every column of every tuple in every
relation can be annotated with zero or more annotations. We
use the term annotation to mean information about data such
as provenance, comments, or other types of metadata. The
annotations are automatically propagated along as data is be-
ing transformed through a query. In its default behavior, our
system propagates annotations based on where data is copied
from. As a consequence, if every column of every tuple in
a database is annotated with its address, the provenance of
data is propagated along as data is being transformed. Hence
one immediate application is to use these annotations to sys-
tematically trace the provenance and flow of data. Even if
the data had undergone several transformation steps, we can
easily determine the origins (or the flow of data for that mat-
ter) through the transformation steps by examining the an-
notations. Another use of annotations is to describe informa-
tion about data that would otherwise have not been kept in
a database. For example, an error report or remarks about a

2 Bhagwat, Chiticariu, Tan, and Vijayvargiya

piece of data may be attached and propagated along to other
databases, thus notifying other users of the error or additional
information. The quality or security level of a piece of data
can also be described in annotations. Since annotations are
propagated along as a query is executed, the annotations on
the result of a query can be aggregated to determine the qual-
ity or degree of sensitivity of the resulting output. This idea
of using annotations to describe the security level of various
data items or to specify fine-grained access control policies is
not new and can be found in various forms in existing litera-
ture [12,14,21].

We describe three propagation schemes for propagating
annotations that are motivated by different needs. They cor-
respond to the default, default-all, and custom propagation
schemes. The default scheme uses provenance as the basis
for propagating annotations. If an output piece of data d′ is
copied from an input piece of data d, then the annotations as-
sociated with d are propagated to d′. A piece of output data
d′ is copied from an input piece of data d if d′ is created from
d according to the syntax and evaluation of the query. Al-
though this definition corresponds intuitively to how people
reason about provenance, the way annotations are propagated
is dependent on the way a query is written. As shown in [27],
two equivalent queries may propagate annotations differently.
For instance, consider the relations R(A, B) and S(B, C).
The following two equivalent queries compute the join of R

and S on the B attribute.
Q1:
SELECT r.B

FROM R r, S s

WHERE r.B = s.B

Q2:
SELECT s.B

FROM R r, S s

WHERE r.B = s.B

Intuitively, it is easy to see that Q1 propagates the anno-
tations from the B attribute of R, while Q2 propagates an-
notations from the B attribute of S. While this behavior may
seem disturbing at first, in many applications including those
described above, such an automatic provenance-based anno-
tation propagation scheme which allows one to trace where
data is copied from or copied to based on a given query is still
very desirable. Indeed, similar ideas were proposed before
in [19,31]. We also describe an alternative method of propa-
gating annotations, called the default-all scheme, which prop-
agates annotations according to where data is copied from
in all equivalent formulations of the given query since one
may be interested in obtaining all relevant annotations of a
piece of data in the output regardless of how a query may
have been written. Unlike the default scheme, two equivalent
queries will always propagate annotations in the same way
under this scheme. In some cases, a user may only be inter-
ested in annotations provided by a certain trusted data source.
Hence we also provide a third propagation scheme, called the
custom propagation scheme, where the user is free to specify
how annotations should be propagated.
Summary of results We have implemented all three prop-
agation schemes in our annotation management system by
extending a fragment of SQL. We call this extension pSQL.
A pSQL query is essentially an SQL query extended with
a PROPAGATE clause that would propagate annotations ac-

cording to one of the schemes described above as data is
transformed. In our implementation, we assume that for ev-
ery attribute of every relation, there is an additional column
that stores the annotations for that attribute. A translation
algorithm translates a given pSQL query into one or more
SPJ queries against these underlying relations and these SPJ
queries will retrieve the relevant annotations according to the
specified propagation scheme. In the default-all scheme, we
are required to propagate annotations according to every pos-
sible equivalent reformulations of a given query. At first sight,
the default-all scheme seems impossible to implement as there
are infinitely many equivalent reformulations of a given query.
We show, however, that it is always possible to find a finite set
of equivalent queries whose annotation propagation behavior
is representative of all equivalent queries. Hence, by running
every query in this finite set and taking the union of result-
ing tuples and annotations, we are able to obtain the anno-
tated output of the given query under the default-all scheme.
We have conducted experiments to evaluate the feasibility of
such an annotation management system. Our experimental
results indicate that the execution time of a query under any
propagation scheme increases only slightly when the num-
ber of annotations in a database is doubled (on the average,
the default and default-all queries we experimented with took
about 0.71% and respectively 0.1% more time to execute on
the 100MB database when the number of annotations was
doubled from 30% to 60%). Our results also show that for
the queries we executed, the performance of a query under
the default-all scheme can be at worst eight times slower
than the performance of the same query under the default
or no propagation scheme (i.e., SQL query). At best, it runs
about twice as slow. For the default scheme, however, the ex-
ecution times of pSQL queries are comparable to those of
SQL queries. On the average, the pSQL queries with default
scheme that we experimented with on a 100MB database took
around 40% more time to execute than their corresponding
SQL queries. For larger databases (500MB and 1GB), the
pSQL queries with default scheme took only about 15% and
respectively 24% more time to execute than their correspond-
ing SQL queries on the average. However, our empirical re-
sults indicate that the performance of pSQL queries starts to
degrade on databases annotated more than 100%. This sug-
gests that perhaps our scheme for storing annotations is not
the best suited in such scenarios. We plan to investigate the
trade-offs between different other annotation storage schemes
in the future.

Related Work The problem of computing data provenance
is not new. Cui, Widom, and Wiener [10] first approached the
problem of tracing the provenance of data that is the result
of a query applied on a relational database. The solution pro-
posed in [10] was to first generate a “reverse” query Qr when
asked to compute the provenance of an output tuple t in the
result of a query Q applied on a database D (i.e., Q(D)).
The result of applying Qr on D consists of all combinations
of source tuples in D such that each combination of source
tuples and Q explain why t is in the output of Q(D). The
type of provenance studied by [10] is called why-provenance

An Annotation Management System for Relational Databases 3

according to Buneman, Khanna and Tan [6]. Additionally,
we may also be interested in knowing where the values of
a tuple t in the result of Q(D) are copied from in D. The
latter type of provenance is called where-provenance in [6]
and it is this type of provenance that we use for determining
where annotations are propagated from. In both works [6,10],
a “reverse” query is generated in order to answer provenance.
While the reverse query approach works well in general, it
requires a reverse query to be generated and evaluated every
time the provenance of an output tuple is sought for. Hence if
the provenance of a large number of output tuples is required,
this may not be the optimal way to compute provenance.

The reverse query approach is what we call the lazy ap-
proach for computing provenance; a query is generated and
executed to compute the provenance only when needed. In
this paper, we propose to trade space for time and carry along
the provenance of data as data is being transformed. Hence,
in this approach, the provenance of data is eagerly computed
and immediately available in the output. The idea of eagerly
computing provenance by forwarding annotations along data
transformations is also not new and has been proposed in var-
ious forms in existing literature [4,19,31]. In fact, our anno-
tation propagation rules which propagate annotations based
on where-provenance are similar to those proposed in [31].
In [31], however, only information about which source rela-
tions a value is copied from is propagated along. In contrast,
our system is flexible in the amount of information that is car-
ried along to the result (i.e., it could be the source relations, or
the exact location within the source locations, or a comment
on the data). An annotation is also an example of superim-
posed information (data “placed” over existing information),
as described in [20].

Numerous annotation systems have been built to support
and manage annotations on text and HTML documents [15,
18,23,26,30]. Recently, annotation systems for genomic se-
quences [5,13,17] have also been built. Laliberte and Braver-
man [18] discussed how to use the HTTP protocol to de-
sign a scalable annotation system for HTML pages. Schick-
ler, Mazer, and Brooks [26] discussed the use of a specialized
proxy module that would merge annotations from an annota-
tion store onto a Web page that is being retrieved before send-
ing it to the client browser. Annotea [15,30] is a W3C effort
to support annotations on any Web document. Annotations
are also stored on annotation servers and XPointer is used
for pinpointing locations on a Web document. A specialized
client browser that can understand, communicate, and merge
annotations residing in the annotation servers with Web doc-
uments is used. Phelps and Wilensky [22–24] also discussed
the use of annotations with certain desirable properties on
multivalent documents [24] which support documents of dif-
ferent media types, such as images, postscript, or HTML.
DAS or Biodas [5,13] and the Human Genome Browser [17]
are specialized annotation systems for genomic sequence data.
In almost all of these systems, the design includes multiple
distributed annotation servers for storing annotations and data
is merged from various sources to display it graphically to an
end user. The research of these systems has been focused on

the scalability of design, distributed support for annotations,
or other added features.

We designed and implemented an annotation management
system for relational databases where annotations can be made
on relational data. This idea was first proposed in [7,27].
Unlike Web pages, the rigid structure of relations makes it
easy to describe the exact position where an annotation is at-
tached. Web pages, however, are often retrieved in part or
as a whole. Hence, the issue of what annotations to propa-
gate along when a web page is retrieved is straightforward. In
contrast, an annotated relation in our system may undergo a
complex transformation as a result of executing a query. We
are thus concerned with how annotations should propagate
when such complex transformations occur. To the best of our
knowledge, this is the first implementation of an annotation
management system for relational databases that would allow
a user to specify how annotations should propagate.

In Section 2, we describe pSQL and the three different
propagation schemes. In Section 3, we describe the algorithm
for generating a finite set of queries that can simulate the an-
notation propagation behavior of all equivalent queries of a
given pSQL query. In Section 4, we describe the architecture
of our system and a storage scheme for annotations as well
as our translation algorithm that rewrites a pSQL query into
an SQL query against the underlying storage scheme. In Sec-
tion 5, we describe our experimental results and in Sections 6
and 7, we conclude with some possible future extensions to
our system.

2 pSQL

In our subsequent discussions, we focus on a fragment of
SQL that corresponds to conjunctive queries with union [1]
(also known as the Select-Project-Join-Union fragment of SQL).
We extend this fragment of SQL with a PROPAGATE clause
to allow users to specify how annotations should propagate.

Definition 1 A pSQL query is a query of the form Q1 UNION
... UNION Qk, k > 0, where each Qi, i ∈ [1, k], is a pSQL
query fragment of the form shown below:

SELECT DISTINCT selectlist
FROM fromlist
WHERE wherelist
PROPAGATE DEFAULT | DEFAULT-ALL |

r1.A1 TO B1, ..., rn.An TO Bn

The fromlist of a pSQL query fragment is of the form
“R1 r1, ..., Rk rk” where ri is a tuple variable of the corre-
sponding relation Ri. The selectlist of a pSQL query frag-
ment is of the form “r1.C1 ASD1, ..., rm.Cm ASDm” where
ri is a tuple variable defined in fromlist, Ci is an attribute
of the relation that corresponds to ri, and Di is an attribute
name of the output relation. The WHERE clause is optional
and the wherelist is a conjunction of one or more equalities
between attributes of relations or between attributes of rela-
tions and constants. The PROPAGATE clause can be defined
with DEFAULT, DEFAULT-ALL, or a list of clauses of the
form “r.A TO B” definitions where r.A denotes an attribute

4 Bhagwat, Chiticariu, Tan, and Vijayvargiya

SWISS-PROT
ID Desc

z131 {a1} AB {a2}

q229 {a3} CC {a4}

q939 {a5} ED {a6}

PIR
ID Name

p332 {a7} AB {a8}

p916 {a9} AB {a10}

Genbank
ID Desc

g231 {a11} AB {a12}

g756 {a13} CC {a14}

Mapping Table
entryid swissprot pir genbank

1 {a15} z131 {a16} p332 {a17} g231 {a18}

2 {a19} q229 {a20} p916 {a21} g756 {a22}

3 {a23} q939 {a24} p677 {a25} g635 {a26}

Result of Q1:
ID Desc

q229 {a3} CC {a4}

Result of Q2:
ID Name

p332 {a7} AB {a8, a10}

p916 {a9} AB {a8, a10}

Result of Q3:
ID Desc

g231 {a11, a12} AB
g756 {a13, a14} CC

Fig. 1 Three protein databases, a mapping table and the result of three pSQL queries.

A of the tuple that is bound to r and B is an attribute among
the Djs. ut

The SQL query that corresponds to a pSQL query Q is the
SQL query that results when all PROPAGATE clauses in Q

have been removed. The meaning of a pSQL query is similar
to that of its corresponding SQL query except that annota-
tions are also propagated to each emitted tuple according to
the specification given in the PROPAGATE clauses.

We note at this point that other set operators (such as in-
tersection or set difference) and aggregate functions are not
allowed to appear in a pSQL query. In Section 6.2 we de-
scribe how we extend pSQL queries to a larger fragment of
SQL where some aggregates are also allowed.

Example 1 Consider three databases SWISS-PROT (a protein
database), PIR (another protein database), and Genbank (a
gene database). Each of these databases is modeled as a rela-
tion. The schemas and an instance of each relation are shown
at the top of Figure 1. An annotation, shown in braces, is
placed on every column of every tuple. Each annotation can
be interpreted as the address of the value in the corresponding
column of the tuple. An example of a pSQL query with the
default propagation scheme is shown below.

Q1 = SELECT DISTINCT s.ID AS ID, s.Desc AS Desc
FROM SWISS-PROT s
WHERE s.ID = “q229”
PROPAGATE DEFAULT

Intuitively, the default scheme specified in Q1 propagates
annotations of data according to where data is copied from.
The result of Q1 executed against the relation SWISS-PROT
is shown in Figure 1. The annotation a3 is attached to the
value q229 in the output since q229 is copied from the ID
attribute of the second tuple in SWISS-PROT. Likewise, a4

in the output is propagated from the annotation of the Desc
attribute of the second tuple in SWISS-PROT. ut

While the default scheme is a natural scheme for prop-
agating annotations, this scheme is not robust in that two
equivalent queries that return the same output may not prop-
agate the same annotations to the output.

Example 2 Consider two equivalent SQL queries Q′ and Q′′

(two queries are equivalent if they produce the same result on
every database).

Q′ = SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p, Mapping Table m

WHERE p.ID = m.pir
Q′′ = SELECT DISTINCTm.pir AS ID, p.Name AS Name

FROM PIR p, Mapping Table m

WHERE p.ID = m.pir

The results of running Q′ and Q′′ under the default prop-
agation scheme are shown below.
Result of Q′:

ID Name

p332 {a7} AB {a8}

p916 {a9} AB {a10}

Result of Q′′:
ID Name

p332 {a17} AB {a8}

p916 {a21} AB {a10}

For Q′, the annotations for the ID column are from the
PIR table while for Q′′, the annotations for the ID column
are from the Mapping Table. ut

While it is likely that a user will realize that Q′ will gen-
erate a different annotated outcome from Q′′ in general, the
situation is not so straightforward for more complex queries.
The above example motivates the need for a propagation scheme
that is invariant under equivalent queries. One should be able
to retrieve all relevant annotations about a piece of output data
regardless of how the query is written, if desired. The default-
all propagation scheme propagates annotations according to
where data is copied from among all equivalent formulations
of the given query. Hence the annotated outcome is the same
for equivalent queries under this scheme. In case a user prefers
to retrieve annotations from one source over another, the user

An Annotation Management System for Relational Databases 5

is also free to specify how annotations should propagate in
the custom scheme.

Example 3 The queries Q2 and Q3 are examples of pSQL
queries with the default-all and custom propagation schemes
respectively.

Q2 = SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p

PROPAGATE DEFAULT-ALL
Q3 = SELECT DISTINCT g.ID AS ID, g.Desc AS Desc

FROM Genbank g

PROPAGATE g.ID TO ID, g.Desc TO ID

The results of Q2 and Q3 are shown at the bottom of Fig-
ure 1. The query Q2 retrieves all tuples from the PIR table
under the default-all propagation scheme. Since the follow-
ing query is equivalent to Q2,

Q2 = SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p, PIR q

WHERE p.Name = q.Name

annotations of proteins with the same name are combined to-
gether. As a consequence, the protein with name AB has both
annotations a8 and a10. Intuitively, the annotations we get
in the result of a default-all pSQL query fragment Q are the
combined annotations of results from all equivalent queries
of Q. In the custom scheme of Q3, annotations are propa-
gated according to the given user specification (i.e., g.ID TO
ID, g.Desc TO ID). A clause “g.ID TO ID” states that the an-
notations associated with the value of the ID attribute of the
tuple that is currently bound to g should propagate to the ID
attribute of the output tuple. Similarly, the annotations asso-
ciated to the value of the Desc attribute of the tuple that is
currently bound to g should propagate to the ID attribute of
the output tuple. ut

Some Terminology A cell (or location) is a triple (r, t, i)
which denotes the ith column of the tuple t in relation r. We
sometimes use the attribute name at position i instead of the
position i. We also write a cell simply as a pair (t, i) in the
context where the relation r is clear. Let L denote the set of
all strings. Each cell c in a database is associated with a set
of annotations {a1, ..., ak} where each ai, i ∈ [1, k], is an
element in L. We also say each ai, i ∈ [1, k], is an annotation
attached to c. We use the notation A(r, t, i) to denote the set
of all annotations attached to the cell (r, t, i). Similarly, A(t,
i) denotes the set of all annotations attached to the cell (t, i)
in the context where the relation r is clear.

Example 4 Figure 1 shows several examples of annotated re-
lations. The value z131 in SWISS-PROT is the value at cell
(SWISS-PROT, (z131, AB), ID) which denotes the ID col-
umn of tuple (z131, AB) in the SWISS-PROT relation. Note
that the attribute names in the tuple (z131, AB) have been
omitted. The annotation {a1} is the set of annotations asso-
ciated with this cell. Hence, A(SWISS-PROT, (z131, AB),
ID) is {a1}. In the result of Q2, A((p332, AB), Name) is
{a8, a10}. ut

Containment vs. Annotation-Containment. Two pSQL queries
Q and Q′ are equivalent, denoted as Q = Q′, if for every

database D, Q(D) = Q′(D). The query Q is contained in Q′,
denoted as Q ⊆ Q′, for every database D, Q(D) ⊆ Q′(D).
Two pSQL queries Q and Q′ are annotation-equivalent, de-
noted as Q =a Q′, if Q and Q′ produce the same annotated
output on all databases. More precisely, this means that for
every database D, Q(D) is equal to Q′(D) and the set of
annotations A(Q(D), t, i) is identical to A(Q′(D), t, i) for
every output location (t, i) in Q(D). A pSQL query Q is
annotation-contained in Q′, denoted as Q ⊆a Q′, if for ev-
ery database D, we have Q(D) ⊆ Q′(D) and for every out-
put location (t, i) in Q(D), it is the case that A(Q(D), t, i) ⊆
A(Q′(D), t, i).

Example 5 The queries Q′ and Q′′ in Example 2 are equiv-
alent. However, they are not annotation-equivalent since dif-
ferent annotations are associated with the results. Consider
the following query Q:

SELECT DISTINCT g.ID AS ID, g.Desc AS Desc
FROM Genbank g

PROPAGATE g.ID TO ID, g.Desc TO ID, g.ID TO Desc

The query Q3 of Example 3 is annotation-contained in Q

since they are equivalent and the annotations associated with
each cell in the result of Q3 is contained in the set of anno-
tations associated with the corresponding cell in the result of
Q. Intuitively, Q3 is annotation-contained in Q because they
are equivalent and the ID attribute in the selectlist of both
queries receive the same annotations from g.ID and g.Desc.
Furthermore, the Desc attribute in the selectlist of Q receives
annotations from g.ID. ut

2.1 The Custom Propagation Scheme

We allow the user the flexibility to specify custom propaga-
tion schemes using a PROPAGATE clause of the form “r1.A1

TOB1, ..., rn.An TOBn”. The queries Q3 of Example 3 and
Q of Example 5 are examples of pSQL queries with custom
propagation scheme. The semantics of a pSQL query frag-
ment Q with custom propagation scheme is as follows. For
every binding µ of tuple variables to tuples in the respective
relations according to the fromlist of Q such that the con-
ditions in the wherelist are satisfied, emit an output tuple t

according to the selectlist. For every clause “ri.Ai TO Bi”
specified in the PROPAGATE clause, we add the set of anno-
tations at the location (ri, Ai) to the set of annotations (ini-
tially empty) at the output location (t, Bi). Finally, duplicate
output tuples are merged. Suppose t1, ..., tk are the emitted
tuples and s1, ..., sm are the tuples that result when duplicate
output tuples have been merged. Then, for every output lo-
cation (s, B), we have A(s, B) =

⋃
tj=s,j∈[1,k] A(tj , B).

Example 6 To illustrate the effect of removing duplicate out-
put tuples and merging annotations of duplicate tuples, con-
sider the query below:

SELECT DISTINCT Name AS Name
FROM PIR
PROPAGATE DEFAULT

6 Bhagwat, Chiticariu, Tan, and Vijayvargiya

The result of executing the above query will merge the anno-
tations a8 and a10 of the Name values of the first and second
tuple in PIR. Hence the final output is a single tuple (AB)
with annotations {a8, a10}.

As another example, the query Q3 of Example 3 has a
custom propagation scheme where annotations on both ID
and Desc columns of each tuple propagate to the ID col-
umn of the output tuple. As a consequence, the ID column
of every output tuple is the union of annotations associated
with the ID and Desc columns of the corresponding tuple in
Genbank. ut

Observe that the result of a pSQL fragment evaluated over
a database would not contain any duplicate tuples, since we
assume set semantics. We refer the reader to Section 6.2 for
a discussion on extending pSQL to handle bag semantics as
well.

2.2 The Default Propagation Scheme

If PROPAGATE DEFAULT is used in a pSQL query frag-
ment, the set of annotations of a piece of output data consists
of all the annotations associated with the locations where that
piece of data is copied from in the source.

The semantics of a pSQL query fragment Q with the de-
fault propagation scheme is as follows. For every binding of
tuple variables to tuples in the respective relations according
to the fromlist of Q such that the conditions in the wherelist
are satisfied, emit an output tuple t according to the selectlist
as well as the corresponding sets of annotations for every cell
in t. Since every value of an output cell c′ in t is generated
from some value of an input cell c according to the current
bindings, the set of annotations attached to c is also attached
to c′. Finally, duplicate output tuples are merged together.
Suppose t1, ..., tk are the emitted tuples and s1, ..., sm are
the tuples that result when duplicate output tuples have been
merged. That is, for every output location (s, B), we have
A(s, B) =

⋃
tj=s,j∈[1,k] A(tj , B).

Example 7 Suppose we have the following pSQL query where
each fragment uses the default propagation scheme.

SELECT DISTINCT Desc AS Desc
FROM SWISS-PROT
PROPAGATE DEFAULT
UNION
SELECT DISTINCT Desc AS Desc
FROM Genbank
PROPAGATE DEFAULT

Result:
Desc

AB {a2, a12}

CC {a4, a14}

ED {a6}

The first subquery emits an output tuple “AB” with anno-
tations {a2} and the second subquery emits the same output
tuple “AB” but with annotations {a12}. The merged result
of these two tuples is a single output tuple “AB” with anno-
tations {a2, a12}. This explains the first output tuple in the
result. A similar reasoning applies to the rest of the output
tuples. ut

It is easy to see that a pSQL query fragment with de-
fault propagation scheme can be translated into a pSQL query
fragment with custom propagation scheme. For example, the
query Q1 of Example 1 can be rewritten into a pSQL query
with custom scheme where the propagate clause is replaced
by “PROPAGATE s.ID TO ID, s.Desc TO Desc” since the ID
value and Desc value of an output tuple are copied from s.ID
and s.Desc, respectively.

2.3 The Default-All Propagation Scheme

A pSQL query with the default propagation scheme is, es-
sentially, an SQL query with annotations propagated based
on where a value is retrieved according to the syntax of the
query. We have already seen an example of two pSQL queries
under the default propagation scheme (Example 2) which are
equivalent but not annotation-equivalent.

This motivates us to define a third propagation scheme,
called the default-all scheme, where the annotation propaga-
tion behavior of a pSQL query is invariant to the syntax of the
query. A pSQL query Q with default-all propagation scheme
propagates annotations according to the default propagation
behavior of all equivalent formulations of Q. The resulting tu-
ples that are generated by all equivalent queries of Q accord-
ing to the default scheme are then merged together. Despite
the fact that there are infinitely many equivalent formulations
of Q, we describe a method that would compute the desired
result by examining only a finite number of pSQL queries.
We call such a finite set of queries a query-basis of Q.

Definition 2 Let Q denote a pSQL query with default-all prop-
agation scheme. Let SQL(Q) denote the SQL query that cor-
responds to Q and let E(SQL(Q)) denote the set of all pSQL
queries Q′ under the default propagation scheme such that
SQL(Q′) is equivalent to SQL(Q). A query basis of Q, de-
noted as B(Q), is a finite set of pSQL queries such that

⋃

q∈B(Q)

q =a

⋃

q∈E(SQL(Q))

q

We describe next an algorithm that finds a query basis
for a pSQL query with default-all propagation scheme. The
size of the query basis that the algorithm returns is always
polynomial in the size of Q. (The size of a query basis is
the sum of sizes of each pSQL query fragment in the query
basis. The size of each pSQL query fragment is the sum of the
number of attributes in the selectlist, the number of relations
in the fromlist and the number of attributes appearing in the
wherelist.)

3 Generating a Query Basis

The algorithm for computing a query basis for a pSQL query
with default-all propagation scheme proceeds by first gener-
ating a representative query of Q, called Q0. (This is step 1
of the algorithm Generate-Query-Basis below.) Intuitively, a

An Annotation Management System for Relational Databases 7

representative query of Q is a query that is equivalent to Q

and for every attribute B that is equal or transitively equal to
an attribute A in the selectlist of Q, the annotations of B are
propagated to A. More precisely, if A is among the selectlist
and we have A = B and D = B in the wherelist of Q, then
the propagatelist will contain the propagate clauses “A TO
A”, “B TO A” and “D TO A”.

From Q0, a finite number of auxiliary queries are also
generated and these queries, together with Q0, form a query
basis of Q. (This is step 2 of the algorithm.) Each auxiliary
query is equivalent to Q but may propagate additional anno-
tations to the output that are not propagated by Q0. In other
words, every output value may contain additional annotations
from attributes of other relations which contain identical val-
ues. Intuitively, only a finite number of auxiliary queries are
needed because only one auxiliary query needs to be gener-
ated for each attribute of a relation that contributes annota-
tions to the output. In the rest of the discussion, we restrict
our language to be pSQL query fragments. In other words,
a query basis of Q, denoted as B(Q), is a finite set of pSQL
query fragments such that

⋃
q∈B(Q) q =a

⋃
q∈E(SQL(Q)) q,

where E(SQL(Q)) denotes the set of pSQL query fragments
Q′ such that SQL(Q′) is equivalent to SQL(Q).

We present next an algorithm for generating a query ba-
sis of a pSQL query fragment with default-all propagation
scheme. The algorithm can be extended to handle pSQL queries
(i.e., union of pSQL query fragments) in general and the de-
tails are described in the Appendix.

Algorithm Generate-Query-Basis
Input: A pSQL query fragment Q with default-all propagation scheme.
Output: A query basis of Q, B(Q).

Let Q be a pSQL query fragment of the form shown in Definition 1
with PROPAGATE DEFAULT-ALL clause.

1. Generate Q0, the representative query of Q.
Generate a query Q0 that is identical to Q except that the prop-
agation scheme of Q is replaced with the following propagation
scheme:
For every attribute “r.A ASC” in the selectlist, add “r.A TOC”
to the PROPAGATE clause.
For every attribute “r.A AS C” in the selectlist and every at-
tribute s.B that is equal to r.A or transitively equal to r.A ac-
cording to the wherelist, add “s.B TO C” to the PROPAGATE
clause.
(The effect is that all attributes that are equal to an attribute C

in the selectlist have their annotations propagated to C.)
2. Generate auxiliary queries of Q0.

Initialize B(Q) to the empty set. Add Q0 to B(Q). For every
attribute “r.A AS C” in the selectlist of Q0 and every “s.B TO
D” in the PROPAGATE clause of Q0 where C = D, do the
following:
Create a query Q′ that is identical to Q0. Assume that s is a tuple
variable for relation S. Add “S s′” to the fromlist of Q′ where s′

is a tuple variable that does not occur in Q′. Add “s′.B = s.B”
to the wherelist of Q′ and “s′.B TO C” to the PROPAGATE
clause of Q′. (The auxiliary query Q′ is equivalent to Q but
may carry additional annotations to the output.)

3. Return B(Q).

Example 8 Consider the three databases, SWISS-PROT, PIR,
and Genbank along with a Mapping table that contains the
correspondences between identifiers of genes and proteins in
the three databases in Figure 1. Such mapping tables com-
monly occur in integrating many sources with overlapping
information [16]. Suppose we have the following query Q

that integrates information from SWISS-PROT and PIR.
SELECT DISTINCT t.swissprot AS ID,

p.Name AS Name, s.Desc AS Desc
FROM Mapping Table t, SWISS-PROT s, PIR p

WHERE t.swissprot = s.ID AND t.pir = p.ID
PROPAGATE DEFAULT-ALL

After Step 1 of the above algorithm, we obtain the follow-
ing representative query Q0:
SELECT DISTINCT t.swissprot AS ID,

p.Name AS Name, s.Desc AS Desc
FROM Mapping Table t, SWISS-PROT s, PIR p

WHERE t.swissprot = s.ID AND t.pir = p.ID
PROPAGATE t.swissprot TO ID, s.ID TO ID,

p.Name TO Name, s.Desc TO Desc

Note that the annotations of t.swissprot and s.ID will prop-
agate to the output ID column according to Q0. The second
step of the algorithm generates four auxiliary queries. The
first query is shown below and the rest are shown in Figure 2.

Q1 =
SELECT DISTINCT t.swissprot AS ID,

p.Name AS Name, s.Desc AS Desc
FROM Mapping Table t, SWISS-PROT s, PIR p, Mapping Table t′

WHERE t.swissprot = s.ID AND t.pir = p.ID AND
t′.swissprot = t.swissprot

PROPAGATE t.swissprot TO ID, s.ID TO ID,
p.Name TO Name, s.Desc TO Desc,
t′.swissprot TO ID

The query Q1 differs from Q0 only in the additional high-
lighted terms shown in Q1. There is an extra relation, condi-
tion and propagation in the FROM, WHERE and PROPAGATE
clauses respectively. It is easy to verify that the SQL queries
of Q0 and Q1 are equivalent. There is a homomorphism h

from the tuple variables of Q1 to those of Q0 such that h maps
the fromlist of Q1 to a subset of the fromlist of Q0 and the
conditions in the wherelist of Q0 imply the conditions in the
wherelist of Q1 under h. Furthermore, h maps the selectlist of
Q1 to the selectlist of Q0. There is also a homomorphism in
the reverse direction. Similarly, Q2, Q3, and Q4 of Figure 2
are each equivalent to Q0. ut

Intuitively, the representative query Q0 propagates annota-
tions according to where data is copied from and also where
data could have been equivalently copied from. The reason
why Q0 is generated becomes clearer if we represent Q in
conjunctive query-like notation, which we will continue to
use throughout the rest of the discussion, for ease of exposi-
tion. In conjunctive query-like notation, a query Q is repre-
sented as

H(x̄) : −S1(ȳ1), ..., Sn(ȳn), equalities.

where x̄, ȳi, i ∈ [1, n], denote vectors of variables and every
variable in x̄ occurs in ȳi for some i ∈ [1, n] and equalities

8 Bhagwat, Chiticariu, Tan, and Vijayvargiya

Q2 =
SELECT DISTINCT

t.swissprot AS ID,
p.Name AS Name,
s.Desc AS Desc

FROM Mapping Table t, SWISS-PROT s,
PIR p, SWISS-PROT s′

WHERE t.swissprot = s.ID AND t.pir = p.ID
AND s′.ID = s.ID

PROPAGATE t.swissprot TO ID,
s.ID TO ID, p.Name TO Name,
s.Desc TO Desc, s′.ID TO ID

Q3 =
SELECT DISTINCT

t.swissprot AS ID,
p.Name AS Name,
s.Desc AS Desc

FROM Mapping Table t, SWISS-PROT s,
PIR p, SWISS-PROT s′

WHERE t.swissprot = s.ID AND t.pir = p.ID
AND s′.Desc = s.Desc

PROPAGATE t.swissprot TO ID,
s.ID TO ID, p.Name TO Name,
s.Desc TO Desc, s′.Desc TO Desc

Q4 =
SELECT DISTINCT

t.swissprot AS ID,
p.Name AS Name,
s.Desc AS Desc

FROM Mapping Table t, SWISS-PROT s,
PIR p, PIR p′

WHERE t.swissprot = s.ID AND t.pir = p.ID
AND p′.Name = p.Name

PROPAGATE t.swissprot TO ID,
s.ID TO ID, p.Name TO Name,
s.Desc TO Desc, p′.Name TO Name

Fig. 2 Some of the auxiliary queries generated by Step 2 of Generate-Query-Basis on Example 8.

is a list of zero of more y = c clauses where y is a variable
that occurs amongst ȳis and c is a constant. The variables in x̄

are called distinguished variables. Each subgoal corresponds
to a relation in the fromlist of Q. The equalities between at-
tributes in the wherelist of Q are represented by using the
same variable in the respective positions of relations in the
conjunctive query-like representation of Q. An equality be-
tween an attribute and constant is written out as equalities.
The head of the query H(x̄) represents the selectlist of Q.
We use C(Q) to denote the conjunctive query-like represen-
tation of the SQL query that corresponds to Q. For example,
C(Q0) of Example 8 can be written as
H0(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x,z),

PIR(u, y).
Similar to the semantics of pSQL queries with the default

propagation scheme, annotations are propagated according to
where data is copied from for such queries [27] by tracing the
occurrence of distinguished variables in the query. For exam-
ple, by tracing the occurrence of the variable x in the query
H0, we can conclude that the annotations in the first column
of an output tuple t are obtained from the annotations of the
second column of a tuple in Mapping Table and the first col-
umn of a tuple in SWISS-PROT that created t. A similar argu-
ment applies to the variables y and z in H0. Hence, the repre-
sentative query Q0 of Example 8 is annotation-equivalent to
C(Q0).

We next focus on showing that given a query Q, the al-
gorithm Generate-Query-Basis(Q) correctly generates B(Q),
the query basis of Q. We first formally show that the repre-
sentative query Q0 generated by the algorithm is annotation-
equivalent to its conjunctive query-like representation, C(Q0)
(Proposition 1). Using this result, we further show that the
conjunctive query-like representation of each query gener-
ated by our Generate-Query-Basis algorithm is annotation
contained in

⋃
q∈B(Q) q, the union of all queries in B(Q)

(Proposition 2). Moreover, Lemma 1 shows that every query
that is equivalent to Q is annotation contained in

⋃
q∈B(Q) q.

Finally, we prove our main result (Theorem 1) which states
that the algorithm Generate-Query-Basis correctly generates
a query basis B(Q) for the input query Q.

Proposition 1 The representative query Q0 that is generated
by Generate-Query-Basis(Q) is annotation-equivalent to its
conjunctive query-like representation, C(Q0).

Proof Obviously, the query Q0 is equivalent to C(Q0) since
there is a subgoal S in C(Q0) for every relation S in the
fromlist of Q0 and vice versa, there is an equality condition
e in C(Q0) for every equality condition e the wherelist of
Q0 and vice versa and the head of C(Q0) produces the same
attributes as the selectlist of Q0. We show next that Q0 and
C(Q0) are annotation-equivalent by showing that for every
database D and every output location (t, i) of Q0(D), the set
of annotations A(Q0(D), t, i) is equal to A(C(Q0)(D), t, i).
We show that if a location l′ in the source D corresponds to a
location l in the output of C(Q0)(D), then the annotations at
l′ are part of the annotations at l according to Q0 and D. The
converse is also true.

According to the semantics of conjunctive queries with
annotation propagation stated in [27] (Appendix A.1), the
set of annotations associated with an output location l is the
union of the sets of annotations associated to each source lo-
cation l′ that corresponds to l. A location (s, i) in D corre-
sponds to (t, j) in C(Q0)(D) where C(Q0) is of the form
“H(x̄) : −S1(ȳ1), ..., Sn(ȳn), equalities” if the following
holds:

– for some k ∈ [1, n], ȳk[i] = x̄[j], and there exists a val-
uation ϕ from C(Q0) into D such that H(ϕ(x̄)) = t,
Sk(ϕ(ȳk)) = s and the equalities are satisfied.

Suppose there is such a valuation ϕ for C(Q0) as stated
above. Then there is a valuation ϕ′ for Q0 that produces t.
The valuation ϕ′ is such that ϕ′(r) = S(ϕ(ȳ)) where r is a
tuple variable in Q0 and S(ȳ) is the corresponding subgoal
in C(Q0) which represents the relation that r ranges over. So
ϕ′(u) = s for the tuple variable u in Q0 which ranges over
the relation Sk and the output tuple is t under ϕ′ according to
Q0. Since ȳk[i] = x̄[j] in C(Q0), it must be that the attribute
at position i of Sk (call it A) is equal to the attribute at posi-
tion j in the selectlist of Q0 (call it B) or transitively equal to
B. Hence there must be a clause “PROPAGATE u.A TO B”
in the propagate clause of Q0. Therefore under the valuation
ϕ′, the annotations at (s, i) are part of the annotations at (t, j)
according to Q0 and D.

For the converse, suppose there is a valuation ϕ for Q0

and D such that the annotations at (s, i) are part of the anno-
tations at (t, j) according to Q0 and D with ϕ. So ϕ(u) = s

for some tuple variable u in Q0 and the output tuple is t under

An Annotation Management System for Relational Databases 9

ϕ. Clearly, there must also be a valuation ϕ′ for C(Q0) and
D that produces t. The valuation ϕ′ is such that S(ϕ′(ȳ)) =
ϕ(r) where r is a tuple variable in Q0, S(ȳ) is a subgoal in
C(Q0) and S is the relation that r ranges over. So there ex-
ists a subgoal Sk(ȳk) in C(Q0) for some k ∈ [1, n] such that
Sk(ϕ′(ȳk)) = s = ϕ(u). Let the ith attribute of s be A and
the jth attribute of the output tuple t be B. Hence there must
be a “PROPAGATE u.A TO B” clause in Q0 and “v.C AS
B” is in the selectlist for some tuple variable v and attribute
C. According to Generate-Query-Basis algorithm, this means
that either u.A is equal to v.C or transitively equal to v.C.
Hence, in C(Q0), it must be that ȳk[i] = x̄[j]. So we have
ȳk[i] = x̄[j], H(ϕ′(x̄)) = t, Sk(ϕ′(ȳk)) = s and the equal-
ities are satisfied under ϕ′. Hence (s, i) corresponds to (t, j)
according to C(Q0) and D with valuation ϕ′. ut

In step 2 the algorithm generates one query for every po-
sition in the body where a distinguished variable occurs in
H0. For example, the following four auxiliary queries, in con-
junctive query notation, are generated based on H0. They are
annotation-equivalent to the pSQL query fragments Q1, ..., Q4

shown in Example 8 and Figure 2, respectively.

H1(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x,z),
PIR(u, y), Mapping Table(w1, x,w2, w3).

H2(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x,z),
PIR(u, y), SWISS-PROT(x,w1).

H3(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x,z),
PIR(u, y), SWISS-PROT(w1, z).

H4(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x,z),
PIR(u, y), PIR(w1, y).

Proposition 2 For every query Q′ ∈ B(Q) where B(Q) is
the result of Generate-Query-Basis(Q), C(Q′) is annotation-
contained in

⋃
q∈B(Q) q.

Proof First, C(Q0) is annotation-contained in
⋃

q∈B(Q) q since
Q0 ∈ B(Q) and C(Q0) is annotation-equivalent to Q0 ac-
cording to Proposition 1.

Let Q′ denote a query in B(Q) and Q′ is not Q0. That
is, Q′ is one of the auxiliary queries. Let C(Q′) be of the
form “H(x̄) : −S1(ȳ1), ..., Sn(ȳn), equalities”. Given any
database D, let (s, i) be a location in D which corresponds to
a location (t, j) in C(Q′)(D) on a valuation ϕ. So Sk(ϕ(ȳk)) =
s for some k ∈ [1, n] and H(ϕ(x̄)) = t and ȳk[i] = x̄[j].
There is also a valuation ϕ′ for Q′ and D which produces t.
The valuation ϕ′ is such that ϕ′(r) = S(ϕ(ȳ)) where r is a
tuple variable in Q′ and S(ȳ) is the corresponding subgoal in
C(Q′) which represents the relation that r ranges over in Q′.
So ϕ′(r1) = s for the tuple variable r1 in Q′ which ranges
over the relation Sk and the output tuple is t under ϕ′ accord-
ing to Q′. We show next that for every annotation propagated
by Q′, there is a query in B(Q) that would propagate the an-
notation in the same way.

Suppose Sk(ȳk) is a subgoal among the subgoals of C(Q0)
where Q0 is the representative query generated by step 1 of
the algorithm Generate-Query-Basis. (Recall that C(Q′) dif-
fers from C(Q0) in that it has an additional subgoal added by
step 2 of the algorithm.) Since ȳk[i] = x̄[j] and Sk(ȳk) is a

subgoal among the subgoals of C(Q0), it must be that the at-
tribute at position i of Sk (call it B) is equal to the attribute at
position j in the selectlist of Q′ (call it A) or transitively equal
to A. Hence, there must be a clause “PROPAGATE r1.B TO
A” in the propagate clause of Q0 (and hence Q′). Therefore
under the valuation ϕ′, the annotations at (s, i) are part of the
annotations at (t, j) according to Q′ and D.

Suppose Sk(ȳk) is not a subgoal among the subgoals of
C(Q0). That is, Sk(ȳk) is the subgoal that corresponds to the
extra relation in the fromlist, added by step 2 of algorithm
Generate-Query-Basis. Let the attribute at the ith position of
Sk be B. By step 2 of the algorithm, it must be that the condi-
tion “r1.B = r2.B” is the added condition in the wherelist for
some tuple variable r2 that ranges over a second Sk relation
in Q′ and “r1.B TO C” is the added propagate clause of Q′

for some output attribute C in the selectlist. Let the attribute
at the jth position of the output be A. If C is the same as
A, then the annotations at (s, i) are part of the annotations at
(t, j) according to Q′ and D under the valuation ϕ′. Suppose
C is not equal to A. Since “r1.B = r2.B” and ȳk[i] = x̄[j]
in C(Q′), it must be that r2.B is equal or transitively equal
to A. (Therefore Q0 must contain “r2.B TO A” in the prop-
agate clause.) Hence there must be a query q in B(Q) which
is identical to Q′ except that “r1.B TO A” is in the propagate
clause instead of “r1.B TOC”. Therefore under the valuation
ϕ′, the annotations at (s, i) are part of the annotations at (t, j)
according to q and D. ut

Each auxiliary query carries annotations to the output that
may have been missed by the representative query of Q. We
shall show next that the set of pSQL query fragments in B(Q)
generated by the algorithm is a query basis for Q. We first
prove the following lemma.

Lemma 1 Let B(Q) denote the result produced by the algo-
rithm Generate-Query-Basis(Q), where Q is a pSQL query
fragment, and let Q′ denote a pSQL query fragment under
the default propagation scheme. If Q′ is equivalent to Q, then
Q′ is annotation-contained in

⋃
q∈B(Q) q.

Proof The representative query Q0 that is generated at Step
1 of the algorithm is annotation-equivalent to the conjunc-
tive query representation of the SQL query that corresponds
to Q, C(Q) (Proposition 1). We can also easily verify that
Q′ ⊆a C(Q′). Since C(Q) and C(Q′) are equivalent queries,
the minimal queries of C(Q) and C(Q′) are identical up to
variable renaming. For convenience, we shall assume that the
minimal queries are identical in the form shown below. We
also assume that there are no equalities between variables
and constants, for convenience. (A minimal query is a query
in which no subquery, one that has less subgoals or joins, is
equivalent to it.)

C(Q): H(x̄) :- minpart, rest1.
C(Q′): H(x̄) :- minpart, rest2.
The subgoals denoted by minpart are the subgoals in the

minimal query of C(Q) or C(Q′) and rest1 and rest2 de-
note the rest of the subgoals in C(Q) and C(Q′), respectively.
Our proof makes use of an earlier result in [27] extended for

10 Bhagwat, Chiticariu, Tan, and Vijayvargiya

unions of conjunctive queries. Given a conjunctive query Q,
we use the notation Q[0] to denote the head of Q, the notation
Q[i], i > 0, to denote the ith subgoal of Q, and var(Q[i]) to
denote the list of variables of the ith subgoal of Q.

Fact 1 ([28], Appendix A.3) Given two unions of conjunctive
queries Q =

⋃m

i=1 Qi and Q′ =
⋃n

j=1 Q′
j , Q ⊆a Q′ if and

only if for every Qr where r ∈ [1, m], every variable x, every
i, and every p such that x that occurs at both the ith position
of var(Qr[0]) and the jth position of var(Qr[p]), there exists
a homomorphism h from Q′

s (for some s ∈ [1, n]) to Qr such
that

1. h maps the body of Q′
s into the body of Qr and the head

of Q′
s to the head of Qr, and

2. the variable that occurs at the jth position of the qth sub-
goal of Q′

s (i.e., var(Q′
s[q])[j]) is identical to the variable

at the ith position of the head of Q′
s (i.e., var(Q′

s[0])[i]),
where Q′

s[q] is a pre-image of Qr[p] under h. That is, for
some subgoal q, var(Q′

s[q])[j] = var(Q′
s[0])[i] and h(Q′

s[q])
= Qr[p].

We shall show next that for every distinguished variable x

at the ith position in the head of C(Q′) and its occurrence at
the jth position of the pth subgoal S(ū) (i.e., the jth variable
of ū is x) in the body of C(Q′), there is a generated query
Qg in B(Q) and a homomorphism h : C(Qg) → C(Q′) that
satisfies the conditions (1) and (2) stated in the fact. Then by
the above fact, we have C(Q′) ⊆a C(Qg). By Proposition 2,
we know that C(Qg) ⊆a

⋃
q∈B(Q) q. Therefore C(Q′) ⊆a⋃

q∈B(Q) q. Since Q′ ⊆a C(Q′) and C(Q′) ⊆a

⋃
q∈B(Q) q,

we have Q′ ⊆a

⋃
q∈B(Q) q, which was to be shown.

Let x be a distinguished variable at the ith position in the
head of C(Q′) and suppose x occurs at the jth position of the
pth subgoal S(ū) of C(Q′).
Case 1. If S(ū) is among the subgoals in the minpart of
C(Q′), then it must also be among the subgoals in the min-
part of C(Q). Hence the algorithm Generate-Query-Basis
would have generated one or more queries whose combined
effect is the query C(Qg), shown below,

H(x̄) :- minpart, rest1, S(w̄1, x, w̄2).
The variable x occurs at the jth position in the subgoal

S(w̄1, x, w̄2) and w̄1 and w̄2 are vectors of distinct variables
that do not occur in C(Q). This corresponds to step 2 of
the algorithm where a new relation S is added to the FROM
clause. (Note that a clause “B TO A” is also added to the
PROPAGATE clause to simulate the effect of x propagating
annotations to the output. We assume that x occurs under the
attribute A in the output and B is the attribute name of x

in S in the named perspective. If x occurs under another at-
tribute D in the output of C(Qg), there will be another query
generated by step 2 of the algorithm that propagates the an-
notations of B to D. Hence there is possibly more than one
pSQL query whose combined annotation propagation effect
equals that of C(Qg)). It is easy to see that there is a homo-
morphism from C(Qg) to C(Q′) with the desired properties
required by the fact shown above. The homomorphism is ob-
tained by extending the homomorphism h′ : C(Q) → C(Q′)
which we know exists since C(Q) and C(Q′) are equivalent.

The homomorphism h′ is extended to h′′ by mapping the ith
variable in w̄1 to the corresponding ith variable in ū and the
ith variable in w̄2 to the (j+i)th variable in ū (this is possible
since w̄1 and w̄2 are distinct variables). Clearly, h′′ satisfies
the conditions required by the above fact.
Case 2. If S(ū) are among the subgoals in rest2 of C(Q′),
we first claim that a subgoal S(ū′), where the jth variable
of u′ is x, must also occur among subgoals in the minpart
of Q′. With this, a similar argument presented before shows
that there must be a homomorphism from a query C(Qg) to
C(Q′) with the desired conditions required by the above fact,
which was to be shown.

We show next that if S(ū) are among the subgoals in rest2
of C(Q′), there must exist such a subgoal S(ū′) among the
minpart of C(Q′) where the jth variable of ū′ is x. Since
there is a homomorphism g from C(Q′) to the minimal query
of C(Q′) and g(x) = x (since x is a distinguished variable),
this implies that there must be a subgoal S(...x...) among the
subgoals in the minpart of C(Q′) such that x occurs at the
jth position of this subgoal. We therefore conclude that S(ū′)
exists. ut

Theorem 1 Let Q be a pSQL query fragment with default-all
propagation scheme. The algorithm Generate-Query-Basis(Q)
returns a query basis of Q.

Proof Let E(Q) denote the set of pSQL query fragments q

under the default propagation scheme such that the SQL query
that corresponds to q is equivalent to that of Q (i.e., SQL(q) =
SQL(Q)). Let B(Q) denote the result of running the algo-
rithm Generate-Query-Basis on Q. By Lemma 1, we have
that

⋃
q∈E(Q) q ⊆a

⋃
q∈B(Q) q. Since B(Q) ⊆ E(Q) (the rep-

resentative query and auxiliary queries are each equivalent
to Q), we immediately have

⋃
q∈B(Q) q ⊆a

⋃
q∈E(Q) q and

hence the result. ut

The next proposition shows that the size of a query basis
is polynomial in the size of Q. The size of a query basis is
the sum of sizes of each pSQL query fragment in the query
basis. The size of each pSQL query fragment is the sum of
the number of attributes in the selectlist, the number of rela-
tions in the fromlist and the number of attributes appearing
in the wherelist. This result shows that the result of executing
a query basis is polynomial in the size of the database (data
complexity).

Proposition 3 Given a pSQL query fragment Q with default-
all propagation scheme, the number of queries returned by
Generate-Query-Basis(Q) is polynomial in the size of Q. Fur-
thermore, each query in Generate-Query-Basis(Q) is polyno-
mial in the size of Q.

Proof Let s, f , and w denote the number of clauses in the
selectlist, number of relations in the fromlist, and number of
equalities in the wherelist of Q, respectively. The size of Q

consists in the sum of the number of attributes in the se-
lectlist, the number of relations in the fromlist and the num-
ber of attributes appearing in the wherelist, that is |Q| is at
most s+f +2∗w. One representative query Q0 is generated

An Annotation Management System for Relational Databases 11

Translator Postprocessor
SQL
query RDBMS

sorted
tuples

PSQL
query

final
result

Fig. 3 Architecture of our system.

by the algorithm. The size of the propagate list of Q0 is at
most s + s ∗ 2 ∗ w. (In the worst case, every attribute in the
wherelist propagates to every attribute in the selectlist.) The
number of auxiliary queries generated is therefore at most
s∗ (s+s∗2∗w) which is |selectlist| ∗ |propagatelist|. Hence,
the total number of queries in Generate-Query-Basis(Q) is at
most 1 + s ∗ (s + s ∗ 2 ∗ w).

The size of the selectlist, fromlist, wherelist, and prop-
agatelist of Q0 is s, f , w, and at most s + s ∗ 2 ∗ w, re-
spectively. The size of each auxiliary query is thus at most
s + (f + 1) + (w + 2) + (s + s ∗ 2 ∗ w + 1) since one ad-
ditional relation, one condition, and one propagate clause is
added to Q0. ut

An optimization Observe that the auxiliary pSQL queries
overlap significantly in the PROPAGATE clauses (e.g., see
Figure 2); they differ only in the last (highlighted) propaga-
tion. In fact, we show that the non-highlighted propagations
in the auxiliary queries are unnecessary (the details are omit-
ted). Intuitively, they are unnecessary because these propa-
gations are identical to the propagations of the representa-
tive query Q0. Hence, in our optimized implementation of
Generate-Query-Basis, these non-highlighted propagations are
not generated in the auxiliary queries. We refer to our orig-
inal implementation of algorithm Generate-Query-Basis as
the unoptimized implementation.

4 System Architecture

The architecture of our annotation management system is il-
lustrated in Figure 3. We have two main modules: the trans-
lator module and the postprocessor module. The translator
module takes as input a pSQL query and returns as output an
SQL query (i.e., a union of SPJ queries) which is sent to the
relational database management system (RDBMS). The SQL
query is then executed by the RDBMS. The tuples that are re-
turned by the RDBMS are sorted in a certain order and sent to
the postprocessor module which merges annotations of iden-
tical cells of duplicate tuples together in one pass through the
sorted tuples.

4.1 A Naive Storage Scheme

At present, we store our annotations using a naive storage
scheme: we assume that every attribute A of a relation scheme
R has an extra column Aa that will be used to store anno-
tations. We denote this new relation with extra columns as
R′. For example, a relation R(A, B) will be represented as
R′(A, Aa, B, Ba) in the naive storage scheme. Given a tuple
t in a relation of R, if {a1, ..., ak} are the annotations as-
sociated with the location (t, A), then there will be k tuples

t1, ..., tk in R′ such that ti.Aa = ai for i ∈ [1, k] and the
projection of ti on the attributes of R equals t, for i ∈ [1, k].
For convenience, we sometimes use the relation name R to
refer to R′. As an example, the two instances of R shown be-
low are both valid representations of the tuple (a {a1, a2}, b
{b1}).

A Aa B Ba

a a1 b b1

a a2 b −

A Aa B Ba

a a1 b −
a a2 b −
a a2 b b1

Observe that a query returns the same result regardless of
the underlying storage instance used.

Propagating Provenance. To use our system to automati-
cally propagate provenance along, we first associate each cell
with a distinct annotation to denote its address. In what is
shown below, R′ is defined as a view of an original relation
R using internal row identifiers:

CREATE VIEW R′ AS
SELECT A AS A, rowid||‘#A’ AS Aa,

B AS B, rowid||‘#B’ AS Ba

FROM R

For the above view definition, rowid is an internal row identi-
fier used in many database systems such as Oracle and Post-
gres. We refer the interested reader to [9] for a detailed ex-
planation of how one can automatically trace the provenance
and flow of data using this naive storage scheme.

4.2 The Translator

The translator module takes as input a pSQL query Q and
translates Q to an SQL query Q′ against the naive storage
scheme. A pSQL query with default or default-all propaga-
tion scheme is first reformulated into one with a custom prop-
agation scheme. A pSQL query with the custom propagation
scheme is reformulated into an SQL query (i.e., a union of
SPJ queries). The algorithm for reformulating a pSQL query
fragment with default propagation scheme into a pSQL frag-
ment with custom propagation scheme is described briefly
at the end of Section 2.2. The algorithm for reformulating
a pSQL query fragment with default-all propagation scheme
into a pSQL query fragment with custom propagation scheme
is described by the Generate-Query-Basis algorithm in Sec-
tion 3. We describe next the algorithm for reformulating a
pSQL query with custom propagation scheme into an SQL
query.

Algorithm Custom-pSQL-To-SQL

Input: A pSQL query fragment Q with custom propagation scheme.
Output: An SQL query Qs written against the naive schema.

Let Q be a pSQL query fragment of the form shown in Definition 1
with a custom-propagatelist.

1. Generate intermediate SQL queries. Each intermediate SQL query
retrieves annotations (as much as possible) from the naive schema
according to the given query Q.
Let Q0 be a query that is identical to Q except that it does not
have the PROPAGATE clause of Q.

12 Bhagwat, Chiticariu, Tan, and Vijayvargiya

For each output attribute C of Q, create an empty bin for C. De-
note this bin as bin(C). For each propagate clause “s.B TO C”
in the custom-propagatelist of Q, add “s.Ba AS Ca” to bin(C).
Let Q be the empty set of SQL queries. Repeat until all bins are
empty:

Let Q′ be a query that is identical to Q0. For each output
attribute C of Q, if bin(C) is nonempty, remove a clause
“s.Ba ASCa” from bin(C) and add it to the selectlist of Q′.
If bin(C) is empty, we add “NULL AS Ca” to the selectlist
of Q′. Add Q′ to Q.

2. Generate a wrapper SQL query Qs for Q.
SELECT DISTINCT *
FROM (Q1 UNION · · · UNION Qn)
ORDER BY orderbylist

where Q = {Q1, ..., Qn} and orderbylist is the list of all
output attributes in the selectlist of Q. The orderbylist is
required so that the Postprocessor can merge annotations
of identical tuples together with one pass over the result
of Qs.

3. Return Qs.

Example 9 Consider the SWISS-PROT relation of Figure 1
and assume that there is an extra attribute Size. Suppose we
have the following pSQL query Q with custom propagation
scheme written against SWISS-PROT:
SELECT s.ID AS ID, s.Desc AS Desc, s.Size AS Size,
FROM SWISS-PROT s

PROPAGATE s.ID TO Desc, s.Desc TO Desc,
s.Size TO Size,

Observe that every tuple in SWISS-PROT will be emitted
in such a way that the set of annotations associated with the
Desc column of a tuple in the output is the union of annota-
tions associated with both ID and Desc of the corresponding
tuple in SWISS-PROT. Furthermore, the annotations associ-
ated with the Size column of a tuple are the same annota-
tions associated with the Size column of the corresponding
tuple in SWISS-PROT and the column ID of every tuple in
the output does not carry any annotations.

In step 1 of algorithm Custom-pSQL-To-SQL, the follow-
ing two intermediate SQL queries are generated since bin(ID)
is empty, bin(Desc) = { s.IDa AS Desca, s.Desca AS Desca}
and bin(Size) = { s.Sizea AS Sizea }.

Q1 = SELECT s.ID AS ID, NULL AS IDa

s.Desc AS Desc, s.IDa AS Desca,
s.Size AS Size, s.Sizea AS Sizea,

FROM SWISS-PROT s

Q2 = SELECT s.ID AS ID, NULL AS IDa

s.Desc AS Desc, s.Desca AS Desca,
s.Size AS Size, NULL AS Sizea,

FROM SWISS-PROT s

In step 2, the algorithm generates the following wrapper
SQL query:

Qs = SELECT DISTINCT *
FROM (Q1 UNION Q2)
ORDER BY ID, Desc, Size

Observe that Q1 and Q2 are unioned and the result is
sorted according to the attributes in the selectlist of Q. The
tuples are sorted according to the selectlist of Q so that the

Postprocessor can merge annotations associated with identi-
cal cells in the output of Q in one pass over the result of Qs.
Observe also that the number of SQL queries in Q is equal to
the maximum bin size. ut

4.3 The Postprocessor

The Postprocessor scans the set of tuples returned by the
RDBMS and unions together the annotations from duplicate
tuples for proper display. This operation is done in linear time
in the number and size of tuples retrieved, provided that the
set of emitted tuples is already sorted. For example, if the
postprocessor receives the first table of Section 4.1 as input,
it returns { (a {a1, a2}, b {b1}) }.

Example 10 Suppose the following tuples are returned by the
database system, sorted according to the attributes A and B.

A Aa B Ba

a a1 b a2

a a3 b −

a − c a2

The result returned by the Postprocessor is { (a {a1, a3},
b {a2}), (a {}, c {a2}) }.

5 Experimental Evaluation

We conducted several experiments to evaluate the feasibility
of our annotation management system. Our main goal is to
compare the performance of queries under different propaga-
tion schemes (default, default-all, or no propagation scheme
(i.e., SQL queries)) and to compare the performance of queries
when the number of annotations in a database is varied.

5.1 Methodology

Our system is implemented with Java v1.4.2 on top of Or-
acle 9i Enterprise Edition Release 9.2.0.1.0. We conducted
the experiments on a Pentium 4, 2.8GHz machine with 1GB
RAM.
Datasets The databases used to perform the experiments are
from the TPC Benchmark H (TPCH) Standard Specification
Revision 2.1.0 [29]. For our experiments we used TPCH data
of various sizes and we call these databases the unannotated
databases. In order to create annotated datasets, we modified
the TPCH schema to conform to our naive storage scheme by
adding an additional attribute for every attribute of every rela-
tion in the TPCH schema. For each unannotated database, we
have created three different instances of the modified TPCH
database schema corresponding to 30%, 60% and 100% an-
notated databases. A 30% annotated database means 30% of
the total number of cells in every relation of the database will
contain an annotation. We experimented with three datasets
of sizes 100MB, 500MB and 1GB. In each dataset we have

An Annotation Management System for Relational Databases 13

Suppkey

Nationkey

Supplier
(1000) Q0

Partsupp
(80000) Q3

Customer
(15000) Q4

Nation
(25) Q1

Nationkey

Region
(5) Q2

Regionkey

pSQL Default vs. pSQL Default-All
on 100% annotated 100Mb TPCH dataset

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

(a) (b)

pSQL Default vs. pSQL Default-All
on 100% annotated 500Mb TPCH dataset

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

pSQL Default vs. pSQL Default-All
on 100% annotated 1Gb TPCH dataset

0.1

1

10

100

1000

10000

100000

1000000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

(c) (d)

Fig. 4 (a) Queries used in our experiments and (b), (c), (d) comparison in performance for default and default-all schemes on the 100MB,
500MB and respectively 1GB dataset.

the unannotated database and the three annotated databases
(30%, 60% and 100%).
Workload We ran queries of increasing join sizes and with
varying number of output attributes to determine how well
our system scales for these type of queries. As mentioned
in Section 3, the number of joins and output attributes of
a query are in fact particularly important in our Generate-
Query-Basis algorithm. We did not use TPCH queries in our
experiments because they include aggregates and nested queries.

The queries Q0, ..., Q4 which denote queries with zero
to four joins, respectively, are shown in Figure 4(a). For ex-
ample, Q2 denotes the query Supplier ./ Nation ./ Region
with two joins, on the attributes Nationkey and Regionkey
respectively. The cardinality of each relation in the 100MB
dataset is shown in brackets. (For the 500MB and 1GB datasets,
the cardinalities of relations Nation and Region are the same,
while the cardinalities of relations Customer, Supplier and
Partsupp are 5 and respectively, 10 times larger.) Our work-
load consists of queries Qi(1), Qi(3), Qi(5), i ∈ [0, 4], which
denote the queries with i joins and one, three, and five output
attributes, respectively.
Techniques We executed the workload queries under both the
default and the default-all schemes on the annotated databases.
We also executed the SQL query that corresponds to each of

these queries on the unannotated databases, in order to be able
to measure the overhead that the propagation of annotations
introduces in the overall running time of the queries. All the
experiments were performed on warm buffer and the buffer
size was set to 256MB.

We have implemented and tested both optimized as well
as unoptimized versions of our Generate-Query-Basis algo-
rithm. In what follows we present only our results obtained
with the optimized version, as we observed that it consistently
and significantly outperforms the unoptimized version.

5.2 Experimental Results

Experiment 1 The goal of this experiment is to compare
the performance of pSQL queries under different propagation
schemes (default, default-all or no propagation scheme). We
measured the performance of our system for queries under
the default and default-all propagation scheme on the 100%
annotated database in each of our three datasets. We executed
the workload queries Qi(1), Qi(3), Qi(5), i ∈ [0, 4] on the
100% annotated databases. We also executed the SQL query
that corresponds to each of these queries on the unannotated

14 Bhagwat, Chiticariu, Tan, and Vijayvargiya

Query Unannotated 30% Def 30% Def-All 60% Def 60% Def-All 100% Def 100% Def-All #pSQL #SPJ

Q0(1) 0.0282 0.0374 0.1316 0.0408 0.125 0.0438 0.1308 2 2
Q1(1) 0.025 0.0344 0.0658 0.034 0.072 0.034 0.0624 2 2
Q2(1) 0.019 0.0312 0.0722 0.0342 0.0748 0.0346 0.075 2 2
Q3(1) 0.1532 0.1752 0.3622 0.1688 0.3594 0.1718 0.356 2 2
Q4(1) 92.4604 92.2198 190.7312 91.7214 190.826 91.2248 190.3552 2 2
Q0(3) 0.0252 0.0468 0.0848 0.0468 0.084 0.05 0.084 4 4
Q1(3) 0.0312 0.0502 0.0968 0.0374 0.0968 0.047 0.103 4 4
Q2(3) 0.0284 0.0502 0.1002 0.0562 0.0998 0.05 0.0968 4 4
Q3(3) 0.191 0.219 1.1186 0.2216 1.1188 0.225 1.1314 4 4
Q4(3) 100.0106 113.4292 422.6232 108.2372 424.6066 109.012 419.5722 4 4
Q0(5) 0.0502 0.069 0.1372 0.072 0.1438 0.069 0.1404 6 6
Q1(5) 0.0438 0.0654 0.138 0.0718 0.1312 0.0658 0.1412 6 6
Q2(5) 0.0406 0.0662 0.1498 0.0658 0.1468 0.0688 0.1466 6 6
Q3(5) 0.231 0.287 1.6128 0.2908 1.6096 0.2968 1.6064 6 6
Q4(5) 111.8918 131.3138 858.8238 130.5282 836.5362 130.6594 850.6284 6 6

Table 1 The execution time of each query for each database in the 100MB dataset and each propagation scheme. The columns “#pSQL” and
“#SPJ” denote the size of the query basis and number of SPJ queries that are generated, respectively, for the default-all scheme.

databases. The results we obtained with the 100MB, 500MB
and 1GB datasets are shown in Figure 4.

Figure 4(b) illustrates the execution time (the total time
taken by the translator, RDBMS, and postprocessor to emit all
tuples in the result) of each query for the default and default-
all propagation scheme on the 100% annotated database in
the 100MB dataset. As expected, the execution time of each
query under the default scheme (respectively, the default-all
scheme) increases slightly as more output attributes are emit-
ted (see, for instance, Q0(1), Q0(3), and Q0(5)). The in-
crease in time is due to longer execution time taken by Or-
acle as well as additional overhead incurred in postprocess-
ing, as more attributes of different tuples need to be com-
pared. Additionally, for the default-all scheme, the number
of SPJ queries that are sent to Oracle increases (2, 4, and 6
SPJ queries, respectively) as the number of output attributes
increases. Table 1 provides the exact execution times of each
query for 100% annotated database and the number of SPJ
queries that are generated for the default all-scheme. We note
that in the worst case, a query such as Q4(5) may run about
8 times slower than both the query with default scheme and
the actual SQL query. This is not unexpected, however, as
there are 6 SPJ queries, each with four joins, that are gener-
ated and sent to Oracle for Q4(5), instead of 1. In the best
case (see Q4(1)), a query with default-all scheme runs about
twice as slow than the same query with default scheme. We
note however that for the default scheme, the execution times
of pSQL queries are comparable to those of SQL queries. On
the average, the pSQL queries with default scheme that we
experimented with took around 40% more time to execute
than their corresponding SQL queries, and at best the execu-
tion time of a pSQL query with default scheme is the same
as the execution time of its corresponding SQL query (e.g.,
Q4(1)).

For the default-all scheme there is no increase in the num-
ber of pSQL and SPJ queries that are generated when the
number of joins increases, since the attributes that are se-
lected do not participate in the joins. (The performance of

default-all pSQL queries where attributes that participate in
the joins are selected as well is evaluated in Experiment 3.)
The number of pSQL and SPJ queries that are generated in-
creases when the number of output attributes increases and
they increase linearly. The execution times of Q1(j), j ∈
[1, 3, 5], decreases slightly when compared with Q0(j) be-
cause a join on a small relation has been made.

We observed the same trends for larger datasets as well.
Figures 4(c) and 4(d) illustrate the execution time of each
query for the default and default-all propagation scheme on
the 100% annotated databases in the 500MB and respectively,
1GB datasets. However, we observed that the overhead of
propagating annotations under the default scheme is smaller
on larger datasets. On the average, the pSQL queries with
default scheme took only about 15% and 24% more time to
execute than their corresponding SQL queries on the 500MB
and respectively, 1GB dataset. This is explained by the fact
that on larger datasets, the postprocessing time tends to be-
come less significant when compared to the actual time taken
by the database engine to execute the queries.
Experiment 2 In this experiment we evaluate the influence
of the number of annotations in a database on the execution
time of pSQL queries under default or default-all schemes.
We executed the workload queries Qi(1), Qi(3), Qi(5), i ∈
[0, 4] under both default and default-all schemes on the 30%,
60% and 100% annotated databases. The results we obtained
with the 100MB, 500MB and 1GB datasets are illustrated in
Figure 5 (the results obtained with the 100MB dataset are also
tabulated in Table 1).

We observed that the execution time of each query in-
creases only slightly across databases annotated in various
degrees and this fact is not unexpected. As the number of an-
notations in the database increases, we expect an increase in
the postprocessing time, as more annotations need to be com-
pared and unioned together. Table 2 shows the average per-
centage increases incurred in the total execution times of the
default and default-all queries we experimented with. On the
100MB dataset, for example, the total execution time for de-

An Annotation Management System for Relational Databases 15

pSQL Default on 100 Mb dataset annotated in various degrees

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated BD 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 100 Mb dataset annotated in various degrees

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated BD 30% Annotated DB 60% Annotated DB 100% Annotated DB

(a) (b)

pSQL Default on 500 Mb dataset annotated in various degrees

0.1

1

10

100

1000

10000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 500 Mb dataset annotated in various degree

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

(c) (d)

pSQL Default on 1 Gb dataset annotated in various degrees

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 1 Gb dataset annotated in various degrees

0.1

1

10

100

1000

10000

100000

1000000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

(e) (f)

Fig. 5 Performance comparison for default and default-all pSQL queries on databases annotated in various degrees. (a), (b) Default and
respectively, default-all queries on the 100MB dataset, (c), (d) default and respectively, default-all queries on the 500MB dataset and (e), (f)
default and respectively, default-all queries on the 1GB dataset.

fault queries increases on the average 0.71% when the num-
ber of annotations in the database is doubled from 30% an-
notations to 60% annotations and 1.85% when the number of
annotations is varied from 60% annotations to 100% annota-
tions. We also remark that an increase in the number of anno-
tations in the database induces smaller increases in the total
execution times of default-all queries when compared to de-
fault queries. This is intuitive because for default-all queries,

the postprocessing time is less significant when compared to
the actual time taken by the engine to execute the queries.

Experiment 3 In this experiment we evaluate the effect of
selecting attributes that participate in join conditions on the
performance of default-all pSQL queries. For this purpose,
we measured the execution time of queries Qi(1+j), Qi(3+
j), Qi(5 + j), i ∈ [1, 3], j ∈ [1, i] under the default-all prop-
agation scheme on the annotated databases in the 100MB

16 Bhagwat, Chiticariu, Tan, and Vijayvargiya

Default Default-All
30% to 60% 60% to 100% 30% to 60% 60% to 100%

Dataset (%) increase (%) increase (%) increase (%) increase
100MB 0.71% 1.85% 0.10% 0.02%
500MB 1.26% 1.83% 0.31% 0.65%
1GB 1.22% 1.36% 0.44% 0.99%

Table 2 The average percentage increases incurred in the total execution times of the queries under both default and default-all schemes
when the number of annotations in the database is varied from 30% to 60% annotations and from 60% to 100% annotations.

Query Unannotated 30% Def-All 60% Def-All 100% Def-All #pSQL #SPJ
#tuples exec. time #tuples exec. time #tuples exec. time #tuples exec. time

Q1(1) 1,000 0.025 1,000 0.0658 1,000 0.072 1,000 0.0624 2 2
Q1(1 + 1) 1,000 0.125 1,000 0.266 2,000 0.345 41,826 2.375 5 5
Q2(1) 1,000 0.019 1,000 0.0722 1,000 0.0748 1,000 0.075 2 2
Q2(1 + 1) 1,000 0.062 1,000 0.219 2,000 0.249 41,826 2.204 5 5
Q2(1 + 2) 1,000 0.032 1,000 0.25 8,000 0.688 47,826 2.937 7 7
Q3(1) 1,000 0.1532 1,000 0.3622 1,000 0.3594 1,000 0.356 2 2
Q3(1 + 1) 1,000 0.188 1,000 8.515 2,000 8.546 41,826 10 5 5
Q3(1 + 2) 1,000 0.187 1,000 6.547 8,000 7.359 47,826 13.718 7 7
Q3(1 + 3) 1,000 0.204 22,679 23.516 109,692 37.782 206,826 118.078 9 9
Q1(3) 1,000 0.0312 1,000 0.0968 1,000 0.0968 1,000 0.103 4 4
Q1(3 + 1) 1,000 0.063 1,000 0.234 2,000 0.313 41,826 3.093 7 7
Q2(3) 1,000 0.0284 1,000 0.1002 1,000 0.0998 1,000 0.0968 4 4
Q2(3 + 1) 1,000 0.047 1,000 0.266 2,000 0.328 41,826 3.077 7 7
Q2(3 + 2) 1,000 0.062 1,000 0.312 8,000 0.796 47,826 4 9 9
Q3(3) 1,000 0.191 1,000 1.1186 1,000 1.1188 1,000 1.1314 4 4
Q3(3 + 1) 1,000 0.187 1,000 6.937 2,000 6.859 41,826 15.485 7 7
Q3(3 + 2) 1,000 0.219 1,000 8.375 8,000 9.438 47,826 19.249 9 9
Q3(3 + 3) 1,000 0.219 22,679 30.015 109,692 115.202 206,826 334.532 11 11
Q1(5) 1,000 0.0438 1,000 0.138 1,000 0.1312 1,002 0.1412 6 6
Q1(5 + 1) 1,000 0.063 1,000 0.313 2,000 0.375 41,828 4.859 9 9
Q2(5) 1,000 0.0406 1,000 0.1498 1,000 0.1468 1,002 0.1466 6 6
Q2(5 + 1) 1,000 0.063 1,000 0.547 2,000 0.453 41,828 5.375 9 9
Q2(5 + 2) 1,000 0.063 1,000 0.375 8,000 1.047 47,828 6.11 11 11
Q3(5) 1,000 0.231 1,000 1.5128 1,000 1.6096 1,002 1.6064 6 6
Q3(5 + 1) 1,000 0.249 1,000 9.047 2,000 9.173 41,828 110.422 9 9
Q3(5 + 2) 1,000 0.265 1,000 10.953 8,000 12.297 47,828 117.984 11 11
Q3(5 + 3) 1,000 0.266 22,679 50.563 109,692 197.828 206,828 547.313 13 13

Table 3 The execution time of each default-all query from Experiment 3 on the 30%, 60% and 100% annotated databases in the 100MB
dataset. The columns “#pSQL” and “#SPJ” denote the size of the query basis and respectively, the number of SPJ queries that are generated.
The columns “#tuples” show the number of tuples retrieved by the queries before the postprocessing phase.

dataset. These queries are identical to our original workload
queries Qi(1), Qi(3), Qi(5), i ∈ [1, 3], except that their se-
lectlist additionally contains j attributes selected among the
attributes that appear in some join condition in the wherelist.
For example, consider the query Q1(1) which computes the
join of tables Supplier and Nation on the Nationkey at-
tribute. The query Q1(1 + 1) is identical to Q1(1), except
that the attribute Nationkey (which does not appear in the
selectlist of Q1(1)) appears in the selectlist of Q1(1+1). The
execution times of these queries are shown in Figure 6 (they
are also tabulated in Table 3). The execution times of queries
Qi(1), Qi(3), Qi(5), i ∈ [1, 3] are shown as well, for com-
parison purposes. Table 3 also illustrates the number of tuples
retrieved by each query before the postprocessing step. The

number of output tuples retrieved by each query after post-
processing is 1,000.

As expected, the execution time of the queries under the
default-all propagation scheme increases as more attributes
that participate in the joins are selected. On the 30% anno-
tated database for example, the query Q2(1 + 1) runs 3 times
slower when compared to Q2(1) and the query Q2(1 + 2)
takes 15% more time to run compared to Q2(1 + 1). This
is expected, since more pSQL queries are generated by our
Generate-Query-Basis algorithm (hence more SPJ queries are
executed) as the number of selected attributes involved in join
conditions increases. As shown in Table 3, there are 5 and
respectively, 7 SPJ queries that are executed in order to re-
trieve the correct annotations under the default-all scheme for
queries Q2(1 + 1) and Q2(1 + 2), while only 2 SPJ queries

An Annotation Management System for Relational Databases 17

pSQL Default-All on 100 Mb dataset
annotated in various degrees

0.01

0.10

1.00

10.00

100.00

1000.00

Q1(1)

Q1(1+1)
Q2(1)

Q2(1+1)

Q2(1+2)
Q3(1)

Q3(1+1)

Q3(1+2)

Q3(1+3)
Q1(3)

Q1(3+1)
Q2(3)

Q2(3+1)

Q2(3+2)
Q3(3)

Q3(3+1)

Q3(3+2)

Q3(3+3)
Q1(5)

Q1(5+1)
Q2(5)

Q2(5+1)

Q2(5+2)
Q3(5)

Q3(5+1)

Q3(5+2)

Q3(5+3)

se
co

nd
s (

lo
g

sc
al

e)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

Fig. 6 Performance comparison for default-all queries on the 100Mb dataset when the number of join attributes selected in the output is
varied.

are executed in case of Q2(1). On the average, we observed
that the queries we experimented with took about 5.9, 6.2 and
34.5 times more time to execute on the 30%, 60% and re-
spectively, 100% annotated databases when one join attribute
was selected compared to the same queries with no join at-
tributes appearing in their selectlist. When two join attributes
where selected, the queries (Qi(1+2), Qi(3+2), Qi(5+2),
i ∈ [2, 3]) run on the average about 1.03, 1.84 and 1.24 times
slower on the 30%, 60% and respectively, 100% annotated
databases compared to the same queries where only one join
attribute was selected (i.e., Qi(1 + 1), Qi(3 + 1), Qi(5 + 1),
i ∈ [2, 3]). Finally, the queries which select three join at-
tributes (Q3(1 + 3), Q3(3 + 3), Q3(5 + 3)) run about 4, 11
and respectively, 10 times slower on the 30%, 60% and re-
spectively, 100% annotated databases compared to the same
queries where only two join attributes are selected (i.e., Q3(1+
2), Q3(3 + 2), Q3(5 + 2)).

Observe that as the number of selected join attributes in-
creases, not only that there are more SPJ queries that are ex-
ecuted, but the query engine and the postprocessor module
are given significantly more tuples to sort and respectively,
merge. In the case of query Q1(1) for example, there are
1,000 tuples that have to be sorted and further postprocessed.
However, in the case of query Q1(1 + 1) (which additionally
selects one join attribute), there are 2,000 and respectively,
41,000 tuples that have to be sorted and postprocessed when
this query is run on the 60% and respectively, 100% anno-
tated databases. This explains why Q1(1 + 1) runs about 5
and respectively, 38 times slower on the 60% and respec-

tively, 100% databases when compared to Q1(1). There is
a simple explanation for the fact that as many as 41,000 tu-
ples are retrieved (before postprocessing) when query Q1(1+
1) is run on the 100% database. Recall that this query per-
forms a join between the tables Supplier and Nation on the
Nationkey attribute which is also selected in the output.
There are 1,000 tuples in Supplier and 25 distinct values for
the attribute Nationkey. Since in the 100% database each
value has one distinct annotation, it follows that each distinct
Nationkey value in the table Supplier has about 40 dis-
tinct annotations. According to our Generate-query-basis al-
gorithm, a query that performs a self join of Supplier on the
Nationkey attribute will be executed in order to extract the
40 distinct annotations for each Supplier tuple (these anno-
tations are all needed, according to the semantics of pSQL
queries with default-all propagation scheme). This query will
clearly generate around 40,000 tuples. Although it seems very
excessive to pull out all these 40 annotations for each tuple in
Supplier, we note however that this situation arose precisely
because each Nationkey value had a distinct annotation in
the Supplier table. A scenario where we may have one anno-
tation for each Nationkey value is when we are interested
in tracing the provenance of data and each annotation repre-
sents an address. In this case, however, the default scheme
for propagating annotations is more suitable. Our experimen-
tal results show that there may be significant overhead to the
default-all scheme when annotations can be excessive.

18 Bhagwat, Chiticariu, Tan, and Vijayvargiya

Query Unannotated 130% Def 130% Def-All 160% Def 160% Def-All 200% Def 200% Def-All #pSQL #SPJ

Q0(1) 0.0282 0.0814 0.1846 0.084 0.1906 0.087 0.1844 2 2
Q1(1) 0.025 0.0746 0.122 0.0656 0.1314 0.072 0.1472 2 2
Q2(1) 0.019 0.069 0.1376 0.0782 0.1628 0.0908 0.2092 2 2
Q3(1) 0.1532 1.933 5.9284 2.875 9.2096 6.8282 37.4134 2 2
Q4(1) 92.4604 1644.0896 5029.2506 2648.0438 8392.7502 1682.842 5594.8612 2 2
Q0(3) 0.0252 0.1034 0.4622 0.1062 0.481 0.0966 0.5084 4 4
Q1(3) 0.0312 0.103 0.4968 0.1094 0.55 0.1062 0.5534 4 4
Q2(3) 0.0284 0.1128 0.5344 0.1126 0.6254 0.1312 0.725 4 4
Q3(3) 0.191 2.356 17.9904 3.4872 27.1808 7.569 135.0818 4 4
Q4(3) 100.0106 1973.217 16386.8308 3152.887 27529.0176 2324.8586 20096.4258 4 4
Q0(5) 0.0502 0.1438 0.953 0.1534 1.0408 0.1594 1.1088 6 6
Q1(5) 0.0438 0.1438 1.019 0.147 1.147 0.1498 1.216 6 6
Q2(5) 0.0406 0.147 1.1 0.156 1.443 0.175 1.5158 6 6
Q3(5) 0.231 2.7968 34.1068 4.153 51.9968 8.2562 346.1802 6 6
Q4(5) 111.8918 2347.7426 32228.192 3857.2314 53906.3124 3082.9914 42571.6014 6 6

Table 4 The execution time of each query for each propagation scheme and each database annotated more than 100% in the 100MB dataset.
The columns “#pSQL” and “#SPJ” denote the size of the query basis and number of SPJ queries that are generated, respectively, for the
default-all scheme.

pSQL Default vs. pSQL Default-All
on the 200% annotated 100MB TPCH database

0.01

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 200% Annotated DB pSQL Default-All - 200% Annotated DB

Fig. 7 Comparison in performance for default and default-all schemes on the 100MB database annotated 200%.

Experiment 4 In this experiment we evaluate the perfor-
mance of pSQL queries with default and default-all propa-
gation schemes on databases annotated more than 100%. For
this purpose, we have created three additional databases of
size 100MB with 130%, 160% and respectively, 200% anno-
tations. In the 130% (respectively, 160%) annotated database,
30% (respectively, 60%) of the values have two annotations,
while the rest of the values have only one annotation. In the
200% database, each value has two annotations.

We measured the performance of our system for the work-
load queries Qi(1), Qi(3), Qi(5), i ∈ [0, 4] under the de-
fault and default-all propagation scheme on the 130%, 160%
and 200% annotated 100MB databases. The results we ob-
tained are tabulated in Table 4 (For comparison purposes, Ta-
ble 4 also shows the execution time of the corresponding SQL
queries on the unannotated 100MB database.)

Figure 7 illustrates the execution time of each query for
the default and default-all propagation scheme on the 100MB
database with 200% annotations. As expected, the execution
time of each query under the default scheme (and respec-
tively, default-all scheme) increases as more output attributes
are emitted. As we previously explained (Experiment 1), this
increase is due to longer execution time taken by Oracle,
as well as additional overhead in postprocessing and an in-
crease in the number of SPJ queries that are generated and
executed (for the default-all scheme). On average, a pSQL
default query Qi(1), Qi(3), Qi(5), i ∈ [0, 1, 2, 4] took be-
tween 3 times (e.g., queries with 0 or 1 joins) and 25 times
(e.g., queries with 4 joins) more time to execute compared to
their corresponding SQL queries. This is an obvious conse-
quence of our naive scheme, since each 200% annotated rela-
tion has a double number of tuples compared to the same rela-
tion with no annotations. This leads to longer postprocessing

An Annotation Management System for Relational Databases 19

pSQL Default on 100 Mb dataset with more than 100% annotations

0.01

0.1

1

10

100

1000

10000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unnanotated DB 100% Annotated DB 130% Annotated DB 160% Annotated DB 200% Annotated DB

pSQL Default-All on 100 Mb dataset with more than 100% annotations

0.01

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unnanotated DB 100% Annotated DB 130% Annotated DB 160% Annotated DB 200% Annotated DB

(a) (b)

Fig. 8 Performance comparison for default (a) and default-all (b) pSQL queries on 100MB databases with more than 100% annotations.

time as well as longer execution time taken by the query en-
gine, as a double number of tuples have to be processed from
each relation. (Also note that the more joins in the query, the
longer the execution time taken by the query engine.) Un-
der the default-all scheme, a query such as Q4(5) may run
around 13 times slower when compared to the same query
with default propagation scheme, in the worst case. This is
expected, since there are 6 SPJ queries that are sent to the
query engine, instead of one. In the best case (see Q1(1)) a
query with default-all scheme runs about twice as slow then
the same query under the default scheme. Under both de-
fault and default-all schemes, the queries with 3 joins (i.e.,
Q3(1), Q3(3) and Q3(5)) behaved unexpectedly. Under the
default scheme, these queries ran about 39 times slower (on
the average) compared to their corresponding SQL queries.
The queries Q3(3) and Q3(5) took about 17 and respectively,
42 times longer to execute under the default-all scheme when
compared to the default scheme. While investigating this is-
sue we discovered that the anomaly arises because Oracle
chose really poor execution plans for these particular queries.

Figure 8 shows the execution times of the queries with
default and default-all schemes on the 100MB databases with
100%, 130%, 160% and 200% annotations. On average, we
observed that the queries with default scheme run 6 times
slower when the number of annotations was increased from
100% to 130%. This is due to two factors. First, there are 30%
more tuples in the 130% annotated database compared to
the 100% annotated database. Second, Oracle chose a poorer
plan for executing the queries on the 130% database, with
a different join ordering as well as different join algorithms.
The plan built for the 130% annotated database involved the
nested loops algorithm, while hash joins were used in the plan
constructed for the 100% annotated database. By tweaking
the Oracle optimizer, we were able to detect that the plan built
for the 100% annotated database (using hash joins only) per-
formed much better on the 130% annotated database com-
pared to the plan chosen by the optimizer (which involved
nested loops). The queries with default scheme run on the
average about 1.2 times slower when the number of anno-

tations was increased from 130% to 160% annotations, as
well as from 160% to 200% annotations. This increase in
the execution time is mostly due to the fact that the num-
ber of tuples in the database increases with the number of
annotations. In general, we observed that for each query, the
plan the optimizer chose for the 160% to 200% annotated
databases was the same as the plan chosen for the 130% anno-
tated database. For the queries with 3 joins (i.e. Q3(1), Q3(3)
and Q3(5)), the optimizer chose a poorer plan on the 160%
annotated database when compared to the plans generated for
both the 130% and 200% annotated databases. This explains
why these queries (under both default and default-all propa-
gation schemes) run slower on the 160% annotated database
than on both the 130% and 200% annotated databases. On
the average, the queries with default-all scheme took about
13, 1.3 and respectively 1.8 times longer to execute when the
number of annotations was increased from 100% to 130% an-
notations, 130% to 160% annotations, and respectively, from
160% to 200% annotations.

Empirical conclusions All our results indicate that the time
required to translate the queries is insignificant when com-
pared to the execution time of the queries and the postpro-
cessing time of the queries is proportional to the number and
size of emitted tuples. Also, the execution times of default
queries on databases annotated up to 100% are comparable
to the performance of SQL queries since only one SPJ is gen-
erated and the number of annotations in a database does not
have a major influence in the execution time of pSQL queries
in this case. The execution time of each query for both default
and default-all scheme increases marginally when the number
of annotations in the database is, for example, doubled from
30% annotations to 60%. However, the performance of pSQL
queries starts to degrade significantly on databases with more
than 100% annotations. This indicates that our naive storage
scheme is perhaps not the best suited in such conditions. As
future work, we plan to investigate the trade-offs between
the naive storage scheme and other possible storage schemes
which we briefly discuss in Section 6.1.

20 Bhagwat, Chiticariu, Tan, and Vijayvargiya

6 Discussion

6.1 Other Possible Schemes for Managing Annotations

Besides our naive storage scheme, there are other possible
schemes for storing and managing annotations. We briefly
discuss two of them next.
Annotation-Relation Storage Scheme In this scheme, an-
notations of a relation R are stored in a separate relation
RA, which we call the ‘annotation-relation of R’. The basic
schema of RA has three attributes (id, attribute, annotation)
where an id value uniquely identifies a tuple in R, a name
value is an attribute name in the schema of R and an annota-
tion value is an annotation of the location (id, name). An id
can either be the primary key of relation R, in which case RA

may have more than three attributes, or some unique identi-
fier used in the database system (e.g., rowid in Oracle). For
example, to store the tuples { (a {a1, a2}, b, {b1}), (c, d) }
of the relation R(A, B) with A as the key of the relation, we
would have an annotation-relation RA(id, attribute, annota-
tion) with the following tuples: (a, A, a1), (a, A, a2), (a, B,
b1).

We have yet to investigate the trade-offs between the naive
scheme and annotation-relation scheme. However, we expect
that the annotation-relation scheme may require less storage
space than the naive scheme in general. On the other hand,
one needs to pay a performance penalty in using the annotation-
relation scheme as a join between R and RA is required to
retrieve the relevant annotations of a location in R.
Nested Sets Approach It is easy to observe that the multi-
plicity of a tuple in the naive storage scheme depends on the
number of annotations associated with that tuple. Instead, a
more natural approach would have been to store annotations
associated with each location as nested sets (i.e., the rela-
tion R(A, B) would be stored as R′(A, Aa, B, Ba), where
Aa and Ba are of type nested set). Unfortunately, the nested
set approach is not currently feasible, since not all commer-
cial databases support nested sets and among those who do,
none offers satisfactory support for the operations we need.
As an example, in Oracle 10g the annotation union operation
(i.e., the operation of merging duplicate tuples and their cor-
responding annotations together) is not direct and has to be
performed in several steps.

6.2 Extensions

So far, our pSQL queries do not allow aggregates and bag
semantics (i.e., the DISTINCT keyword must be present).
We discuss briefly next how we might extend pSQL to handle
aggregates and bag queries as well.
Aggregates For the default propagation scheme, if a pSQL
query contains aggregates such as count, sum, and average,
we assume the semantics that no annotations are associated
with the result of these aggregates, since these aggregate val-
ues are not copied from any source values. However, for ag-
gregates such as min(a) and max(a), where a is an attribute

name, our semantics is that the annotations associated with
the location of the resulting min (or max) value are the union
of all annotations of the corresponding a-values whose value
equals to the min (or max) value. It remains to investigate
whether the default-all propagation scheme for pSQL queries
with aggregates can be achieved.
Bag semantics It is known from [8] that two conjunctive
queries are equivalent under bag semantics if and only if they
are isomorphic. This result of [8] implies that to propagate
annotations for a pSQL query under the default-all propaga-
tion scheme and bag semantics, it suffices to generate only
the representative query of that pSQL query in Algorithm
Generate-Query-Basis. To handle bag queries, however, the
naive storage scheme can no longer be used since the multi-
plicity of a tuple in this storage scheme depends on the num-
ber of annotations that are associated with that tuple. An al-
ternative storage scheme that does not modify the original re-
lation is needed (e.g., store every annotation and its location
in a separate relation). To propagate annotations under the
default-all propagation scheme and bag semantics for unions
of conjunctive queries, however, it remains to first provide a
characterization of bag equivalence for unions of conjunctive
queries.

7 Conclusion and Future Work

We have described an implementation of an annotation man-
agement system where different propagation schemes can be
used. Insofar, our system only supports annotations on at-
tributes of tuples. We would like to extend our system to han-
dle annotations on tuples or relations and, in general, to han-
dle annotations on hierarchical data, such as XML. In this
extended framework we are interested in determining which
annotations to propagate under different operators. We would
also like to investigate whether our results for the default-all
propagation scheme still hold.

In our current system, annotations are propagated based
on where-provenance. In addition, we would like to extend
our system to propagate annotations based on why-provenance,
which will provide reasons to why a tuple is in the output.
The default-all propagation scheme returns the union of all
annotations of an output location returned by all equivalent
queries. Conceivably, there could be a complementary prop-
agation scheme that returns the set of all annotations in an
output location if it occurs in the same output location in the
results of all equivalent queries. It remains to be investigated
whether a query basis can be generated for such propagation
scheme. The performance of our annotation management sys-
tem on other storage schemes also needs to be investigated.
It would also be interesting to investigate opportunities for
optimizations on the generated SQL queries.

Acknowledgements We thank Xinyu Hua for her help during the
initial implementation of this system and Ariel Fuxman for helpful
suggestions. We also thank the reviewers for their helpful sugges-
tions.

An Annotation Management System for Relational Databases 21

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison Wesley Publishing Co, 1995.

2. R. Apweiler, A. Bairoch, C. Wu, W. Barker, B. Boeckmann,
S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane,
M. Martin, D. Natale, C. O’Donovan, N. Redaschi, and L. Yeh.
Uniprot: the universal protein knowledgebase. Nucleic Acids
Research, 32:D115–D119, 2004.

3. A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence database and its supplement TrEMBL. Nucleic Acids
Research, 28:45–48, 2000.

4. P. Bernstein and T. Bergstraesser. Meta-Data Support for Data
Transformations Using Microsoft Repository. IEEE Data En-
gineering Bulletin, 22(1):9–14, 1999.

5. biodas.org. http://biodas.org.
6. P. Buneman, S. Khanna, and W. Tan. Why and Where: A Char-

acterization of Data Provenance. In Proceedings of the Interna-
tional Conference on Database Theory (ICDT), pages 316–330,
London, United Kingdom, 2001.

7. P. Buneman, S. Khanna, and W. Tan. On Propagation of Dele-
tions and Annotations Through Views. In Proceedings of the
ACM Symposium on Principles of Database Systems (PODS),
pages 150–158, Wisconsin, Madison, 2002.

8. S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive
queries. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS), pages 59–70, Washington, DC,
1993.

9. L. Chiticariu, W. Tan, and G. Vijayvargiya. DBNotes: A Post-
it System for Relational Databases based on Provenance. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), demonstration track (to
appear), 2005.

10. Y. Cui, J. Widom, and J. Wiener. Tracing the Lineage of View
Data in a Warehousing Environment. ACM Transactions on
Database Systems (TODS), 25(2):179–227, 2000.

11. DBCAT, The Public Catalog of Databases.
http://www.infobiogen.fr/services/dbcat/, cited 5 June 2000.

12. D. E. Denning, T. F. Lunt, R. R. Schell, W. R. Shockley, and
M. Heckman. The SeaView Security Model. In IEEE Sym-
posium on Security and Privacy, pages 218–233, Washington,
DC, 1988.

13. R. Dowell. A Distributed Annotation System. Technical report,
Department of Computer Science, Washington University in St.
Louis, 2001.

14. S. Jajodia and R. S. Sandhu. Polyinstantiation integrity in mul-
tilevel relations. In IEEE Symposium on Security and Privacy,
pages 104–115, Oakland, California, 1990.

15. J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. An-
notea: An open rdf infrastructure for shared web annotations.
In Proceedings of the International World Wide Web Confer-
ence(WWW10), pages 623–632, Hong Kong, China, 2001.

16. A. Kementseitsidis, M. Arenas, and R. J. Miller. Mapping Data
in Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 325–336, San Diego,
CA, 2003.

17. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H.
Pringle, A. M. Zahler, and D. Haussler. The Human Genome
Browser at UCSC. Genome Research, 12(5):996–1006, 2002.

18. D. LaLiberte and A. Braverman. A Protocol for Scalable Group
and Public Annotations. In Proceedings of the International

World Wide Web Conference(WWW3), Darmstadt, Germany,
1995.

19. T. Lee, S. Bressan, and S. Madnick. Source Attribution for
Querying Against Semi-structured Documents. In Workshop on
Web Information and Data Management (WIDM), Washington,
DC, 1998.

20. D. Maier and L. Delcambre. Superimposed Information for the
Internet. In Proceedings of the International Workshop on the
Web and Databases (WebDB), pages 1–9, Philadelphia, Penn-
sylvania, 1999.

21. A. C. Myers and B. Liskov. A decentralized model for informa-
tion control. In Proceedings of the ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 129–142, Saint-Malo,
France, 1997.

22. T. A. Phelps and R. Wilensky. Multivalent Annotations. In Pro-
ceedings of the First European Conference on Research and Ad-
vanced Technology for Digital Libraries, pages 287–303, Pisa,
Italy, 1997.

23. T. A. Phelps and R. Wilensky. Multivalent documents. Proceed-
ings of the Communications of the Association for Computing
Machinery (CACM), 43(6):82–90, 2000.

24. T. A. Phelps and R. Wilensky. Robust intra-document locations.
In Proceedings of the International World Wide Web Confer-
ence(WWW9), pages 105–118, Amsterdam, Netherlands, 2000.

25. Y. Sagiv and M. Yannakakis. Equivalence among relational ex-
pressions with union and difference operators. Journal of the
Association for Computing Machinery (JACM), 27(4):633–655,
1980.

26. M. A. Schickler, M. S. Mazer, and C. Brooks. Pan-Browser
Support for Annotations and Other Meta-Information on the
World Wide Web. In Proceedings of the International World
Wide Web Conference(WWW5), Paris, France, 1996.

27. W. Tan. Containment of relational queries with annotation
propagation. In Proceedings of the International Workshop on
Database and Programming Languages (DBPL), pages 37–53,
Potsdam, Germany, 2003.

28. W. Tan. Containment of relational queries with annotation prop-
agation. Technical report, Department of Computer Science,
UC Santa Cruz, 2003.

29. TPC Transaction Processing Performance Council.
http://www.tpc.org.

30. W3C. Annotea Project. http://www.w3.org/2001/Annotea.
31. Y. R. Wang and S. E. Madnick. A Polygen Model for Het-

erogeneous Database Systems: The Source Tagging Perspec-
tive. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 519–538, Brisbane, Queens-
land, Australia, 1990.

Appendix

Generating a Query Basis for pSQL Queries

To generate a query basis for a pSQL query Q = Q1 ∪ ... ∪
Ql where each Qi, i ∈ [1, l], is a pSQL query fragment
with default-all propagation scheme, we modify Generate-
Query-Basis algorithm described in Section 3 to the follow-
ing algorithm, called Generate-Containment-Basis. Step 1 of
Generate-Containment-Basis remains the same as in Generate-
Query-Basis. The algorithm Generate-Containment-Basis dif-
fers from Generate-Query-Basis in step 2, where for each

22 Bhagwat, Chiticariu, Tan, and Vijayvargiya

pSQL query fragment Qi (1 ≤ i ≤ l), the set of all queries
that are contained in Qi are generated and added to the aux-
iliary queries of Qi. A consequence of this effect is that a
query that is identical to Qi but with an additional relation
R that does not occur in Qi is considered as a query con-
tained in Qi. Annotations from R may propagate to the out-
put. In contrast, step 2 of Generate-Query-Basis generates a
set of auxiliary pSQL query fragments that are each equiv-
alent to Qi. Note that we are not restricting our language
to be pSQL query fragments here (as opposed to algorithm
Generate-Query-Basis). We are computing a query basis for
the set of all pSQL queries that are each equivalent to a given
pSQL query. We describe the algorithm next and then an ex-
ample.

Algorithm Generate-Containment-Basis
Input: A pSQL query Q = Q1∪...∪Ql with default-all propagation
scheme.
Output: A query basis of Q, B(Q).

Let Q be a pSQL query of the form Q1∪ ...∪Ql where each Qi, i ∈
[1, l], is a pSQL query fragment of the form shown in Definition 1
with PROPAGATE DEFAULT-ALL clause. For each Qi, i ∈ [1, l],
we execute the following two steps.

1. Generate Qi
0, the representative query of Qi.

Generate a query Qi
0 that is identical to Qi except that the prop-

agation scheme of Qi is replaced with the following propagation
scheme:
For every attribute “r.A ASC” in the selectlist, add “r.A TOC”
to the PROPAGATE clause.
For every attribute “r.A AS C” in the selectlist and every at-
tribute s.B that is equal to r.A or transitively equal to r.A ac-
cording to the wherelist, add “s.B TO C” to the PROPAGATE
clause.
(The effect is that all attributes that are equal to an attribute C

in the selectlist have their annotations propagated to C.)
2. Generate auxiliary queries of Qi

0.
Initialize B(Qi) to the empty set. Add Qi

0 to B(Qi).
For every clause “s.A AS B” in the selectlist of Qi

0, for every
relation R in the database and every attribute C in the relation
schema of R:
Create a query Q′ that is identical to Qi

0. Add “R r” to the
fromlist of Q′ where r is a tuple variable that does not occur in
Q′. Add the condition “r.C = s.A” to the wherelist of Q′ and
the propagate clause “r.C TO B” to the propagatelist of Q′.
Add Q′ to B(Qi).
(The query Q′ is contained in Qi but may propagate additional
annotations. Furthermore,

⋃
q∈B(Qi)

q is equivalent to Qi.)

Return B(Q1) ∪ ... ∪ B(Qm).

Example 11 Assume that the database consists of the follow-
ing relations: Emp(name, dept), Dept(did, budget), Project(proj,
mgr). Consider following query Q which picks out employ-
ees who belong to some department.

SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d

WHERE e.dept = d.did
PROPAGATE DEFAULT-ALL

Two of the queries generated by step 2 of the algorithm
Generate-Containment-Basis on Q are shown below:

Q1:
SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d, Project p

WHERE e.dept = d.did AND p.proj = e.name
PROPAGATE e.name TO Name, p.proj TO Name

Q2:
SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d, Project p

WHERE e.dept = d.did AND p.mgr = e.name
PROPAGATE e.name TO Name, p.mgr TO Name

The highlighted parts of Q1 and Q2 denote the additional
relation, condition and propagate clauses added to the repre-
sentative query Q0 by step 2 of the algorithm. Observe that
Q1 and Q2 are queries that are contained in Q (but Q0 ∪
Q1 ∪ Q2 is equivalent to Q). Furthermore, Q1 propagates
annotations on projects to the result and Q2 propagates anno-
tations from the names of managers to the result. Arguably,
Q1 should not have been generated since the annotations for
projects are irrelevant for names of employees. The query Q2,
however, propagates the annotations for a manager to an em-
ployee name and this is desired since the manager and the
employee have the same name (and are therefore referring to
the same entity).

Some observations from the above example follow. First,
since our language now allows for union, the query basis for
Q contains more queries than the query basis generated by
Generate-Query-Basis for the same query Q. This is because
in the case of Generate-Query-Basis, we consider only pSQL
query fragments that are equivalent to Q. In contrast here, we
consider all pSQL queries that are equivalent to Q. The above
example also suggests that a more refined method of gener-
ating a query basis is needed. Namely, one should only gen-
erate an auxiliary query if it propagates relevant annotations.
In the above example, Q2 is desired but not Q1. To gener-
ate only auxiliary queries that propagate relevant annotations,
one would require the knowledge of semantically equivalent
attributes in a database to be kept in the system. Queries are
then generated by adding the extra relation and equating only
semantically equivalent attributes. In what follows, we shall
assume that both Q1 and Q2 are generated.

Observe that by equating “r.C = s.A” in step 2, we are
assuming that all attributes have the same type. The algorithm
Generate-Containment-Basis takes as input Q = Q1 ∪ ...∪Ql

and generates as output a query basis B(Q) which is B(Q1)∪
... ∪ B(Ql). The following proposition is similar to Proposi-
tion 2, adapted for queries generated by algorithm Generate-
Containment-Basis.

Proposition 4 For every query Q′ in the result of Generate-
Containment-Basis(Q) (denoted asB(Q)), C(Q′) is annotation-
contained in

⋃
q∈B(Q) q.

Proof Let Q = Q1 ∪ ...∪Ql and let Qi
0 denote the represen-

tative query generated by step 1 of the algorithm for query
Qi. We have C(Qi

0) is annotation-contained in
⋃

q∈B(Qi)
q

since Qi
0 ∈ B(Qi) and C(Qi

0) is annotation-equivalent to Qi
0

according to Proposition 1.

An Annotation Management System for Relational Databases 23

Let Q′ denote a query in B(Q) and Q′ is not Qi
0 for every

i ∈ [1, l]. That is, Q′ is one of the auxiliary queries, generated
by step 2 of the algorithm. Let C(Q′) be of the form “H(x̄) :
−S1(ȳ1), ..., Sn(ȳn), equalities”. Given any database D, let
(s, i) be a location in D which corresponds to a location (t, j)
in C(Q′)(D) on a valuation ϕ. So Sk(ϕ(ȳk)) = s for some
k ∈ [1, n] and H(ϕ(x̄)) = t and ȳk[i] = x̄[j]. There is also a
valuation ϕ′ for Q′ and D which produces t. The valuation ϕ′

is such that ϕ′(r) = S(ϕ(ȳ)) where r is a tuple variable in Q′

and S(ȳ) is the corresponding subgoal in C(Q′) which repre-
sents the relation that r ranges over in Q′. So ϕ′(r1) = s for
some tuple variable r1 in Q′ and the output tuple is t under
ϕ′ according to Q′. We show next that for every annotation
propagated by Q′, there is a query in B(Q) that would prop-
agate the annotation in the same way.

Suppose Q′ is in B(Qi) for some i ∈ [1, l] and Sk(ȳk) is a
subgoal among the subgoals of C(Qi

0) where Qi
0 is the repre-

sentative query generated by step 1 of the algorithm Generate-
Containment-Basis. (Recall that C(Q′) differs from C(Qi

0)
in that it has an additional subgoal added by step 2 of the al-
gorithm.) Since ȳk[i] = x̄[j] and Sk(ȳk) is a subgoal among
the subgoals of C(Qi

0), it must be that the attribute at posi-
tion i of Sk (call it B) is equal to the attribute at position j

in the selectlist of Q′ (call it A) or transitively equal to A.
Hence, there must be a clause “PROPAGATE r1.B TO A” in
the propagate clause of Qi

0 (and hence Q′). Therefore under
the valuation ϕ′, the annotations at (s, i) are part of the anno-
tations at (t, j) according to Q′ and D.

Suppose Sk(ȳk) is not a subgoal among the subgoals of
C(Qi

0). That is, Sk(ȳk) is the subgoal that corresponds to the
extra relation in the fromlist, added by step 2 of algorithm
Generate-Containment-Basis. Let the attribute at the ith po-
sition of Sk be C. Since ȳk[i] = x̄[j] and by step 2 of the
algorithm, it must be that the condition “r1.C = r2.A” is the
added condition in the wherelist for some tuple variable r2

that ranges over a relation in Q′. The clause “r1.C TO B” is
the added propagate clause of Q′ for some output attribute B

in the selectlist. (Hence “r2.A AS B” is among the selectlist
of Q′.) Let the attribute at the jth position of the output be F .
If B is the same as F , then the annotations at (s, i) are part of
the annotations at (t, j) according to Q′ and D under the val-
uation ϕ′. Suppose B is not equal to F . Since “r1.C = r2.A”
and ȳk[i] = x̄[j] in C(Q′), it must be that r2.A is equal or
transitively equal to the output attribute F (according to Qi

0).
In other words, let “r3.E TO F ” be the select clause for F

(which is among the selectlist of Qi
0) where r3 is a tuple vari-

able in Qi
0 and E is an attribute. We have r3.E is either equal

or transitively equal to r2.A according to the wherelist of Qi
0.

Hence the following query Q′′ from Qi
0 will be generated: Q′′

has an extra relation “Sk r1” in the fromlist, the added condi-
tion “r1.C = r3.E” in the wherelist and the added propagate
clause “r1.C TO F ”. Since under ϕ′, we have r1.C = r2.A

and r2.A is equal or transitively equal to r3.E, it follows that
r1.C = r3.E. Therefore the valuation ϕ′ is also a valuation
for Q′′. Hence the annotations at (s, i) are part of the annota-
tions at (t, j) according to Q′′ and D. ut

Our proof for the following Lemma 2 uses a result from [25].

Fact 2 ([25]) Let Q =
⋃

i∈[1,m] Qi and Q′ =
⋃

i∈[1,n] Q
′
i be

unions of conjunctive queries. Then Q ⊆ Q′ if and only if
for every Qi, i ∈ [1, m], there exists Q′

j , j ∈ [1, n], such that
Qi ⊆ Q′

j .

Lemma 2 Let B(Q) denote the result produced by the algo-
rithm Generate-Containment-Basis(Q), where Q is a pSQL
query and let Q′ denote a pSQL query under the default prop-
agation scheme. If Q′ is equivalent to Q, then Q′ is annotation-
contained in

⋃
q∈B(Q) q.

Proof Let Q = Q1 ∪ ... ∪Ql,
⋃

q∈B(Q) q = q1 ∪ ... ∪ qm and
let Q′ = Q′

1 ∪ ... ∪ Q′
n.

We shall show next that for every distinguished variable
x at the ith position in the head of C(Q′

f) where f in [1, n]
and its occurrence at the jth position of the kth subgoal S(ū)
(i.e., the jth variable for ū is x) of C(Q′

f), there is a gener-
ated query qg ∈ B(Q) such that there is a homomorphism
h : C(qg) → C(Q′

f) that satisfies conditions (1) and (2) of
Fact 1. Then by the Fact 1, we have C(Q′

1)∪ ...∪C(Q′
n) ⊆a⋃

q∈B(Q) C(q). For every pSQL query fragment Q, it is the
case that Q ⊆a C(Q). So we have Q′ ⊆a C(Q′

1) ∪ ... ∪
C(Q′

n) and therefore Q′ ⊆a

⋃
q∈B(Q) C(q). By Proposi-

tion 4,
⋃

q∈B(Q) C(q) ⊆a

⋃
q∈B(Q) q. Hence we have Q′ ⊆a⋃

q∈B(Q) q, which was to be shown.
Pick a distinguished variable x at the ith position in the

head of C(Q′
f) where f ∈ [1, n] and at the jth position of

the kth subgoal S(ū) of C(Q′
f). That is, x occurs at the ith

position in H(...), S is the kth subgoal and x occurs at the
jth position in S(...).

C(Q′
f) : H(...x...) :- ..., S(z̄1, x, z̄2), ...

By Fact 2, since C(Q) is equivalent to C(Q′), there ex-
ists a query C(Qg) for some g ∈ [1, l] such that C(Q′

f) ⊆
C(Qg). Consequently, there is a containment mapping h′ :
C(Qg) → C(Q′

f). Accordingly, we know that Generate-
Containment-Basis would generate a query qg according to
Qg such that C(qg) is identical to C(Qg) but has an addi-
tional subgoal S(w̄1, y, w̄2) where w̄1 and w̄2 are vectors of
fresh variables that do not occur elsewhere in C(qg). That is,
C(qg) has the form shown below where y is the distinguished
variable that occurs in the ith position in the head of C(Qg)
and the j position in S(...).

C(qg) : H(...y...) :- body of C(Qg), S(w̄1, y, w̄2).
It is easy to see that there is a homomorphismh : C(qg) →

C(Q′
f) that satisfies conditions (1) and (2) of Fact 1. The

homomorphism h is such that h(x) = h′(x) for every x ∈
var(Qg), h(w̄1) = z̄1, and h(w̄2) = z̄2. Clearly, h is consis-
tent with h′ and is a homomorphism from C(qg) to C(Q′

f).
Hence, by Fact 1, C(Q′

f) ⊆a C(qg). ut

Theorem 2 Given a pSQL query Q, the algorithm Generate-
Containment-Basis(Q) generates a query basis of Q.

Proof Let Q be a pSQL query Q1 ∪ ... ∪ Ql. Let QR denote
the union of all queries in B(Q). That is, QR =

⋃
q∈B(Q) q.

Clearly, QR is contained in Q since each Bi(Qi), i ∈ [1, l],

24 Bhagwat, Chiticariu, Tan, and Vijayvargiya

contains a representative query which is equivalent to Qi and
every other query in Bi(Qi) is contained in Qi. The query
Q is also contained in QR since for every Qi, i ∈ [1, l], Qi

is equivalent to the representative query of Qi in QR. Let
E(Q) denote the set of all equivalent queries of Q where each
query in E(Q) propagates using the default scheme. Since
QR is equivalent to Q, we have QR ∈ E(Q). Hence QR ⊆a⋃

q∈E(Q) q. From Lemma 2, we know that for every query
q ∈ E(Q), we have q ⊆a QR. Therefore

⋃
q∈E(Q) q ⊆a QR

and hence QR =a

⋃
q∈E(Q) q. ut

