
Deconvolution of isoforms from microarray
data using non-negative matrix factorization

Figure 1.  Illustration of how non-negative decomposition predicts both the
transcripts and their expression levels.  A hypothetical gene containing three
exons is shown in the upper left along with three probes.  The upper left
panel illustrates the true expression levels of the “hidden”.  The hypothetical
gene has two transcripts, t1 and t2.

Overview
Detecting the particular isoforms expressed in a cell is challenging. Oligomeric
microarray platforms with junction probes provide genome wide assays of
alternative splicing.  Most approaches predict alt-splicing using data within one
tissue and/or for local gene structural features.  We present an approach that uses
a matrix decomposition technique that learns which isoforms are expressed using
the entire set of probes and conditions measured in a gene expression
compendium.  The method is therefore able to correlate information across the
conditions and the probes to find a more reliable measure of alternative splicing.

Non-negative matrix factorization (NMF) is used in image processing to
deconvolute linearly mixed signals.  We describe the first application of NMF to
learn both probe-isoform overlap and isoform expression from splice-junction
microarrays.  One advantage of the approach is that it can be used without any
prior knowledge of a gene model.

Methods
NMF decoposes a matrix V into a product of H and W:

V = WH

In the splice array setting, V represents the probe-by-tissue intensity data
measured on the microarray platform,  H is the expression levels of the transcripts
in each tissue, and W is the set of probes in each predicted transcript.
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Results - Synthetic Data

We estimated the accuracy of NMF by creating a synthetic a dataset in which both
the isoforms and their expression profiles were known. We created synthetic data
by generating random gene models with 1 to 5 isoforms. Noise was added to the
observed probe intensities before running NMF. We measured the precision and
recall as a function of experimental noise (Fig. 2). We  also measured the ability of
NMF to detect isoforms as a function of k (Fig. 2B).  We find that NMF can reliably
identify known transcripts at various strengths that were tested. When NMF is only
allowed to predict a single transcript, it finds the transcript with the highest nearly
every time.  Recall remains high as the number of possible predictions is
increased. For example, it can find all four transcripts that range that have a four-
fold difference in abundance 40% of the time.

Figure 2. A. Accuracy of NMF in the presence of noise. Gray vertical lines
indicate estimated 50% confidence interval on noise in the human microarray
data. Black, red, green, blue, and cyan lines correspond to genes with 1, 2, 3,
4, and 5 transcripts respectively. B. NMF isoform recall when parameter k is
varied from the true number of transcripts.

A. B.

Results - Human Tissue Compendium
We applied NMF on a human tissue compendium of Johnson et al. (2003).
As a positive control we ran NMF on ADD3’s expression levels and found that
NMF accurately recovers the known splicing pattern for this gene (Fig3 3).
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Figure 3. Decomposition of gene ADD3 into isoform-probe overlap matrix and
isoform-tissue expression matrices.

We next applied NMF to the entire set of genes from the Johnson et al study.  We
predicted 15710 transcripts (Y transcripts per gene on average).  To visualize the
entire expression program and identify splicing programs among the genes, we
used hierarchical clustering to cluster both the predicted transcripts and the
tissues (Fig 4).

Figure 4. Clustering of predicted transcript expression levels. There are a
large number of brain specific transcripts in the far left, and a cluster of
cancer-related transcripts on the right.
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Name
Predicted 
transcripts

Correlation 
between 
transcripts

Supporting Evidence

POLK 2 -0.5883 2nd transcript recently pub.
SACM2L 2 -0.5886 Two transcripts in RefSeq
LRCH3 2 -0.5921
UBE4A 2 -0.5909
NR1H2 2 -0.5886

Table 1. Genes with most distant predicted transcript expression profiles.
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Future Directions

Model probe hybridization affinity.  Currently, genes with heterogenous probe
hybridization affinities will degrade NMF performance.
Filter predicted transcripts that have unlikely or improbable probe overlap vectors
Use sequence around predicted splice variations to find splicing cis-elements
within clusters
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