
Cooperative Concurrency for a Multicore World
(Extended Abstract)

Jaeheon Yi1 Caitlin Sadowski1 Stephen N. Freund2 Cormac Flanagan1

1 University of California at Santa Cruz 2 Williams College

Developing reliable multithreaded software is notoriously difficult, due to
the potential for unexpected interference between concurrent threads. Even a
familiar construct such as “x++” has unfamiliar semantics in a multithreaded
setting, where it must in general be considered a non-atomic read-modify-write
sequence, rather than a simple atomic increment. Understanding where thread
interference may occur is a critical first step in understanding or validating a
multithreaded software system.

Much prior work has addressed this problem, mostly focused on verifying the
correctness properties of race-freedom and atomicity (see, for example, [6, 13, 10,
3, 4, 1, 9, 11, 7, 14, 15, 8, 5]). Race-freedom guarantees that software running on
relaxed memory hardware behaves as if running on sequentially consistent hard-
ware [2]. Atomicity guarantees that a program behaves as if each atomic block
executes serially, without interleaved steps of concurrent threads. Unfortunately,
neither approach is entirely sufficient for ensuring the absence of unintended
thread interference.

We propose an alternative approach whereby all thread interference must
be specified with explicit yield annotations. For example, if multiple threads
intentionally access a shared variable x concurrently, then the above increment
operation would need to rewritten as “int t=x; yield; x=t+1” to explicate
the potential interference.

These yield annotations enable us to decompose the hard problem of reason-
ing about multithreaded program correctness into two simpler subproblems:

– Cooperative correctness: Is the program correct when run under a coop-
erative scheduler that context switches only at yield annotations?

– Cooperative-preemptive equivalence: Does the program exhibit the
same behavior under a cooperative scheduler as it would under a traditional
preemptive scheduler that can context switch at any program point?

A key benefit of this decomposition is that cooperative-preemptive equiva-
lence can be mechanically verified, for example, via a static type and effect sys-
tem that reasons about synchronization, locking, and commuting operations [17,
16]. Alternatively, cooperative-preemptive equivalence can be verified dynami-
cally by showing that the transactional happens-before relation for each observed
trace is acyclic (where a transaction is the code between two successive yield an-
notations) [18].



The remaining subproblem of cooperative correctness is significantly more
tractable than the original problem of preemptive correctness. In particular,
cooperative scheduling provides an appealing concurrency semantics with the
following desirable properties:

– Sequential reasoning is correct by default (in the absence of yield annota-
tions), and so for example “x++” is always an atomic increment operation.

– Thread interference is always highlighted with yields, which remind the pro-
grammer to allow for the effects of interleaved concurrent threads.

Experimental results on a standard benchmark suite show that surprisingly
few yield annotations are required—only 13 yields per thousand lines of code [16].
In addition, a preliminary user study showed that the presence of these yield an-
notations produced a statistically significant improvement in the ability of pro-
grammers to identify concurrent defects during code reviews [12]. These exper-
imental results suggest that cooperative concurrency is a promising foundation
for the development of reliable multithreaded software.

Acknowledgements. This work was supported by NSF grants CNS-0905650,
CCF-1116883 and CCF-1116825.

References

1. M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race
detection for Java. ACM Transactions on Programming Languages and Systems,
28(2):207–255, 2006.

2. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, 1996.

3. M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: Proportional detection of
data races. In Conference on Programming Language Design and Implementation
(PLDI), 255–268, 2010.

4. J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective data-race
detection for the kernel. In Operating Systems Design and Implementation (OSDI),
1–16, 2010.

5. A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In
Computer Aided Verification (CAV), 52–65, 2008.

6. C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race de-
tection. Commun. ACM, 53(11):93–101, 2010.

7. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static
checking and inference for Java. Transactions on Programming Languages and
Systems (TOPLAS), 30(4):1–53, 2008.

8. C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and complete dynamic
atomicity checker for multithreaded programs. In Conference on Programming
Language Design and Implementation (PLDI), 293–303, 2008.

9. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In
Proceedings of the ACM Conference on Programming Language Design and Imple-
mentation, 308–319, 2006.



10. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In Symposium
on Principles and Practice of Parallel Programming (PPoPP), 167–178, 2003.

11. P. Pratikakis, J. S. Foster, and M. Hicks. Context-sensitive correlation analysis for
detecting races. In Proceedings of the ACM Conference on Programming Language
Design and Implementation, 320–331, 2006.

12. C. Sadowski and J. Yi. Applying usability studies to correctness conditions: A
case study of cooperability. In Onward! Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU), 2:1–2:6, 2010.

13. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, 1997.

14. C. von Praun and T. R. Gross. Static detection of atomicity violations in object-
oriented programs. In Journal of Object Technology, 103–122, 2003.

15. L. Wang and S. D. Stoller. Runtime analysis of atomicity for multithreaded pro-
grams. IEEE Transactions on Software Engineering, 32:93–110, Feb. 2006.

16. J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Types for precise thread interfer-
ence. Technical Report UCSC-SOE-11-22, The University of California at Santa
Cruz, 2011.

17. J. Yi and C. Flanagan. Effects for cooperable and serializable threads. In Workshop
on Types in Language Design and Implementation (TLDI), 3–14, 2010.

18. J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning for preemptive execu-
tion. In Symposium on Principles and Practice of Parallel Programming (PPoPP),
147–156, 2011.


