
Live Programming for Event-Based Languages

Short Paper

Christopher Schuster
University of California

Santa Cruz
cschuste@ucsc.edu

Cormac Flanagan
University of California

Santa Cruz
cormac@ucsc.edu

ABSTRACT
Live programming environments assist programmers by al-
lowing code edits to running programs, providing continuous
feedback and potentially even traveling back in time to past
execution states. Event-based languages like JavaScript fa-
cilitate these features, but the entanglement of code, state
and output still hinders live programming. This paper shows
how hot swapping, time travel and continuous feedback can
be achieved by restricting standard JavaScript programs to
have a single, pure rendering function and no function values
in the global state. Furthermore, we describe this design for
general event-based languages and how these properties can
be enforced statically or dynamically.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords
JavaScript, Live Programming, Event Handling, Debugging

1. INTRODUCTION
Programming can be difficult due to the mismatch be-

tween the programmer’s intuition and the actual execution.
To make programming easier, the language and environment
should reduce the mental and time gap between code edits
and visible feedback which is a core idea of live programming.

Live edits to running programs (hot swapping) have been
explored before, e.g. in the context of Dynamic Software Up-
dating (DSU)[10]. Event-based languages simplify these up-
dates as there is no active call stack before and after events.

1.1 Challenges
An unavoidable challenge of live programming is the in-

herent entanglement between state and code. Code updates
in the presence of these dependencies may require the pro-
grammer to specify data conversions which delays feedback
and thereby hinders live programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
REBLS’15 October 23, 2015, Pittsburgh, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Another obstacle for live programming are function val-
ues/closures which are stored in the application state. These
need to be updated in order to avoid stale code. How-
ever, nested closures with scoped variable references and
non-trivial mappings between old and new function literals
complicate this process.

Finally, the visible feedback could become outdated if code
for generating the output (e.g. the user interface) is not re-
executed after a hot swapping operation. If the output is
part of the application state, code updates would therefore
also involve non-trivial conversions to refresh the output.

1.2 Usable Live Programming
Burckhardt et. al. [4] and McDirmid [14] presented a solu-

tion to these challenges for reactive event based systems. In
contrast to DSU systems, which guarantee safe updates with
the cost of manual data conversions, a best effort approach
better suits the goals of live programming.

To prevent outdated code in closures and avoid compli-
cated transformations of these closures, the global appli-
cation state is restricted to not contain any function val-
ues.Furthermore, if the rendering code is separated from
event handling and does not mutate state, it can be eval-
uated continuously to keep the displayed output up-to-date.

This short paper uses the same approach to achieve hot
swapping and time travel but, in contrast to earlier work,

• we describe a solution for plain JavaScript without spe-
cial language constructs and independent of the con-
crete rendering approach/framework, and

• we generalize this approach to any event-based lan-
guage and briefly discuss ways to ensure the aforemen-
tioned properties statically and dynamically.

2. LIVE PROGRAMMING IN JAVASCRIPT
To illustrate the approach, it is useful to first consider a

‘traditional’ JavaScript application.

2.1 Traditional JavaScript Event Handling
The example in Figure 1 uses the jQuery function ‘$’ to

select DOM elements, attach an event handler for clicks on
button b and manipulate the DOM. Independent of coding
style, this imperative way of changing the user interface and
registering event handlers hinders live programming.

Live edits to the code, e.g. renaming“Count:” to“Clicks:”,
would require updating the closure stored in the DOM state
and even then the edit would not result in an updated visible
output until the next time the event handler executes.

<div id="c">Count: 0</div >
<button id="b">Inc!</button >
<script >

var i = 0;
$("#b").on("click", function () {

$("#c").html("Count: " + (++i));
});

</script >

Figure 1: JavaScript Example with DOM Manipu-
lation and Callback Event Handling.

2.2 Separating Rendering and Event Handling
In order to solve the problems outlined above, we propose

to separate the program into three separate functions:

• init() returns the initial application state.

• handle(event,state) processes an event based on the
previous state and returns the new application state.

• render(state) returns the output/DOM based on the
current state without modifying the global state.

Additionally, the state returned by init() and handle()

cannot contain closures (as discussed above).
This style allows any state to be visualized with render()

including previous states to enable a simple form of time
travel (“debugging back in time” [12]). Furthermore, any
function can be hot swapped with an updated version and
both the output and the subsequent event handling will ad-
here to the updated code without influence from outdated
closures or event handlers.

function init() { return {i: 0}; }
function handle(evt , state) {

if (evt instanceof MouseEvent &&
evt.target.id === "b") {

return {i: state.i + 1};
} else {

return state;
}

}
function render(state) {

return "<div >Count: " + state.i + "</div >" +
"<button id=’b’>Inc!</button >";

}

Figure 2: Separating rendering and event handling.

2.3 Implicit style
The approach outlined above does not fit the common

JavaScript coding style of callbacks as event handlers and
updating state with simple assignments.

Fortunately, manual event dispatching can be avoided by
defining the set of active event handlers for each element
declaratively while avoiding imperative DOM manipulation.

Additionally, global variables can be used in lieu of an ex-
plicit state value. This enables standard variable initializa-
tion instead of an explicit init function and standard state
mutation instead of returning the new state.

To support function values in the output, render() now
returns a tree structure instead of a plain string. The de-
tails of how this tree structure is defined and constructed is
application-specific and insignificant for live programming.
In Figure 3, we use inline XML/HTML tags to create a tree
representation of the output (also known as JSX syntax).

var i = 0;
function inc() { ++i; }
function render () {

return (
<div >Count: {i}

<button onclick ={inc}>Inc!</button >
</div >);

}

Figure 3: Implicit style for the code in Figure 2.

e ::= λx. e | e(e) | x | {x : e, ...} | ... (Expressions)

v ::= λx. e | {x : v, ...} | ... (Values)

p ::= {init : e, handle : e, render : e} (Programs)

q ::= [event v] | [swap p] | [reset] | [time n] (Events)

e ↓ v (Evaluation) 〈q, p, ~S〉 ⇓ 〈p′, ~S′, O〉 (Updates)

p.handle(v, Sj) ↓ Sj+1 p.render(Sj+1) ↓ O
e-event

〈[event v], p, (..., Sj)〉 ⇓ 〈p, (..., Sj , Sj+1), O〉

p′.render(Sj) ↓ O
e-swap

〈[swap p′], p, (..., Sj)〉 ⇓ 〈p′, (..., Sj), O〉

p.init ↓ S′
0 p.render(S′

0) ↓ O
e-reset

〈[reset], p, ~S〉 ⇓ 〈p, (S′
0), O〉

p.render(Sn) ↓ O
e-time

〈[time n], p, (..., Sn, ...)〉 ⇓ 〈p, (..., Sn), O〉

Figure 4: Operational semantics for event handling,
hot swapping and traveling back in time.

3. FORMALISM
The live programming system described in the previous

section can be generalized to any event-based language whose
programs follow a certain top level structure.

Figure 4 describes the semantics for event handling, hot
swapping and time traveling, while leaving most of the un-
derlying language unspecified. Assuming that functions are
expressions e in the language, a valid program p simply con-
sists of three functions named ‘init’, ‘handle’ and ‘render’. A
system configuration then consists of a program p and a se-
quence of application states ~S, which are simple values v in
the base language. Application-specific events [event v] are
passed to the current ‘handle’ function alongside the most
recent state Sj , yielding a new state Sj+1; [swap p′] replaces
the current program p; [reset] restarts execution using the
current ‘init’ function; and [time n] reverses the last n execu-
tion steps. All state transitions update the output O based
on the current ‘render’ function and most recent state.

To guarantee that the output is up-to-date with the cur-
rent state and that no stale code persists after a code update,

• the ‘render’ function cannot change the state, and

• the state after ‘init’/‘handle’ cannot contain functions.

These two properties can be checked dynamically by a
contract that ensures that the state before ‘render’ and after
’render’ is identical, and a first-order contract that checks
the state after ‘init’ and ‘handle’ for functions.

Figure 5: The live programming environment features an editor, a live view of the output as well as controls
for traveling to previous code versions/execution states and for reseting the state to initial values.

Alternatively, these properties can also be checked stati-
cally by a type and effect system. This avoids the perfor-
mance overhead of dynamic checking but might reject valid
programs. While mostly preferable for languages with type
annotations, sophisticated analysis methods can also check
unannotated, dynamically-typed languages [16, 21].

4. IMPLEMENTATION
The programming environment is shown in Figure 5. Its

source code1 and a live demo2 are both publicly available.
Each change in the editor causes the code to get parsed,

checked, rewritten and evaluated. Global variable references
x are rewritten to state["x"] and global variable initializers
extracted to a separate init() function. This is necessary in
order to guard the state against mutation during rendering
with a recursive Object.freeze, to deep clone the state at
each event for time travel and to check the state for closures.
Additionally, all event handlers in the output of render() are
wrapped to re-render and refresh the live view.

5. RELATED WORK

5.1 Reactive Programming
There has been an increased interest in applying func-

tional reactive programming (FRP) to web programming re-
cently. While these projects are primarily focussing on user
interfaces (e.g. Elm [6], KScript/KSWorld [17] and React)
or FRP primitives (e.g. Bacon.js, RxJS), they are perfect
candidates for live programming environments.

More generally, a case study by Kambona et. al. com-
pares reactive programming with Promises and plain event
handling in JavaScript in JavaScript [11]. To bridge the
client/server separation in web programming, both Reyn-
ders et. al. and Chlipala present unified/multi-tier systems
with FRP/data flow aspects [5, 18]. Instead of introducing a
unified language or language features for FRP, this paper fo-
cuses on standard, single-threaded JavaScript applications.

Combining FRP with imperative/OO programming opens
a space of design decisions with different trade-offs [20]. In
contrast to REScala [3, 19], which integrates FRP signals
and event handling, and the recent work of Zhuang and
Chiba [23], this paper enforces a pure FRP style at the top
level while supporting regular OO programming and declar-
ative binding of event handlers with the “implicit style”.

This project would benefit from self-adjusting computa-
tion [1, 2], which reactively recomputes incremental changes

1Source code at http://github.com/levjj/rde/
2Online live demo at http://levjj.github.io/rde/

to the output based on changes in the inputs. Currently, the
output gets completely recomputed at change in state.

5.2 Dynamic Software Updating (DSU)
Hot swapping a new code is closely related to research

on dynamic software updating (for a survey, see Seifzadeh
et. al. [22]). As shown by Fabry, hot swapping a module is
straight-forward if there is no persistent state but otherwise
requires data transformations [8]. Later Hicks described a
safe, typed DSU system which enables the programmer to
provide patches for these transformations [10]. Hot swap-
ping as described in this paper tries to avoid manual inter-
vention in favor for a best effort approach since application
state can also be interactively reset during development.

5.3 Live Programming
Live programming with continuously updated feedback

was first established by Hancock [9] and further explored
by systems like SuperGlue, which uses dynamic inheritance
and explicit FRP signals [13], and Elm, which demonstrates
live programming and time traveling with first-order FRP.
The work by both Burckhardt et. al. and McDirmid is prob-
ably most closely related to this project as it showed how a
pure render function and an application state without clo-
sures facilitates live programming [4] and outlined the pos-
sible design space between live programming systems that
resume computation with a possibly inconsistent state and
a systems that record replay execution [14].

Finally, Glitch is an example of using imperative updates
that propagate until coherence (similarily to the Coherence
language by Edwards [7]) in a system that supports both
live programming and time travel [15].

6. CONCLUSION AND DISCUSSION
This paper showed that JavaScript supports hot swap-

ping, time traveling and continuous feedback by enforcing a
pure rendering function on the top level and excluding clo-
sures from the application state. This concept can be gen-
eralized to any event-based language and does not depend
on a specific user interface framework.

However, restricting the global state in this way limits
expressiveness and excludes classic OOP objects. More re-
search is necessary to evaluate the design decisions and study
how programmers can benefit from live programming.

Future work might also involve programming language
techniques like proxy membranes for enforcing immutability
and first-order states, for optimizing time travel with copy-
on-write, and for incrementally computing the new output
instead of recomputing the complete output after each event.

http://github.com/levjj/rde/
http://levjj.github.io/rde/

7. REFERENCES
[1] U. A. Acar. Self-adjusting computation: (an

overview). In Proceedings of the 2009 ACM SIGPLAN
Workshop on Partial Evaluation and Program
Manipulation, PEPM ’09, pages 1–6, New York, NY,
USA, 2009. ACM.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive
functional programming. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, pages 247–259,
New York, NY, USA, 2002. ACM.

[3] E. G. Boix, K. Pinte, S. Van de Water, and W. D.
Meuter. Object-oriented reactive programming is not
reactive object-oriented programming. REM’13, 2013.

[4] S. Burckhardt, M. Fahndrich, P. de Halleux,
S. McDirmid, M. Moskal, N. Tillmann, and J. Kato.
It’s alive! continuous feedback in ui programming. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’13, pages 95–104, New York,
NY, USA, 2013. ACM.

[5] A. Chlipala. Ur/web: A simple model for
programming the web. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15,
pages 153–165, New York, NY, USA, 2015. ACM.

[6] E. Czaplicki and S. Chong. Asynchronous functional
reactive programming for guis. In Proceedings of the
34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13,
pages 411–422, New York, NY, USA, 2013. ACM.

[7] J. Edwards. Coherent reaction. In Proceedings of the
24th ACM SIGPLAN Conference Companion on
Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, pages 925–932, New York,
NY, USA, 2009. ACM.

[8] R. S. Fabry. How to design a system in which modules
can be changed on the fly. In Proceedings of the 2Nd
International Conference on Software Engineering,
ICSE ’76, pages 470–476, Los Alamitos, CA, USA,
1976. IEEE Computer Society Press.

[9] C. M. Hancock. Real-time Programming and the Big
Ideas of Computational Literacy. PhD thesis,
Cambridge, MA, USA, 2003. AAI0805688.

[10] M. Hicks, J. T. Moore, and S. Nettles. Dynamic
software updating. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01,
pages 13–23, New York, NY, USA, 2001. ACM.

[11] K. Kambona, E. G. Boix, and W. D. Meuter. An
evaluation of reactive programming and promises for
structuring collaborative web applications. In
Proceedings of the 7th Workshop on Dynamic
Languages and Applications, New York, NY, USA,
2013. ACM, ACM.

[12] B. Lewis and M. Ducasse. Using events to debug Java
programs backwards in time. In Companion of the
18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’03, pages 96–97, New York,
NY, USA, 2003. ACM.

[13] S. McDirmid. Living it up with a live programming

language. In Proceedings of the 22Nd Annual ACM
SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07,
pages 623–638, New York, NY, USA, 2007. ACM.

[14] S. McDirmid. Usable live programming. In Proceedings
of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages 53–62,
New York, NY, USA, 2013. ACM.

[15] S. McDirmid and J. Edwards. Programming with
managed time. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming &
Software, Onward! 2014, pages 1–10, New York, NY,
USA, 2014. ACM.

[16] J. Nicolay, C. Noguera, C. D. Roover, and W. D.
Meuter. Detecting function purity in javascript. In
Source Code Analysis and Manipulation (SCAM),
2015 IEEE 15th International Working Conference
on, SCAM ’15, Sept 2015.

[17] Y. Ohshima, A. Lunzer, B. Freudenberg, and
T. Kaehler. Kscript and ksworld: A time-aware and
mostly declarative language and interactive gui
framework. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming &
Software, Onward! 2013, pages 117–134, New York,
NY, USA, 2013. ACM.

[18] B. Reynders, D. Devriese, and F. Piessens. Multi-tier
functional reactive programming for the web. In
Onward! 2014, pages 55–68. ACM, October 2014.

[19] G. Salvaneschi, G. Hintz, and M. Mezini. Rescala:
Bridging between object-oriented and functional style
in reactive applications. In Proceedings of the 13th
International Conference on Modularity,
MODULARITY ’14, pages 25–36, New York, NY,
USA, 2014. ACM.

[20] G. Salvaneschi and M. Mezini. Reactive behavior in
object-oriented applications: An analysis and a
research roadmap. In Proceedings of the 12th Annual
International Conference on Aspect-oriented Software
Development, AOSD ’13, pages 37–48, New York, NY,
USA, 2013. ACM.

[21] C. Schuster and C. Flanagan. A light-weight effect
system for javascript. In Proceedings of the 2015
Scripts to Programs Workshop, STOP ’15, July 2015.

[22] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani.
A survey of dynamic software updating. Journal of
Software: Evolution and Process, 25(5):535–568, 2013.

[23] Y. Zhuang and S. Chiba. Enabling the automation of
handler bindings in event-driven programming. pages
350–360, July 2015.

	Introduction
	Challenges
	Usable Live Programming

	Live Programming in JavaScript
	Traditional JavaScript Event Handling
	Separating Rendering and Event Handling
	Implicit style

	Formalism
	Implementation
	Related Work
	Reactive Programming
	Dynamic Software Updating (DSU)
	Live Programming

	Conclusion and Discussion
	References

