In-Vivo Storage System Development

Noah Watkins', Carlos Maltzahn', Scott Brandt!, Ian Pye?, and
Adam Manzanares?

! University of California, Santa Cruz {jayhawk,carlosm,scott}@cs.ucsc.edu
2 (alifornia State University, Chico nmtadam@gmail . com
3 (CloudFlare, Inc. ian@cloudflare.com

Abstract. The emergence of high-performance open-source storage sys-
tems is allowing application and middleware developers to consider non-
standard storage system interfaces. In contrast to the practice of virtually
always designing for file-like byte-stream interfaces, co-designed domain-
specific storage system interfaces are becoming increasingly common.
However, in order for developers to evolve interfaces in high-availability
storage systems, services are needed for in-vivo interface evolution that
allows the development of interfaces in the context of a live system.
Current clustered storage systems that provide interface customizabil-
ity expose primitive services for managing ad-hoc interfaces. For max-
imum utility, the ability to create, evolve, and deploy dynamic storage
interfaces is needed. However, in large-scale clusters, dynamic interface
instantiation will require system-level support that ensures interface ver-
sion consistency among storage nodes and client applications. We pro-
pose that storage systems should provide services that fully manage the
life-cycle of dynamic interfaces that are aligned with the common branch-
and-merge form of software maintenance, including isolated development
workspaces that can be combined into existing production views of the
system.

1 Introduction

The emergence of high-performance open-source storage systems is permitting
applications and middleware developers to look beyond traditional file-like inter-
faces towards co-designed, domain-specific storage interfaces that offer unique
opportunities for optimization. However, storage interfaces are inextricably tied
to the ability to interpret and access data, elevating the criticality of their preser-
vation and management in storage systems to that of the data artifacts them-
selves. Despite open-source storage systems paving the way for increased extensi-
bility, systems currently lack any services for managing the life cycle of interface
development.

Domain-specific interfaces allow applications to custom tailor data services
such as I/O and co-located processing to realize optimizations not possible with
generic file-like interfaces. For instance, structure and data type knowledge ex-
posed through an interface can be used to guarantee data alignment properties
and enable low-level data processing such as filtering and data transformation.



These types of services, such as filtering, are largely inefficient to perform in
middleware compared to a server-side approach, but storage systems deployed
today do not offer any type of service for dynamic extensibility. Previous work
on active storage systems have shown the benefits of co-locating processing with
data, such as reducing data transfer and exploiting I/O and CPU parallelism [1-
4]. And more recently, the Rhea [5] system showed that filtering kernels could
be extracted from Hadoop jobs using static analysis and applied transparently
in cloud storage services such as Microsoft Azure [6]. It is also anticipated that
in next-generation exascale systems, array-oriented interfaces and script-based
analysis function shipping will be supported natively by storage systems in an
effort to circumvent scalability challenges presented by the POSIX file inter-
face [7]. Unfortunately, previous solutions to providing extensibility have focused
on architectures in which applications must fully manage interfaces, either by
statically installing additional code, or packaging functions into each request.
However, applications and storage system interfaces are inherently co-designed—
an interface defines the data, and must be preserved for continued data access
and interpretation. A storage system that allows its interfaces to be dynami-
cally defined presents a challenge for application development, portability, and
archival use cases because dynamic storage interfaces tend to be directly man-
aged within the application run-time environment completely decoupled from
stored data. We argue in this paper that managing the deployment, consistency,
and versioning of interfaces, as well as enforcing isolation between developers
and production interfaces is best handled by the storage system itself.

The development of co-designed storage system interfaces is an entirely software-
based activity tightly coupled with the development of a driving application. In
particular, it is very common for engineering teams to follow a branch-and-merge
source-code management style using software such as Git, Mercurial, Perforce,
or Subversion, in which feature branches are merged into a production line after
some period of insulated feature development and maturation. While application
feature development can often take place using, for example small-scale deploy-
ments on developer desktops, the same is not true for storage system interface
development, where access to distributed resources and the peculiarities of live
data are crucial to feature development and testing correctness at scale. One
option is to allow developers unconstrained access to the storage system, rely-
ing on informal, error prone team guidelines to avoid conflicts such as naming or
data format incompatibilities. Yet another option would be to maintain a smaller
development cluster, but this leads to increased costs and may not expose the
development process to realistic conditions. It would be useful if a storage sys-
tem provided a development environment for storage interfaces as a first class
service akin to the isolated development workflows for application developers
using source-code management tools.

In the remainder of this paper we present a solution based on the concept
of a developer workspace. A workspace represents a unit of isolation within the
storage system that allows for the independent evolution of interfaces that are
dynamically created using a high-performance embedded scripting language. The



2013-3-11, 12:33:22, user, group, attrl, .., attrN
2013-3-11, 12:33:22, user, group, attrl, .., attrN
2013-3-11, 12:33:22, user, group, attrl, .., attrN

y Object Store

Partition and Store

e

e & -
Production
Analysis

| source code control T

Fig. 1: Log data is stored in objects that are batch analyzed while developers
create new features and evolve the system.

system fully manages versioned interfaces within a workspace, ensuring a con-
sistent view of interface versions between storage system clients and co-designed
interfaces. Developers may merge interfaces from their workspace into produc-
tion views of the system, providing an evolutionary development path aligned
with common software maintenance protocols.

2 Motivation

The collection and analysis of large-scale read-mostly data such as access logs,
click streams, and sensor data, as well as scientific simulation output, require
scalable, fault-tolerant storage systems. Increasingly, these and other types of
data commonly referred to as big data, are being maintained with cloud-based
solutions using both object and file-based storage abstractions. Figure 1 illus-
trates a typical architecture in which data, such as time-ordered logs, are par-
titioned by attributes such as time or data source, and stored within objects
in a distributed object-store such as Amazon S3. Shown in the same figure is a
production application that interacts with the stored data objects by remotely
reading and producing analysis results, or searching for activity patterns. Simul-
taneously, engineering teams may be developing and testing new features, as well
as evolving the production deployment using standard source-code management
techniques, workflows, and deployment operations procedures.

While this architecture of decoupling storage from analysis is extremely com-
mon, one challenge that arises is the I/O efficiency for data-intensive analysis
tasks. For instance, simple filtering or computing statistical summaries are rel-
atively inexpensive to perform, yet generally require transferring all dependent
data across the network for analysis. The byte-oriented interfaces exposed by
storage systems are a major impediment to offering new extensibility services
because structural and type information at a low-level is needed perform these
types of semantically rich operations. Alternatively, work in active storage has



shown that domain-specific interfaces can be constructed within the storage sys-
tem, and provide efficient, fine-grained data access. Domain-specific interfaces
can provide access to, for example, the arithmetic mean of a single attribute
computed over the records contained in a single object, apply a predicate de-
rived from a high-level query, or reorganize data for more efficient access. Such
an interface implemented within the storage system allows applications to avoid
unnecessary data transfers, complex domain-specific middleware, and allows ser-
vice providers an opportunity to offer a broad range of services such as offline,
best-effort indexing and compression.

Allowing application developers to dynamically construct co-designed storage
interfaces as part of the normal development process is a powerful construct for
building distributed applications. However, the tight coupling between storage
interfaces and applications require that both components can evolve together
through a standard software development life-cycle, and that storage systems
provide services for preserving installed interfaces within a large-scale cluster.

2.1 Storage Interface Evolution

Dynamically created storage interfaces pose a challenge for software develop-
ment because application software may evolve independently from the deployed
storage interfaces, but still require strong version consistency and compatibility
between the application and deployed interfaces. Additionally, recall from Fig-
ure 1 that multiple developers may evolve an application by first developing and
testing features, then integrating the changes into a production deployment. In
order for each developer to work on features independently, conflicts that result
from customized interfaces must be isolated and handled transparently.

Consider the application life cycle depicted in Figure 2. Developers Devl
and Dev2 are responsible for developing independent, domain-specific interfaces
to indvidual objects—arithmetic average, and minimum—that will replace the
same per-object operation performed remotely by the production analysis ap-
plication. Each developer must now evolve the storage-level interfaces, as well
as change application-level code to take advantage of the new the features. For
instance, both developers begin with a base storage interface exposing the stan-
dard byte-oriented interface (ver. A). Each developer evolves the application and
storage interfaces with their respective features (ver. B, C). Once the features
are complete, they are merged to expose the new interfaces to the production
application (ver. D). Two interfaces can conflict if local object resources are not
partitioned. For instance, if two interfaces implementing distinct statistical cal-
culations (e.g. mean vs median) cache their result in a local object attribute to
avoid recomputation, but use the same attribute name (e.g. avg), data corruption
may lead to silent errors and unexpected results. Thus, providing transparent
isolation between interfaces is important in order to avoid the type of ad-hoc co-
ordination among developers that would otherwise be required. Next we discuss
dynamic interfaces, the low-level building block for our system.



Application Co-design Lifecycle

avg() > Merge

min()

O| ©
@ 1]
< <
Nl =

' _R/W ,*- MIN Y _rw

r___)
A 1 C | D MIN
A ) AVG
r___)
B

1
L---ave

Storage
Interfaces

Fig. 2: Developers evolve application software and storage interfaces through a
co-design process.

3 Extensible Object Interfaces

A core building block of our system is a service that allows the dynamic cre-
ation of low-level object interfaces using a high-performance embedded scripting
language. Note that while our framework assumes the existence of extensible ob-
ject interfaces, many approaches to providing extensibility should be compatible.
In this paper we consider for context a design based on the Ceph distributed
storage system, and begin our discussion with a brief overview of Ceph and its
object-based storage system called RADOS.

3.1 The RADOS Object Store

The RADOS object store is a highly scalable, fault-tolerant storage service that
forms the basis for high-level Ceph services such as the Ceph File System [8,9].
A RADOS cluster consists of a set object-storage devices that expose a rich ob-
ject interface including byte-oriented access methods as well extended attributes,
indexing, and snapshots. Clients access objects through a library that hides the
cluster layout, network, and fault-recovery. In addition to its natively supported
interfaces, objects in RADOS can be extended by constructing C++-based plu-
gins that define new methods on objects, analogous to creating a sub-class in an
object-oriented language. A method is invoked against a target object remotely
by a client and is transparently executed within the storage server process re-
sponsible for the object.

The extensibility of RADOS objects is very powerful, can be used to construct
a variety of interfaces such as those discussed in Section 2, and is used by Ceph
internally, and in several products built on top of Ceph. Unfortunately it is non-
trivial to deploy statically compiled, architecture dependent interfaces within a
high-availability cluster, making it difficult to integrate rapid interface evolution
with the iterative development of applications. What is needed is a mechanism
for dynamically constructing new object methods.



Interface-Average

function avg(attr) Client
key = "avg." + attr
val = cache.get(key) exec(avg)
if not val then *

val = ComputeAverage(attr)
cache.put(key, val) Osb

done register —
return val m
end

Fig.3: An interface defining an average function is registered with an OSD after
which point a client may remotely invoke the method on an object.

LuaVM

3.2 Dynamic Interfaces

We have extended the object-storage devices in RADOS to support dynamically
defined object interfaces using the Lua language [10], specifically designed as
an embedded language for high-performance applications. New interfaces are
created by sending to a storage device a Lua script that defines any number
of methods, after which point the interfaces are made available through any
existing RADOS client library.

Figure 3 illustrates how dynamic interfaces are used. First, a developer au-
thors a Lua script that defines a new object method. Shown in the figure is a
script that computes the arithmetic mean of an attribute over the records in
a single object. Notice that before computing the average a cached attribute is
queried to avoid recomputing results. A client that invokes this method on an
object will trigger the method within the OSD process and the results will be
returned to the client, potentially avoiding recomputation. Scripts may be pre-
registered, or sent along side a client request for completely dynamic behavior.

This basic mechanism of constructing dynamic interfaces using small code
fragments allows applications to easily evolve storage interfaces at a fine-granularity.
However, two major issues arise. First, when working within a live system, de-
velopers should be able to work independently without worrying about causing
conflicts. For instance, the author of the interfaced shown in Figure 3 should
not be affected by other developers that also cache data with the same name;
the system should provide this isolation. And second, in a large, elastic system
developers should not have to be involved in the details of ensuring that a con-
sistent view of their deployed interfaces are present on all system devices. To
solve these challenges we propose that storage systems provide developers with
logically isolated workspaces for interface development, and native services for
managing installed interfaces across a cluster.

4 Interface Development Environment

We propose an interface developer environment (IDE) for constructing new,
native storage interfaces that consist of an isolated workspace abstraction that
is well-aligned to common software development workflows, and integrates with
provisioning and tiering abstractions already present within storage systems.



4.1 Workspaces

A workspace is an entity managed by the storage system which provides isolation
between dynamic interfaces. Workspaces can be created, destroyed, and merged
through the use of the interface development environment (IDE) service, illus-
trated in Figure 4a. The IDE service exposes an interface similar to that of Git,
Mercurial, or Subversion in which a development branch forms the basic unit of
isolation. It is expected that the use of a workspace will resemble a developers
working copy in the traditional sense of source-code control systems, providing
a safe environment to construct, test, and refine a line of feature development.
The key difference being that a workspace exists within and is managed entirely
by the storage system for the purpose of providing server-side interfaces.

IDE Service Workspace1 Workspace2
sync
interfaces
Storage
Devices
@8
g &
EQ @
H @rp g
S &
000
Clients
Object-Storage Device
(a) IDE Service (b) Isolation

Fig.4: In (a) clients use an IDE service to create workspaces that form a context
within the storage system. In (b) base data is not duplicated, and CoW provides
isolation for interface private data.

Isolation. Providing efficient isolation among workspaces is a challenge. In
order to avoid expensive data duplication, the system should allow interfaces
to share as much data as possible. For instance, read operations performed by
an interface should require no special handling, and be satisfied by base data.
However, writes must be carefully handled as to not interfere with state created
by interfaces in other workspaces, or blob data associated with the object. For
instance, the interface shown in Figure 3 caches a computed average value by
constructing a key and saving it in an object-local cache. The framework must
ensure that other interfaces are unaffected, a problem that could arise if, for
example, two interface developers chose identical key names. Write operations
that access object services, such as a local index or raw payload data, must be
intercepted by the storage device and isolated. Efficient techniques for isolation
depend on the type of service. For instance, isolation can be achieved using
namespacing when storing key/value pairs, while copy-on-write techniques can
be used for data transformations on blob data. Performance isolation is also an
important aspect to consider. It is not unreasonable to use existing performance



isolation techniques in a system, but we have not considered the need for an
entirely new method for performance isolation.

Partitioning. While logical isolation is important to ensure correctness, an
organization may want to physically partition its storage in such a way that de-
velopment workspaces reside on distinct hardware. The logical workspace entity
should integrate with existing facilities within the storage system for custom
data placement and tiering policies, allowing subsets of data to be placed onto
specific sets of nodes. Workspaces can be linked to these physical partitions
through existing system abstractions (e.g. a pool in Ceph) which ensure that the
space of addressed objects is constrained by the physical partitioning.

4.2 Workspace Management

Ultimately, interfaces defined within workspaces as part of application develop-
ment will be migrated into a production environment. For instance, the interfaces
defined in separate workspaces shown in Figure 2 can be merged into produc-
tion, providing access to the union of the interfaces to applications accessing the
storage system in the context of the production workspace.

There are several issues that may arise when merging workspaces. First, at
a high-level merging changes the visibility of interfaces, and as a result interface
naming conflicts may arise. For instance, two workspaces may define the same
interface. These types of conflicts are largely application-specific and must be
handled explicitly by developers. Like source-code management systems, the
primary responsibility of the storage system is to provide feedback to developers
about the changes they are making through the interface development service,
and help manage conflict resolution.

Interfaces that utilize private data can be merged without low-level conflicts
by migrating the same isolation parameters (e.g. namespacing) used to prevent
conflicts between workspaces. However, for interfaces that perform heavy-weight
data transforms such as using new data layouts, migrating all interfaces to a
use a new layout may be necessary. In order to make format migration eas-
ier, workspace merging should optionally specify a transformation routine that
the system ensures is applied prior to invoking any interface following a merge
operation. Finally, the removal of workspaces will result in lazy deletion of all
unmerged interface state created during the lifetime of the workspace.

5 The IDE Service

Interfaces and workspaces are cluster-wide entities that must be managed by
the storage system in the face of cluster failures, expansion, and policy changes.
For instance, the storage system must ensure that a new storage node has the
required interfaces present before it can service requests from applications re-
quiring these interfaces. Further, newly registered versions of interfaces must be
propagated to nodes within the system, and properly synchronized with appli-
cations expecting the latest version.



Luckily, existing services within distributed storage systems solve similar
problems. For instance, a core service often found in distributed systems is a
highly available versioned data store commonly implemented using a consensus
algorithm, such as Paxos. For instance, Ceph uses monitor services, built upon
Paxos, to manage cluster membership, service discovery, replicated logs, and
authentication. A monitor provides a consistent view of the system state, and
clients and OSDs can contact a monitor to synchronize their states. Such existing
services are closely related to the requirements of the IDE service, and should
be capable of being reused to provide an interface synchronization service within
the cluster.

Integration. Finally, a mechanism is needed to associate interface versions
managed by the storage system with the versions that applications expect. We
are considering two possible solutions to this problem. First, some source-code
control systems provide the ability to inject external context information into the
managed content (e.g. CVS tags expansion). Extending or exploiting this feature
may allow us to automatically generate version macros used to provide context
when clients access the system. Similarly, systems such as Git allow external
repositories to be seamlessly integrated into existing repositories. By allowing the
storage system to export its own virtual Git repository, we can enable the system
to present previously registered, versioned code automatically into a higher-level
project repository. Providing an easy-to-use and robust integration solution is
important for usability, and utilizing other techniques from RPC stub generation
may prove to be very valuable.

6 Related Work

Oasis [3] is an active storage framework based on extensions to the T10 standard.
Primitive script management associates scripts with function objects, but the
project does not address high-level management challenges. Runde, et al. [11]
use sandboxing virtualization technology to isolate server-side computations,
but do not address any type of logical isolation necessary to build the workspace
abstraction we have proposed.

GlusterF'S [12] translators provide a rich mechanism for adding functional-
ity at different levels of the file system. Translators are statically defined and
designed to be a long-lived permanent extension.

Building new pNFS striping strategies using the Lua scripting language have
been proposed [13]. The script defining a new strategy is embedded in a file
inode where script versioning is aligned with inode consistency mechanisms.

The Elephant File System is a versioning file system allowing data to be
managed using checkpoints, tags, and other protocols [14]. While this file system
is only concerned with payload data, the scalability lessons from this body of
work dealing with interface versioning may prove useful.

The Git source-code control library has been integrated into a FUSE-based
file system to extend its versioning features to files and directories [15]. We are
also considering making use of the Git library for its rich, embeddable interface



for managing and versioning textual data such as Lua code snippets, but are
interested in mechanisms useful in distributed storage systems.

7 Conclusion

Providing alternative storage interfaces to the traditional byte-stream oriented
interface has been the topic of much research. However, little has been done
to address the management of co-designed storage interfaces with application
development processes. This management is important to address as interest
in dynamic interfaces increases. In this paper we have proposed that storage
systems provide a service based on developer workspaces that enforce isolation
within the storage system, allowing storage interfaces to safely evolve from de-
velopment into production, and integrate with existing provisioning abstractions
and developer workflow protocols.

References

1. Piernas, J., Nieplocha, J., Felix, E.J.: Evaluation of active storage strategies for
the lustre parallel file system. In: SC ’07. (2007)

2. Son, S.W., Lang, S., Carns, P., Ross, R., Thakur, R., Ozisikyilmaz, B., Kumar,
P., Liao, W.K., Choudhary, A.: Enabling active storage on parallel i/o software
stacks. In: MSST ’10. (2010)

3. Xie, Y., Muniswamy-Reddy, K.K., Feng, D., Long, D.D.E., Kang, Y., Niu, Z., Tan,
Z.: Design and evaluation of oasis: An active storage framework based on t10 osd
standard. In: MSST ’11. (2011)

4. Lim, H., Kapoor, V., Wighe, C., Du, D.H.C.: Active disk file system: A distributed,
scalable file system. In: MSST ’08. (2008)

5. Gkantsidis, C., Vytiniotis, D., Hodson, O., Narayanan, D., Dinu, F., Rowstron, A.:
Rhea: automatic filtering for unstructured cloud storage. In: NSDI ’13. (2013)

6. Brad Calder, e.a.: Windows azure storage: A highly available cloud storage service
with strong consistency. In: SOSP ’11. (2011)

7. Acceleration, D.E.S.T.: Fastforward

8. Weil, S., Leung, A., Brandt, S.A., Maltzahn, C.: Rados: A fast, scalable, and
reliable storage service for petabyte-scale storage clusters. In: PDSW ’07. (2007)

9. Weil, S., Brandt, S.A., Miller, E.L.., Long, D.D.E., Maltzahn, C.: Ceph: A scalable,
high-performance distributed file system. In: OSDI ’06. (2006)

10. : Lua language

11. Runde, M.T., Stevens, W.G., Wortman, P.A., Chandy, J.A.: An active storage
framework for object storage devices. In: MSST ’12. (2012)

12. : Glusterfs clustered file system. http://www.gluster.org

13. Grawinkel, M., Suf}, T., Best, G., Popov, 1., Brinkmann, A.: Towards dynamic
scripted pnfs layouts. In: PDSW ’12. (2012)

14. Santry, D.S., Feeley, M.J., Hutchinson, N.C., Veitch, A.C., Carton, R.W., Ofir, J.:
Deciding when to forget in the elephant file system. In: SOSP ’99. (1999)

15. Grant, R.: Filesystem interface for the git version control system. Technical report,
University of Pennsylvania (2009)



