
Automatic Generation of Behavioral Hard Disk
Drive Access Time Models

Adam Crume∗, Carlos Maltzahn∗, Lee Ward†, Thomas Kroeger†, Matthew Curry†
∗University of California, Santa Cruz
{adamcrume,carlosm}@cs.ucsc.edu
†Sandia National Laboratories

{lee,tmkroeg,mlcurry}@sandia.gov

Abstract—Predicting access times is a crucial part of pre-
dicting hard disk drive performance. Existing approaches use
white-box modeling and require intimate knowledge of the
internal layout of the drive, which can take months to extract.
Automatically learning this behavior is a much more desirable
approach, requiring less expert knowledge, fewer assumptions,
and less time. While previous research has created black-box
models of hard disk drive performance, none have shown low
per-request errors. A barrier to machine learning of access times
has been the existence of periodic behavior with high, unknown
frequencies. We identify these high frequencies with Fourier
analysis and include them explicitly as input to the model. In
this paper we focus on the simulation of access times for random
read workloads within a single zone. We are able to automatically
generate and tune request-level access time models with mean
absolute error less than 0.15ms. To our knowledge this is the first
time such a fidelity has been achieved with modern disk drives
using machine learning. We are confident that our approach
forms the core for automatic generation of access time models
that include other workloads and span across entire disk drives,
but more work remains.

I. INTRODUCTION

Hard disk drive performance models are often used as
part of a much larger system simulation [1], for parallel file
system simulation [2], for storage configuration [3], and for
data placement [4]. The most accurate models are white-box
models such as DiskSim [5], which is widely used [6], [7],
[2]. These models require extensive parameterization.

Other researchers have noted the difficulty in parameter-
izing DiskSim [8], [9]. Many researchers use outdated disk
models that come with DiskSim such as the Quantum Atlas
10K [10], [11], [12], [13], which was released in 1999 [12];
the Seagate Cheetah 9LP ST39102LW [11], [14], [15], [16],
which appears to have been released in 1998 [17]; or the
Seagate Barracuda 4LP ST32171 [7], which appears to have
been released between 1996 and 1998 [18]. All of these papers
were published in 2010 or later, meaning that they all used
models that were at least 11 years old at the time of their
publication. The capacities of these devices were between 2.1
GB and 9.2 GB, with sustained data transfer rates from 13
MB/s to 41 MB/s [19], [18], [17]. On the other hand, top of
the line models released in 2010, such as the WD Caviar Green
3TB [20] or the Seagate 3TB FreeAgent GoFlex Desk [21],
had capacities of around 3000 GB and sustained data transfer
rates of around 123 MB/s [22] (sizes measured using 1 GB =
109 bytes). This amounts to a size increase of 326x and a speed

increase of 3x. We believe that researchers used the outdated
models that came with DiskSim because of the difficulty of
obtaining or creating models for newer drives.

Parameterizing white-box models is a long and difficult
process, because manufacturers do not release details such
as sector layout required by white-box models. In fact, a
fellow researcher (Ron Oldfield) was involved with configuring
DiskSim to model an existing device, a process that took
several months [23]. Tools such as DIG can extract some of
this information [24]. Unfortunately, they require assumptions
about the internal structure of the hard disk drive. This struc-
ture is likely to change in the future due to the introduction of
shingled hard disk drives [25], dual-heads per surface [12], or
other optimizations, as has happened in the past with Zoned
Bit Recording and serpentine layouts. Since manufacturers do
not release this information, researchers must reverse-engineer
a device before modifying DIG and DiskSim to support the
new layout.

Machine learning presents a more desirable approach to
generate models that can reproduce the behavior with as few
assumptions as possible. Some progress has been made in
behavioral modeling of hard disk drive performance [26], [10],
[27], [7], but none of these can accurately model individual
requests.

Access time, which is what we focus on in this paper, has
stubbornly resisted efforts to model it. We focus on workloads
that read random single sectors, so as to minimize caching and
readahead effects. In this scenario, two components contribute
to request latency:

1) Queue time — the time the request spends in the device’s
queue, waiting to be processed. Requests may queue to
some maximum depth in the device, and then be serviced
out of order to minimize access time.

2) Access time — the time it takes to start reading sector
B, given that sector A was just read. This includes seek
time, rotational latency, and settle time. Medium and large
seeks are relatively easy to model, because the time can
be closely approximated by a simple, smooth function
of the logical block numbers (LBNs). Settle time can
be modeled as a constant and is easily subsumed into
the seek model. Small seeks and rotational latency are
difficult to model because these are very high-frequency
functions in LBN-space.

978-1-4799-5671-5/14/$31.00 c© 2014 IEEE

After decomposing per-request latency into these two parts, we
discard the queue time and focus on the access time, which
we approximate as the time the request was completed minus
the time the previously completed request was completed.

We experimented with both decision trees and neural
nets for access time prediction. One of the complications in
these predictions is the existence of unknown, high frequency
components caused by the rotational aspect of the drive. Un-
fortunately, a limitation of traditional neural nets and decision
trees is their inability to recognize periodic patterns in the
data. This can be seen with the checkerboard problem [28] as
well as the two-spirals problem [29], [30]. We overcome this
limitation by finding the frequencies of these periodic patterns
with Fourier analysis and then feed these into the neural net
or decision tree explicitly by augmenting the feature vector.

Neural nets and, to a lesser degree, decision trees, have
many hyperparameters that must be chosen before training
even begins. Hyperparameters (or metaparameters) are values
that affect how the learning algorithm behaves and may bias it
toward certain solutions. Examples of hyperparameters include
layer sizes, learning rate, minimum leaf weight, etc. The
optimal values may be problem-specific, and there is no fixed
algorithm for finding the optimal values. We use a genetic
algorithm to autotune the values of these hyperparameters.

We previously published preliminary results in a workshop
paper using a manually tuned neural net [31]. This paper
extends those results by automatically tuning the hyperparam-
eters of the neural net and further winnowing the periods to
include. The contributions of the work reported here are: 1) a
method for finding useful frequencies, and, new in this paper:
2) a method for automatically tuning models that incorporate
these frequencies.

This work is a first step toward automated generation
of access time models and is not intended to be a finished
solution. Further work is needed to expand the scope of this
approach.

II. RELATED WORK

A. Predicting request latencies

DiskSim [5] is a well-regarded disk model based on dis-
crete event simulation. It has been validated to produce request-
level accuracy. However, it is computationally expensive and
difficult to configure for modern disks.

Many analytic models exist, including work by Lebrecht,
Dingle, and Knottenbelt [32]. Analytic models are relatively
easy to understand and extremely fast due to their compact
formulae. Unfortunately, they require very detailed expert
knowledge to create. Often, they are limited to certain classes
of workloads and are not useful alone in generalized contexts.
Our approach shares the last two limitations (for now) but does
not require domain expertise.

Kelly et al. describe a black-box probabilistic model [26]
similar to table-based models such as Garcia et al. [33]. In this
approach, requests are categorized based on features including
size, LRU stack distance, number of pending reads, number of
pending writes, and some RAID-specific information. Table-
based models are limited by the table size. The work by Kelly

et al. ameliorates this issue by essentially not requiring the
entire table to be filled in, but the problem of table size is not
fully solved.

Mesnier et al. create a model for relative performance
of storage devices [34]. Unfortunately, their approach still
requires an accurate base model.

Using regression trees to predict response time is a popular
approach. Dai et al. predict performance with a combination of
regression trees and support vector regression [10]. However,
their models are workload-specific, and their prediction errors
are based on one-second averages rather than per-request
latencies. Wang et al. also calculate errors based on windows,
using one-minute averages in their case [27].

None of the machine-learning-based approaches have
shown low per-request errors.

B. Learning periodic functions

Neural nets can be trained on periodic functions in many
ways. Some setups predict the value of the function directly
from the input. These invariably use a fixed interval with a
very small number of oscillations [35], [36], [37], [38], [39].
With this approach, extrapolating beyond the training range
leads to poor performance [40]. This approach is infeasible
for our problem because the number of oscillations (roughly,
the number of tracks) is on the order of a million.

If the function is known to have period p, another approach
is to map the input x into the range (0, p) using x mod p.
Common examples include time-of-day or day-of-year inputs
for functions that are daily or yearly periodic [41], [42]. An
alternative is to map it to sin(2πx/p) and cos(2πx/p) [43].
(This pair of functions has nice properties; they are both
continuous and bounded, and weighted sums are equal to
other sinusoids with varying phase.) Either way, this approach
requires the period to be precisely known ahead of time, and
that the input be exactly periodic. Note that such a period
cannot be calculated from manufacturer’s specifications.

Neurons in a neural net calculate their output by taking a
weighted sum of the inputs and applying an activation function
or transfer function, typically tanh(x) or 1

1+e−x . Rather than
using one of these as the activation function, one may use
sin(x). Unfortunately, sin(x) does not approach a limit for
large x, while tanh(x) and 1

1+e−x do. Lack of a such a limit
can lead to instability [44]. Periodic activation functions also
introduce many local minima [45].

A powerful tool for time series data is recurrent or delay
networks [46], [47]. These feed the network back into itself,
so that the network predicts y values from other y values,
rather than from x values. This is usually applied to problems
with one dimension of recursion, but ours has two, one for
the previously accessed sector and one for the current sector
to access. With dense data, only one level of recursion is
necessary, because the other y values are already known.
If the data is sparse, missing values must be recursively
computed. Our sampling is (by necessity) so sparse that the
recursion would be extremely deep, making computation time
impractical.

C. Tuning hyperparameters

Hyperparameters are often tuned using some combination
of manual search and grid search [48], [49], [50], [51],
although genetic algorithms are sometimes used [52], [53].
Grid search is known to be inefficient if not all hyperparam-
eters have equal importance [51], and manual search is not
reproducible.

Autotuning using genetic algorithms has been used
successfully for IO workload parameters [54], PID con-
trollers [55], water resource planning and management [56],
and neural networks [57], [58].

III. WHITE-BOX VERSUS BLACK-BOX MODELS

Modern hard disk drives are complex. A non-exhaustive
list of performance-relevant factors includes caching, reada-
head, writeback, zoned bit recording, cylinder skew, serpentine
layouts, sector sparing, bad sector remapping, settle time, and
head switch time. Furthermore, new changes will appear in
the future that introduce more complexity, such as shingled
drives [25] or possibly dual-heads per surface [12]. All of this
complexity means that accurate models must be complex and
include many parameters.

White-box models are created based on human understand-
ing of the internal construction and behavior of a system. While
they can be very accurate for well-understood systems, the
amount of expert knowledge required for hard disk drives is
a limitation. A white-box model must be modified manually
whenever the system changes structurally, which involves
writing code for a model such as DiskSim.

Another issue for white-box models is that of parame-
terization. White-box models of hard disk drives have many
important parameters that are not disclosed by the device man-
ufacturers. Many parameters for DiskSim can be discovered by
a tool called DIG [24], although this is imperfect, incomplete,
and takes a long time. Parameters not discovered by DIG
must be estimated by other means, perhaps even trial-and-error.
Finding parameters can take a very long time, six months in
one case [23]. As mentioned in section I, many recent papers
involving DiskSim use models that are over a decade old,
presumably because parameterization is so difficult.

Black-box models, on the other hand, do not require human
understanding of a system’s internals. Therefore, they are
useful for systems that are very complex or whose internals are
hidden. Another advantage is that a process for creating black-
box models can be used for multiple devices, as long as they
have the same interface. Specifically, this means that a process
for creating black-box models of block storage devices could
also be applied to SSDs, RAID arrays, newer generations of
hard disk drives, and so on.

Black-box models, because of the flexibility and the au-
tomated construction, are clearly desirable for performance
modeling of storage devices.

IV. PERIODICITY

Periodic functions are difficult to learn directly with a
generic machine learning algorithm. Examples include the
checkerboard problem [28] and the two-spirals problem [59],

which are often used to measure the effectiveness of a machine
learning algorithm.

The rotational nature of hard disk drives introduces a peri-
odic component into the access time function. This component
has large amplitude, meaning it is important to model. It also
has high frequency, meaning it is difficult to model directly
as a smooth function. This combination implies that we must
address this periodic component to achieve good results.

We therefore assume that the access time function may
have components that are locally periodic and explicitly in-
corporate this assumption into our algorithm. This is a fairly
reasonable assumption. First of all, as stated above, these
functions do have locally periodic components for existing
hard drives, due to track lengths and track skews that are
constant within a serpentine. Periodicity is likely to occur
in other devices as well, because of the benefits of regular
repetition in designs. Secondly, as described in section IV-B,
the runtime speed and accuracy of the model is unaffected if
these functions do not have locally periodic components.

A search through the set of periods with the genetic
algorithm used for tuning hyperparameters, while possible,
would be extremely inefficient. First, the space is huge. For
a device with k sectors (on the order of billions for modern
devices), there are roughly k/2 frequencies to search through.
Second, evaluating a set of frequencies, which involves training
the neural net or building the decision tree, is relatively slow.
Instead, we compute the Fourier transform of the access time
function and use the magnitude of the Fourier transform as a
proxy for the importance of a frequency. We set a relatively
low bar on the magnitude to generate a set of candidate
frequencies which are then filtered by the genetic algorithm
(see section VI).

A. Finding strong frequencies

We refer to the previously accessed sector as the start
sector, which is the current position of the head, and the first
sector of the current request as the end sector, which will
be the new position of the head. Let f(a, b) be the access
time function, where a and b are the LBNs of the start and
end sectors, and f returns the access time in milliseconds.
The Fourier transform is an obvious place to start to find
periodic behavior in f . While it can only find periods that
are directly correlated to the value of f , it is much faster
than training a neural net for every period to see which ones
are useful. Furthermore, if many periods are useful, their
individual impact on the neural net’s accuracy may be obscured
by noise. Using the Fourier transform allows us to pinpoint
useful periods relatively quickly and with high precision.

Capturing the access time for every sector pair would take
a very long time. Given our test device’s mean access time of
15.5 ms and 976,773,1682 pairs of sectors, the time to capture
all of them would be roughly 469 million years. Obviously,
this is infeasible, so we are limited to an extremely sparse
sampling.

The sampling sparsity means that we cannot use the Fast
Fourier Transform, so we fall back to the brute force method
of calculation, also known as the discrete Fourier transform
at nonequispaced nodes (NDFT). Let the vectors x = (a, b)

0 2000 4000 6000 8000 10000
Start sector

0

2000

4000

6000

8000

10000

E
nd

se
ct

or

0

1

2

3

4

5

6

7

8

9

(a) Actual times

0 2000 4000 6000 8000 10000
Start sector

0

2000

4000

6000

8000

10000

E
nd

se
ct

or

0

1

2

3

4

5

6

7

8

9

(b) Predicted times from neural net with subnets

Fig. 1: Access time over the first 4 tracks of a hard drive, in milliseconds

and ξ = (u, v), where u and v are coordinates in frequency
space. Further define N as the number of data points (in our
case, the number of requests in the trace), and f̂ as the Fourier
transform of f . The discrete Fourier transform is defined:

f̂(ξ) =
1

N

∑
k

f(xk)e−2πixk·ξ

which takes O(N) time to calculate for a single frequency
vector ξ, so calculating f̂ for M frequencies takes O(MN)
time. Scanning all frequencies in the 2D space leads to
infeasible computation time for large datasets or datasets over
larger regions of the drive.

Note that the access time depends mostly on the difference
between the sectors. This is intuitively true, as the time to
move from sector 0 to sector 9 should be roughly the same
as the time to move from sector 1 to sector 10. This causes
stripes in the access time function along a = b (see fig. 1a),
and the Fourier transform of a function with stripes has strong
components in the direction orthogonal to the stripes [60],
which means that strong components of the access time
function should lie on u = −v. We see this empirically in
fig. 2. By searching only this diagonal instead of the entire
space, the computation time becomes feasible.

Note that this is mathematically identical to finding the
Fourier transform of the 1D function d(c) where c = b− a.

f̂(u, v) =
1

N

∑
k

f(xk)e−2πi(au+bv)

=
1

N

∑
k

f(xk)e−2πi(b−a)v (where u = −v)

= d̂(v)

Off-diagonal frequencies occur, but they are mostly com-
binations of pairs of frequencies on the diagonal. An example
would be a dataset that includes track sizes of 10 and 11.
Strong coefficients are likely at periods (10, 10), (10, 11), (11,
10), and (11, 11). Since the diagonal provides (10, 10) and

-200 -150 -100 -50 0 50 100 150 200

-200

-150

-100

-50

0

50

100

150

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2: Full 2D Fourier spectrum for the first K = 237,631
sectors out to 200

K ×
200
K = 8.42 · 10−4 × 8.42 · 10−4, which

corresponds to periods of at least 1/(8.42 · 10−4) = 1188.155
sectors. Plot is clipped to magnitude 1 to show detail, but
central spike goes up to 8.6, and other diagonal spikes go up
to 3.9. This figure shows that strong frequencies do lie on the
diagonal v = −u.

(11, 11) (or just 10 and 11 in 1D), the locations of the others
could be inferred, although that is not actually necessary.

To determine a threshold for strong frequencies, we sample
1000 frequencies at random and calculate |f̂ |. The threshold
is then set to the mean plus six standard deviations. Since
the square magnitudes are exponentially distributed [61], this
means the magnitudes are Rayleigh distributed, so this thresh-
old means that a frequency has roughly a 1 in 700,000 chance
of being spuriously flagged. A few false positives are not a
problem, since they will be filtered out during the tuning stage
(see section VI).

We scan across v = −u with a step size of
0.1/blockCount, looking for local maxima above the thresh-
old. The peaks were often not centered on integer multi-
ples of 1/blockCount, which is why the step size is not

1/blockCount. After finding a maximum, we perform a local
search to fine-tune its position.

Due to structures such as serpentines, f may have higher-
order periods. In other words, f may have period p1 for a
subrange, then p2, then p1, then p2, etc., with the switch
between p1 and p2 being periodic. Currently, we have no
method for detecting these explicitly, although we have seen
them show up as interesting periods in their own right. These
actually cause further problems by reducing the utility of the
lower-level periods; the multiple regions using period p may
be out of phase, causing |f̂ | to drop. Essentially, this is a form
of mixed interference which results in a weaker signal than if
the signals interfered purely constructively.

Alternative algorithms exist for finding periodic
components. The Nonequispaced Fast Fourier Transform
(NFFT) reduces computational complexity from O(MN)
to O(M logM + N) [62], but for the full two-dimensional
case, M is still roughly 1018. A better approach is to use
an algorithm that assumes the Fourier transform is sparse.
Pawar and Ramchandran describe an algorithm that takes
O(k log k) time to find a k-sparse one-dimensional Fourier
transform in the noiseless case, but they do not describe
asymptotic complexity in the noisy case [63]. Ghazi et al.
describe an algorithm that takes O(k log2N) time to find a
k-sparse two-dimensional Fourier transform, but they require
k = Θ(

√
M) for the noisy case [64]. We leave use of an

advanced Fourier algorithm to future work.

B. Input augmentation

Once all interesting periods have been found, the input
vectors for the machine learning algorithm are augmented.
Given an input (a, b) and periods p1, . . . , pk, the augmented in-
put vector is

(
a, cos(2πa/p1), sin(2πa/p1), . . ., cos(2πa/pk),

sin(2πa/pk), b, cos(2πb/p1), sin(2πb/p1), . . ., cos(2πb/pk),
sin(2πb/pk)

)
. We use sinusoids of a and b separately rather

than sinusoids of b − a because the period changes for each
input separately. For example, if a is in a region where p1
dominates, and b is in a region where p2 dominates, then
sin(2πa/p1) and sin(2πb/p2) are useful, but sin(2π(b−a)/p3)
is not likely to be useful for any period p3.

If no interesting periods are found, then the input vectors
are unchanged. This means that for devices with no periodicity,
the cost of the periodicity assumption is just the time to search
for periods. The neural net or decision tree is unchanged, and
therefore the speed and accuracy of the model is unchanged.

V. NEURAL NETWORK STRUCTURE

The neural net maps pairs of locations in logical space
to access time. This mapping contains a lot of structure, and
we find it useful to decompose the net into two components:
a neural network that maps from logical space to physical
space, and a neural network that maps from pairs of physical
locations to access time. In other words, instead of directly
computing a mapping f : L2 → T , we decompose it into
g : L → P and h : P 2 → T so that f(a, b) = h(g(a), g(b)).
(Technically, f is not restricted as long as the intermediate
space is at least as large as the input space, since one could
always use g(x) = x and h = f , but this predisposes the neural
net to learn more useful decompositions.) Since the values of

P are hidden, i.e., we do not know the physical locations of
sectors, we cannot train g and h separately. Instead, we have
to chain them together as f and train them simultaneously.
Since g is used twice in f , this means f will have two subnets
(corresponding to g) that are identical, since they are simply
two occurrences of the same object. Concretely, this means the
structure and weights in these subnets will be identical. This is
achieved by applying weight sharing across two subnets (see
fig. 3). A similar approach was used by Kindermann et al. for
solving functional equations with neural nets [65].

Another interpretation is that the subnets perform feature
generation, knowing that the two logical locations are instances
in the same input space. In this interpretation, g extracts useful
features from our raw data, and h maps from those higher-level
features to our output.

For comparison, we also evaluated a traditional neural net
without subnets (see fig. 4). This network is fully connected
between layers and does not use weight sharing. This equates
to the case of directly computing the mapping f : L2 → T .

All neurons use a sigmoidal activation function except the
final output, which is linear. This is common practice for neural
nets performing regression [38].

We know of no simple way to decompose the mapping
computed by decision trees, so they were unmodified in this
respect.

a

sin(2πa/p1)

cos(2πa/p1)

...
...

b

sin(2πb/p1)

cos(2πb/p1)

...
...

g (copy 1)

g (copy 2) ...

h

Fig. 3: Network architecture when subnets are used. Note that
the weights in the two g subnets are identical.

VI. HYPERPARAMETER TUNING

Hyperparameters are often tuned using some combination
of manual search and grid search [48], [49], [50], [51],
although genetic algorithms are also used [58], [66], [52], [53].
Grid search is known to be inefficient if not all hyperparam-
eters have equal importance [51], and manual search is not
reproducible. We use a genetic algorithm to tune the machine
learning algorithms’ hyperparameters.

A set of hyperparameters is evaluated by running the ma-
chine learning algorithm with those parameters and evaluating

a

sin(2πa/p1)

cos(2πa/p1)

b

sin(2πb/p1)

cos(2πb/p1)

...

Fig. 4: Network architecture when subnets are not used

its performance. Since training a neural network or building
an ensemble of decision trees is relatively expensive, we use
a relatively small population size to reduce the amount of
computation needed.

We chose to minimize the L1 norm (equivalent to min-
imizing Mean Absolute Error, or MAE) instead of the L2

norm (equivalent to minimizing Root Mean Square Error, or
RMSE) mainly because the L2 norm is known to be sensitive
to outliers [67], [68]. For an empirical comparison of the two,
see section VIII-E.

A. Neural network tuning

Neural network hyperparameters include layer sizes, learn-
ing rate, momentum, and magnitudes of the initial weights.

The representation used in our genetic algorithm includes
booleans (for periods to be included or not), positive inte-
gers (for layer sizes), and positive reals (for the learning
rate, momentum, and initial weight magnitudes). Using a
representation that matches our problem should provide bet-
ter performance than using a simple bit string [69]. When
mutating, booleans are flipped, and integers are incremented
or decremented, and reals are multiplied by a log-normally
distributed value.

Initial hidden layer sizes were sampled from a log-normal
distribution with µ = ln 10 and σ = ln 10 (then cast to
an integer). The top 25 periods with the largest Fourier
magnitudes were used as candidate periods. Each candidate
period was included with a probability of 10%. The initial
learning rates were sampled from a log-normal distribution
with µ = ln(4× 10−3) and σ = ln 100, the momenta were
sampled uniformly from 0 to 1, and the initial weight standard
deviations were sampled from a log-normal distribution with
µ = 0 and σ = ln 10, all mutated as described below.

Individuals were evaluated by training a neural net with
stochastic backpropagation and minimizing the L1 error. Initial
weights were sampled from a normal distribution with mean 0
and standard deviation that is a hyperparameter that depended
on the layer. A random 10% of the dataset was set aside as a
test set, and the neural net was trained on the remainder for 10
epochs. A penalty of 1.8× 10−5 per connection was added to
the error to discourage unnecessary bloat. This value for the
penalty was chosen to be roughly 10% of the raw error.

After each generation, the best 25% was kept for mating,
and the rest were discarded. Random pairs were selected for

mating, and attributes were randomly swapped to generate
pairs of children. Each child was mutated such that the
expected number of attributes changed was 5/8. On mutation,
a period’s inclusion would be toggled, a layer size would
be incremented or decremented, and real values would be
multiplied by a value sampled from a log-normal distribution
with µ = 0, σ2 = 10−2 (so that an “average” change would
be ±10%).

B. Decision tree tuning

For decision trees, we tune the maximum depth, minimum
number of instances per leaf, minimum variance proportion,
whether or not to use pruning, and number of folds when
pruning.

Bagging is a popular ensemble method used to improve the
accuracy of decision trees. Bagging generates many decision
trees trained on random subsets of the data, then averages their
predictions [70]. We test both with and without bagging. When
bagging is enabled, the ensemble size is also tuned.

As with neural nets, we use a genetic algorithm to tune
the hyperparameters, and we use the same representation. A
set of hyperparameters is evaluated by building a decision
tree (or ensemble of decision trees) with those parameters
and evaluating its performance. Illegal combinations, such as
pruning enabled and less than two pruning folds, results in
infinite error.

Decision trees were tested with WEKA [71]. When using
bagging in the manual case, the number of decision trees
was set to 100. When using bagging in the autotuning case,
a penalty of 7× 10−4 times the ensemble size is added to
prevent the ensemble size from growing unnecessarily large.
This results in a roughly 10% increase on top of the raw error.

VII. EXPERIMENTAL SETUP

The device we modeled is a Western Digital Caviar Black
WD5002AALX. It has a capacity of 500GB (976,773,168
sectors), rotational speed of 7200 RPM, cache size of 32 MB,
and NCQ queue length of 32. The drive was connected with
SATA. The host runs 64-bit Ubuntu Linux, kernel version
2.6.35-28-server. It has an Intel Core i7 quad-core CPU (plus
hyper-threading) running at 2.80 GHz and 12 GB of RAM.

Block-level traces were captured using blktrace. Request
latency was defined to be the D2C or device-to-completion
time. This is the time between the OS IO scheduler sending
the request to the device driver and receiving a response from
the device driver. Excluding device driver times is difficult and
requires a hardware setup. In modern computers, the time spent
in the device driver should be negligible compared to the time
spent in the hard drive.

The dataset is of N = 32,000 random reads of the first
94 tracks, or 237,631 sectors, which is the first 0.024% of the
drive. This corresponds to the first part of the first serpentine,
so all tracks have the same size (2528 sectors). We chose this
limitation to simplify the problem and plan to remove it in
future work.

A population of 104 individuals was used, which pro-
vided good utilization of the 52 compute cores available for

the experiment, and the genetic algorithm was run for 400
generations. We trained and tested each configuration five
times and reported the mean and standard deviation. For tests
with random periods, each run used different random periods
selected uniformly from the range 0 to 5000 sectors.

VIII. RESULTS

A. Overview

The Fourier analysis for our dataset takes approximately
7 minutes on the 52-core cluster, the genetic algorithm takes
approximately 160 minutes to run on the 52-core cluster, the
final training of a bag of decision trees takes approximately 2
minutes on a single core, and the final training of a neural net
takes approximately 15 minutes on a single core. Access time
errors for various configurations are listed in table I. The first
entry is the error for a model that always predicts the mean
value of the training set, which is used as a baseline.

The lowest L1 error achieved with decision trees was
0.526 ms. The lowest L1 error achieved with neural nets was
0.157 ms.

B. Periodicity

For reference, we ran DIG on our test hard disk drive. From
the DIG data, the track length at the beginning of the drive is
2528 sectors, and the skew is 1.1908 ms, which corresponds
to 361.37 sectors (given the rotation time of 8.33 ms). We
expected to see a dominant period of 2528−361.37 = 2166.63
sectors. From the Fourier analysis, the actual dominant period
is 2212.99 sectors, which is close to our prediction.

When using decision trees, adding the sines and cosines as
additional features reduced the error noticeably. Bagging the
decision trees reduced error further, but only when the periodic
information was included.

When using neural nets, adding the sines and cosines
reduced the error significantly. Weight sharing reduced the
error further, cutting it by half in the autotuning case. For auto-
tuned neural nets with weight sharing, including periodicity
information reduces the L1 error by 90%.

In roughly half of the autotuning trials, tests with random
periods fare no better than tests with no period information.
In the other trials, at least one random period is close to
an important period, and the error is reduced. While random
periods are occasionally useful for the current setup, the
probability of a period being useful plummets to virtually zero
when this approach is scaled up to an entire device.

C. Period count penalty

A penalty of 4× 10−3 per included period is added to
prevent inclusion of unnecessary periods and to improve con-
vergence. When no penalty term is added, the included periods
do not converge well (fig. 6a). Although some periods are
strongly selected for (top of the plot), and others are strongly
selected against (bottom of the plot), many flip back and forth
within a run and are inconsistent across runs. By including
the penalty term, the included periods converge quickly (clear
middle area, fig. 6b).

The value of the penalty was chosen by starting with 10−3,
which would give a penalty term roughly equal to 10% of the
L1 norm. We then doubled the penalty until we saw that the
periods converged well.

D. Neural net generation length

Multiple generation lengths were tested to see if the optimal
parameters depend on the generation length. Generation length
is the number of epochs spent training each neural network.

Different experiments converge to the same values for most
hyperparameters regardless of generation length (fig. 7). This
is useful because it means that the hyperparameters can be
chosen using a short generation length, and then the final
neural network can be trained for a longer period of time.
This is the approach we take, with neural nets being trained
for 10 epochs during hyperparameter tuning, then trained for
1000 epochs for the final evaluation.

Unsurprisingly, a higher learning rate is chosen when the
generation length is very short. This makes intuitive sense
because if the generation stops while a neural network’s error
is still dropping rapidly, a small increase in the learning rate
will provide a large benefit. Even though the higher learning
rate increases noise in the training error, the early cutoff means
that the training is stopped before this becomes a problem.

Since the optimal learning rate and momentum are depen-
dent on the generation length, we discard those learned values
and used fixed values of 4× 10−4 for the learning rate and 0.3
for the momentum when training a network for evaluation.

E. Comparing L1 and L2 norms

Minimizing the L1 norm gives a tighter correspondence
between predicted and actual values compared with the L2

norm (fig. 8). We also found that minimizing the L1 error
reduces both the L1 error and, surprisingly, the L2 error (ta-
ble II). In other words, minimizing the L1 error during training

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250 300 350 400

E
rr

or
(L

1
no

rm
in

m
s,

pl
us

pe
na

lti
es

)

Generation

Fig. 5: Error versus generation of the genetic algorithm for
neural nets with subnets. Note that this is higher than the final
error because 1) this error includes penalties, and 2) this error
is calculated based on neural nets trained for a smaller number
of epochs.

resulted in lower L2 error during testing than minimizing the
L2 error during training. We believe this is probably due to
the sensitivity of the L2 norm to non-gaussian errors causing
the model to generalize poorly.

L1 test error L2 test error
Minimizing L1 training error 0.139 ± 0.003 0.730 ± 0.019
Minimizing L2 training error 0.273 ± 0.005 0.799 ± 0.019

TABLE II: Effect of minimizing L1 versus L2 as measured by
L1 and L2, with 95% confidence interval over 50 runs

Figure 8 shows large errors at extreme values. The cause
is the fact that the access time function has many large dis-
continuities (see fig. 1a) where it “wraps” from the maximum
to minimum value. Near a discontinuity, a small error may
push the predicted value to the wrong side of the discontinuity
compared to the actual value, yielding a large error. Hence,
extreme values have a higher chance of large error.

F. Other

The error of the genetic algorithm drops quickly, with most
of the gain seen in the first 50 generations (fig. 5). We ran
the genetic algorithm for 400 generations to ensure maximum
benefit, but this is not necessary if one wants faster results.

For neural nets with subnets, the H2 layer, which corre-
sponds to the output of the g subnets, evolves to a relatively
small size (about 6 or 7 neurons) with little variance (fig. 7a).
This suggests that the dimensionality of the space of physical

sector locations is low, and that allowing for a larger interme-
diate space may actually be detrimental.

When comparing the actual and predicted access time
functions (fig. 1), we see that the shape is matched very well.
Even the notches in the stripes are in the predicted locations.

IX. CONCLUSION

Access time prediction of individual requests is a difficult
problem, largely because of the rotational nature of hard disk
drives. We have shown how it can be done using Fourier
analysis and machine learning.

Neural nets achieved lower error than decision trees in
all tests. We suspect this is caused by two things: 1) the
structure imposed by weight sharing cannot be implemented
with decision trees, and 2) interactions between inputs, which
decision trees do not learn from well [72].

Splitting the neural net into subnets and using weight
sharing across the subnets significantly reduces error. Weight
sharing requires no assumptions about the nature of the device,
only the knowledge that the input consists of two objects from
the same set, namely, block requests. Partitioning the neural net
into subnets that use weight sharing can be seen as combining
feature construction and learning into one step.

Adding periodic features requires only a mild assumption
and improves multiple machine learning algorithms signifi-
cantly. This approach is likely to be a crucial part of future
behavioral modeling of storage device performance.

Configuration L1 error (ms) L2 error (ms)
constant value 1.651 ± 0.017 2.014 ± 0.019

M
an

ua
lly

tu
ne

d
de

ci
si

on
tr

ee
s

no periods, without bagging 1.650 ± 0.001 2.014 ± 0.008

no periods, with bagging 1.655 ± 0.000 2.023 ± 0.004

random periods, without bagging 1.608 ± 0.062 1.969 ± 0.056

random periods, with bagging 1.545 ± 0.152 1.925 ± 0.180

Fourier periods, without bagging 1.082 ± 0.085 1.544 ± 0.183

Fourier periods, with bagging 0.748 ± 0.009 1.349 ± 0.338

A
ut

o-
tu

ne
d

de
ci

si
on

tr
ee

s

no periods, without bagging 1.640 ± 0.009 2.006 ± 0.016

no periods, with bagging 1.649 ± 0.001 2.016 ± 0.005

random periods, without bagging 1.519 ± 0.169 2.022 ± 0.015

random periods, with bagging 1.058 ± 0.336 1.507 ± 0.295

Fourier periods, without bagging 0.865 ± 0.046 1.717 ± 0.129

Fourier periods, with bagging 0.526 ± 0.019 1.032 ± 0.018

M
an

ua
lly

tu
ne

d
ne

ur
al

ne
ts

no periods, without subnets 1.603 ± 0.016 2.058 ± 0.017

no periods, with subnets 1.593 ± 0.023 2.043 ± 0.026

random periods, without subnets 1.616 ± 0.024 2.072 ± 0.030

random periods, with subnets 1.401 ± 0.426 1.894 ± 0.365

Fourier periods, without subnets 0.308 ± 0.009 0.969 ± 0.034

Fourier periods, with subnets 0.236 ± 0.010 0.808 ± 0.036

A
ut

o-
tu

ne
d

ne
ur

al
ne

ts

no periods, without subnets 1.613 ± 0.020 2.079 ± 0.026

no periods, with subnets 1.608 ± 0.027 2.059 ± 0.030

random periods, without subnets 1.270 ± 0.455 1.791 ± 0.390

random periods, with subnets 1.394 ± 0.417 1.862 ± 0.363

Fourier periods, without subnets 0.298 ± 0.012 0.961 ± 0.060

Fourier periods, with subnets 0.157 ± 0.015 0.785 ± 0.065

“unrestrained” neural net* 0.149 ± 0.021 0.781 ± 0.072

0 1 2 0 1 2

TABLE I: Average errors for access time predictions. Neural nets were trained for 1000 epochs. Solid bars show the mean error,
and thin bars show the standard deviation of the error.
*The “unrestrained” neural net was evolved with all penalties set to 0, so it has lower error at the expense of larger size.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Pr
op

or
tio

n
of

po
pu

la
tio

n
us

in
g

pe
ri

od

Generation

(a) no penalty per period

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Pr
op

or
tio

n
of

po
pu

la
tio

n
us

in
g

pe
ri

od

Generation

(b) 4 · 10−3 penalty per period

Fig. 6: Usage of periods versus generation (neural nets with subnets). Note that with no penalty, periods converge poorly, i.e.,
cross y = 0.5 even in later generations.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

N
eu

ro
ns

Generation

H1

H2

H3
H1 size
H2 size
H3 size

(a) 10 epochs per generation

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

N
eu

ro
ns

Generation

H1

H2

H3
H1 size
H2 size
H3 size

(b) 40 epochs per generation

Fig. 7: Size of hidden layers versus generation. The same sizes are chosen even when the generation length is varied.

0

2

4

6

8

10

0 2 4 6 8 10

Pr
ed

ic
te

d
ac

ce
ss

tim
e

(m
s)

Actual access time (ms)

(a) Predicted versus actual access times when trained with L1 norm

0

2

4

6

8

10

0 2 4 6 8 10

Pr
ed

ic
te

d
ac

ce
ss

tim
e

(m
s)

Actual access time (ms)

(b) Predicted versus actual access times when trained with L2 norm

Fig. 8: Comparison of L1 versus L2 norm for neural nets with subnets. (A narrow cluster along the diagonal y = x is better.)
High errors are seen at extreme values due to discontinuities in the access time function. For details, see section VIII-E.

REFERENCES

[1] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class
storage systems,” in MSST/SNAPI 2012, Pacific Grove, CA, April 16 -
20 2012.

[2] Y. Liu, R. Figueiredo, D. Clavijo, Y. Xu, and M. Zhao, “Towards
simulation of parallel file system scheduling algorithms with PFSsim,”
in Proceedings of the 7th IEEE International Workshop on Storage
Network Architectures and Parallel I/O (May 2011), 2011.

[3] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang,
“Quickly finding near-optimal storage designs,” ACM Transactions on
Computer Systems (TOCS), vol. 23, no. 4, pp. 337–374, 2005.

[4] H. Huang, W. Hung, and K. G. Shin, “FS2: dynamic data replication
in free disk space for improving disk performance and energy con-
sumption,” ACM SIGOPS Operating Systems Review, vol. 39, no. 5,
pp. 263–276, 2005.

[5] J. S. Bucy, J. Schindler, S. W. Schlosser, G. R. Ganger, and
Contributors, The DiskSim Simulation Environment Version 4.0
Reference Manual, Carnegie Mellon University, Pittsburgh, PA,
May 2008. [Online]. Available: http://www.pdl.cs.cmu.edu/PDL-FTP/
DriveChar/CMU-PDL-08-101.pdf

[6] Y. Chen, W. W. Hsu, and H. C. Young, “Logging RAID - an
approach to fast, reliable, and low-cost disk arrays,” in Euro-Par
2000 Parallel Processing, ser. Lecture Notes in Computer Science,
A. Bode, T. Ludwig, W. Karl, and R. Wismüller, Eds. Springer Berlin
Heidelberg, 2000, vol. 1900, pp. 1302–1311. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44520-X 182

[7] L. Zhang, G. Liu, X. Zhang, S. Jiang, and E. Chen, “Storage device per-
formance prediction with selective bagging classification and regression
tree,” Network and Parallel Computing, pp. 121–133, 2010.

[8] A. Núñez, J. Fernández, R. Filgueira, F. Garcı́a, and J. Carretero,
“SIMCAN: A flexible, scalable and expandable simulation platform for
modelling and simulating distributed architectures and applications,”
Simulation Modelling Practice and Theory, vol. 20, no. 1, pp. 12–32,
2012.

[9] D. Lingenfelter, A. Khurshudov, and D. Vlassarev, “Efficient disk
drive performance model for realistic workloads,” Magnetics, IEEE
Transactions on, vol. 50, no. 5, pp. 1–9, May 2014.

[10] C. Dai, G. Liu, L. Zhang, and E. Chen, “Storage device performance
prediction with hybrid regression models,” in PDCAT’12, Beijing,
China, December 2012.

[11] A. Thomasian, “Survey and analysis of disk scheduling methods,” ACM
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 8–25, 2011.

[12] M. Li and J. Shu, “DACO: A high-performance disk architecture
designed specially for large-scale erasure-coded storage systems,” Com-
puters, IEEE Transactions on, vol. 59, no. 10, pp. 1350–1362, 2010.

[13] T. Xie and Y. Sun, “Dynamic data reallocation in hybrid disk arrays,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 21, no. 9,
pp. 1330–1341, 2010.

[14] L. Liu, Z. H. Liu, L. Xu, and J. Zhang, “FBctlr - a novel approach
for storage performance virtualization,” in Computational Intelligence
and Security (CIS), 2011 Seventh International Conference on. IEEE,
2011, pp. 268–272.

[15] E. Varki, A. Hubbe, and A. Merchant, “Improve prefetch performance
by splitting the cache replacement queue,” in Advanced Infocomm
Technology. Springer, 2013, pp. 98–108.

[16] L. Liu, L. Xu, Z. H. Liu, and J. Zhang, “QClock: An interposed
scheduling algorithm for performance virtualization in shared storage
systems,” in Networked Computing (INC), 2011 The 7th International
Conference on. IEEE, 2011, pp. 17–21.

[17] L. Newman and J. Nowitzke, Cheetah 9LP Family - Product Manual,
C ed., Seagate, August 1998.

[18] D. Ashby, B. Norman, and K. Tan, Barracuda 4LP Family - Product
Manual, D ed., Seagate, Feb 1998.

[19] “Quantum atlas 10k ii,” http://www.seagate.com/staticfiles/maxtor/
en us/documentation/data sheets/atlas 10k ii datasheet.pdf, 2000, aI-
IDS0600.

[20] J. Dı̀az, “This is the largest SATA drive in the world,” http://

gizmodo.com/5667594/this-is-the-largest-sata-drive-in-the-world, Oc-
tober 2010.

[21] “Seagate breaks capacity ceiling with world’s first 3 terabyte external
desktop drive,” http://media.seagate.com/2010/06/seagatetechnology/
seagate-breaks-capacity-ceiling-with-worlds-first-3-terabyte-external-
desktop-drive/, June 2010.

[22] “WD caviar green series disti spec sheet,” http://www.wdc.com/
wdproducts/library/SpecSheet/ENG/2879-701229.pdf, January 2012,
2879-701229-A25.

[23] R. Oldfield, Personal communication, January 2013.
[24] J. Gim and Y. Won, “Extract and infer quickly: Obtaining sector

geometry of modern hard disk drives,” Trans. Storage, vol. 6, pp.
6:1–6:26, July 2010. [Online]. Available: http://doi.acm.org.oca.ucsc.
edu/10.1145/1807060.1807063

[25] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka,
H. Mutoh, and N. Yoshikawa, “Future options for HDD storage,”
Magnetics, IEEE Transactions on, vol. 45, no. 10, pp. 3816–3822, 2009.

[26] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton, “Inducing models of
black-box storage arrays,” HP Laboratories, Palo Alto, CA, Technical
Report HPL-2004-108, June 2004.

[27] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger, “Storage device performance prediction with CART models,”
in MASCOTS 2004, 2004.

[28] D. F. Specht and P. Shapiro, “Generalization accuracy of probabilistic
neural networks compared with backpropagation networks,” in Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on,
vol. i, 1991, pp. 887–892 vol.1.

[29] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” School of Computer Science, Carnegie Mellon University,
Tech. Rep. CMU-CS-90-100, February 1990.

[30] Y. Shang and B. W. Wah, “Global optimization for neural network
training,” Computer, vol. 29, no. 3, pp. 45–54, 1996.

[31] A. Crume, C. Maltzahn, L. Ward, T. Kroeger, M. Curry, R. Oldfield,
and P. Widener, “Fourier-assisted machine learning of hard disk drive
access time models,” in Proceedings of the 8th Parallel Data Storage
Workshop. ACM, 2013, pp. 45–51.

[32] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt, “A performance
model of zoned disk drives with I/O request reordering,” in
Proceedings of the 2009 Sixth International Conference on the
Quantitative Evaluation of Systems, ser. QEST ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 97–106. [Online]. Available:
http://dx.doi.org/10.1109/QEST.2009.31

[33] J. Garcia, L. Prada, J. Fernandez, A. Nunez, and J. Carretero, “Using
black-box modeling techniques for modern disk drives service time
simulation,” in Simulation Symposium, 2008. ANSS 2008. 41st Annual,
april 2008, pp. 139 –145.

[34] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R.
Ganger, “Modeling the relative fitness of storage,” in SIGMETRICS
2007, 2007.

[35] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” Neural Networks, IEEE Transactions on,
vol. 5, no. 6, pp. 989–993, 1994.

[36] A. Guez and Z. Ahmad, “Solution to the inverse kinematics problem
in robotics by neural networks,” in Neural Networks, 1988., IEEE
International Conference on. IEEE, 1988, pp. 617–624.

[37] B. E. Rosen, “Ensemble learning using decorrelated neural networks,”
Connection Science, vol. 8, no. 3-4, pp. 373–384, 1996.

[38] S. Ferrari and R. F. Stengel, “Smooth function approximation using
neural networks,” Neural Networks, IEEE Transactions on, vol. 16,
no. 1, pp. 24–38, 2005.

[39] Z. Zainuddin and O. Pauline, “Function approximation using artificial
neural networks,” WSEAS Transactions on Mathematics, vol. 7, no. 6,
pp. 333–338, 2008.

[40] K. Kosanovich, A. Gurumoorthy, E. Sinzinger, and M. Piovoso, “Im-
proving the extrapolation capability of neural networks,” in Intelligent
Control, 1996., Proceedings of the 1996 IEEE International Symposium
on. IEEE, 1996, pp. 390–395.

[41] J. Kwon, B. Coifman, and P. Bickel, “Day-to-day travel-time trends
and travel-time prediction from loop-detector data,” Transportation

Research Record: Journal of the Transportation Research Board, vol.
1717, no. 1, pp. 120–129, 2000.

[42] D. Elizondo, G. Hoogenboom, and R. McClendon, “Development of a
neural network model to predict daily solar radiation,” Agricultural and
Forest Meteorology, vol. 71, no. 1, pp. 115–132, 1994.

[43] M. Gardner and S. Dorling, “Neural network modelling and prediction
of hourly NOx and NO2 concentrations in urban air in london,”
Atmospheric Environment, vol. 33, no. 5, pp. 709 – 719, 1999.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1352231098002301

[44] K.-W. Wong, C.-S. Leung, and S.-J. Chang, “Use of periodic and mono-
tonic activation functions in multilayer feedforward neural networks
trained by extended Kalman filter algorithm,” in Vision, Image and
Signal Processing, IEE Proceedings-, vol. 149, no. 4. IET, 2002,
pp. 217–224.

[45] J. M. Sopena, E. Romero, and R. Alquezar, “Neural networks with
periodic and monotonic activation functions: a comparative study in
classification problems,” in Artificial Neural Networks, 1999. ICANN
99. Ninth International Conference on (Conf. Publ. No. 470), vol. 1.
IET, 1999, pp. 323–328.

[46] G. Noone and S. D. Howard, “Investigation of periodic time series using
neural networks and adaptive error thresholds,” in Neural Networks,
1995. Proceedings., IEEE International Conference on, vol. 4. IEEE,
1995, pp. 1541–1545.

[47] S. Jagannathan and F. L. Lewis, “Multilayer discrete-time neural-
net controller with guaranteed performance,” Neural Networks, IEEE
Transactions on, vol. 7, no. 1, pp. 107–130, 1996.

[48] G. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” University of Toronto, Tech. Rep., August 2010, uTML TR
2010-003.

[49] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural Networks: Tricks of the Trade, this book is an outgrowth of
a 1996 NIPS workshop. Springer-Verlag, 1998, pp. 9–50.

[50] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proceedings of the 24th international conference
on Machine learning. ACM, 2007, pp. 473–480.

[51] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” The Journal of Machine Learning Research, vol. 13, pp.
281–305, 2012.

[52] Y. Jin, T. Okabe, and B. Sendhoff, “Neural network regularization and
ensembling using multi-objective evolutionary algorithms,” in Evolu-
tionary Computation, 2004. CEC2004. Congress on, vol. 1. IEEE,
2004, pp. 1–8.

[53] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[54] B. Behzad, L. H. V. Thanh, J. Huchette, S. Byna, R. A. Prabhat,
Q. Koziol, and M. Snir, “Taming parallel I/O complexity with auto-
tuning,” in Proceedings of 2013 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2013),
2013.

[55] C. F. M. Toledo, J. M. G. Lima, and M. da Silva Arantes, “A multi-
population genetic algorithm approach for PID controller auto-tuning,”
in Emerging Technologies & Factory Automation (ETFA), 2012 IEEE
17th Conference on. IEEE, 2012, pp. 1–8.

[56] J. Nicklow, P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-Hilton,
M. Karamouz, B. Minsker, A. Ostfeld, A. Singh et al., “State of the
art for genetic algorithms and beyond in water resources planning and
management,” Journal of Water Resources Planning and Management,
vol. 136, no. 4, pp. 412–432, 2009.

[57] C. Harpham, C. W. Dawson, and M. R. Brown, “A review of genetic
algorithms applied to training radial basis function networks,” Neural
Computing & Applications, vol. 13, no. 3, pp. 193–201, 2004.

[58] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, “Tuning of
the structure and parameters of a neural network using an improved
genetic algorithm,” Neural Networks, IEEE Transactions on, vol. 14,
no. 1, pp. 79–88, 2003.

[59] S. K. Chalup and L. Wiklendt, “Variations of the two-spiral task,”
Connection Science, vol. 19, no. 2, pp. 183–199, 2007.

[60] J. M. Gauch, “Ch4 - Fourier transform,” http://www.csce.uark.edu/
∼jgauch/5683/notes/ch04a.pdf. [Online]. Available: http://www.csce.
uark.edu/∼jgauch/5683/notes/ch04a.pdf

[61] D. R. Brillinger, Time Series: Data Analysis and Theory. SIAM, 1981,
vol. 36.

[62] S. Kunis and D. Potts, “Time and memory requirements of the noneq-
uispaced FFT,” Sampling Theory in Signal & Image Processing, vol. 7,
no. 1, 2008.

[63] S. Pawar and K. Ramchandran, “Computing a k-sparse n-length discrete
Fourier transform using at most 4k samples and O(k log k) complexity,”
in Information Theory Proceedings (ISIT), 2013 IEEE International
Symposium on. IEEE, 2013, pp. 464–468.

[64] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-optimal average-case sparse Fourier transform in two dimen-
sions,” arXiv preprint arXiv:1303.1209, 2013.

[65] L. Kindermann, A. Lewandowski, and P. Protzel, “A framework for
solving functional equations with neural networks,” in Proceedings
of Neural Information Processing (ICONIP2001), vol. 2. Fudan
University Press, Shanghai, 2001, pp. 1075–1078.

[66] H. A. Abbass, “Speeding up backpropagation using multiobjective
evolutionary algorithms,” Neural Computation, vol. 15, no. 11, pp.
2705–2726, 2003.

[67] J. S. Armstrong and F. Collopy, “Error measures for generalizing about
forecasting methods: Empirical comparisons,” International Journal of
Forecasting, vol. 8, no. 1, pp. 69–80, 1992.

[68] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance,” Climate Research, vol. 30, no. 1, p. 79, 2005.

[69] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 1996.

[70] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[71] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009,
http://www.cs.waikato.ac.nz/∼ml/weka/. [Online]. Available: http://doi.
acm.org/10.1145/1656274.1656278

[72] S. Esmeir and S. Markovitch, “Anytime learning of decision trees,” The
Journal of Machine Learning Research, vol. 8, pp. 891–933, 2007.

