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ABSTRACT
The MapReduce framework is being extended for domains
quite di↵erent from the web applications for which it
was designed, including the processing of big structured
data, e.g., scientific and financial data. Previous work
using MapReduce to process scientific data ignores existing
structure when assigning intermediate data and scheduling
tasks. In this paper, we present a method for incorporating
knowledge of the structure of scientific data and executing
query into the MapReduce communication model. Built in
SciHadoop, a version of the Hadoop MapReduce framework
for scientific data, SIDR intelligently partitions and routes
intermediate data, allowing it to: remove Hadoop’s global
barrier and execute Reduce tasks prior to all Map tasks
completing; minimize intermediate key skew; and produce
early, correct results. SIDR executes queries up to 2.5
times faster than Hadoop and 37% faster than SciHadoop;
produces initial results with only 6% of the query completed;
and produces dense, contiguous output.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems;
H.2.4 [Systems]: Query Processing; D.4.7 [Organization
and Design]: Distributed Systems

General Terms
Hadoop, MapReduce, Scientific Data

1. INTRODUCTION
MapReduce is a simple framework for parallelizing the
processing of large datasets. Its rise in popularity has led to
its use in problem domains and with types of data beyond
those for which it was originally designed, including scientific
computing [9, 15, 39]. For large-scale scientific datasets,
MapReduce is an attractive framework due to its simple
programming model, ability to scale well on commodity
hardware, and because many problems in scientific comput-
ing translate well to its type of parallelization [7, 34, 9].
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Scientific data is often highly structured (modeled as an
array, sphere, or some other shape [11, 26, 17]) and stored
in file-formats where metadata describing that structure
resides alongside the actual data. Previous e↵orts in
applying MapReduce to scientific data typically fall into two
categories: 1) those that make little use of this additional
structure, preferring to process entire files [24, 35], thereby
ignoring locality concerns and potentially facing scalability
limitations and, 2) those that extract data from its native
format and store it in some other layout [19, 8, 2], likely
achieving performance gains while forfeiting access to the
data in its native format and incurring the resource costs
inherent in reformatting. SciHadoop [4] is a recent project
that provides the best of both categories by utilizing the
structured nature of scientific data, stored in its native
file format, to achieve data locality and thereby improve
the performance of Hadoop queries over scientific data.
SciHadoop’s extension of Hadoop was limited to improving
the assignment of input to Map tasks, later data assignment
and communication was unaltered.

While literature indicates that it is common for scientific
queries to have some alignment to the structure of the data
they are executing on (Section 2.1), the existing MapReduce
model is agnostic of any order in either its input or inter-
mediate data. This paper presents SIDR (Structure-Aware
Intelligent Data Routing), an extension of the MapReduce
model that takes advantage of naturally occurring align-
ments, and an implementation of that extended model in
Hadoop. Building upon SciHadoop’s ability to e�ciently
read scientific data as input to Hadoop, SIDR alters how
Hadoop assigns intermediate data, schedules tasks and
organizes its output for a large class of queries over scientific
data. SIDR is able to provide correct, partial results
prior to the completion of all Map tasks and guarantee
that the number of keys assigned to each Reduce task is
consistent (key skew is prevented); two topics that have
each been the focus of multiple papers, [5, 32] and [27, 21]
respectively. Additionally, SIDR allows for the prioritization
of portions of the output during scheduling and organizes
intermediate data into dense, contiguous chunks, resulting
in more e�cient query output. These added features, and
performance improvements deriving from the new model,
significantly advance our goal of providing the broader
scientific computing community with convenient access to
a scalable platform for in-situ processing of scientific data.

This paper’s contributions include:



Table 1: Summary of Common Symbols

Sets

T MapReduce query input set

I Set of all input splits

OT
es Output from a MapReduce query

v0k0 set of all values in v0 that are part

of a key/value pair where the key is k0

KT set of keys that actually exist in

K for a MapReduce query

KT
i set of keys that actually exist in

Ii for a MapReduce query

K0T
` set of keys in K0 assigned

to keyblock` for a given query

Elements

Ii the ith input split

k, k0 a key in spaces K or K0, respectively

hk, vi key/value pair in K ⇥ V

hk0, v0ii key/value pair in K0 ⇥ V 0 created by

the Map task processing Ii

mi particular Map task

1. A formal extension to the MapReduce communica-
tion model that, for structural queries, introduces
determinism between input and output keys while
preserving correctness, prevents skew in intermediate
data, reduces the amount of required communication
and enables the production of early results.

2. A working implementation of this new communication
model within Hadoop that includes: a new partition-
ing function that incorporates knowledge about the
executing query and input data, a modified scheduler
that enables co-scheduling of Reduce tasks with the
Map tasks they depend on and Reduce tasks starting
as soon as their data dependencies are met

3. A performance evaluation of SIDR relative to both
SciHadoop and Hadoop.

2. BACKGROUND
2.1 Scientific Data
Scientific data is typically stored in binary file formats
that provide higher-level abstractions for accessing data. A
common abstraction used by these libraries is a coordinate-
based system where data is read and written from files via
functions that take coordinate arguments in lieu of byte-
o↵sets and then translate those coordinates into accesses in
the underlying file. Common scientific file formats include
NetCDF [26], HDF5 [17], FITS [11], and GRIB [13] (for the
rest of this paper, we use NetCDF notation). Given scientific
libraries’ requirement that data access occur via coordinates,
SciHadoop, which this work builds upon, specifies its units
of work via pairs of n-dimensional coordinates specifying
a corner and a shape in the input data set (e.g., corner:
{100,0,0} shape: {20, 50, 50} indicates a 50,000 element
cube with its origin at {100,0,0}).

Scientific file formats typically encode structural metadata
alongside data in a single file. This metadata is typically
exposed by a function that returns the dimensions and data
type being stored. Figure 1 is an example of metadata for a
file used in our experiments.

dimensions:
    time = 365;
    lat = 250;
    lon = 200;

variables:
    int temperature(time, lat, lon);

Figure 1: Metadata for the dataset shown in Figure 2
whose dimensions are {365, 250, 200} representing 365 daily
measurements covering 25�N to 50�N in 1/10� increments
and 85�W to 65�W in 1/10� increments.

2.2 Scientific Queries
Scientific queries often have a structural component. Specif-
ically, the queries use the semantic meaning of where data
points occur within a file to analyze the data. Figure 2 is
an example dataset consisting of temperature measurements
from the eastern US. Examples of structural queries over this
dataset include:

1. Find the weekly averages for every unique location.
2. Find all locations where the 24-hour temperature

variations exceed X.
3. Sort the data points for each day by temperature.

These queries are not only representative of climate-oriented
research but are functionally equivalent to histogramming in
high energy physics [9], identifying stars displaying sudden
shifts in brightness (astronomy) [28] and using evolving
models to find anomalous behaviors in network packets
(machine learning) [14]. We refer to this class of queries
as structural queries.

A review of existing work on processing large scientific
datasets with MapReduce or similar frameworks indicates
that structural queries are common in a wide variety of
fields. In addition to those already mentioned in this section,
we found pairwise sequence alignment [15] (bioinformatics),
a variety of selection and correlation queries in astro-
physics [24], generating periodograms of stars at di↵erent
wavelengths [33] and as part of a merge-based system for
clustering algorithms [29] (astronomy), and analyzing time
series (both microscopic images and measurements) of live
cells [38] (genomics).
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Figure 2: Example data representing daily temperature
measurements for the east coast of the US over one year.

Not all queries over scientific data are structural. For exam-
ple, performing a group-by or join operation on the values



in a dataset does not display the structural properties that
SIDR capitalizes on; these queries interact with the values in
the dataset irrespective of the data’s location. We refer to
these queries as structure-oblivious. Additionally, queries
whose individual computations require global communica-
tion are considered structure-oblivious for our purposes as
they are not amenable to our structure-informed optimiza-
tions. While SIDR is exclusively focused on structural
queries, previous projects that used MapReduce-like systems
for structure-oblivious workloads in scientific computing
include k -means clustering (data mining) on DryadLINQ [8],
and physics simulations requiring a global merge phase on
CGL-MapReduce [9].

2.3 MapReduce
The decision to use a MapReduce system as the basis for
our research was motivated by two factors: 1) the design
of MapReduce aligns perfectly with our ultimate goal of
extending a parallel filesystem to support the in-situ analysis
of scientific data in its native file format and 2) building
upon Hadoop allowed us to proceed directly to conducting
research without having to build and support our own
distributed, fault-tolerant, parallel processing system. In
our discussion of MapReduce, we reference Hadoop [16] for
implementation details, as it is the predominant publicly-
availableMapReduce framework. A more detailed discussion
of our choice to build upon Hadoop is presented here [4].

Figure 3 shows the dataflow for a MapReduce query. When a
query begins executing, a central coordinator partitions the
specified input data, T, into a set I consisting of InputSplits,
denoted Ii. An InputSplit is typically defined as byte-
ranges in one or more files (e.g., bytes 1024 - 2048 in file
”dataFile1”). Each split is assigned to oneMap task that em-
ploys a file-format specific library, called a RecordReader,
to read the assigned Ii and output key/value pairs where the
keys are in keyspaceK. Those key/value pairs are consumed
by said Map task which then outputs new key/value pairs,
referred to as intermediate data, with keys in a di↵erent
keyspace, K0. A partition function then deterministically
maps the k0 key for each intermediate key/value pair to one
keyblock (a “keyblock” is a partition of the keyspace K0

for the given query).

Each Reduce task is assigned a keyblock and processes
all intermediate data assigned to that keyblock. Prior to
the application of the Reduce function, Reduce tasks merge
all their data into a sorted list, combining all key/value
pairs with the same k0 key into a pair consisting of a single
instance of the key and a list containing all the values
(denoted v0k0). The sorting and merging ensures that all
values corresponding to a given key will be processed by
the Reduce function at the same time. As a Reduce task
processes its assigned data, it emits a new set of values in
the output space O.

MapReduce makes two guarantees: 1) all input will even-
tually be processed by a Map task and, 2) for a given k0,
all values will be processed at the same time, by a single
Reduce task. The MapReduce framework is free to partition
data and schedule tasks as it sees fit. In practice, data
locality information is often used to partition and assign the
input. A lack of ordering guarantees among tasks of a given
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Figure 3: Annotated dataflow for a MapReduce query. The
arrow follows one possible path of a data point through the
entire query with stars indicating areas in the dataflow where
keys are opaquely mapped between di↵erent keyspaces.

type (Map or Reduce) and atomic committal of task output
a↵ords MapReduce a high degree of scheduling flexibility.

2.3.1 The MapReduce Barrier

MapReduce’s single ordering constraint is that a Reduce
task only processes data for a given K0 key when it has
all of the key/value pairs with that particular key. Existing
MapReduce frameworks make no attempt to reason about
which keys will be generated by the collective Map tasks and
how those keys will be assigned to keyblocks, necessitating
a worst-case assumption that any Map task may create
output for any Reduce task. The resultant barrier between
the end of the lastMap task and the beginning of any Reduce
task, thereby guaranteeing all values for a given key will be
processed at the same time. Figure 4a depicts this barrier
and it is explored in more detail in Section 3.2.

Time

M1 M2 M3 M4 M5 R1 R2

Time

M1 M2 M3 M4 M5 R1 R2

Figure 4: Left: In general, Reduce tasks wait for all Map
tasks to complete prior to beginning their execution. Right:
Reduce tasks waiting for their actual data dependencies
(e.g., R1 depends on M1,M2,M3; R2 on M3,M4,M5).

2.3.2 MapReduce’s Communication Model

While a significant body of work relating to formal defi-
nitions of the MapReduce query model and its relation to
other computing models exists [6, 10, 20, 22], MapReduce’s
internal communication model has received little attention.
Reasoning about the MapReduce dataflow is complicated by



three areas in the communications model where it is di�cult,
or impossible, to correlate a function’s input with its output.
These areas, marked by stars in Figure 3, prevent any mean-
ingful optimization of communications within MapReduce
without sacrificing generality (see Section 5 for a discussion
of previous work that reduced the MapReduce barrier but
sacrificed generality to do so).

Map 1

Reducer 1 Reducer 2

split 1

Map 2 Map 3 Map 4 Map 5

split 2 split 3 split 4 split 5

Map 1

Reducer 1 Reducer 2

split 1

Map 2 Map 3 Map 4 Map 5

split 2 split 3 split 4 split 5

a) b)

Figure 5: a: default communications pattern for the
MapReduce query in Figure 4. b: actual data dependencies
for the same query.

Area 1. In practice, the input to a RecordReader

is frequently expressed as byte-ranges while the output
is a set of key/value pairs where the key is in some
logical keyspace. This mismatch prevents reasoning about
relationships between the input and output without some
external knowledge.

Area 2. Map tasks are user-defined functions. Conse-
quently, there is no general method for predicting how Map
input keys (k) translate into Map output keys (k0).

Area 3. Assigning intermediate key/value pairs to key-

blocks represents a partitioning of the intermediate data
keyspace (K0) where each subset (keyblock) will be as-
signed to a Reduce task. The design of MapReduce does
not prescribe how this partitioning should be done, so it is
regarded as an opaque process.

2.4 SciHadoop
SciHadoop [4] integrates structured data into Hadoop by:

1. extending Hadoop’s input split generation process to
utilize logical coordinates.

2. leveraging scientific metadata to make more informed
decisions during input split generation.

3. defining a simple, array-based query language includ-
ing an extraction shape that explicitly describes the
units of data in the input that the specified operator
will process together.

2.4.1 Expanding the Use of Logical Coordinates

As described in Section 2.3, Hadoop partitions the input
into a set of Ii that are each read by a RecordReader

that emits key/value pairs for consumption by Map tasks.
SciHadoop defines its Ii in terms of logical coordinates,
as opposed to byte-o↵sets, creating a situation where both
RecordReader input and output are defined at the same
level of abstraction and also in the same space (coordinates
in the logical space K). In other other words, Ii and the
set of all keys that a RecordReader will produce when
assigned Ii, denoted KT

i , are equivalent in SciHadoop. It is
worth noting that defining Ii in terms of logical coordinates,
rather than byte-ranges, complicates SciHadoop’s attempts
to create InputSplits with high rates of data locality. This
point is addressed in our previous work [4].

2.4.2 Extraction Shape

The extraction shape, described in [4], is a concrete repre-
sentation of the units of data that the operator, specified
as part of the query, will be applied to. The extraction
shape is logically tiled, in a given order, over KT with each
instance representing a unique k0 key in K0. This process is
dependent on the query being structural and is independent
of the functions being applied in the Map and Reduce tasks.

As an example, consider a query over a 2-dimensional
dataset that is down-sampled by taking every disjoint 2x2
region of the input data and outputting the average value
of the 4 data points. In this example, the extraction shape
is {2, 2} (indicating every 2x2 input shape translates into a
single element in the output). An example of this translation
can be seen in Figure 6(b) as well as an extraction shape
that represents an up-sampling (Figure 6a). Strided access
(reading data at regularly spaced intervals) can be described
by adding an additional n-dimensional array indicating the
stride lengths between extraction shape instances.

Key Space K Key Space K'

a) b)

Key Space K Key Space K'

Figure 6: a: one value in K translating into four di↵erent
values in K’ b: Four di↵erent values in K translated into
one value in K’ due to a {2,2} extraction shape

For some structural queries, such as requesting all of the data
for a given range of coordinates where the value exceeds a
threshold, a list of zero or more results may be produced
rather than a single data point.

3. SIDR
The goal of SIDR is to extend the MapReduce communica-
tions model for structural queries. This work is not specific
to SciHadoop or scientific data, but rather is applicable
to any combination of query and data where it is possible
to reason about the relationship between input and output
based on the inputs location in the dataset; a scenario that
is common in scientific computing (Section 2.3.2).

SIDR uses structural knowledge of the query/data rela-
tionship to make stronger assumptions about data com-
munications than MapReduce can and dynamically adjusts
data assignment and task scheduling. To accomplish this
without impinging on MapReduce’s generality, SIDR must
overcome the three areas where MapReduce’s dataflow is
opaque (Section 2.3.2).

Area 1. Given that SciHadoop already defines its Ii in
logical coordinates, rather than byte-o↵sets, Ii and KT

i are
equivalent. SIDR is able to (trivially) map an Ii to the KT

i

it will produce.

Area 2. For structural queries, the extraction shape,
used to specify the units of data that an operator will be
applied to in SciHadoop, can also be leveraged to map a
key in K to the corresponding key(s) in K0. In general,
this mapping is accomplished by dividing each coordinate



in the given key by the corresponding coordinate in the
extraction shape. For example, consider the metadata for
our temperature example (Figure 1) and assume a query
that calculates weekly averages and also down-samples the
latitude resolution from 1/10� to 1/2�, resulting in an
extraction shape of {7, 5, 1}. Given that extraction shape,
an arbitrary key in K, say {157, 34, 82}, maps to {22, 6, 82}
in the K0 keyspace. SIDR uses this approach to translate
the set of Map task input keys (KT

i ) to the keys that the

Map task will emit (K0T
i ).

Area 3. Given that KT is readily available and keys in
that space are easily mapped onto K0T via the extraction
shape, the exact dimensions of the intermediate key space
for a query (K0T) can be computed. For a particular KT

and extraction shape, K0T can be calculated by dividing
the length of each dimension in KT by the entry in the
corresponding dimension of the extraction shape. Since an
extraction shape can map keys in K in a one-to-many, one-
to-one or many-to-one manner, K0T may be smaller, larger
or the same size as KT, respectively.

Again, consider the dataset in Figure 2 whose metadata is
shown in Figure 1. Issuing this query over the {365, 250,
200} dataset with an {7, 5, 1} extraction shape (assuming
we throw away the data from the 365-th day) results in {52,
50, 200} K0T, representing 52 weekly measurements covering
25�N to 50�N in 1/2� increments and 85�W to 65�W in
1/10� increments.

3.1 partition+
Hadoop’s default partition function assigns intermediate
key/value pairs to keyblocks by taking the modulo value
of the key’s binary representation by the number of Re-
duce tasks, e↵ectively partitioning the entire space that is
representable by the data type of the key. Consequently,
Hadoop’s keyblock sizes are a function of the set of
observed intermediate keys (K0T) combined with the imple-
mentation specifics of the key data type.

By combining the solutions to the three opaque areas
in MapReduce’s dataflow, SIDR is able to calculate the
relationships between the sets I, KT

i and K0T
i based solely

on information found in, or derived from, the query specifi-
cation combined with the input metadata. This newfound
knowledge is leveraged to construct an alternative partition
function, partition+, that computes the set of intermediate
keys that will actually exist (K0T) and partitions that into r
keyblocks (where r is the number of Reduce tasks).

Given that the K0T keyspace for a structural query is a fixed,
or at least bounded, size, partition+ can create keyblocks
of roughly the same size1, as described here and shown
in Figure 7. First, SIDR selects an upper bound on the
permissible amount of skew (either user-defined as part of
the query or chosen by the system based on the query), then
creates an n-dimensional shape whose total size is smaller
than that upper bound. The system then determines the

1Accepting a small amount of skew to create keyblocks of
simpler shapes can result in more e�cient communications
and reduced data dependencies between tasks

total number of instances of the shape that exist in K0T and
divides that by the number of Reduce tasks. The result is
the size of each keyblock and they di↵er, at most, by one
instance of the chosen shape which is itself less than the
chosen amount of permissible skew. In practice, we allow
the final partition to be smaller than the rest so that the
other partitions consist of simpler shapes (making routing
logic simpler) while also reducing the load on the last Reduce
task.

Intermediate KeySpace (K') A

B RO R1 R2

Keyblocks

Figure 7: SIDR partitions the intermediate keyspace by
(A) choosing a shape less than the permissible amount of
skew, determining how many instances of that shape exist
(IntShapes), and then (B) creating keyblocks consisting
of |IntShapes/#Reducers| instances of said shape.

Going a step further, since partition+ knows both the size
and the contents of K0T for structural queries, SIDR can
use the calculated keyblock shape to create keyblocks
that are contiguous in K’. Since intermediate keys are often
used to order output, contiguous blocks of keys in K0 often
translate in contiguous keys in OT

es that should result in
e�cient writes to the underlying storage (assuming the
scientific access library converts logically dense arrays into
e�cient file accesses). In contrast, SciHadoop uses Hadoop’s
default partition function, resulting in Reduce tasks being
assigned K’ keys that are spaced throughout K0T. The
performance impact of writing sparse vs dense output is
explored in Section 4.4.

3.2 Minimizing data dependencies
I` is the set of Ii that, when processed by a RecordReader

and associated Map task, will produce at least one inter-
mediate key/value pair that will be assigned to keyblock`.
SIDR uses the same logic as partition+ to determine Reduce
task data dependencies (I`) and Reduce tasks can use their
I` as a barrier, rather than the set of all Ii (global barrier),
while maintaining correctness and without compromising
MapReduce’s generality. Figure 4(b) shows Reduce task R1

using its actual data dependencies.

The benefit that can be derived from determining I` for
a keyblock is inversely related to the number of Ii the
keyblock depends on. In the extreme case, a keyblock

depending on all Ii must observe the global data dependency
that Hadoop presently assumes. While Hadoop’s modulo-
based partition function typically creates global data depen-
dencies (Section 3.4) while attempting to evenly distribute
intermediate keys, partition+ provides a stronger guarantee
of balanced key distribution while also maintaining any
natural alignment between query and data (Figure 8).

3.2.1 Implementation Details

In the current implementation of SIDR, data dependencies
are determined when a query begins by calculating which
keyblocks each Ii will generate data for and then inverting



those relationships (the end result is a map from keyblocks
to Ii). Reduce tasks are provided their dependency infor-
mation when they are scheduled. This approach adds a
small IO cost to job submission as the relationships are
stored as part of the job specification. Alternatively, each
Reduce task could calculate the set of Ii that their assigned
keyblock depends on when they start up (a classic “store
vs re-compute” decision). A method for calculating I` from
a keyblock is described in an earlier version of this work
that was published as a tech report [3].

Map tasks often combine key/value pairs sharing the same
key in an e↵ort to reduce disk and network IO. The ability
to calculate KT

` is requisite for maintaining correctness when
starting Reduce tasks early in the case where multiple
elements in K map to a single element in K0 (Figure 6(b)).
The set of keys in K that map to the same point in K0

may exist in di↵erent Ii (generating multiple hk0, v0i) or the
same Ii (generating a single hk0, v0i). Since the Reduce task
does not know how many hk, vi were combined to produce
a given hk0, v0i, it cannot begin processing after receiving
a particular hk0, v0i without risking the production of an
answer based on insu�cient input. This is a significant
issue, as a pessimistic solution would require reverting back
to using a global barrier.

Resolving the ambiguity of how many hk, vi a particular
hk0, v0i represents is accomplished by either:

1. Calculating I`, the set of Ii that will produce data
destined for keyblock`, and using that as a proxy for
KT

` , since it is a super-set or,
2. Annotating each hk0, v0i pair to include the number

of hk, vi pairs it represents. Each Reduce task can
then keep a running tally of the number of hk, vi
represented by the set of hk0, v0i it receives. When
the task has accumulated data representing all hk, vi
in its KT

` , processing can safely begin.

SIDR uses the former method and also implements the
annotations required for the latter method as a means of
validating the system’s correctness. Approach 1 is simply
a matter of generating dependency information in terms of
input splits (rather than specific intermediate key ranges).
Approach 2 requires the addition of a field to the header
for each Map output file that indicates how many hk, vi are
represented by the set of all hk0, v0i in that file. With this
addition, a Reduce task can track the count of how many
hk, vi are represented by the contents of the files containing
its intermediate data without having to read and parse those
files. This is an e�cient means of enabling Reduce tasks
to partially understand their data at the logical level, as
opposed to their current state of ignorance prior to the start
of the Reduce phase.

3.3 Altering task scheduling in Hadoop
At the onset of a Hadoop query, all Map tasks are added to
a tree structure representing di↵erent levels of data locality.
When a server requests a new Map task, that tree is tra-
versed, starting at the leaf-node that contains Ii local to that
server with nodes at higher levels containing increasingly less
local Ii, and the first runnable task encountered is returned.
In contrast, Reduce tasks are scheduled in monotonically

increasing order of their IDs. The interaction between the
two scheduling polices results in inter-task dependencies
being met haphazardly since no attempt is made to co-
schedule Reduce tasks with the Map tasks they depend on.
In practice, a Reduce task has its data dependencies met
probabilistically.

SIDR inverts this process by scheduling Reduce tasks first
with Map tasks only becoming eligible to be scheduled if
at least one Reduce task that depends on it is already
running. Whenever a Reduce task is scheduled, the same
tree structure is crawled and all Map tasks that contribute
to the Reduce task are marked as schedulable. This adds
a constant cost to task scheduling of 2 pointer dereferences
per Map / Reduce dependency, which we view as negligible.

This change in scheduling does introduce an additional delay
prior to Map tasks starting (specifically the time required
to find an available Reduce slot and schedule a task). In
practice, SIDR’s ability to start Reduce tasks early (resulting
in those tasks ending early) translates into more than one
Reduce slot typically being available when a query starts.
This diminishes the delay introduced by SIDR to the time
taken for Hadoop to schedule a task.

3.4 Benefits of the Enhanced Model
Structural queries frequently align with ordering properties
inherent in data stored in scientific file formats. Returning to
the example of down-sampling a temperature dataset from
daily measurements to weekly averages, we see how the daily
data points that map to the first week are at the beginning
of the file while days that map to the last week are at the
end of the file. A modulo-based approach (Figure 8(a)) will
result in both keyblocks being dependent on Ii spread
throughout the dataset while partition+ assigns logically
contiguous ranges of Ii to keyblocks, exposing any natural
alignment between structural queries and the dataset. In
Figure 8(b), this results in keyblock0 only depending on
Ii located in the first half of the dataset.

SIDR’s ability to calculate I` coupled with the order-
preserving properties of partition+ enables the more precise
communications model depicted in the bottom portion of
Figure 5. This new model’s e↵ect on scheduling is shown
in Figure 4(b) where Reduce task R1 is allowed to start
prior to Map tasks M4 and M5 completing because the
framework has already determined that those Map tasks will
not produce any data for R1. A Reduce task’s ability to
begin processing data earlier enables additional overlapping
of computation with IO beyond that already present in
MapReduce, which previous research [5, 32] indicates will
translate into shorter query run-times.

Since SIDR schedules Reduce tasks, with Map tasks becom-
ing eligible to be scheduled as a side-e↵ect, it can prioritize
portions of the output space by scheduling those keyblocks
first. This functionality is interesting in a few contexts.
Firstly, computational steering [31] uses the output of one
experiment to choose the parameters for subsequent runs.
In this scenario, if the user believes that a certain portion of
the output would likely contain the salient result(s), those
keyblocks can be scheduled first, as opposed to waiting for
them to be scheduled organically. This prioritization could
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Figure 8: Two di↵erent approaches to partitioning
intermediate keys for a down-sampling; (b) maintains
ordering properties while (a) ignores them.

shorten the analysis cycle and result in more e�cient use
of computational resources. Secondly, the recently proposed
burst bu↵er architecture [23] presents an opportunity for
in-situ processing on SSD-based data staging nodes prior
to the data being written to a disk-based storage system.
In this scenario, compute resources are not guaranteed and
data may be evicted at any point. Given this tenuous
access to data on a fast medium, the ability to prioritize the
processing of certain portions of the data allows the scientist
to better capitalize on their window of opportunity.

4. EVALUATION
Experimental Setup. Our experiments were conducted
on a cluster of 25 nodes, each with two 2.0GHz dual-
core Opteron 2212 CPUs, 8GB DDR-2 RAM, four 250GB
Seagate 7200-RPM SATA hard drives, running Ubuntu
12.04. SIDR built upon the SciHadoop code [12] that we
ported to Hadoop 1.0. Our Hadoop cluster has a single node
acting as both the NameNode and JobTracker while the
other 24 nodes serve as both DataNodes and TaskTrackers.
The 24 DataNode/TaskTracker nodes use one hard drive for
the OS, supporting libraries, and temporary storage, while
the other 3 hard drives are dedicated to HDFS. All nodes
have a single Gigabit network connection to an Extreme
Networks’ Summit 400 48-t switch. HDFS is configured with
3x replication and 128 MB block size. Each TaskTracker is
configured for 4 Map and 3 Reduce task slots.

4.1 Early Results
Query 1 applies a median function over a 4-dimensional
dataset of sizes {7200, 360, 720, 50} with an extraction shape
of {2, 36, 36, 10}. The dataset is intended to represent
300 days worth of hourly windspeed measurements at a
resolution of 0.5� Longitude by 0.5� Latitude at 50 di↵erent
elevations with the query representing finding a median

value, over 2 consecutive days, for each 18� Longitude by 36�

Latitude region, in cross-sections of 10 elevation steps. This
function was chosen as a representative structural query.

Figure 9: Map and Reduce task completion for the same
query run with Hadoop(H), SciHadoop(SH) and SIDR (SS)

We first compare Hadoop, SciHadoop and SIDR with 22
Reduce tasks (best practices dictate that 90% of the node
count as a reasonable number of Reduce tasks in systems
with low odds of preemption). Figure 9 shows Map and
Reduce task completion over time. SIDR starts producing
results around 625 seconds while SciHadoop’s first result
arrives just after 1,132 seconds and Hadoop’s first result
coming at 2,797 seconds. The di↵erence in the slopes of both
Map and Reduce tasks between Hadoop and SciHadoop owe
to the e�ciencies gained by intelligent input split generation
and data locality enabled by SciHadoop. The gap between
the first result in SIDR and the first results in SciHadoop
and Hadoop is a result of SIDR using the actual data
dependencies present in the data being processed. The
query executing with SIDR completes at 1,264 seconds
while SciHadoop completes slightly sooner, at 1,250 seconds.
SIDR’s slightly longer run-time is a by-product of partition+
creating contiguous keyblocks. SIDR’s last Reduce task
must copy, merge and process all of the data in the last
4.5% (1/22nd) of the Map tasks. In SciHadoop, the output
of those Map tasks is spread evenly across all Reduce tasks.

Next, we present the same query and dataset while varying
the number of total Reduce tasks (Hadoop results omitted in
order to show a finer resolution and Map tasks are omitted
as they do not vary from Figure 9). Increasing the number of
Reduce tasks results in each being assigned a smaller amount
data, which will reduce its data dependencies. Figure 10
shows results for SIDR and SciHadoop with 22 Reduce
tasks as well as 66, 176, and 528 Reduce tasks for SIDR
(given the dataset size (348 GB) and HDFS’s block size
(128 MB), the SciHadoop partitioning scheme creates 2,781
input splits for this query). As the number of Reduce
tasks increases, time to first result and total execution
time both decrease with SIDR. At 528 Reduce tasks, SIDR
finishes 29% faster than with SciHadoop and nearly three
times faster than Hadoop (Figure 9). These performance
improvements are attributable to SIDR’s increased ability to
overlap computation with IO. Since Hadoop and SciHadoop
are beholden to the global MapReduce barrier, increasing
the number of Reduce tasks for either yields no benefit; the



same amount of work is distributed to more tasks but none
of them can start prior to the last Map task completing.

Figure 10: Reduce task completion for a fixed query run with
Hadoop using 22 Reduce tasks, SciHadoop using 22 Reduce
tasks and SIDR running 22, 66, 176 and 528 Reduce tasks.

Since a Reduce task cannot begin processing its data until
all of its data dependencies have been satisfied, the ideal
graph for the Reduce tasks would be a line that paralleled
the graph for Map task completion, shifted to the right by
the average amount of time it took a Reduce task to process
its assigned data. In Figure 10, the Reduce task completion
line approaches the Map task completion line as the number
of Reduce tasks increases, with 528 Reduce tasks coming
close to optimal. Note that since each additional Reduce
task adds a small, fixed overhead to the query, increasing
the number of Reduce tasks past a certain (query-specific)
point is detrimental to performance.

Query 2 uses a dataset of the same size, {7200, 360, 720, 50},
with normally distributed values and a filter query that
returns only values more than three standard deviations
greater than the mean (i.e., 0.1% of the total dataset or
93.31 million values of the 93.31 billion in the dataset).
Query 2 uses an extraction shape of {2, 40, 40, 10} out of
convenience; results will contain a list of all values greater
than the threshold.

Figure 11: Reduce task completion for a filter query run via
SciHadoop with 22 Reduce tasks and SIDR with 22, 66 and
176 Reduce tasks.

Figure 11 shows the results for Query 2 on SciHadoop with
22 Reduce tasks and SIDR with 22, 66 and 176 Reduce tasks
(the Map task results for 22 Reduce tasks are included for
reference). Query 2 processes far less data in each Reduce
task than Query 1. As a result, each Reduce task finishes
quicker with that server becoming available to process
another Reduce task promptly, resulting in the Reduce task
completion lines approaching optimal with fewer total tasks
than Query 1. Also, since the Reduce tasks represent such
a small fraction of total query execution time to start with
(indicated by the slope of the Reduce graph for SciHadoop
with 22 Reduce tasks), there is little room for SIDR to
improve the query, and the reduction in total query time
is much smaller than it was for Query 1.

By comparing the results of the two queries on data of
the same size, it is evident that the nature of the query
has a direct e↵ect on the number of Reduce tasks required
to approach optimal performance as well as the maximum
opportunity for improvement by SIDR.

4.2 Variance in Reduce Completion Times
Figure 12 shows task variance for Map tasks, and both 22
and 88 Reduce tasks with SIDR (values are averages from
10 runs with error bars indicating the standard deviation
for each data point). With SIDR, data dependencies are
small(er) barriers, so Reduce tasks display at least as much
variance as the set of Map tasks they depend on. Increasing
the number of Reduce tasks diminishes that set (per Reduce
task) and the probability of a Reduce task depending on
several abnormally long-running Map tasks.

Figure 12: Variance in SIDR task completion times as the
Reduce task count varies.

4.3 Intermediate Key Skew
The intermediate keys for structural queries often display a
pattern (i.e., coordinates at fixed intervals). This can create
situations where the binary representations of those keys
are in turn patterned and therefore do not distribute evenly
when assigned to Reduce tasks (Section 3.1). For example,
we’ve seen cases where every intermediate key was even,
resulting in all odd-numbered Reduce tasks being assigned
no data to process while their even-numbered counterparts
receive twice as much data as expected. Consequently, the
lightly loaded Reduce tasks finish very quickly while over-
loaded tasks take much longer. Figure 13 displays the task



completion graphs for a query that exhibits this behavior.
For the same query, SIDR evenly distributes the work and
completes 42% faster.

Figure 13: Intermediate data skew caused by Hadoop’s
partition function results in longer query execution time.
SIDR even distributes the data and completes 42% faster.

4.4 Contiguous Output
Scientific data is typically stored in dense arrays where the
coordinates of individual points are relative to the origin
of that dense array and their global position, if part of a
larger dataset, is inferred from that origin point. Since
the partition+ function creates keyblocks that are both
balanced and contiguous (Section 3.1), it naturally produces
data in this manner. Table 2 shows the results of a micro-
benchmark that simulates a single Reduce task writing out
NetCDF data. For the experiment, we fix the amount of
data written per task and then scale the total amount of
data written (doubling both data and simulated task count
at each step). Both the time required and resultant output
file size are shown (times are 10 run averages with standard
deviations in parenthesis). The bottom entry in Table 2
(SIDR) presents a single Reduce task writing a contiguous
portion of a larger output. As the number of Reduce tasks
and total output are scaled, the representative Reduce task
writes the same amount of data in the same amount of time
for each experiment.

Since Hadoop’s modulo-based partition function does not
create dense, contiguous keyblocks, it must take a di↵erent
approach to writing out scientific data. A common method
for writing sparse data is to create a file representing the
entire space and using sentinel values for absent data. This
approach creates a few issues in the context of MapReduce.
Firstly, the size of the file written by each Reduce task is the
size of the total output. Increasing the number of Reduce
tasks will increase the total number of bytes written for the
same amount of useful data. This discourages increasing the
number of Reduce tasks, which conflicts with our results.
Secondly, the time required for a Reduce task to write its
data will increase along with the number of Reduce tasks
due to larger seeks between writes. Thirdly, the files are not
very useful individually and will likely need to be merged
later, requiring extra data movement. The entries in Table

Table 2: Individual Reduce Write Time and Size Scaling

Hadoop Reduce Write Scaling
Total Avg Time in Seconds Output Size

Reduces (Std Dev) (MB)
20 6 (.6) 494
40 11.4 (.9) 988
80 24.2 (3.2) 1976

SIDR Reduce Write Scaling
* 0.3 (.02) 24.8

2 for Hadoop show that the sentinel value approach does not
scale well.

Another method for storing sparse data is to store coordi-
nate / value pairs. This approach creates storage overhead
since both the data and coordinate are explicitly stored,
rather than the coordinate being implicit (as is normally
the case), but that overhead is a constant scalar relative to
the amount of useful data and independent of the number
of Reduce tasks.

4.5 partition+ performance
Partitioning of intermediate data occurs in-line with Map
task execution and therefore cannot be e↵ectively mea-
sured within Hadoop. We created a micro-benchmark
that measures only the total time required to partition
key/value pairs in order to understand the performance
impact of our partition+ function. The benchmark loads
6.48M intermediate key/value pairs (meant to representMap
task output) into memory and applies a given partitioning
function, measuring only the time required to partition the
data. Over ten runs, the default partition function took an
average of 200 ms (� 18.8 ms) to partition the entire set of
key/value pairs while partition+ averaged 223 ms (� 21 ms).
While partition+’s slightly (23 ms) slower partitioning has
a negligible impact on total Map task run-time, given Map
task execution times range from tens of seconds to tens of
minutes, we are looking into optimizing partition+.

4.6 Increased Network Efficiency
Table 3 shows how the total number of network connections
between Map and Reduce tasks scales for Query 1 as the
number of Reduce tasks increases. SIDR’s e�ciency results
from each Reduce task only contacting Map tasks that
produced data assigned to its keyblock (all other Map
tasks are ignored). Hadoop requires that every Reduce
task contact every completed Map task. Additionally,
Hadoop’s limit on the number of concurrent connections
(10 per Reduce task by default), can create an undesirable
serialization of communication in some scenarios. SIDR’s
e�cient communication model diminishes the likelihood of
serialization occurring.

5. RELATED WORK
The popular MapReduce Online [5] paper explored online
aggregation in MapReduce with their Hadoop Online Pro-
totype (HOP). HOP altered Hadoop’s execution model by
starting all Reduce tasks at the beginning of a query and
having Map tasks transfer their output directly to Reduce
tasks where it is immediately incorporated into running



Table 3: Network Connection Scaling

Hadoop Reduce Write Scaling
Map / Reduce Hadoop SIDR

Count (# Connections) (# Connections)
2781/22 61,182 2,820
2781/66 183,546 2,905
2781/132 367,092 3,031
2781/264 734,184 3,267
2781/528 1,468,368 3,760
2781/1024 2,936,736 5,106

estimates of the final output. HOP emits those estimates
at fixed intervals (25%, 50%, 75% and 100% of the data
processed). This type of early results is useful for gaining
a high-level intuition about the final result but is not
well-suited to the use cases we identified in Section 3.4.
HOP is limited to distributive operators or algorithms that
produce approximate results for non-distributive functions,
resulting in a solution that is less general than Hadoop.
Any subsequent computations that consume HOP’s output
must be re-run after each estimate is emitted, resulting
in increased resource usage. The authors identify several
resource requirements and state that HOP devolves to
Hadoop if any of those are not met, thereby limiting its
applicability. Another project [32] built upon HOP by
extending the original in-memory data structures to spill to
disk if needed, extending this approach larger datasets than
are possible with the original HOP approach. For structural
queries, SIDR produces correct, partial results, rather than
estimates, meaning that subsequent queries do not need to
be re-executed. Also, SIDR does not have HOP’s memory-
based limitation nor is it limited to distributive functions.

Systems that convert scientific data their own formats [30,
19, 1, 24] do not face the same issues as SIDR because they
have complete control, and therefore complete knowledge,
of the data being processed. Consequently, e�cient data
partitioning and communication is easier to achieve. This
approach has its drawbacks: data ingest requires time and
extra data movement (with the associated resource costs)
and access to the data in its native format is lost (along with
tool sets built around those formats). Also, the e�ciencies
typically provided by these systems rely on an ideal data
layout being specified ahead of time. Queries that are not
aligned to the predefined access patterns do not benefit,
resulting in this approach providing limited benefits to ad
hoc queries (a common class of MapReduce programs).

SciDB [2], an array-based analysis platform designed specif-
ically for scientific data, currently requires data to be
ingested and stored in its internal format but they aspire
to eventually support in-situ processing of scientific data.
It is unclear how their query processing model will interact
with non-ingested data.

SIDR is complementary to more expressive computation
models, such as Pregel [25], Dryad [18] and Spark [37],
as they can leverage the methods presented in this paper
within their (structural) sub-computations. While Dryad
is capable of supporting a wider range of communication
patterns than MapReduce, it uses the same fixed pattern

for all instances of a vertex whereas SIDR makes task
(vertex instance) specific routing decisions. Dryad’s support
for data-informed communication appears to be limited to
sampling [36], which is not possible for structural queries
over scientific data because the access libraries obscure the
layout of the data [4].

The Sailfish project [27] altered how intermediate data was
handled in Hadoop and, by postponing the assignment
of keyblocks until all intermediate keys were produced,
eliminated key skew by partitioning that set, rather than
using a modulo-based approach. This design strengthens
the global MapReduce barrier because Reduce tasks can no
longer overlap the acquisition of their assigned data with the
completion of other Map tasks. For structural queries, SIDR
eliminates key skew without strengthening the global barrier
(the barrier is actually weakened). There are other types of
skew in MapReduce, such as similarly sized datasets con-
suming vastly di↵erent amounts of computational resources.
In these cases, an approach like SkewTune [21] can be used
to complement SIDR.

6. CONCLUSIONS AND FUTURE WORK
This paper presents SIDR, an extension of MapReduce for
structural queries that: intelligently partitions intermediate
data; derives actual data dependencies between Map and
Reduce tasks; and schedules tasks based on that knowledge.
SIDR can produce prioritized, correct results for portions
of the output space with only a fraction of the input
processed. Total query run-time and task run-time variance
are reduced, intermediate key skew is prevented and the
resultant output is organized into balanced, contiguous
datasets. SIDR accomplishes all of this while maintaining
the generality of Hadoop and the MapReduce model. These
developments significantly improve our work’s ability to en-
able scientists to use the Hadoop platform while maintaining
access to their data in the desired format.

Building upon SIDR, we plan to investigate altering the
MapReduce failure recovery model to use the data depen-
dency information to re-execute subsets of Map tasks in
the event of a Reduce task failure in place of persisting
all intermediate data to disk. Our hypothesis is that the
performance savings in the non-failure case will o↵set said
re-execution cost. Additionally, we will research integrating
SIDR’s ability to produce early, orderable, correct results for
portions of the total output into pipe-lined computations.
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