
High Performance & Low Latency in Solid-State Drives
Through Redundancy

Dimitris Skourtis, Scott Brandt, Carlos Maltzahn
University of California, Santa Cruz

{skourtis, scott, carlosm}@cs.ucsc.edu

Abstract

Solid-state drives are becoming increasingly popular in
enterprise storage systems, playing the role of large
caches and permanent storage. Although SSDs provide
faster random access than hard-drives, their performance
is especially workload-dependent and can be inconsistent
to the point that it becomes worse than that of hard-drives
(e.g., taking more than 100ms for a single read).

Many systems with mixed workloads have low latency
requirements for reads and in such cases SSD inconsis-
tencies become a problem. We present a solution that
is based on redundancy and provides high performance,
low latency and consistent read performance, as well as
fault-tolerance, making it an alternative RAID-like de-
sign for solid-state drives.

Design and Evaluation

Solid-state drives have fast random access and often ex-
hibit high performance. However, depending on their
current and past workloads their performance can de-
grade quickly. For example, performing a mixture of
large sequential and random writes over a large part of
a drive’s logical range can lead to high latencies. This
is often due to the garbage collector not being able to
keep up leading to what is known as internal fragmenta-
tion [1]. In such cases, mixing reads with writes leads
to write-induced blocking events. Although such events
may directly block less than 5% of the requests, they can
account for a significant proportion of the device’s time,
e.g., 50%, leading to high latencies for queued requests.

We propose a new design based on redundancy that
provides consistent performance and minimal latency for
reads by physically isolating reads from writes. In other
words we nearly eliminate the extra latency that reads
have to pay due to writes, which is crucial for many ap-
plications with low latency requirements. Through that
separation we minimize the read/write interference and

SSD 1
Read mode

Writes from 
previous period

WritesReads

Writes of 
current periodCache

SSD 2
Write mode

Figure 1: Each of the two drives is either performing
reads or writes at any given time. While the first drive is
reading, the other drive performs the writes of the previ-
ous period - before the drives switched roles.

have the opportunity to further optimize reads and writes
separately. In terms of write performance, unless enough
writes are synchronous or the system is allowed to be
overloaded, the user conceives write performance as per-
fectly consistent. Note that using a single drive and dis-
patching reads and writes in batches as in [2], may im-
prove the performance under certain workloads and SSD
models. However, it does not eliminate the frequent
blocking events under a generic workload.

Solid-state drive models differ from each other and a
method or heuristic solution working on one SSD may
not work equally well on another. We are interested in an
approach that works across different models. Given two
drives D1 and D2, we propose the separation of reads
from writes by first sending reads to D1 and writes to
D2. After a variable amount of time T � T

min

, the drives
switch roles with D2 performing writes and D1 reads.
When the switch takes place, D2 first performs all the
writes D1 completed that D2 has not, so that the drives
are in sync. If D2 completes syncing and the window

1



(a) Under large requests, the read performance is high and consistent. (b) Small requests also achieve consistent and high read performance.

Figure 2: By physically separating reads from writes we achieve high performance, consistency, and minimal latency
for both small and large requests.

Figure 3: Using a single drive, the garbage collector can-
not keep up, leading to prohibitively high read latencies
and inconsistent performance. Our design solves this
problem while doubling the read throughput.

is not yet over (t < T

min

,) D2 continues with new writes
until t � T

min

. In order to enable the above, we place
a cache on top of the drives. All new writes first go to
the cache, while the write-drive D

w

is sent the writes that
were stored in the cache during the previous window. Of
course, if there are not enough writes in the cache af-
ter the drives are in sync, D

w

may be used to increase the
read performance. Finally, at any point in time, the union
of the cache with any of the two drives contains exactly
the same data. Hence, if one drive fails, no data is lost.

We implemented our design and verified that it pro-
vides high performance, low latency and read perfor-

mance consistency under mixed workloads. For our ex-
periments we used two 250GB Intel 510 SSDs that were
previously written randomly. Note that although our de-
sign includes a cache and therefore cache hits as well as
overwriting data still in cache are possible optimizations
we looked at the worst-case and ignored potential cache
hits. Our workloads consist of either small or large re-
quests of four types, as shown in Figure 2. From the
same figure we see that reads (1100 per sec) are not af-
fected by writes, while writes have a similar performance
as in our write-only experiments (not shown.) On the
other hand, without redundancy reads achieve a total av-
erage of 525 reads/sec (Figure 3) when given 50% of the
device time, which is less than half of our method. Most
importantly the latencies are many times higher as well
as inconsistent, while our approach achieves low read la-
tencies consistently.

Besides offering low latency, our design makes it eas-
ier to provide efficient QoS for mixed workloads, and
that is part of our current work. In addition, it can be
combined with existing configurations such as RAID-01
and RAID-10. Finally, we are working on an evaluation
under live workloads, such as databases and VMs.

References
[1] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding

intrinsic characteristics and system implications of flash memory
based solid state drives. In Proceedings of the eleventh interna-

tional joint conference on Measurement and modeling of computer

systems (New York, NY, USA, 2009), SIGMETRICS ’09, ACM,
pp. 181–192.

[2] PARK, S., AND SHEN, K. Fios: a fair, efficient flash i/o scheduler.
In Proceedings of the 10th USENIX conference on File and Stor-

age Technologies (Berkeley, CA, USA, 2012), FAST’12, USENIX
Association, pp. 13–13.

2


