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PROBLEM INDIVIDUAL ERROR METRIC
e Need to simulate large clusters and supercomputers o L} lactual; —predicted;|
n actual;
e Simulating hard drives and other devices is too slow — Penalizes overestimation more than underestimation
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e Faster simulation methods that trade a little accuracy for a large gain in performance .
— Symmetric

— Allows very large ratios

OUR SOLUTION
e FLAMBES: Fitting scalLable Analytic Models Before Executing Simulation . % S exp (‘log predicted;

actual;

1 Z max(actual;,predicted;)
T on min(actual;,predicted;)

e Focus on aggregate accuracy rather than request-level accuracy Best so f
— Best so far

e Use genetic programming based on analytic models

STEP 1: FIT THE MODEL
AGGREGATE VERSUS INDIVIDUAL ACCURACY e Offline calculation done once per device template

e Individual request times may be irrelevant
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e Independent of simulation size

e Individual accuracy requires knowledge of future requests o Fitting is fast: typically a few minutes

Ideally, al h t d have individual h 1bl . . ..
o ldeally, always have aggregate accuracy, and have mdividual accuracy as much as possible e F'inal model is accurate for workloads represented by the training set

NETIC PROGRAMMING? o Algorithm:

1. Initialize population by generating several models with random parameters

WHY G

e Designing a model requires detailed expert knowledge
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2. Evaluate each model by comparing its predictions with device performance or a
known device-accurate model on representative workloads

— Large history; state depends on many previous inputs | Physical device
— Behavior is complex; many higher-order terms would be necessary u Workloads < > Error

Model

e Regression difficult due to high feature count

e Neural nets poorly suited for stateful problems
3. Discard poor models, duplicate and mutate good models

ERROR METRIC Model 1 Mod Mod
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AGGREGAT:

e Demerit - problematic with long tails
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03 | STEP 2: USE THE MODEL

V2T : e Very fast calculation (not event-driven)

0.1 ¢ A§tual CDF

obL——— T Predicted CDF e Very low state: a few floating point numbers
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RESULT

e Fast, accurate simulation of large distributed systems

e PDF vertical comparison - unable to distinguish predictions 1 and 2 below
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L6 ¢ 1 RELATED WORK
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. e DiskSim|1] is request-level accurate, but slow
§ Ly . e Sharkawi in |2| used GAs to match applications to similar benchmarks.
£ 08y B FLAMBES uses genetic programming to directly predict performance.
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