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Abstract—The Dominant-Distance Routing Information Pro-
tocol (DRIP) is introduced for quality-of-service (QoS) routing
based on multiple criteria and is proven to be loop-free at
every instant and capable of converging to optimal routes if
they exist. DRIP is based on the exchange of updates and
queries stating reference routing-metric values for destinations.
Simulation experiments based on ns3 are used to compare DRIP
against the Non-Restarting Vectoring Protocol recently proposed
by Sobrinho and Ferreira, as well as OSPF and RIPv2. The
results demonstrate that DRIP provides loop-free routing based
on multiple performance and policy criteria as efficiently as
routing protocols for shortest-path routing.

I. INTRODUCTION

The routing protocols used in the Internet and computer
networks today and the vast majority of routing protocols
developed since the advent of packet switching [1] assume
a single criterion to determine the optimality of paths selected
to reach destinations, which allows all path weights to be
comparable to one another. Unfortunately, the performance
characteristics of some paths may be inherently incomparable
with one another in the Internet and in computer networks with
heterogeneous links and multiple policy criteria for resource
utilization. For example, a path with 100 Mbps bandwidth,
delay of 0.5 msec, and 0.90 reliability is better than a path with
100 Mbps bandwidth, delay of 1 msec, and 0.90 reliability;
however, that same path cannot be compared against a path
with 10 Gbps bandwidth, delay of 1.5 msec, and 0.99 reliabil-
ity. As a result, forcing a total ordering of path weights may
lead to inefficient resource utilization or the inability to satisfy
the traffic demands of some flows. In addition, forwarding
traffic along paths that incur cycles wastes communication and
processing resources.

Designing routing protocols that can compute paths based
on quality-of-service (QoS) requirements in a way that such
paths are loop-free at every instant is clearly a much needed.
component of the Internet routing architecture. However, as
the summary of Section II illustrates, the prior work on QoS
routing has been rather limited and solving this problem
requires a new theoretical framework from which novel routing
algorithms can be designed.

Smith and Samson [39] proved that a routing algebra (i.e., a
theoretical framework for the design of routing protocols) can
be used to design routing protocols that eventually provide

acyclic paths if and only if “strict boundedness” is satisfied,
and can be used to design routing protocols that eventually
provide optimal paths if and only if strict boundedness and
“monotonicity” are satisfied. These results have also been
independently discussed and verified by Sobrinho et al. [40],
[41], with boundedness and monotonicity called by different
names, including inflationarity and isotonicity, respectively.

Strict boundedness means that the path-weight value of a
path Pa resulting from extending another path Pb with a link
(a, b) cannot be better than or equal to the path-weight value
of path Pb = (a, b) Pa. Monotonicity means that if the path-
weight value of a path Pa is better than the path-weight value
of another path Pb then extending both paths with links la and
lb of equal path-weight values results in the augmented path
la Pa having a path-weight value that is better than or equal
to the path-weight value of the augmented path lb Pb.

In spite of these and similar results, no protocol for QoS
routing has been reported to date and proven to converge
to acyclic paths or optimal paths using multiple optimality
criteria, which motivates the work presented in this paper.

The main contributions of this paper are: (a) Defining a
routing algebra for routing on multiple criteria based on route
computations that render strict boundedness and monotonicity,
(b) introducing the first QoS routing protocol for acyclic
routing with path selection based on multiple criteria, and (c)
illustrating by examples that the new QoS routing approach
can be as efficient as today’s shortest-path routing protocols.

Section III uses recent algebraic results to describe the
Dominant-Path Routing Algebra (DRA), which formalizes the
notion of a dominant vector consisting of all path-weight
values that describe the performance characteristics of paths
required to attain acyclic and optimal routes. Conditions are
proven to ensure that a protocol for routing with multiple
optimality criteria that satisfies the condition must converge
to optimal paths, as well as to be loop-free at every instant.

Section IV applies the results in Section III to show major
limitations in recent routing protocols for routing with multiple
optimality criteria proposed by Sobrinho and Ferreira [41].

Section V describes the Dominant-Path Routing Information
Protocol (DRIP), the first QoS routing protocol that can
provide optimal routes based on an arbitrary set of criteria for
path selection based on QoS requirements, and without ever
incurring routing-table loops. The novelty of DRIP is the use
of queries that request paths with path-weight values that are
strictly better than the reference weight values they state, and978-1-6654-6824-4/22/$31.00 ©2022 IEEE



updates that add new path-weight values or update or delete
old values.

Section VI applies DRIP to traditional shortest-path routing
and shortest-and-widest path routing in which paths are se-
lected if they have the shortest length among those that have
largest minimum bandwidth. Simulation experiments based on
the ns3 simulator are used to illustrate that DRIP is more
efficient than even traditional shortest-path routing protocols
(RIPv2 [27] and OSPF [30]) and is also more efficient than the
protocols proposed by Sobrinho and Ferreira [41] for routing
with multiple criteria.

II. RELATED WORK

There has been extensive prior work on algebras applied
to routing problems, and they have been called algebras [40],
routing metrics [16], path algebras [4], [39]. We choose to use
the term routing algebra. Gouda and Schneider [16] focused
on optimal routing and Smith and Samson [39] extended this
work to routing algebras that eventually guarantee loop-free
routes, and those that eventually guarantee optimal routes. As
we stated in Section 1, DRA is based on these results.

The shortest-path routing algebra [4] permits the compu-
tation of optimal-cost paths to destinations. The Distributed
Bellman-Ford (DBF) algorithm is used on this algebra and
has been used in many routing protocols, including the original
ARPANET routing protocol [36], the routing protocol of the
DARPA Packet radio network [25], the Routing Information
Protocol (RIP) [20], and RIPv2 [27]. However, DBF suf-
fers from the non-convergence problem usually called the
counting-to-infinity problem. In practice, routing protocols
based on DBF are forced to stop without converging to optimal
routes when a predefined maximum-distance value is reached.

Many shortest-path routing protocols have been developed
based on the dissemination of partial or complete topology
information (e.g., [8], [14], [15], [29], [30]) or the use of
complete path information in routing updates (e.g., [24], [42])
to avoid the non-convergence problem of DBF. These routing
protocols do not guarantee loop-free routing at every instant,
but guarantee convergence by detecting or eventually breaking
loops.

Several shortest-path routing protocols (e.g., [33], [34])
have used destination-based sequence numbers to eliminate the
convergence problems of DBF and ensure loop-free routing.
However, it has been shown that this approach need not
provide loop-free routing in all cases when node failures and
volatile memory are involved [43].

A number of shortest-path routing approaches have been
developed that provide loop-free routes at every instant by
requiring nodes to coordinate the updating of routing tables on
a multi-hop basis [13], [21], [37]. The most popular of these
schemes has been called diffusing computations [13] and is
the basis of EIGRP [35].

The techniques for loop detection and avoidance used in
shortest-path routing have been applied successfully to mul-
tipath routing protocols [31]. Some protocols (e.g., Multipath
AODV [28]) use destination-based sequence numbers, others

use diffusing computations based on link state information
[45], [46] or distance vectors [53], [54], and several use path
information [12], [48], [51].

The study of routing subject to multiple performance and
policy criteria has its origins in early work on quality-of-
service (QoS) routing and approaches that combined mul-
tiple link and path constraints into complex cost functions
describing performance characteristics of links and paths [5],
[7], [17], [18], [22], [32], [44], [47], [49], [52]. At least
one approach [26] attains loop-free multi-constrained path
selection using diffusing computations [13].

More recent approaches have evolved together with a new
focus on routing algebras to address multiple performance
and policy criteria. However, this recent work has focused
on solutions using complete path information as in BGP
or the properties that the routing algebra must satisfy for
optimal routing. The recent work by Sobrinho and Ferreira
[41] proposes two types of routing protocols for routing on
multiple optimality criteria that we analyze in Section IV.

III. ROUTING WITH MULTIPLE CRITERIA

A. Definition of Dominant-Path Routing

We extend the approach introduced by Gouda and Schneider
[16] and use the following terminology to define an algebra
for routing using multiple criteria: Z+ is the set of positive
integers, N is the set of network nodes (routers and destina-
tions), and E is the set of links in a network. A node in N
is denoted by a lower-case letter, and a link between nodes n
and m in N is denoted by (n,m). The set of nodes that are
immediate neighbor routers of router k is denoted by Nk.

Definition 1: The Dominant-Path Routing Algebra (DRA)
is the tuple

R = (Π,V,Ω, ωo, ω∞, %,≺)

where:
• Π: The set of node identifiers that is either a subset of
Z+ or a set of alphanumeric strings, and with each identifier
assigned uniquely to a router or a destination. The identifier
assigned to n ∈ N is denoted by πn.
• V: A set of link weights in which each link weight
consists of a vector of metric values describing performance
characteristics of the link. The weight of the link from router
i to router j is denoted by ν(i, j).
• Ω: The set of path weights, where each such weight consists
of a vector of values describing performance- or policy-based
characteristics of a path based on the same performance- and
policy-based characteristics of links. The weight of the nth
path P kd (n) from router k to destination d is a denoted by
ωkd(n).
• ωo: The path weight assigned by a destination d for itself.
• ω∞: The path weight for an unreachable or unknown
destination.
• %: A path-weight function (PWF) that takes as inputs a
link weight ν(k, q) for the link from a router k to a neighbor
q and a path weight ωqd(j) associated with a path P qd (j) and
returns a path weight ωkd(n) associated with a path P kd (n).



• ≺: A weight-induced order relation defined for any
three values ωad(i), ωbd(j), and ωcd(k) such that the following
properties are satisfied:

1) Irreflexivity: ωad(i) ⊀ ωad(i)
2) Transitivity: For any three different nodes a 6= b 6= c,

[(ωad(i) ≺ ωbd(j))∧(ωbd(j) ≺ ωcd(k))]→ (ωad(i) ≺ ωcd(k))
3) Completeness:

(ωad(i) ≺ ωbd(j)) ∨(ωbd(j) ≺ ωad(i))∨(ωbd(j) = ωad(i)) ∨
( [ωad(i) ⊀ ωbd(j)] ∧ [ωbd(j) ⊀ ωad(i)]∧ [ωbd(j) 6= ωad(i)] )

A path P kd (j) consists of a sequence of links, and is also
the augmentation of a P qd (i) with link (k, q) to node q, i.e.,
P kd (j) = (k, q)P qd (i).

A simple example of V is the set Vmin = {1,∞}, where a
link is assigned a weight equal to 1 if it exists and∞ if it does
not. A simple example of path weights related to Vmin is the
set Ωmin in which ωnd ∈ Ωmin denotes the hop count of a path
from n to d. The PWF ρmin takes a path weight ωnd ∈ Ωmin
and a link weight ν(q, n) ∈ Vmin as inputs and returns the
path weight ωnd +ν(q, n) representing the hop count along the
path Pnd augmented by link (q, n), i.e., path P qd = (q, n)Pnd .

A simple example of V consisting of vectors is the set of
vectors defined by
Vδ,β = {ν(i, j) | ((i, j) ∈ E) ∧ (ν(i, j) = [δ(i, j), β(i, j)])}

where δ(i, j) and and β(i, j) are the delay and bandwidth
available over link (i, j), respectively. An example of path
weights resulting from using Vδ,β is the set Ωδ,β of path
weights ωnd (i) = [δnd (i), βnd (i)], where δnd (i) and βnd (i) denote
the delay and available bandwidth along path Pnd (i), respec-
tively. A PWF based on Vδ,β and Ωδ,β is the function ρω(δ,β)
that takes a path weight and a link weight as inputs and returns
a vector defined by the addition of link delays along a path
P qd (i) resulting from extending path Pnd (j) with link (q, n)
and the minimum link bandwidth over the same path, i.e.,
ωqd(i) = [δnd (j) + δ(q, n),Min{βnd (j), β(q, n)}].

Given that a path-weight value ωkd(i) in DRA consists of a
vector of values describing different path characteristics, not
all path-weight values can be compared to others. The need
to select paths with weights that are better than others while
some may not be comparable with one another motivates the
following definitions.

Definition 2: Dominant Path-Weight Value: A path-
weight value ωkd(i) is a dominant weight value over another
path-weight value ωkd(j) with j 6= i if ωkd(i) ≺ ωkd(j). �

We say that ωkd(i) dominates ωkd(j) if ωkd(i) ≺ ωkd(j), and
also denote this fact by ωbd(j) � ωad(i) and say that ωbd(j)
is dominated by ωad(i).

Definition 3: Incomparable Path-Weight Value: A path-
weight value ωkd(i) is incomparable with another path-weight
value ωkd(j) with j 6= i if

[ωkd(n) ⊀ ωkd(j)] ∧ [ωkd(j) ⊀ ωkd(n)] ∧ [ωkd(j) 6= ωkd(n)]. �
Let Ωkd be the set of all path-weight values for destination

d known at router k, each corresponding to a different path
from k to d through one of its neighbors in Nk. The sequence
of all path-weight values in Ωkd listed in no particular order is
denoted by {ωkd(i)} with i = 1, 2, ..., |Ωkd|.

Definition 4: Dominant Vector: The vector of dominant
path-weight values known at router k for destination d is
denoted by DV kd and consists of the subset of path-weight
values in Ωkd that satisfy the following two conditions:

∀ ( ωk
d(j) ∈ DV k

d ∧ ωk
d(n) ∈ Ωk

d −DV k
d ) (1)(

(ωk
d(j) ≺ ωk

d(n)) ∨

([ωk
d(j) ⊀ ωk

d(n)] ∧ [ωk
d(n) ⊀ ωk

d(j)] ∧ [ωk
d(n) 6= ωk

d(j)])
)

∀ ( ωk
d(i) ∈ DV k

d ∧ ωk
d(j) ∈ DV k

d − {ωk
d(i)} ) (2)

( [ωk
d(i) ⊀ ωk

d(j)] ∧ [ωk
d(j) ⊀ ωk

d(i)] ∧ [ωk
d(j) 6= ωk

d(i)] ) �

The previous definition simply states that each path-weight
value in DV kd dominates any other path-weight value in Ωkd
that is comparable with it, and all path-weight values in DV kd
are incomparable with one another. A well-designed routing
protocol using DRA is such that a router k can select a path
P kd (i) to a destination d if and only if the path-weight value
ωkd(i) associated with P kd (i) is in DV kd .

B. Characterizing Convergence

A routing protocol based on DRA may be allowed to
converge to paths that are acyclic but not optimum according
to the set of path-weight values Ω. The following definitions
differentiate between simply acyclic and optimal path weights.

Definition 5: Convergence to Feasible Routes: A DRA-
based routing protocol converges to paths with feasible path-
weight values if, for any destination d, any router k: (a) obtains
a set of dominant path-weight values DV kd corresponding to
acyclic paths or sets ωkd = ω∞ within a finite time after
network changes stop occurring, and (b) does not change the
value of any path weight subsequently. �

Definition 6: Convergence to Optimal Routes: A DRA-
based routing protocol converges to paths with optimum path-
weight values if, for any destination d, any router k: (a) obtains
a set of path weights that equals the dominant vector of path
weights for k to destination d within a finite time after network
changes stop occurring, and (b) does not change the value of
any path weight subsequently �

Definition 7: Loop Freedom: A routing protocol is acyclic
(loop-free) if, for any destination d, all the paths implied by
the routing information maintained by routers define acyclic
paths at every instant. �

The next hop along the nth path P kd (n) from router k to des-
tination d is denoted by skd(n). Hence, path P kd (n) consists of
the concatenation of the link (k, skd(n)) with a path P s

k
d(n)
d (m)

offered by skd(n) to k, i.e., P kd (n) = (k, skd(n))P
skd(n)
d (m).

The path-weight value reported by skd(n) to router k for
destination d is denoted by ωk

dskd(n)
(n).

The key objective of any routing protocol is to establish
paths to destinations of interest such that traversing each hop
along any path gets closer to the destination of the path, which
requires the next router along the path to be closer to the
destination than the previous router. The following definition
formalizes the intuition that, independently of the type of



partial ordering defined among path-weight values in a routing
algebra, if router k uses router q as its next hop along a path
to destination d the path from q to d must be better than the
path from k to d that has q as the next hop.

Definition 8: Total Order along Simple Paths: The total
ordering along a simple path from router k to a destination d
is given by

T : ωkdskd(n)
(n) ≺ ωkd(n) � (3)

C. Conditions for Convergence and Optimality
The following nomenclature is used in theorems that estab-

lish the conditions for the existence of routing protocols based
on DRA that converge to acyclic (feasible) paths or optimum
paths, and that can be acyclic at every instant, even before
converging.
F denotes the fact that a routing protocol convergences to

paths with feasible path-weight values.
O denotes the fact that a routing protocol converges to paths

with optimum path-weight values.
A denotes the fact that a routing protocol is acyclic.
T ∗ denotes the fact that a routing protocol satisfies T at

every instant.
D denotes the fact that a routing protocol is such that

each router knows within a finite time its complete and valid
dominant vector for each destination of interest.

Theorem 1: If a routing protocol based on DRA converges
to feasible path-weight values, the total ordering constraint T
must be satisfied by every router that must maintain paths to
any destination d within a finite time after network changes
stop occurring.

Proof: The proof needs to show that F → T is true. The
argument of the proof is by contradiction, i.e., by showing that
F ∧ ¬T is a contradiction.

Assume that a routing protocol converges at time t0 but
T is not satisfied by at least one node k at that time. From
the definition of convergence, no router can change the path-
weight value of any path after time t0 and no router can
transmit a signaling message to update a path-weight value.
Hence, router k cannot change the path-weight value ωkd(n)
of a path P kd (n) that does not satisfy T after time t0.

Let q = skd(n) be the next hop along path P kd (n); router
k used ωkdq(n) to select q as the next hop along P kd (n), and
ωkdq(n) corresponds to a path-weight value ωqd(m) communi-
cated to k by q and corresponding to the mth path P qd (m)
from q to d. Furthermore, ωqd(m) = ωkdq(n) cannot change
after time t0. This allows k to use q = skd(n) even if it true
that k = sqd(m), i.e., k is the next hop for q along path P qd (m).
This is a contradiction, because then P kd cannot be a simple
path.

Corollary 1: If a routing protocol based on DRA converges
to optimal path-weight values, the total ordering constraint T
must be satisfied by every router that must maintain paths to
any destination d within a finite time after network changes
stop occurring.

Proof: The proof needs to show that O → T is true, and
the argument of the proof is by contradiction. The structure

of proof is much the same as in the proof of Theorem 1 with
the only difference that routers converge to optimal values at
time t0 rather than just feasible values.

Theorem 2: A routing protocol based on DRA is acyclic if
and only if the total ordering T is satisfied at every instant
by every router that must maintain paths to any destination d.

Proof: The proof needs to show that A ↔ T ∗ is true.
The argument of the proof consists of two parts: showing that
T ∗ → A is true, and showing that A → T ∗ is true.

(T ∗ → A): The proof proceeds by contradiction. For this
purpose, assume that T ∗ is true but A is false because a set of
routers V = {v1, v2, ..., vh, v1} with d 6∈ V creates a routing-
table loop L of h hops at some point in time. Without loss of
generality, label the path used by each such router vi ∈ V to
create loop L as P vid (1). Loop L is thus created when each
router vi sets svid (1) = vi+1 for 1 ≤ i ≤ h−1 and svhd (1) = v1.
This means that ωvi+1

d (1) ≺ ωvid (1) for 1 ≤ i ≤ h − 1 and
ωv1d (1) ≺ ωvhd (1). This is a contradiction, because it implies
that ωvid (1) ≺ ωvid (1) for 1 ≤ i ≤ h−1 and ωvhd (1) ≺ ωvhd (1).

(A → T ∗): The proof also proceeds by contradiction
Assume that A is true and also assume that T ∗ is not true
because T is not satisfied by at least one router k with respect
to a destination d at some time tL. Without loss of generality,
consider a scenario in which routers p and k have single simple
paths to destination d such that spd(1) = k, skd(1) = q 6= p,
and ωkd(1) ≺ ωpd(1) at some time t < tL. Suppose that
router k must change its path to d at time tL and its only
available neighbor is p. Router k can make skd = p, which is a
contradiction because P kd (1) = (k, p)P pd (1) at time tL is not
an acyclic path and hence A cannot be true.

Theorem 3: A routing protocol based on DRA with a set of
path-weight values Ω in which optimal values exist converges
to those optimal values at time tO if and only if each router
has a complete and valid dominant vector for each destination
d at time tO.

Proof: The proof needs to show that O ↔ D is true.
(O → D): This part of proof is by contradiction. Assume

that a routing protocol converges to optimal values at time tO
and for the sake of contradiction assume that at least one router
s does not have the complete and valid dominant vector DV sd
for destination d at time tO. There are only two possible cases
to consider for router s at time tO based on this assumption: (a)
There is at least one path-weight value ω̆sd in DV sd that should
not be in the set, or (b) there is at least one path-weight value
ω̇sd that is not in DV sd but should be in it.

Assume that router s stores ω̆sd ∈ DV sd at time tO. Given
that ω̆sd should not be in DV sd at time tO because it is no
longer valid, it follows from Definition 4 that the following
is true at time tO: ∀ωsd(i) ∈ DV sd − {ω̆sd} ( ωsd(i) ≺ ω̆sd ).
This is a contradiction, because then router s could use ω̆sd to
forward data to d along a path that is not optimal at time tO.

Assume that ω̇sd 6∈ DV sd at time tO. Because by assumption
ω̇sd is in DV sd at time tO, it follows from Definition 4 that the
following two statements are true at time tO:

∀ ωsd(i) ∈ DV sd − {ω̇sd}



[
[ω̇sd ⊀ ωsd(i)] ∧ [ωsd(i) ⊀ ω̇sd] ∧ [ωsd(i) 6= ω̇sd]

]
∀ωsd(j) ∈ Ωsd − {ω̇sd}

[
(ω̇sd ≺ ω

s
d(j)) ∨

( [ω̇sd ⊀ ωsd(j)] ∧ [ωsd(j) ⊀ ω̇sd] ∧ [ωsd(j) 6= ω̇sd] )
]

This is also a contradiction, because it implies that router s
can forward data along a path that has a path-weight value
that is worse than the path associated with path-weight value
ω̇sd, which is not optimum.

(D → O): This part of the the proof is also by contra-
diction. Assume that all routers maintain complete and valid
dominant vectors for destination d at time tO. For the sake of
contradiction assume that at least one router s has converged
to a route for destination d that is not optimal at time tO. Let
the path-weight value associated with that route be ω∗sd . Given
that the routing protocol is based on DRA, ω∗sd ∈ DV sd and
hence,

∀ωsd(j) ∈ Ωsd − {ω∗sd } [ (ω∗sd ≺ ωsd(j))∨

([ω∗sd ⊀ ωsd(j)] ∧ [ωsd(j) ⊀ ω∗sd ] ∧ [ωsd(j) 6= ω∗sd ]) ]

However, this is a contradiction to ω∗sd not being an optimal
path-weight value.

IV. LIMITATIONS OF RECENT PROTOCOLS FOR ROUTING
WITH MULTIPLE CRITERIA

Sobrinho and Ferreira proposed protocols for routing on
multiple optimality criteria [41]. These routing protocols are
called Non-Restarting Vectoring Protocol (denoted by NRVP),
and Restarting Vectoring Protocol (denoted by RVP). We
prove that NRVP is not correct and show that RVP incurs
considerable delays and communication overhead. We assume
in our analysis that all protocol messages are exchanged
correctly among routers, but link and router failures may occur.

A. Analysis of NRVP

NRVP suffers from non-convergence because its signaling
does not satisfy the condition stated in Theorem 1, and
suffers from looping because its signaling does not satisfy the
condition stated in Theorem 2.

The proof of termination of NRVP (Appendix A in [41])
is incorrect because it does not address the way in which
the signaling of NRVP really works and assumes a finite set
of path attributes. The signaling in NRVP simply makes a
router find a new set of dominant path attributes after receiving
updates from neighbors and report that to its neighbors (see
Algorithm 1 in [41]). As a result, NRVP suffers from looping
and non-termination problems after link failures, node failures,
or some changes in path-weight values.

Figure 1 illustrates looping and non-convergence in NRVP
with a simple example consisting of a five-node network.
The delay δ and bandwidth β over a link are indicated by
(δ, β) next to each link. The dominant path-weight values
for destination d consisting of vectors with path delay

∑
δ

equal to the sum of the bandwidth of link in the path and
path bandwidth Min(β) equal to the minimum link bandwidth

along the path. Dominant path-weight values are indicated by
[
∑
δ,Min(β)] next to each node followed by the next hop

of the path with the dominant path-weight value. Arrowheads
in links indicate the next hops to destination d. Updates are
indicated by U [

∑
δ,Min(β)], and routing state and signaling

involved in looping are shown in red.
Figure 1(a) shows the initial state at the routers just before

link (b, d) fails, and Figures 1(b) to 1(d) illustrate the updates
made to the dominant path-weight values by the routers.
Dashed arrows indicate the transmission of update messages
to their neighbors. For brevity, Figures 1(b) to 1(d) each show
two steps in the transmission of updates without showing the
link metrics, which are the same as in Figure 1(a).

As the example illustrates, routers a and b become part of
a routing-table loop while seeking to establish paths associ-
ated with path-weight values with a minimum bandwidth of
10, which are incomparable with path-weight values with a
minimum bandwidth of 1, and the loop persists independently
of other incomparable routes.

Figure 1: Looping and non-convergence in NRVP

This example illustrates that non-convergence in NRVP may
occur even when physical paths to destinations exist. An
external measure is required to force NRVP to stop without
convergence, which is exactly what is done in protocols like
RIP that use DBF. A maximum hop count set to 15 is used
in [41] to analyze the performance of NRVP by simulation,
which renders results that do not prove correct termination.

B. Analysis of RVP

The signaling in RVP uses destination sequence numbers to
keep the destination in control of the partial ordering of path-
weight to itself. RVP requires routers to trust only attributes
associated with a higher sequence number as the one currently
stored for a destination, or dominant path attributes with the
same sequence number (see Algorithm 2 in [41]). RVP avoids
the non-convergence problems found in NRVP as long as
sequence numbers are correct; however, like all prior routing
protocols based on destination sequence numbers, it suffers
from delayed convergence, and does not work correctly if
sequence numbering is not correct as a result of the recycling
of sequence numbers drawn from a finite sequence-number



space, or the rebooting of routers that do not use non-volatile
memory to maintain all the sequence numbers used by the
protocol.

The reader is referred to prior work [3], [43] for detailed
discussions of the correctness problems of any routing protocol
based on destination sequence numbers. The focus of our
analysis of RVP is on the long delays incurred by routers
to obtain new valid paths and the large amount of information
that routers should communicate to ensure correctness.

Figure 2 illustrates the delayed convergence problems in
RVP when sequence numbers are correct using the same
example of Figure 1. Sequenced dominant path-weight values
are indicated by [n :

∑
δ,Min(β)] next to each node

followed by the next hop of the path with the dominant path-
weight value, where n denotes the value of the sequence
number originated by destination d. Updates are denoted by
U [n :

∑
δ,Min(β)] and routing state associated with delayed

convergence is indicated in red. In the example shown in
Figure 2, router b loses its single dominant path to destination
d when link (b, d) fails and must wait to receive updates with
a sequence number of n+ 1 to correct its state.

Figure 2: Delayed convergence in RVP

This example illustrates that routers executing RVP may
not obtain valid paths corresponding to new dominant path-
weight values for some time, until the destination disseminates
updates with new sequence numbers. In addition, when a
router receives an update for the destination with a more recent
sequence number, RVP requires the router to communicate its
entire dominant vector for a destination to work correctly, not
just incremental updates. This results in considerable more
signaling overhead compared to shortest-path routing.

V. DRIP:
DOMINANT-PATH ROUTING INFORMATION PROTOCOL

Our description of DRIP assumes that routers send routing
messages reliably after waiting for short or long time intervals.

The objective of DRIP is to maintain acyclic paths to
destinations based on multiple criteria for path selection. DRIP
establishes a partial ordering among path-weight values with
respect to a given destination based on DRA, and each router

also maintains a total ordering at every instant between itself
and the next hop along any specific path to a destination,
which enforces T . The signaling in DRIP is based entirely
on changes to the dominant vectors of path-weight values
maintained by routers for different destinations. It can be
viewed as a loop-free extrapolation of the signaling used in
traditional distance-vector protocols for shortest-path routing.

A. Information Exchanged

Routers exchange routing messages reliably among one
another to update their routing information. A routing message
from router k is denoted by Mk and contains its node identifier
πk, a list of updates, and a list of queries.

A query from router k is a tuple (o, πd, πs, pkd, n
k
d, r

s
d),

where the operation code o equals Q to indicate that the entry
is a query; πd is the node identifier of a destination d; πs is
the node identifier of the source s of the query; pkd is the node
identifier of the prior router forwarding the query; nkd is the
node identifier of a router that should forward the query; and
rsd is the reference weight value set by the source of the query.

Stating nkd = d in a query indicates that all routers receiving
the query should process it.

An update from router k is a tuple (o, πd, πs, nkd, r
s
d, ω

k
d),

where the operation code o equals A if the update modifies or
adds a path-weight value, and equals D if the update deletes
a path-weight value; πd is the node identifier of a destination
d; πs is the node identifier of the source s of the query that
prompted the update nkd is the identifier of a router that should
send the update towards πs; rsd is a reference weight value for
destination d stated by the source of the query that prompted
the update; and ωkd is the weight of a path from router k
for destination d. An update with πd = πs states that the
destination started the update proactively. Stating nkd = πd in
an update indicates that all routers receiving the update are
allowed to send their own updates towards source πs, or to all
their neighbors if πd = πs. Stating nkd = 0 with πd = πs in an
update indicates that the update is intended only for immediate
neighbors as a “hello” to refresh the presence of node k.

B. Information Maintained

Each router k maintains a Link-Weight Table (LWT k), a
Neighbor Table (NT k), a Routing Table (RT k), and knows
its own identifier πk.
LWT k lists an entry for each link to a known neighbor

router n ∈ Nk. The entry for link (k, n) in LWT k states: (a)
The weight ν(k, n) of the link, and (b) a lifetime LT kn for the
neighbor entry of node n.
NT k lists the dominant vectors reported by each neighbor

for each destination of interest. The entry in NT k for desti-
nation d at router k is denoted by NT k(d) and specifies for
each neighbor p ∈ Nk: (a) The identifier of a destination d
(πd), and (b) the dominant vector for destination d reported
by p (denoted by DV kdp).

The weight of the jth path in DV kdp is denoted by ωkdp(j).
If a neighbor q has not reported any path-weight value for

d to router k, then router k assumes that ωkdq = ω∞.



RT k lists an entry for each destination d for which the
router must maintain routing information. The entry in RT k

for destination d is denoted by RT k(d) and states:
• πd: The identifier of destination d
• DV kd : The dominant vector for destination d, which contains
the path weight of each of its selected paths for the destination.

The ith entry in DV kd (1 ≤ i ≤ |DV kd |) consists of the
tuple [ωkd(i), DSkd (i)], where ωkd(i) is a path weight that is
incomparable with any other path weight in DV kd , and DSkd (i)
is the dominating successor set for ωkd(i) defined by:

DSkd (i) = {πq | (q ∈ Nk) ∧ (∃ ωkdq(j) ≺ ωkd(i))}

The dominating successor set at router k for destination d
is denoted by DSkd and equals:

DSkd =
⋃|DV k

d |
i=1 DSkd (i)

C. Updating Routing Information
Initialization: Router k is initialized to store ωo for itself,

and the maximum path-weight ω∞ is assumed for any other
destination. Entries for other destinations are added as updates
are received from neighbors. Once a router is initialized,
it transmits routing message with an add update for itself
according to its update timers.

Timing of Routing Messages: If router k needs to send
a routing message with updates or queries, it does so after a
minimum amount of time tmin has elapsed from the time it
sent its prior routing message.

In the absence of queries or updates needed to reflect
changes to routing tables, a router sends a message with a
“hello” update no later than tmax seconds from the time it
sent its last message, where tmax is shorter than the maximum
lifetime of a LWT entry ( LT ). For this purpose, router k sets
UT k equal to tmax after sending a routing message, and sets
UT k equal to tmin after preparing updates or queries to be
sent in response to input events.

A “hello” update consists of the tuple (A, πk, πk, 0, ωo, ωo)
and simply updates the lifetime entries maintained for itself
by its neighbors.

Updating Local Information: Router k updates LWT k

when the weight ν(k, q) of an outgoing link to q changes,
and updates NT k and RT k when any input event occurs,
such as when an adjacent outgoing link changes its weight,
an immediate neighbor router fails to send updates before the
lifetime for its LWT entry expires, or a routing message Mq

is received from a neighbor q.
To update its routing table, router k uses the path-weight

function ρ to compute new routing-metric values for a given
destination d after the occurrence of an input event. The
router adds a delete update to its routing message if a path-
weight value is no longer valid and is incomparable to its
remaining path-weight values. A router includes add updates
to its routing message to report updates to path-weight values
that could be compared to prior ones, or to report new
incomparable path-weight values.

A router can select a neighbor router as a next hop along
any new or existing path only if T is satisfied along that

path, in which case the router sends an add update as needed.
Otherwise, if T cannot be satisfied for a path with a given
path-weight value, the router sends a query using that value
as the reference weight of the query. To ensure that dominant
vectors contain only valid path-weight values, a router that
eliminates a path-weight value from its own dominant vector
sends a delete update to its neighbors informing them that the
path-weight value was deleted.

A router k that has a path P kd (n) to destination d with
ωkd(n) ≺ ω∞ and needs to update or change that path uses
ωkd(n) as a reference point to search for an immediate neighbor
or a remote router that can provide a routing-metric value with
which T is satisfied. If router k has a neighbor router q with
ωqd(m) ≺ ωkd(n), then k can use q as its next hop in a new
acyclic path to d, and router k just informs its neighbors about
the update made to its dominant vector. Otherwise, k must
start a search for a remote router that satisfies T by sending
a query to the rest of the network stating a reference weight
rkd = ωkd(n).

Processing Queries and Updates: A router j receiving a
query stating a reference weight rkd can respond to the query
with an update if it has a path-weight value ωjd(m) ≺ rkd and
forwards the query otherwise. The next hop for a forwarded
query is any neighbor along the set of fast preferred paths to
the destination stated in the query, denoted by DSkd (1).

If router j is able to respond to a query from router k, its
update propagates back to router k and the relays in between
update their path-weight values as they propagate the update
towards k, so that T is satisfied by every router at every
instant.

On the other hand, if router k does not have a current path-
weight value better than ω∞ and must find a path to d, then it
does not have any point of reference for its search. Therefore,
router k must send a query stating a reference weight rkd = ωo
so that only the destination d can respond with an update that
can be trusted.

D. Example of DRIP Operation

Figure 3 illustrates the fast convergence of DRIP using the
same example of Figures 1 and 2.

Figure 3: Example of DRIP operation



Queries are highlighted in red and denoted by
Q[
∑
δ,Min(β), p = x, n = y] , which indicates the

reference weight of the query, followed by the previous node
p that forwarded the query and the next node n that should
process the query. Add and delete updates are denoted by
A[
∑
δ,Min(β)] and D[

∑
δ,Min(β)], respectively. Updates

sent back in response to the query originated by node b are
highlighted in red.

The failure of link (b, d) Figure 3(a) forces router b to send
a query to all its neighbors to start a search for a router that
has a better routing-metric value than [2, 10] (Figure 3(b)). In
addition, router b sends an update to add weight [7, 1] and an
update to delete weight [2, 10]. Router a retransmits the query
to its neighbor b as a result of the query from b, and also
sends an update to add weight [9, 1] and an update to delete
weight [4, 10] as a result of the updates received from b (Figure
3(b)). Given that [2, 10] ⊀ [2, 10], router c must forward the
query towards d, and does this by making the next hop for the
query it sends equal to e (Figure 3(c)). Router e sends back an
add update in response to the query because [1, 10] ≺ [2, 10],
and this makes c do the same (Figure 3(d)). As this example
illustrates, no loop ever occurs in DRIP and routers quickly
converge to new valid routing-metric values and delete invalid
values even if they are incomparable with new ones.

E. DRIP Correctness

The proofs that DRIP is always acyclic and that it converges
to feasible or optimal paths follow directly from Theorems 2
and 3. We provide only a sketch of the proof of Theorem 5
due to space limitations.

Theorem 4: DRIP is acyclic for any destination of interest.
Proof: Let L denote the fact that the signaling of DRIP

is executed correctly at every instant by every router of the
network. Given the result of Theorem 2, the proof needs to
show that L → T ∗ is true.

According to the correct operation of DRIP, if router k has
no finite routing-metric value for destination d then its routing
metric value for d is [ω∞, π

k] and it does not have any next
hop along a path to destination d. In addition, if router k selects
router n ∈ Nk as its next hop along a path P kd (i) to d with a
routing metric value µkd(i) ≺ [ω∞, π

k] then µkdn(j) ≺µ µkd(i),
where µkdn(j) to k is a routing metric reported by n to k.

Assuming that L is true implies that it is true at any time
time tL, and from the previous argument it must be true that
the following is true at time tL:

µkdn(j) ≺µ µkd(i) (4)

For the the sake of contradiction also assume that T ∗ is not
satisfied by at least router k for destination d. This implies that
router k does not satisfy T for destination d. The definition
of T implies that the following is true if ¬T is true at time
tL: µkdn(j) ⊀µ µkd(i), which is a contradiction to Eq. (4) and
therefore the theorem is true.

Theorem 5: DRIP converges to feasible routing-metric val-
ues for any given destination of interest within a finite time
after network changes stop occurring in the network.

Sketch of Proof: From Theorem 3, the proof needs
to show that the exchange of dominant vectors for a given
destination of interest among routers results in optimal routing-
metric values at every router within a finite time after network
changes stop occurring. The proof proceeds by contradiction
using the fact that DRIP is loop-free at every instant and the
assumption that routers communicate their dominant vectors
reliably.

VI. PERFORMANCE COMPARISON

We apply DRIP to shortest-path routing and widest-and-
shortest path routing to illustrate its efficiency compared to
traditional routing protocols based on shortest-path routing
and NRVP, which we discussed in Section IV. We simulate
DRIP, NRVP, RIPv2, and OSPF using the network simulator
ns3. The purpose of the simulation experiments is simply to
verify that DRIP has no loops, that single-metric DRIP results
in faster convergence times and reduced signaling overhead
than RIPv2 or OSPF, and that routing on multiple metrics
need not result in major increases in the signaling overhead or
unacceptably long convergence times. We used several real-
world topologies for the simulations (see Table I), selecting
topologies with potential routing loops and multiple possible
paths to each destination. We implemented DRIP in ns3 by
modifying the ns3 implementation of RIPv2 publicly available.
We implemented NRVP in ns3 based on the description in [41]
by modifying the ns3 implementation of RIPv2 to account
for multiple parameters being used in a path metric. We
used the ns3/Quagga implementations of RIPv2 and OSPF
without modification. The signaling of DRIP is such that its
convergence time is not a function of the number of parameters
used to characterize links, as long as larger routing messages
can be transmitted to communicate updates to the dominant
vectors. Similarly, the convergence of NRVP is subject to the
maximum count of 15 to stop route computations in case of
non-convergence. Therefore, the convergence time of multi-
metric RIPv2 (our implementation of Sobrinho and Ferreira’s
NRVP) and single-metric RIPv2 are similar to each other.

Parameter Value
Node Count: UK Backbone Toplology [10] 8
Node Count: Custom Topology 11
Node Count: Abilene Topology [2] 12
Node Count: NSFNET-T1 Topology [53] 13
Node Count: ATT N. America Topology [2] 25
Simulation Time 1000 sec
Hello Interval 2 sec
Update Interval in DRIP 2 sec

Table I: Simulation parameters

RIPv2 uses only hop count to determine routing cost. By
contrast, DRIP can use any path metrics that conform to the
constraints of monotonicity (isotonicity) and strict bounded-
ness (inflation) described in [41]. For the DRIP simulation,
we used a link cost of 1 per link, and introduced bandwidth
as a second metric, where each link had a bandwidth of either
1 Mbps or 10 Mbps. When comparing paths to a destination,



if path a had both higher bandwidth and lower hop count than
path b, then the node routed packets to path a. If the bandwidth
of path a was higher, but the hop count of path b was
higher, i.e., the two weights of the paths were incomparable,
packets were routed randomly either to maximize bandwidth
or minimize hop count. Signaling overhead was measured as
the total number of bytes the routing messages incurred during
the simulation. Nodes were connected in the simulation setup
via a shared link with a two second delay and a 5 Mbps data
rate. The nodes shared links by running Carrier Sense Multiple
Access (CSMA) links across the shared medium.

Figure 4 compares the performance of OSPF, RIPv2, NRVP,
single-metric DRIP and dual-metric DRIP in terms of signal-
ing overhead. DRIP incurs significantly less signaling over-
head than OSPF and less signaling overhead than NRVP and
RIPv2. This was expected, because the packet size is much
smaller for DRIP than RIPv2, and the amount of information
that must be sent is smaller in DRIP than in OSPF and NRVP
as the number of links increases.

Figure 4: Messages sent by each protocol in bytes

Figure 5: Convergence time of routing protocols

Figure 5 shows the convergence time for each protocol vs.
the number of nodes in the network. Updates occur more
frequently in DRIP than the other protocols, which enables
convergence to occur much faster. NRVP and multi-metric
DRIP converge much faster than RIPv2 and single-metric
DRIP. This is due to the fewer number of routes available with
higher bandwidth. We did not test node failure specifically on
nodes that would cause the higher bandwidth route to fail,
so did not test node recovery specifically to re-achieve higher
bandwidth routes after failure.

In the case of the 25-node network, the convergence time
for multi-metric routing was significantly faster than expected.
This is due to the relative lack of high bandwidth routes
as compared to routes with short hop counts. In addition, a
node in this topology has an average degree of four, while
the highest-degree node had eight links. Dual-metric DRIP
had very similar convergence times to single-metric DRIP.
However, this may be a result of the rapid convergence times
of DRIP as a whole. Overall, the results indicate that the
added flexibility of multiple metrics does not come at a cost
of convergence delay for DRIP.

We also simulated a node failing at 40 seconds into the
simulation for RIPv2, OSPF, single-metric DRIP. Figure 6
shows the signaling overhead to recover from node failure
for each protocol, and Figure 7 shows the convergence time
for single-metric RIPv2, OSPF and DRIP. The results show
that the time for the network to recover after a node failure
is much higher for RIPv2 than for OSPF, which is expected
due to the known counting-to-infinity problem of RIPv2. The
convergence time for DRIP is minimal, which is due to the
fact that DRIP is acyclic and its timers can be much shorter
than in OSPF and RIPv2.

Figure 6: Signaling overhead to reconfigure after a node failure

Figure 7: Time to reconfigure after a node failure

VII. CONCLUSION

We proved necessary and sufficient conditions for protocols
for routing with multiple performance criteria used for path
selection to be loop-free at every instant and to converge to
optimal values. We showed that recent protocols by Sobrinho
and Ferreira [41] for routing on multiple optimality criteria
suffer from non-convergence or delayed convergence, because



they do not satisfy the necessary and sufficient conditions we
proved. To address this, we introduced DRIP, the first protocol
for routing with multiple criteria that is loop-free at every
instant and is guaranteed to converge to valid (feasible or
optimal) paths. DRIP relies on a local or global search for
paths that satisfy the necessary and sufficient condition for
loop-freedom using queries that state reference weight values.

Simulation experiments using ns3 illustrate that DRIP is
more efficient than even traditional shortest-path routing pro-
tocols by comparing it with OSPF and RIPv2, and that its
signaling is equally efficient when multiple criteria are used for
path selection. Additional analysis through analytical models
(e.g., [23], [50]) and simulation is needed to fully understand
the performance advantages of DRIP.
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