“© © 2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/ republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

Herding Packets: Properties Needed of Metrics
for Loop-Free & Best Forwarding Paths

Bradley R. Smith
Department of Computer Engineering
University of California
Santa Cruz, CA 95064
brad @soe.ucsc.edu

Abstract—The distributed, hop-by-hop routing architec-
ture used in the Internet depends on algebraic properties
of routing metrics to ensure traffic is forwarded over loop-
free and best (LFB) paths. As the Internet evolves to serve
as the converged communication infrastructure for the
21st century, the need for new metrics that violate these
properties ([5], [9]) has been identified. Until recently, the
behavior of routing metrics had not been studied. Recent
work ([5], [9]) has presented some results identifying the
requirements of metrics to ensure LFB paths, however
they have not been fully characterized. Building on this
work, this paper presents the necessary and sufficient
conditions for routing metrics to ensure LFB paths in an
Internet environment. Specifically, a metric must be strictly
bounded (a < a-+b) and monotonic (a < b = a+c < b+c¢)
to ensure LFB forwarding paths. This paper presents the
first comprehensive statement of the properties required
to ensure LFB forwarding paths in the Internet.

I. INTRODUCTION

The Internet routing architecture is based on a dis-
tributed, hop-by-hop routing model where shortest paths
are computed at each node to all destinations using
distance-related metrics, and a forwarding decision is
made for each packet at each hop based on the packet’s
destination. The distributed nature of this architecture
provides a more robust and scalable routing function
compared with one based on centralized route com-
putations. However, it introduces a dependency on the
algebraic properties of the metrics to ensure traffic is
forwarded over loop-free and best paths (we introduce
the term forwarding paths to distinguish the paths traffic
is actually forwarded over from the paths computed at
each node).

The metrics used in the Internet have traditionally
been delay or cost related, and have used well-behaved
algebras composed of integer addition and comparison
relations. However, as the Internet has evolved to serve
as the consolidated communications infrastructure for
the 21st century, the need to support new metrics and
algebras has been introduced by new, time-sensitive
applications involving the transmission of audio, video
and telemetry data. Technology exists to implement such

Judith T. Samson
Department of Computer Engineering
University of California
Santa Cruz, CA 95064
jtsamson @soe.ucsc.edu

a choice of paths. Policy-based routing in Linux [7]
and, e.g., Cisco’s Virtual Routing and Forwarding (VRF)
[3] support the computation of special paths for diverse
performance and policy constraints, and the assignment
of traffic to these different forwarding tables. However,
as this paper shows, complex metrics must be used with
careful attention to their algebraic properties.

These new algebras are not as well-behaved as tradi-
tional Internet routing algebras and, as has been doc-
umented elsewhere ([5], [9]), break the assumptions
(implicitly) made by the Internet routing architecture.
This previous work has identified sufficient properties
required of these metrics to ensure traffic is forwarded
over loop-free and best (LFB) forwarding paths (we
use the term best to generalize the concept of shortest
used for traditional, distance-based metrics). However
no work has identified both the necessary and sufficient
conditions for these properties.

For example, Gouda [5] identifies the property re-
quired to ensure best forwarding paths, however only
identifies a property that ensures a solution for loop-
free forwarding paths exists (as opposed to ensuring all
locally computed solutions result in a global solution
for loop-free forwarding paths). Similarly, Sobrinho [9]
identifies the property required to ensure best forwarding
paths, and then identifies two special cases that result in
loop-free forwarding paths, but not a general property
required for loop-freedom.

Building on this previous work, in this paper we
develop a number of scenarios illustrating limitations
of the destination-based forwarding model in forwarding
traffic over LFB paths, even in the presence of LFB paths
computed at each node in the network. Based on these
scenarios, we identify the necessary and sufficient prop-
erties required to ensure that when traffic is forwarded
along best paths computed at each hop, it will actually
travel over LFB forwarding paths to its destination.

This paper is organized as follows. Section II presents
definitions used in the rest of the paper. Section III
reviews the scenarios we developed to give an intuition

into the seeming contradiction that forwarding of traffic
along LFB paths computed at each node can actually
result in traffic traveling over non-LFB forwarding paths.
Section IV presents the algebraic properties we have
identified as required of metrics used in such an environ-
ment to ensure LFB forwarding paths. Lastly, Section V
relates these results to previous work.

II. DEFINITIONS

A network is defined as a pair of sets, G = (V, E),
where V' is the set of nodes in the network and FE is the
set of edges that connect the nodes, and where every
edge (i,7) has a weight w(%, j).

A path p is an ordered sequence of vertices p =
(v1,v2,...,Up_1,0,), each connected by an edge
(vi, vi4+1), from a source node s = vy to a destination
node d = v, in the network. The path weight, w(p),
is determined by combining the weights of the edges
that make up the path using addition (as specified in
the path algebra described below) on the weights of the
edges that compose the path (i.e. w(p) = w(v1,v2) ®
w(ve,v3) B ... D w(vp—1,v,)).

In a hop-by-hop, destination-based routing environ-
ment, we make a distinction between a path and a
forwarding path. In hop-by-hop routing [9], nodes in a
network compute the shortest path to each destination,
and build a forwarding table composed of the next hops
on these paths for each destination. As a packet travels
through the network the node at each hop independently
selects the next hop, based on the forwarding table
computed at that node. With destination-based routing
a node makes a forwarding decision based only on
the destination of the packet and the forwarding table
described above. Forwarding paths are an emergent
property of the collective routing tables of all nodes,
are not known by any single node, and may be different
from the paths computed at any given node.

In order to create best, loop-free forwarding paths,
one first needs to define what “best” means, and how to
compute the weight of a path. The path algebra provides
this information. A path algebra consists of a set of
metrics that describe the weight of the paths we wish to
optimize, along with the operations needed to compute
and compare paths. The path algebra determines how
the best forwarding path through the network is found.
Specifically, a path algebra is a 5-tuple (W, <, ®,3c,0)
where:

o« W is the set of weights. Edge and path weight

values (w(vy,...,vy,)) are drawn from W.

e = is an total order relation on W indicating pref-

erence

— < is reflexive: a < a
— =is transitive: (¢ < b) and (b < ¢) = (a X ¢)

- = is antisymmetric: (¢ < b) and (b < a) =
(a=1b)
— X is total: either a <borb=<a
e P is a binary function on W used to compute the
weight of a path from its component paths and
edges
e 0 and oo are distinguished weights in W that
represent the weight of the null path (i.e. path from
a node to itself) and the lack of a path between two
nodes, respectively. These values are never assigned
to edges in a network.
— o0 is absorbing for & (a &30 = 0), and is a
greatest element for =< (a = 30)
o (W,®,0) is a monoid
— @ is associative: a ® (b®c) = (a D) D¢
— 0 is an identity element for ®: a ®0 = a
Lastly, a path algebra is said to be optimal if, for the
best path p = (vg,...,v,), all subpaths of p are also
best paths.

III. EXAMPLES

In this section we review a number of path algebras
that illustrate the range of behavior possible with respect
to the loop-free and best-path properties of the forward-
ing paths resulting from the different algebras.

Figures 1-5 illustrate the best path from all nodes to
node D using different path algebras. Figure 1 shows the
best paths for the Shortest path algebra where weights
are composed of an integer distance value, & is defined
as integer addition (“+”), and =< is defined as integer
<. Notice that if we trace the path taken by a packet
sent from A to D, the forwarding decision made at each
hop follows the best path computed at A. Specifically A,
following the path (A, B, C, D) it computed, forwards a
packet to B; similarly, B (following its path (B, C, D))
forwards the packet to C, and C forwards it to D.
Therefore, packets sent from A follow a LFB forwarding
path to D.

Figure 2 shows best paths defined by the Widest-
Shortest metric where weights are composed of the in-
teger pair (delay, bandwidth), (di,b1) @ (dz, bs) is de-
fined as (d1 + d2, Min(bl, bg)), and (dl, bl) = (dg, bg)
as (dy < dz) or ((dy = d3) and (by > b2)) (intuitively,
prefer shortest paths and, among all shortest paths, prefer
those with maximum bandwidth). Following the path
taken by a packet sent from A to D, we see that the
forwarding decision made at each hop follows a path
with the same weight as the best path computed at A.
Note that, from A’s perspective, there are two equally
best paths to D ((A, B, D) and (A, B,C, D), both with
weight (3,5)), while from B’s perspective there is only
one (w(B,C, D) = (2,10)), which is clearly better than
w(B,D) = (2,5) = (2,10). The important observation

B B B B B
e >
144 3 asy? 2 O\(10,3) 5,7 |FEWN\G 17 N @D
! (4 I A 4 [N v (RN
- : N 7 : o 7 B 0
;° 1 ’ 1) i “Q ; SN A RN
7 ! A a10)f i D A¢ s ODp Ad i Sp
A) .{;D .10 ! P i R (,>!: P
10 27 1 Y It PN
’.0 : : :: S
3 1 Y (3.,5) -z 1.7,/(5.1) 2 I 5 .1 12 @201
S 14 B ER
p 1 i i
C C C C C
Fig. 1. Shortest Fig. 2. Widest-Shortest Fig. 3. Shortest-Widest Fig. 4. Widest Fig. 5. “Slope”

being that the set of best paths from B’s perspective is
a subset of the best paths from A’s perspective, thereby
ensuring that traffic follows LFB forwarding paths.

Figure 3 shows best paths defined by the Shortest-
Widest metric where weights are composed of the integer
pair (bandwidth, delay), (by,d1) ® (be,ds) is defined
as (Min(bl,bg),dl + dz), and (bl,dl) j (bQ,dQ) as
(bl > bQ) or ((bl = bg) and (dl < dg)) (prefer
paths with the most bandwidth and, among all maximum
bandwidth paths, prefer the shortest ones). Following the
path taken by a packet sent from A to D we see that the
forwarding decision at node B selects a different next
hop (D) from the next hop on the shortest path from A
(C), resulting in the packet being forwarded over a path
that is not the shortest path from A to D. Therefore hop-
by-hop, distributed routing using the Shortest-Widest
metric cannot guarantee that packets will follow shortest
paths to their destination.

Figure 4 shows a possible solution for best paths
defined by the Widest metric where weights are com-
posed of an integer weight value (which could represent
e.g. bandwidth), by @ b is defined as Min(by, bs), and
b1 = b2 is defined as by > by (i.e. prefer paths with the
most bandwidth). Following the path taken by a packet
from A to D we see that a loop is entered between
B and C. Note that the actual paths computed at the
different nodes to traverse the links connecting B, C, and
D depend on the implementation of the the shortest path
computation. The paths shown are possible paths, and
other path selections are possible that would not result
in the loop. The important point is that it is not possible
to ensure LFB forwarding paths with destination-based,
hop-by-hop routing using the Widest metric.

Lastly, Figure 5 shows the best paths defined by what
we call the Slope metric where weights are composed
of the integer pair (distance, cost), (dyi, c1)® (da, c2) is
defined as (dy + da, 1 + ¢2), and (dy,¢1) =< (dz2,c2) as
(di/c1) < (da/c2) (i.e. prefer paths with a lesser slope,
or cost per unit of distance). Similar to the Widest metric,
following the path taken from A to D, a loop is entered
between B and C'. Note, in contrast to Widest, with the
Slope metric there are no choices in the selection of these
paths, and the path costs increase as traffic is forwarded

in the loop.

These examples show a progression of increasingly
misbehaving metrics that lead to progressively dete-
riorating forwarding behavior. In the next section we
present the properties needed to ensure LFB forwarding
paths, and in Section 5 explain the behavior of the
example metrics in terms of these properties.

IV. HERDING PROPERTIES

The properties needed to ensure LFB forwarding
paths are monotonicity and strict boundedness. These are
derived from the properties presented by Gouda [5] with
the same names. Sobrinho [9] uses the term isotonicity
for what we call monotonicity.

Specifically, given a path algebra (W, <, ¢, 33, 0), for
all a,b,c € W: monoticity is the property that a < b =
a®c = b®c, and boundedness is the property that
a = a®b. Both properties have strict versions; i.e. a path
algebra is: strictly monotonic if a <b=a®c<bPc,
and strictly bounded if a < a & b.

Note that both versions of monotonicity infer the
corresponding version of boundedness. This can be seen
by setting a to 0 in the definition. Le., for monotonicity
witha=0,0=b=08c=c=b&c¢ since) <b
is always true (we assume no edge is ever assigned a
weight of 0), the implication that ¢ < b & ¢ must also
always be true. A similar argument can be made for the
strict versions of the properties.

Intuitively, monotonicity is the property that extending
two paths with the same edge will not reverse their order,
and strict monotonicity is the property that extending
two paths with the same edge retains their ordering.
Similarly, boundedness is the property that a path does
not get better as it is extended, and strict boundedness
that a path only gets worse as it is extended. Using these
descriptions, it is also intuitive that a path algebra that
is monotonic must also be bounded (if extending two
paths with the same edge does not reverse their order,
then the same must also be true when one of the starting
paths is null, i.e. with a weight of 0), and similarly for
the strict properties.

An interesting observation, which lies at the core of
the insight to the properties required for LFB forwarding

4 L)
/ /“y\\ C \'\\ N,
’ B ‘~ NN
Rd N, A TN
4 D‘/ N, \ ':\
B ~
e N, A
4 N, AW
L X o [
,' B v 1
H
’ AR
’ \‘1!,!
, 5
’
s 1 f df
A

Fig. 6. strictly-bounded = loop-free

Y Fig. 8. monotonicity and best
forwarding paths

Fig. 7.

bounded

loop-free = strictly-

paths, is the fact that a path is monotonic does not imply
that it is strictly bounded. In other words, the fact that a
path only gets worse as it is extended (strictly bounded)
is an additional constraint on an algebra beyond the fact
that extending two paths with the same edge will not
reverse their order (monotonic). Section V shows how
all combinations of these properties are demonstrated in
the example path algebras from Section III.

The remainder of this section presents proofs that
strictly bounded path algebras always result in loop-
free forwarding paths, that monotonic path algebras
always result in best forwarding paths, and that strictly
monotonic (and, by implication, strictly bounded) path
algebras always produce optimal forwarding paths.

A. Strictly Bounded and Loop-Free

First we show that strictly bounded is the defining
property of path algebras that guarantee loop-free for-
warding paths. We prove this in two parts presented in
the following Lemmas.

Lemma 1. If a path algebra is strictly bounded then it
guarantees loop free forwarding paths.

Proof: By contradiction. Assume that a path algebra
(W, <, ®,25,0) is strictly bounded, but that there are
best paths computed at different nodes using the algebra
that result in forwarding paths that loop. With no loss
of generality (i.e. this illustration can be generalized to
a loop of any number of nodes > 1), Figure 6 illustrates
this scenario for a 5 node loop. Each segment connecting

two nodes in this graph represents a subpath containing
0 or more nodes, with no branches occurring in the
subpath (i.e. at each node in the subpath prior to the
fork, the path computed at that node is the concatenation
of the link to its successor and the path computed at the
successor). The weight of path (s,...,0,...,f,...,d)
is called A, that of path (f,...,z,...,d) is called B,
and similarly for paths C' through E.

At each fork in a path (e.g. node f on path A) the
forked path taken by that node (e.g. path B taken by
node f) must be no worse than the portion remaining at
the fork of the path computed at the source that led to
the fork (i.e. B < Ay 4, where Ay 4 is the weight of the
portion of path A between nodes f and d). This leads
to the sequence of inequalities shown in Table I:

The last inequality is a contradiction to the assumption
that the path algebra is strictly bounded. This proof is
similar to one given by Garcia-Luna [4]. O

Lemma 2. If forwarding paths computed using a path
algebra are guaranteed to be loop-free then the path
algebra is strictly bounded.

Proof: By contradiction. Assume we have a path
algebra (W, %, ®,50,0) that is not strictly bounded, but
always results in loop-free forwarding paths. Therefore,
there exist an a,b € W where a > a & b. Using these
elements we can construct the graph shown in Figure 7.

Given this graph, if a > a @ b, traffic from Y to
Z will take the path (Y, X, Z), and traffic from Z to
Y will take path (X,Y, Z), resulting in a loop. On the
other hand, if « = a @ b, while traffic between Y and Z
may follow loop free paths, this is not guaranteed (i.e.,
depending on the vagaries of the implementation of the
shortest path computation, the computations could result
in a loop). Both cases violate the assumption that paths
computed using the path algebra are guaranteed to result
in loop-free forwarding paths. O

With these two Lemmas we can now prove the
following theorem.

Theorem 1. A path algebra guarantees loop free for-
warding paths if and only if it is strictly bounded.

Proof: By Lemma 1 we have that if a strictly bounded
path algebra is used in a destination-based, hop-by-hop
routing computation, then the set of routes computed at
the nodes in the network are guaranteed to result in loop
free forwarding paths, and by Lemma 2 we have that if
the path algebra used in a destination-based, hop-by-
hop routing computation is guaranteed to result in loop
free forwarding paths, then the path algebra must be
strictly bounded. O

B<XAraq

Assumption of fork at f.

C=<Byg<B=w(f,...,2)® Bz q Assumption of fork at and strictly bounded.
D=Cyqa=<C=w,..) ®Cyd Assumption of fork at y and strictly bounded.
E<D.,qs<D=wy,...,2)®D,q Assumption of fork at z and strictly bounded.

AlgXE.<E=w(z..)®FE.

Given [”s next hop is on path A and strictly bounded.

Al,d = ’ll)(l,,f) @Af,d < Af,d

Transitivity of <. =<

TABLE I
INEQUALITIES LEADING TO LOOP-FREEDOM.

B. Monotonicy and Best

Next we show that monotonicity is the defining prop-
erty of path algebras that guarantee best forwarding
paths. We prove this in two parts presented in the
following Lemmas.

Lemma 3. If a path algebra is monotonic then traffic
is guaranteed to follow best forwarding paths.

Proof: By contradiction. In Figure 8, assume the
algebra is monotonic, the path (A, N, B) is the best
path, but traffic is forwarded over path (A, S, B). We
know that traffic is forwarded over best path (A) to
a point f, where the paths diverge. The fact that f
forwards via (S, B) implies that w(S, B) < w(N, B)
and therefore, by monotonicity, w(A) @ w(S,B) =
w(A)®w(N, B). However, this contradicts the assump-
tion that (A, N, B) is best (i.e. that w(A) @ w(N, B) <
w(A) @ w(S, B)). O

Lemma 4. If a given path algebra always results in best
forwarding paths then it is monotonic.

Proof: By contradiction. Assume use of the path
algebra always results in best forwarding paths, but that
the path algebra is not monotonic. This implies there
exist three weights a,b,c € W where a =< b however
a @ c > ba c. Using Figure 8 again, we can construct
a scenario where a = w(N, B),b = w(S, B),c = w(A)
and a < b, however a @ ¢ >~ b ® c (e.g. see Shortest-
Widest in Section 3). f will forward traffic from s to
d over path (N, B) even though, from A’s point of
view, path (A, S, B) is better than path (A, N, B) (i.e.
w(A,S,B) = b®c < a®c = w(A4,N,B)). This
contradicts the assumption that the path algebra always
results in best forwarding paths. O

With these two Lemmas we can now prove the
following theorem.

Theorem 2. A path algebra guarantees best forwarding
paths if and only if it is monotonic.

Proof: By Lemma 3 we have that if a monotonic
path algebra is used in a destination-based, hop-by-hop
routing computation, then the set of routes computed
at the nodes in the network is guaranteed to result in
best forwarding paths, and by Lemma 4 we have that

if the path algebra used in a destination-based, hop-
by-hop routing computation is guaranteed to result in
best forwarding paths, then the path algebra must be
monotonic. O

C. Strict Monotonicity and Optimal

Lastly, we will show that strict monotonicity is the
defining property of an optimal path algebra. We prove
this in two parts, presented in the following Lemmas.

Lemma 5. If a path algebra is strictly monotonic then
traffic is guaranteed to follow optimal forwarding paths.

Proof: By contradiction. Assume a path algebra is
strictly monotonic, but results in forwarding paths that
are not optimal. Using Figure 8 to illustrate, given
the path algebra is not optimal, we can construct a
case where both paths from s to d are best (i.e.
w(A, N, B) = w(A, S, B)), but only (S, B) is best from
f Ge. w(S,B) < w(N, B)). However, since the path
algebra is strictly monotonic, w(S,B) < w(N,B) =
w(S, B)®w(A) < w(N, B) ®w(A), which contradicts
the assumption of non-optimality. O

Lemma 6. If a given path algebra always results in
optimal forwarding paths then it is strictly monotonic.

Proof: By contradiction. Assume a path algebra al-
ways results in optimal forwarding paths, but is not
strictly monotonic. Since the path algebra is not strictly
monotonic there exist a,b,c € W where a < b but
a®c > bdc. Using these values we can construct a case,
again using Figure 8, where w(N, B) = a,w(S,B) =b
and w(A) = c¢. Given the assumptions of optimality and
w(N,B) =a < b=w(S, B) we can infer (4, N, B) is
a best path from s to d. However, since a ® ¢ = b @ c,
it must also be true that (A, S, B) is a best path from s
to d and, given a < b, (A, S, B) is not optimal, which
contradicts the assumption of optimality. O

We can now prove the following theorem.

Theorem 3. A path algebra is strictly monotonic if and
only if it results in optimal forwarding paths.

Proof: By Lemma 5 we have that if a strictly
monotonic path algebra is used in a destination-based,
hop-by-hop routing computation, then the set of routes
computed at the nodes in the network is guaranteed to

result in optimal forwarding paths, and by Lemma 6 that
if the path algebra used in a destination-based, hop-
by-hop routing computation is guaranteed to result in
optimal forwarding paths, then the path algebra must
be strictly monotonic. O

In the following section we use these theorems to
explain the behavior of the examples presented in Sec-
tion III.

V. INTERPRETING THE EXAMPLES

Section III presented a series of examples that demon-
strate a progression of increasingly misbehaving metrics
that lead to progressively deteriorating forwarding be-
havior. In this section we explain the behavior of these
metrics using the properties presented in Section IV.
First we include the following definition of < for Ny
(the natural numbers, including 0):

Definition 1. For all a,b € Ny, a < b if and only if
there exists some ¢ € Ny such that a + ¢ = b.

The remainder of this section identifies the properties
each example path algebra has, and how these properties
explain the behavior illustrated in the examples from
Section III.

Theorem 4. The Shortest path algebra is strictly mono-
tonic.

Proof: If a < b then, by the definition of <, there
must be an x € W where a + ¢ = b. Similarly, for
a4+ c < b+ c to be true, there must be a y € W
where (a+¢) +y = (b+c¢). Setting y = x satisfies this
equality. [

Therefore the Shortest path algebra is optimal and
is guaranteed to result in LFB forwarding paths. Fur-
thermore, the distinguishing characteristic of optimality
is that A’s view of it’s path to D will be consistent
with the view of all intermediate hops; therefore a
circumstance such as illustrated in Figure 2 for Widest-
Shortest where one possible shortest path computed at
A (e.g. (A, B, D)) is actually not shortest at B, will not
occur when routes are computed using Shortest.

Theorem S. The Widest-Shortest path algebra is mono-
tonic ((da,ba) =< (dp,by) = (dayba) ® (de,be) =

(dp,by) @ (de,be)) and strictly bounded ((dg,bs) <
(daa ba) @ (db7 bb))

Proof: First we show it is monotonic. Given
(dayba) = (dp,by) we know either d, < d, or
d, = dp. Similar to what we showed for the N
values in Shortest, whatever relationship exists between
d, and d, will hold for the values (d, + d.) and
(dp + de). If dy < dp then (dg + d.) < (dp + de),
(dayba) @ (deybe) = (dp, bp) @ (de, be) is true, and the
the monotonic property holds. If, however, d, = d

(and therefore (d, + d.) = (dp + d.)), then b, > b
and it is not possible that Min(b,,b.) < Min(by,be);
therefore Min(b,,b.) > Min(by,b.), the monotonic
property still holds, and Widest-Shortest is monotonic.

Next we show it is strictly bounded. Since dj # 0,
it must be true (based on the definition of for Ny given
above) that d, < d,+dp, therefore (dg,b,) < (dg, ba) B
(dp, by) must also be true, and Widest-Shortest is strictly
bounded. O

Therefore the Widest-Shortest path algebra guarantees
LFB, but not optimal paths. This can be seen in the
example illustrated in Figure 2 where traffic is forwarded
over a LFB path, though not all paths computed at node
A are optimal (e.g. the path (A, B, D) appears best to
A, however it is not best for B).

Theorem 6. The Shortest-Widest path algebra is not
monotonic, but it is strictly bounded.

Proof: The following example illustrates that
Shortest-Widest is not monotonic: (10,3) =< (5,1)
however (10,3) @ (5,1) = (5,4) > (5,2) =
(5,1) @ (5,1). We now show it is strictly bounded
((bg,dg) < (ba,ds) ® (bp,dp)). Since it cannot be true
that b, < Min(bs,by), either b, > Min(b,,by) or
by = Min(bs,by). If by > Min(b,, by) then the Strictly-
Bounded property holds. If, however, b, = Min(bg, by)
then the remaining test is d, < d, + dp, which (based
on Definition 1 of < for Ny) must be true, and Shortest-
Widest is strictly-bounded. O

Therefore, the Shortest-Widest path algebra guaran-
tees loop-free but not best forwarding paths. This can be
seen in the example illustrated in Figure 3 where traffic
is forwarded over a loop-free but not best path (i.e. traffic
from A to D is forwarded over path (A, B, D), which
is loop free, but worse, from A’s perspective, than path
(A, B,C, D)).

Theorem 7. The Widest path algebra is not strictly-
bounded, but it is monotonic.

Proof: An example of non-strictly bounded behavior
is 5 =5 @ 10. Monotonicity (b, =< by = (bg @ be) =
(bp®b.)) is shown as follows. Since b, = by, = b, > by,
it is not possible for Min(b,,b.) < Min(by, b.). There-
fore it must be true that Min(b,, b.) > Min(by,b.), and
Min(bg,b.) = Min(by, be). O

Therefore, the Widest path algebra guarantees best but
not loop-free forwarding paths. This is a strange, and
perhaps not very useful concept. However it can be seen
in the example illustrated in Figure 4 where traffic is
forwarded in a loop but the cost of the path traveled in
the loop is never “worse” than the “best” path (if we
do not include actually arriving at the destination in the
definition of “best™!).

Lastly, the Slope path algebra is neither monotonic

(e.g. (10,10) = 10/10 = 1 < 2 = 2/1 = (2,1),
but (10,10) @ (1,4) = 11/14 = .8 > .6 = 3/5 =
(2,1) @ (1,4)), nor strictly bounded (e.g. (1,1) =1 >
2/3 = (2,3) = (1,1) @& (1,2)). Therefore the Slope
algebra guarantees neither loop free nor best paths.
This degenerate behavior can be seen in the example
illustrated in Figure 5 where traffic is forward in a loop
and the cost of the path traveled gets progressively worse
as the traffic is forwarded around the loop.

This section has shown that the monotonic and strictly
bounded properties identified in Section IV fully explain
the behavior of the examples from Section III. In the
following section we review previous work and show
how the findings from these works are explained and
extended by the results of Section IV.

VI. PREVIOUS WORK

Foundational work was done in this area by Jaffe [6]
where he presented and analyzed algorithms for comput-
ing routes that satisfied constraints on two additive met-
rics (he used weight and length). Wang and Crowcroft
[10] were the first to present a solution for computing
routes in the context of a concave (or minmax, such as
bandwidth) and an additive metric. Cavendish and Gerla
[1] presented a modified Bellman-Ford algorithm with
complexity of O(n?), which computes multi-constrained
paths if all metrics of paths in a network are either
non-decreasing or non-increasing as a function of the
hop count. Several other solutions have been proposed
by Chen, Jaffe, and Van Mieghem [2], [6], [8] for
computing approximate solutions to the QoS routing
problem based on mapping metrics to a reduced range,
or using a function of the metrics for routing.

More recently, work has been done by Gouda [5] and
Sobrinho [9] on the implications of these new metrics
on the routing computation and, to a more limited
degree, on the forwarding process. These works are most
relevant to this paper. Gouda [5] presents a theory of
metrics for computing LFB paths in a network, which
are called maximizable routing metrics. The monotonic
and bounded properties are defined, and shown to be
necessary and sufficient for the existence of an in-tree
of LFB paths (called a maximal metric tree) rooted at
each node. This work does not address the question
of what properties are required to ensure all possible
distributed computations of these paths result in maximal
metric trees, and thus guarantee LFB forwarding paths
as described here. Our work extends that of Gouda[5]
to answer these questions.

Sobrinho [9] defines an algebra of metrics for use
in computing routes in a network, and identifies the
monotonic property (called isotonic in the paper) as nec-
essary and sufficient properties of the algebra to ensure
a Dijkstra shortest-path computation yields LFB paths,

and that the resulting forwarding paths are best. It further
shows that without strict monotonicity the forwarding
paths may loop, and then presents a lexicographic or-
dering based on the underlying metric that ensures LFB
forwarding paths (assuming the underlying metric is
monotonic). In terms of our work, Sobrinho [9] two
special cases of metrics that are strictly bounded: strictly
monotonic metrics (recall by Theorem 3 that strictly
monotonic path algebras guarantee optimal forwarding
paths), and lexicographic lightness (which can be shown
to be strictly bounded and therefore, by Theorem 1,
to guarantee loop freedom). Our work extends that
of Sobrinho [9] by identifying the defining property
for loop freedom (strictly bounded). Lastly, Yang [11]
presents similar work focusing on forwarding paths,
however the paper identifies properties for optimal paths
(in our terminology) compared with our focus on LFB
forwarding paths.

VII. CONCLUSION

In this paper we show that destination-based, hop-
by-hop routing is surprisingly delicate with respect to
the algebraic properties of the metrics used to compute
routes at each hop, and that routing metrics must be rela-
tively well-behaved to ensure that traffic actually travels
over LFB forwarding paths. Specifically, for a metric to
ensure LFB forwarding paths it must be strictly bounded
(a < a @ b) and monotonic (a <b=aDc=<bDc).

These findings identify serious limitations to metrics
used for routing in the Internet.

REFERENCES

[1] Dirceu Cavendish and Mario Gerla. Internet QoS Routing Using
the Bellman-Ford Algorithm. In Proceedings IFIP Conference
on High Performance Networking, 1998.

[2] Shigang Chen and Klara Nahrstedt. An Overview of Quality
of Service Routing for Next-Generation High-Speed Networks:
Problems and Solutions. IEEE Network, pages 64—79, Nov 1998.

[3] Cisco. MPLS VPN: VRF Selection using Policy Based Routing,
Aug 2004.

[4] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffus-
ing Computations. [EEE/ACM Transactions on Networking,
1(1):130-141, Feb 1993.

[5] Mohamed G. Gouda and Marco Schneider. Maximizable Routing
Metrics. IEEE/ACM Transactions on Networking, 11(4):663—
675, Aug 2003.

[6] Jeffrey M. Jaffe. Algorithms for Finding Paths with Multiple
Constraints. Networks, 14(1):95-116, 1984.

[71 Matthew G. Marsh. Policy Routing With Linux, March 2001.

[8] Piet Van Mieghem, Hans De Neve, and Fernando Kuipers. Hop-
by-hop Quality of Service Routing. Computer Networks, 37:407—
423, Nov 2001.

[9] Jodo Luis Sobrinho. Algebra and Algorithms for QoS Path Com-

putation and Hop-by-Hop Routing in the Internet. IEEE/ACM

Transactions on Networking, 10(4):541-550, Aug 2002.

Zheng Wang and Jon Crowcroft. Quality-of-Service Routing for

Supporting Multimedia Applications. IEEE Journal of Selected

Areas in Communications, 14(7):1228-1234, Sep 1996.

Yaling Yang and Jun Wang. Design Guidelines for Routing

Metrics in Multihop Wireless Networks. In Proceedings IEEE

INFOCOM 2008, pages 2288-2296. IEEE, 2008.

(10]

(11]

