
Using Dijkstra to Compute Hop-by-Hop
QoS Paths

Bradley R. Smith
Computer Engineering Department

University of California, Santa Cruz
Santa Cruz, CA 95064

Abstract—The Internet is based on a hop-by-hop
routing model where forwarding decisions are based
on a packet’s destination. With the evolution of the
Internet to support real-time applications such as
video and audio distribution, the Internet’s routing
architecture must be enhanced to support metrics that
ensure the quality-of-service requirements of these
applications.

Sobrinho has shown that some of these metrics,
when used with a Dijkstra routing computation, may
result in paths that are not least-cost or loop-free, and
don’t support hop-by-hop forwarding in the general
case. To address this problem Sobrinho has presented
a technique for computing paths using Dijkstra that,
while not directly supporting hop-by-hop forwarding,
do ensure that packets forwarded based on these paths
will follow loop-free, least-cost paths. However, this
results in routers forwarding packets along different
paths from those they computed.

In this paper we build on Sobrinho’s work by
presenting a sufficient condition for computing hop-
by-hop paths. This condition, while not as general as
Sobrinho’s solution, has more relaxed requirements of
the path algebra. Given this greater latitude we are
then able to present a new technique for computing
paths that are loop-free, least-cost, and support hop-
by-hop forwarding when used with a Dijkstra route
computation, thus restoring the visibility of routers
into the paths they forward packets over.

I. I NTRODUCTION

The Internet is based on a shortest-path, hop-by-
hop routing architecture. Forwarding decisions are
made at each hop based on a packet’s destination
and forwarding state computed independently by
each node. The forwarding state is computed using
a shortest-path routing algorithm that minimizes
an additive weight function, typically based on a
delay-related metric. It is a well-known property of

shortest-paths that, for any shortest path with an
embedded nodex, the subpath from the source to
x is also a shortest path [1]. With additive weights,
this property holds when shortest-path trees are
computed independently at each node.

As the Internet evolves to be the foundation of a
fully converged communication infrastructure, there
has been an increasing need to support real-time
applications such as audio or video distribution in
either streaming or conferencing formats. Real-time
traffic has quality-of-service (QoS) requirements
beyond the minimization of delay-related metrics,
including constraints on delay jitter, loss probability,
bandwidth, and combinations of these [2]. Exam-
ples of combinations includewidest-shortestwhere,
of the set of minimum delay paths, the path with
maximum available bandwidth is chosen, and its
converse,shortest-widest.

These metrics include non-additive components.
Path bandwidth is computed as the minimum band-
width on the links composing the path, and is a
concavemetric. Path loss probability is computed
as the product of link loss probabilities, and is
a multiplicative metric. The question then arises
whether the Internet’s shortest path, hop-by-hop
routing architecture continues to deliver packets
over loop-free, least-cost paths in the context of
such QoS metrics.

In [3] Sobrinho investigated this question in the
context of a Dijkstra shortest-path computation. In
this work he showed thatisotonicity is required for
a Dijkstra computation to produce lightest paths
in general. He further showed that without a strict
version of isotonicity not every implementation of

Dijkstra would result in paths that supported loop-
free hop-by-hop routing.

Lastly, he presented a modified version of the
Dijkstra algorithm that would compute loop-free,
least-cost paths with loosely-isotonic metrics. How-
ever, the paths computed by this enhanced algorithm
were not hop-by-hop in the sense that the set of
paths computed by nodes in a network that traversed
a given node en route to the same destination may
have conflicting forwarding decisions at that node.
Said another way, the forwarding decisions required
by the paths computed by Sobrinho’s modified
Dijkstra algorithm depended on both the source and
destination of a packet, and required the output of
routing computations run from the perspective of
all nodes in the network. Fortunately, Sobrinho was
able to show that, while the paths computed by
nodes in the network may conflict in this manner, in
fact the packets would be forwarded over a loop-
free, least-cost path when hop-by-hop forwarding
was used.

In this paper we build on Sobrinho’s work by
presenting a sufficient condition for computing hop-
by-hop paths. This condition, while not as general
as Sobrinho’s solution, has more relaxed require-
ments of the path algebra. We then use this result to
show that a new form of word-weight, that we call
lexicographically-lightest trailing subpath, results
in paths that are loop-free, least-cost, and support
hop-by-hop forwarding when used with a Dijkstra
route computation.

II. FOUNDATIONS

In the following a network is modeled as a
weighted, undirected graphG = (V, E), whereV

and E are the vertex and edge sets, respectively.
Elements of E are unordered pairs of distinct
vertices in V. A(i) is the set of edges adjacent
to vertex i in the graph. Each link(i, j) ∈ E

is assigned a weight, denoted bywi,j . A path is
a sequence of vertices〈v1, v2, . . . , vn〉 such that
(vi, vi+1) ∈ E for i = 1, 2, . . . , n−1, and all nodes
in the path are distinct. Given a pathp, the subpath
of p from the ith to thejth vertex ofp is denoted
by pi,j . For example, ifp = 〈v1, v2, . . . , vn〉 then
pi,j = 〈vi, vi+1, . . . , vj〉, and p = p1,n. The path

concatenation operator◦ is defined such that, ifp
andq are two paths where the last vertex inp is the
first vertex in q, then p ◦ q is the path formed by
the concatenation ofp with q. Lastly, the weight of
a path is given by:

wp =

n−1∑

i=1

wxi,xi+1
.

In the following we adopt the algebra from [3].
These definitions are repeated here for convenience.
The algebra is defined as a set of weights, S,
a binary operation,⊕, and an order relation�.
There are two distinguished weights:0 and∞. The
algebra has the following properties:

P1 (S,⊕, 0) is a monoid
• S is closedunder⊕: a ⊕ b ∈ S for all

a, b ∈ S;
• ⊕ is associative: a⊕(b⊕c) = (a⊕b)⊕c

for all a, b, c ∈ S;
• 0 is an identity: a ⊕ 0 = 0 ⊕ a = a for

all a ∈ S.
P2 ∞ is anabsorptive element: a⊕∞ = ∞⊕

a = ∞ for all a ∈ S.
P3 � is a total order on S

• � is reflexive: a � a for all a ∈ S;
• � is anti-symmetric: if a � b andb � a

thena = b;
• � is transitive: if a � b andb � c then

a � c;
• For everya, b ∈ S either a � b or

b � a.
P4 0 is a least element: 0 � a for all a ∈ S.
P5 ⊕ is loosely isotonefor �: a � b implies

botha⊕ c � b⊕ c andc⊕ a � c⊕ b for all
a, b, c ∈ S.

And following is the definition for the strict form
of isotonicity.

P5-S ⊕ is strictly isotonefor �: a ≺ b implies
botha⊕ c ≺ b⊕ c andc⊕ a ≺ c⊕ b for
all a, b ∈ S andc ∈ S −∞.

For future reference we note that propertiesP5-
S and P5, via contraposition, can be restated as
follows:

p = v

1

[]

[]

[]

v
v

v’

v’
v’

v

k

m

k+1

1 k+1k

n

p’ = v’

Fig. 1. Hop-by-hop and lightest subpaths.

P5-S (b ≺ a) → (c ⊕ b ≺ c ⊕ a) ↔
¬(c ⊕ b ≺ c ⊕ a) → ¬(b ≺ a) ↔

(c ⊕ b � c ⊕ a) → (b � a) ↔
(c ⊕ a � c ⊕ b) → (a � b).

P5 (b � a) → (c ⊕ b � c ⊕ a) ↔
¬(c ⊕ b � c ⊕ a) → ¬(b � a) ↔

(c ⊕ b ≻ c ⊕ a) → (b ≻ a) ↔
(c ⊕ a ≺ c ⊕ b) → (a ≺ b).

The lightestweight path from sources to desti-
nationd is defined as a path with the least weight
of all paths in the graph froms to d.

Next, we define ahop-by-hoppath as a path
where each node along the path has a 1-to-1 map-
ping of destination to next hop for each destination
reachable from the node such that the next hop
is on a lightest path to the destination. Given this
foundation, the following theorem relates the hop-
by-hop nature of a path to the optimality of its
subpaths.

Theorem 1:A path is a hop-by-hop pathif every
subpath of the path is lightest.

Proof: By contradiction. Given two paths be-
tween the same two nodes in a graph,p =
〈v1, v2, . . . , vn〉 and p′ = 〈v′1, v

′

2, . . . , v
′

m〉 where
v1 = v′1 andvn = v′m, that share a leading subpath
to vk, 1 < k < Min(n, m) (i.e. p1,k = p′

1,k

and vk+1 6= v′k+1
; see Figure 1). Assume every

subpath ofp is lightest, but thatp is not hop-by-
hop. Let vertexvk be the vertex whose next hop
on p is not on the lightest path tovn, and let the
path p′k,m be a lightest path fromvk to vn. This
implies thatwp′

k,m
≺ wpi+k−1,n

, which contradicts
the assumption that every subpath ofp is lightest.

This theorem provides a concrete criteria for a

routing algorithm and path algebra to ensure they
compute paths that support hop-by-hop forwarding.
Note that this theorem does not depend on the
isotonicity of the algebra. The task for the designer
of a new routing function is to prove that all
subpaths of paths computed by the function are
optimal, and that these paths are lightest and loop-
free. The next section presents a new algebra, and
shows that it satisfies these properties when used in
a Dijkstra path computation.

III. D IJKSTRA AND HOP-BY-HOP

In [3] Sobrinho showed that a Dijkstra computa-
tion using loosely isotonic metrics does not compute
hop-by-hop paths, but that such metrics can be used
as the basis of a computation that computes routes
such that, when packets are forwarded hop-by-hop,
they travel along loop-free, least-cost paths. This is
a subtle distinction, and is based on the fact that,
with lexicographically-lightest metrics, packets may
be forwarded along paths that differ from the path
computed at the source.

In this section we present a new form of word-
weight that, when used with a Dijkstra path com-
putation, results in paths that are least-cost, loop-
free, and support hop-by-hop forwarding in the
stronger sense that packets actually traverse the
path computed by the source. First, we reproduce
Sobrinho’s definitions for the termsL-lightest and
word-weight.We then present a new form of lightest
path, that we callL-lightest-TS, and show that, when
used with a Dijkstra path computation, it results in
loop-free, least-cost paths.

Consider the set of weightsS as an alphabet,
and letS∗ be the set of all words overS. Given
two wordsα = α1α2 . . . αn andβ = β1β2 . . . βm,
Sobrinho defined the relationlexicographically less
than, written ≺L, asα ≺L β if either:

1) n < m andαi = βi for 1 ≤ i < n, or
2) there is an indexk, 1 ≤ k ≤ min(n, m), such

that αk ≺ βk andαi = βi for 1 ≤ i < k.

He then defined theword-weightof a non-trivial
path p = 〈vn, . . . , v2, v1〉, denoted byω(p), as
the word of S∗, the ith letter of which, ωi(p),
1 ≤ i < n, is the weight of the subpath ofp
that extends from the source to itsith last node.

That is, ωi(p) = w(pn,i), and thus ωi(p) =
w(pn,1)w(pn,2) . . . w(pn,n−1). The word-weight of
the trivial path is the empty word. Pathp is
a lexicographic-lightest(L-lightest for short) path
from s to v if its word-weight is lexicographically
less than or equal to the word-weight of any other
path froms to v. That is, ifω(p) �L ω(q) for every
pathq from s to v. Lastly, he showed, in Theorems
4 and 5 from [3], that a Dijkstra path computation
based on the L-lightest relation computes paths
that, while not themselves hop-by-hop, do result in
packets being forwarded along loop-free, least-cost
paths.

We now define a new form of word-weight and
show that, when used with a Dijkstra shortest-
path computation, it results in loop-free, least-cost,
hop-by-hop paths. Atrailing subpath word-weight,
denotedωts(p), is defined as the word ofS∗,
the ith letter of which, ωts

i (p), 1 < i ≤ n, is
the weight of the subpath ofp that extends from
the ith last node to the last node in the path.
That is, ωts

i (p) = w(pi,1) and thusωts(p) =
w(pn,1)w(pn−1,1), . . . , w(p2,1). Given this defini-
tion, pathp is an L-lightest-TSpath from s to v

if ωts(p) �Lts ωts(q) for every pathq from s to
v. Note that, for L-lightest-TS word-weights, the
word weight for the concatenation of two paths,
e.g. ωts(pn,k ◦ pk,1), can be computed by adding
ωts

k (pk,1) to each component ofωts(pn,k) and ap-
pendingωts(pk,1) to the result.

Theorem 2:If the generalized Dijkstra algorithm
from [3] is run using the L-lightest-TS algebra then,
on termination, the resulting paths will be hop-by-
hop.

Proof: From Theorem 3of [3] we know that
Dijkstra computes shortest paths from the source
to all reachable destinations in a graph. In the
following we show that the use of L-lightest-TS
metrics with Dijkstra computes paths all of whose
subpaths are optimal, and therefore, by Theorem 1,
these paths support hop-by-hop forwarding. We
show this in three cases.

Leading subpaths (subpaths starting atvn).
The example illustrated in Figure 2, based on the
widest-path algebra from [3], is used to illustrate
this case. Given pathsp = 〈1, 3, 5, 6〉 and p′ =

〈1, 2, 4, 5, 6〉, p’s leading subpathp1,5 is not optimal
asωts(p′1,5) = (5, 10, 10) ≺Lts (5, 5) = ωts(p1,5).
However, whenp1,5 is replaced byp′1,5 in p, the
resulting path is actually worse than the original:

ωts(p) = (5, 5, 5) ≺Lts

(5, 5, 5, 5) = ωts(p′1,5 ◦ p5,6) = ωts(p′)

Therefore, the use of L-lightest-TS metrics on their
own do not ensure all subpaths of paths computed
using such metrics are optimal. However, when
used in a Dijkstra computation, the dynamics of
the algorithm ensure that they are. Note that this
example shows that L-lightest-TS metrics are not
isotonic!

Referring to Figure 2 again, at the point in
a Dijkstra computation run on this graph where
routes have been selected for nodes 3 and 4, two
temporary-labeled routes for pathsp′1,5 and p1,5

would have been generated from relaxing the routes
to 4 and 3, respectively. In the next iteration of of
Dijkstra, pathp′1,5 would be selected for destination
5, and pathp1,5 would have been deleted from
the set of temporarily labeled routes in subsequent
iterations. As a result the test ofp ≺ p′ would have
never occurred. This is a concrete illustration of the
general result that Dijkstra actually computes atree
of S-lightest paths [1].

More generally, by the nature of the Dijkstra
algorithm, an extension of a shortest path between
two vertices (e.g.p′ in Figure 2) will never be com-
pared with the extension of a longer path between
the same two endpoints (e.g.p in Figure 2). This
winner-take-all nature of the Dijkstra algorithm
ensure that leading subpaths are always optimal.

Trailing subpaths (subpaths ending at v1).
Assumep = 〈vn, vn−1, . . . , v1〉 is the shortest path
from vn to v1 (see Figure 3), but that there is a
trailing subpathpt = pk,1, n > k > 1, that is
not the optimal path fromvk to v1. Let pa =
〈va

m, va
m−1, . . . , v

a
1 〉 be an alternate path betweenvk

and v1 (i.e. va
m = vk and va

1 = v1) that is better
thanpt. Let p′ = 〈v′l, v

′

l−1
, . . . , v′1〉 be the new path

from vn to v1 (i.e. v′l = vn and v′1 = v1) formed
by replacingpt with pa in p (i.e. p′l,m = pn,k and
p′m,1 = pa). Sinceωts(pa) ≺Lts ωts(pt) it must
be that ωts

m(pa) � ωts
k (pt). Lastly, recalling that

5

2

1

4

65

3

5

10

10

5 5

Fig. 2. Leading subpaths.

1

[]

[]

[]

nv vk

a
1v

1v

v’l

v

m−1

va
m

va

k−1

v’

Fig. 3. Trailing subpaths.

p′l,m = pn,k, by P5 we have, forl ≥ i > m,
that the leadingl−m components ofωts(p′l,m) and
ωts(pn,k) are related as follows:

ωts
i (p′) = ωts

i (p′i,m) ⊕ ωts
m(pa) �

ωts
n−l+i(pn−l+i,k) ⊕ ωts

k (pt) = ωts
n−l+i(p).

Therefore, sinceωts(pa) ≺Lts ωts(pt), it must be
that:

ωts(p′) = ωts(p′l,m ◦ pa) ≺Lts

ωts(pn,k ◦ pt) = ωts(p),

contradicting the assumption thatp is optimal.
Embedded subpaths (subpaths starting at a

vertex other than vn and ending at a vertex
other than v1). This case combines conditions
from the previous two cases. First we consider the
shared leading subpath prefix and the sub-optimal
embedded subpath, using the reasoning from the
trailing subpath case above to show that substituting
a better embedded subpath results in an improved
leading subpath. We then use the winner-takes-all
property discussed in the first case to imply that
a run of Dijkstra would only consider the newly
constructed path, contradicting the assumption and
completing the proof of the theorem.

Assumep = 〈vn, vn−1, . . . , v1〉 is the shortest
path from vn to v1 considered by a run of the

s−k−1

[]

[]nv

a
1vv’l

vs−1

[] []

v’1

1v

m−1

v

va

a

vs

m

v

Fig. 4. Embedded subpaths.

Dijkstra algorithm (see Figure 4), but that there is an
embedded subpathpe = ps,s−k, n > s > s−k > 1,
that is not an optimal path fromvs to vs−k. Let
pa = 〈va

m, va
m−1, . . . , v

a
1 〉 be an alternate path

betweenvs andvs−k (i.e. va
m = vs andva

1 = vs−k)
that is better thanpe. Let p′ = 〈v′l, v

′

l−1
, . . . , v′1〉

be the new path fromvn to vs−k (i.e. v′l = vn

and v′1 = vs−k) formed by replacingpe with pa

in p (i.e. p′l,m = pn,s and p′m,1 = pa). Since
ωts(pa) ≺Lts ωts(pe) it must be thatωts

m(pa) �
ωts

k (pe). Recalling thatp′l,m = pn,s, by P5 we have,
for l ≥ i > m, that the leadingl − m components
of ωts(p′l,m) andωts(pn,s) are related as follows:

ωts
i (p′) = ωts

i (p′i,m) ⊕ ωts
m(pa) �

ωts
n−l+i(pn−l+i,s) ⊕ ωts

k (pe) = ωts
n−l+i(p).

Therefore, sinceωts(pa) ≺Lts ωts(pe), it must be
that:

ωts(p′) = ωts(p′l,m ◦ pa) ≺Lts

ωts(pn,s ◦ pe) = ωts(pn,s−k).

Based on the winner-take-all property of Dijkstra
presented in the first case above, the optimality of
p′ implies that a run of Dijkstra would only consider
extensions ofp′, specificallyp′ ◦ps−k,1, contradict-
ing the assumptionp was the path computed by
Dijkstra.

Corollary 1: Dijkstra with the L-lightest-TS path
algebra computes lightest paths.
This is a special case of Theorem 2 for the subpath
composed of the full path.

Theorem 3:Dijkstra with the L-lightest-TS path
algebra computes loop-free paths.

Proof: By contradiction. Assume a
path computed by Dijkstra with the L-
lightest-TS algebra contains a loop. Let

p = 〈vn, vn−1, . . . , vk, . . . , v1, vk〉 be the leading
subpath of this path at the point that the loop is
formed atvk, and letp′ = 〈vn, vn−1, . . . , vk+1, vk〉
be the loopfree subpath ofp from vn to vk.

The word-weights for p′ are of the form:
ωts

i (p′) = wp′

i,k
, n − k + 1 ≥ i > 1. The

word-weights for the corresponding elements of
p, expressed in terms ofp′, are: ωts

i+k−1
(p) =

wp′

i,k
+ wpk,1

+ w1,k = wp′

i,k
+ c.

For p to be lighter thanp′ (i.e. ωts(p) ≺Lts

ωts(p′)) it must either be that the length ofωts(p)
(i.e. n) must be less than the length ofωts(p′) (i.e.
n − k), which is clearly not true, or that there is
an i, n − k + 1 ≥ i > 1, such that all leading
components are equal, i.e.ωts

j+k−1
(p) = ωts

j (p′),
n−k+1 ≥ j > i, andωts

i+k−1
(p) ≺ ωts

i (p) for the
first unequal element.

By the contrapositive form of propertyP5, the
last condition thatωts

i+k−1
(p) = wp′

i,k
+c ≺ wp′

i,k
+

0 = ωts
i (p) implies c ≺ 0, which is not allowed in

this algebra.

With Theorems 2 and 3, and Corollary 1, we
have shown that the Dijkstra algorithm with the L-
lightest-TS path algebra computes loop-free, light-
est paths that support hop-by-hop forwarding. In
comparison with the L-lightest path algebra pre-
sented in [3], packets forwarded according to the
routes computed with the L-lightest-TS algebra
actually travel over the computed paths.

IV. CONCLUSION

We have shown that the optimality of all sub-
paths of paths computed by a routing function is
a sufficient condition for these paths to support
hop-by-hop forwarding. We have used this result
to show that the L-lightest-TS path algebra, when
used in a Dijkstra routing computation, results in
loop-free, lightest paths that support hop-by-hop
forwarding. This work builds on Sobrinho’s work
in [3] by showing that, while strict isotonicity is
needed for loop-free hop-by-hop forwarding in the
general case, there may be less restrictive solutions
in circumstances where the routing algorithm itself
ensures more structure for the paths actually com-
pared during a computation. A secondary contri-
bution is the L-lightest-TS algebra, which provides
an existence proof of this claim. I would like to
include a note of credit to Ted Nitz and Professor
Debra Lewis from the Math Department at UCSC
for their insight to use the contrapositive form of
the isotonicity for proving Theorem 3.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows
– Theory, Algorithms, and Applications. Prentice Hall,
1993.

[2] Z. Wang and J. Crowcroft, “Quality-of-service routing for
supporting multimedia applications,”IEEE Journal on Se-
lected Areas in Communications, vol. 14, no. 7, pp. 1228–
1234, September 1996.

[3] J. L. Sobrinho, “Algebra and Algorithms for QoS Path
Computation and Hop-by-Hop Routing in the Internet,”
IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp.
541–550, Aug. 2002.

