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Abstract—The Internet is based on a hop-by-hop shortest-paths that, for any shortest path with an
routing model where forwarding decisions are based embedded node, the subpath from the source to
on a packet's destination. With the evolution of the x is also a shortest path [1]. With additive weights,

Internet to support real-time applications such as .
video and audio distribution, the Internet’s routing this property holds when shortest-path trees are

architecture must be enhanced to support metrics that computed independently at each node.
ensure the quality-of-service requirements of these  As the Internet evolves to be the foundation of a
applications. _ fully converged communication infrastructure, there
Sobrinho has shown that some of these metrics, 55 peen an increasing need to support real-time
when used with a Dijkstra routing computation, may licati h di ideo distribution i
result in paths that are not least-cost or loop-free, and app ications §UC as audio O,r video distri utlon n
don't support hop-by-hop forwarding in the general ~ €ither streaming or conferencing formats. Real-time
case. To address this problem Sobrinho has presentedtraffic has quality-of-service (QoS) requirements
a technique for computing paths using Dijkstra that, heyond the minimization of delay-related metrics,
while not directly supporting hop-by-hop forwarding. jncjyding constraints on delay jitter, loss probability,
do ensure that packets forwarded based on these paths bandwidth d binati f th o1 E
will follow loop-free, least-cost paths. However, this andwiath, qn .Com. ma‘uon; of these [2]. Exam-
results in routers forwarding packets along different Ples of combinations includeidest-shortestvhere,
paths from those they computed. of the set of minimum delay paths, the path with
In this paper we build on Sobrinho’s work by  maximum available bandwidth is chosen, and its
presenting a sufficient condition for computing hop- converseshortest-widest

by-hop paths. This condition, while not as general as . ..
Sobrinho's solution, has more relaxed requirements of _ | N€S€ metrics include non-additive components.
the path algebra. Given this greater latitude we are Path bandwidth is computed as the minimum band-
then able to present a new technique for computing width on the links composing the path, and is a
paths that are loop-free, least-cost, and support hop- concavemetric. Path loss probability is computed
by-hop forwarding when used with a Dijkstra route ¢ the product of link loss probabilities, and is
computation, thus restoring the visibility of routers AR . . .
into the paths they forward packets over. a multiplicative metric. The question then arises
whether the Internet's shortest path, hop-by-hop
|. INTRODUCTION routing architecture continues to deliver packets
The Internet is based on a shortest-path, hop-bgver loop-free, least-cost paths in the context of
hop routing architecture. Forwarding decisions areuch QoS metrics.
made at each hop based on a packet’s destinatiorin [3] Sobrinho investigated this question in the
and forwarding state computed independently bgontext of a Dijkstra shortest-path computation. In
each node. The forwarding state is computed usirtlgis work he showed thasotonicityis required for
a shortest-path routing algorithm that minimizes Dijkstra computation to produce lightest paths
an additive weight function, typically based on an general. He further showed that without a strict
delay-related metric. It is a well-known property ofversion of isotonicity not every implementation of



Dijkstra would result in paths that supported loopeoncatenation operater is defined such that, ip

free hop-by-hop routing. andgq are two paths where the last vertexyitis the
Lastly, he presented a modified version of thérst vertex ing, thenp o ¢ is the path formed by

Dijkstra algorithm that would compute loop-freethe concatenation gf with ¢. Lastly, the weight of

least-cost paths with loosely-isotonic metrics. Howa path is given by:

ever, the paths computed by this enhanced algorithm
were not hop-by-hop in the sense that the set of
paths computed by nodes in a network that traversed

n—1
Wp = E Weiziqpr-
1=1

a given node en route to the same destination may|, ihe following we adopt the algebra from [3].

have conflicting forwarding decisions at that noderpege definitions are repeated here for convenience.

, ,,e‘Phe algebra is defined as a set of weights, S,
by the paths computed by Sobrinho’s modn‘leg binary operationg

Said another way, the forwarding decisions requir

Dijkstra algorithm depended on both the source anﬂq
destination of a packet, and required the output %fl
routing computations run from the perspective of
all nodes in the network. Fortunately, Sobrinho waspP1
able to show that, while the paths computed by
nodes in the network may conflict in this manner, in
fact the packets would be forwarded over a loop-
free, least-cost path when hop-by-hop forwarding
was used.

In this paper we build on Sobrinho’s work by
presenting a sufficient condition for computing hop- P2
by-hop paths. This condition, while not as general
as Sobrinho’s solution, has more relaxed requireP3
ments of the path algebra. We then use this result to
show that a new form of word-weight, that we call
lexicographically-lightest trailing subpathresults
in paths that are loop-free, least-cost, and support
hop-by-hop forwarding when used with a Dijkstra
route computation.

Il. FOUNDATIONS P4

In the following a network is modeled as a PS5
weighted, undirected grap& = (V, E), whereV
and F are the vertex and edge sets, respectively.

and an order relatior<.

ere are two distinguished weightsandss. The
gebra has the following properties:

(S, ,0) is amonoid

e S is closedunder®: a® b € S for all
a,be s,

o & is associativea®d (bdc) = (aPb)de
for all a,b,c € S,

e 0 is anidentity, a 0 =0® a = a for
alacs.
0 is anabsorptive element: 0 = 50 ®
a=o0 foralla e S.
< is atotal orderon S

o < isreflexive a < a for all a € S;

e =< isanti-symmetricif a < bandb < a
thena = b;

e < istransitive if a < bandb < ¢ then
a=Xc

e For everya,b € S eithera < b or
b < a.
0 is aleast element0 < a for all @ € S.
@ is loosely isotondor <: a < b implies
botha®c=<bdcandcda < cdb for all
a,b,ceS.

Elements of £ are unordered pairs of distinctAnd following is the definition for the strict form
vertices inV. A(i) is the set of edges adjacenof isotonicity.

to vertexi in the graph. Each link(i,j) € F

is assigned a weight, denoted ly ;. A path is
a sequence of vertice&n,vs,...,v,) such that
(vi,vi41) € Efori=1,2,...,n—1, and all nodes

P5-S @ is strictly isotonefor <: a < b implies

botha®c<bdcandc®a < c® b for
all a,be S andc e S — .

in the path are distinct. Given a pagththe subpath For future reference we note that properties-

of p from theith to thejth vertex ofp is denoted S and P5, via contraposition, can be restated as
v,) then follows:

by p; ;. For example, ifp = (v, vo,.. .,
pij = (Vi,Viy1,...,0;), andp = py ,. The path



Vi1 routing algorithm and path algebra to ensure they

[----3 Vi compute paths that support hop-by-hop forwarding.

0=V V' > Note that this theorem does not depend on the
.1_>[_____] K ey isotonicity of the algebra. The task for the designer

n of a new routing function is to prove that all
=V Vk Vi1 subpaths of paths computed by the function are
optimal, and that these paths are lightest and loop-
Fig. 1. Hop-by-hop and lightest subpaths. free. The next section presents a new algebra, and
shows that it satisfies these properties when used in
a Dijkstra path computation.
P5-S (b<a)—(chBb<cda) —

—(c®db<cPda)— (b<a) < I1l. DIJKSTRA AND HOP-BY-HOP
(c@bzcda)—(b=a) < In [3] Sobrinho showed that a Dijkstra computa-
(c@a=zcdb)—(a=2b). tion using loosely isotonic metrics does not compute

hop-by-hop paths, but that such metrics can be used
P5 (b=2a)—(c@®b=2cda) < as the basis of a computation that computes routes

“(cdb=Xcda) = (b=a) < such that, when packets are forwarded hop-by-hop,
(c®b-cda)—(b=a) < they travel along loop-free, least-cost paths. This is
(c@a<cdb)—(a=b). a subtle distinction, and is based on the fact that,

The lightestweight path from source to desti- With lexicographically-lightest metrics, packets may
nationd is defined as a path with the least weighPe forwarded along paths that differ from the path
of all paths in the graph from to d. computed at the source.

Next, we define ahop-by-hoppath as a path In this section we present a new form of word-
where each node along the path has a 1-to-1 maeight that, when used with a Dijkstra path com-
ping of destination to next hop for each destinatioRutation, results in paths that are least-cost, loop-
reachable from the node such that the next hdpee. and support hop-by-hop forwarding in the
is on a lightest path to the destination. Given thi§tronger sense that packets actually traverse the
foundation, the following theorem relates the hopath computed by the source. First, we reproduce
by-hop nature of a path to the optimality of itsSobrinho’s definitions for the termis-lightestand
subpaths. word-weightWe then present a new form of lightest

Theorem 1:A path is a hop-by-hop patif every path, that we calL-lightest-TSand show that, when
subpath of the path is lightest. used with a Dijkstra path computation, it results in

Proof: By contradiction. Given two paths be-!00P-free, least-cost paths.
tween the same two nodes in a gragh, = Consider the set of weight§ as an alphabet,
(v1,09,...,v,) and p/ = (v, vh,... 0. ) where and let S* be the set of all words ove$. Given

rYm

v = v, andv, = v/, that share a leading subpatf’0 Wordsa = aias...a, and g = 15 .. . B,

o v, 1 < k < Min(n,m) (i.e. pix = 1, Sobrlnhp defined the relat|de|gograph|caIIy less

and w1 # vj,,; see Figure L Assume evéry than, written <, asa < g if either:

subpath ofp is lightest, but thap is not hop-by- 1) n <m anda; = g; for 1 <i <n, or

hop. Let vertexv, be the vertex whose next hop 2) thereisanindex, 1 <k < min(n,m), such

on p is not on the lightest path teo,, and let the thatay < Br anda; = 3; for 1 <i < k.

path p; ., be a lightest path fromy, to v,. This He then defined thevord-weightof a non-trivial

implies thatw,,; o= Wp, 1 ..» Which contradicts path p = (v,,...,ve,v1), denoted byw(p), as

the assumption that every subpathyofs lightest. the word of S*, the ith letter of which, w;(p),

B 1 < i < n,is the weight of the subpath qj

This theorem provides a concrete criteria for #hat extends from the source to itth last node.



That is, w;(p) = w(pn:), and thusw;(p) = (1,2,4,5,6),p's leading subpath; 5 is not optimal
w(pp,1)w(pn,2) - .. w(Ppn—1). The word-weight of asw'(p] 5) = (5,10,10) <1+ (5,5) = w(p1,5).
the trivial path is the empty word. Path is However, whenp, ;5 is replaced byp) 5 in p, the
a lexicographic-lightest(L-lightest for short) path resulting path is actually worse than the original:
from s to v if its word-weight is lexicographically is

less than or equal to the word-weight of any other w*(p) = (5,5,5) <re:
path froms to v. That is, ifw(p) <1, w(q) for every (5,5.5,5) = w" (P 5 0 p5,6) = W ()

pathg from s to v. Lastly, he showed, in Theoremsry o etore. the use of L-lightest-TS metrics on their
4 and 5 from [3], that a Dijkstra path computation,y, 4o not ensure all subpaths of paths computed
based on the L-lightest relation computes pating such metrics are optimal. However, when
that, while not themselves hop-by-hop, do result ifjsoq in a Dijkstra computation, the dynamics of
packets being forwarded along loop-free, least-cogf, algorithm ensure that they are. Note that this

paths. _ _ example shows that L-lightest-TS metrics are not
We now define a new form of word-weight andggtonic!

show that, when used with a Dijkstra shortest- Referring to Figure 2 again, at the point in

path computation, it rggults in loop-free, Iea;t—cos& Dijkstra computation run on this graph where
hop-by-hop paths. Arailing subpath word-weight roytes have been selected for nodes 3 and 4, two
denotedw'(p), is defined as the word ob™, temporary-labeled routes for paths ; and p; 5
the ith letter of which,w;*(p), 1 < i < n, IS \ould have been generated from relaxing the routes
the weight of the subpath qf that extends from 14 4 and 3, respectively. In the next iteration of of
the ith last node to the last node in the pathpjjkstra, pathy, . would be selected for destination
That is, wi*(p) = w(pia) and thusw(p) = 5 and pathp,; would have been deleted from
w(pn1)w(pn-1.1), ..., w(pz1). Given this defini- he set of temporarily labeled routes in subsequent
tion, pathp is an L-lightest-TSpath froms 10 v jterations. As a result the test pf< p’ would have
if w'(p) <pw w'(q) for every pathg from s to  neyer occurred. This is a concrete illustration of the
v. Note that, for L-lightest-TS word-weights, thegenera] result that Dijkstra actually computetsee
word weight for the concatenation of two pathsgs S-lightest paths [1].
e.g. w"(pnk © pr.1), can be computed by adding nore generally, by the nature of the Dijkstra
wy*(pr,1) to each component ab*(py,x) and ap-  ajgorithm, an extension of a shortest path between
pendingw"® (p,1) to the result. two vertices (e.gp’ in Figure 2) will never be com-
Theorem 2:1f the generalized Dijkstra algorithm pared with the extension of a longer path between
from [3] is run using the L-lightest-TS algebra thenthe same two endpoints (e.g.in Figure 2). This
on termination, the resulting paths will be hop-bywinner-take-all nature of the Dijkstra algorithm
hop. ensure that leading subpaths are always optimal.
Proof: From Theorem 3of [3] we know that  Trailing subpaths (subpaths ending at v;).
Dijkstra computes shortest paths from the sourggssumep = (v, v,,_1,...,v1) is the shortest path
to all reachable destinations in a graph. In thfom v, to v; (see Figure 3), but that there is a
following we show that the use of L-lightest-TStrailing subpathp! = pr1, n > k > 1, that is
metrics with Dijkstra computes paths all of whoseéot the optimal path fromy, to v;. Let p® =

subpaths are optimal, and therefore, by Theorem & v ... v{) be an alternate path between
these paths support hop-by-hop forwarding. Wend v; (i.e. v¢, = vx andv§ = v) that is better
show this in three cases. B thanp’. Letp’ = (v],v]_,,...,v}) be the new path

Leading subpaths (subpaths starting atv,). from v, to v, (i.e. v = v, andv{ = v;) formed
The example illustrated in Figure 2, based on thiey replacingp® with p® in p (i.e.pj,, = pnx and
widest-path algebra from [3], is used to illustratey, ; = p®). Sincew(p*) <re w'(p') it must
this case. Given paths = (1,3,5,6) andp’ = be thatw!s(p®) < wi*(p'). Lastly, recalling that
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Fig. 2. Leading subpaths. Fig. 3. Trailing subpaths.

Pi.m = Pnjk, Dy P5 we have, forl > i > m, Dijkstraalgorithm (see Figure 4), but that there is an
that the leading —m components oztﬁs(pg_’m) and embedded subpaflf = ps s_x,n > s> s—k > 1,

w'(pn, i) are related as follows: that is not an optimal path from; to vs_. Let
p* = {(v&,v% _4,...,vy) be an alternate path
t AN 4 / t .
w;*(P") = wi* (P ) © win (P") = betweerv; andv;_y, (i.e.v%, = vs andvf = vs_y)
Wi i Pr—iig) ®wit(p") = w1 (). that is better thamp®. Let p' = (v),v]_,...,v})

be the new path from, to v,_j (i.e. v = v,

i ts(pa ts(t i . .
Therefore, sincevs™ (p®) <t w'(p’), it must be 54 o) = vs_;) formed by replacing® with p

that: in p (i.e. pj,, = pns andpl,; = p). Since
ts(pa B ts(me\ i ts(na <
W (p') = W' (p] 0 P*) <pte :tsgpe) -F:Lt IT_J (ph) it must be éhaFt:gm(ph) =
ts t\ _ ts k \P ) eca Ingt apl,m_pnas’ Y we have,
W (png op’) =W (p), for [ > i > m, that the leadind — m components
contradicting the assumption thatis optimal. of w™(p},,,) @ndw*(pn,s) are related as follows:
Embedded subpaths (subpaths starting at a Wi (p) = Wi (p), ) & wis(p®) <
vertex other than v, and ending at a vertex ts ’ ts) e ts
i i iti Wi 1 4i(Pr—t4i,s) © Wi’ (0°) = wip’44(p)-
other than wv;). This case combines conditions n—iti ' n—l+s

from the previous two cases. First we consider theherefore, sinces (p®) < w'®(p®), it must be
shared leading subpath prefix and the sub-optimiglat:
embedded subpath, using the reasoning from the tss
i ituting & ) =@ (P10 p") <Lee
trailing subpath case above to show that substituting Lm
a better embedded subpath results in an improved W' (pn,s 0 P°) = W (Pn,s—k)-

leading subpath. We then use the winner-takes-gll, o o the winner-take-all property of Dijkstra

propertyf %@ﬁusse‘j inléhe ?rSt cas_cej to ri]mply tTaﬁresented in the first case above, the optimality of
a run of Dijkstra would only consider the newly ' implies that a run of Dijkstra would only consider

constructed path, contradicting the assumption argSj(tensions of, specificallyp’ o p,_.1, contradict-

completing the proof of the theorgm. ing the assumptionp was the path computed by
Assumep = (vy,Un—1,...,v1) IS the shortest Dijkstra u
path from v, to v, considered by a run of the Corollary 1: Dijkstra with the L-lightest-TS path
algebra computes lightest paths.
This is a special case of Theorem 2 for the subpath

v, A o N . composed of the full path.
.H[....ia.”<:: Lo Theorem 3:Dijkstra with the L-lightest-TS path
Vi Vs I ook Vi algebra computes loop-free paths.

et Proof: By contradiction. Assume a

path computed by Dijkstra with the L-
Fig. 4. Embedded subpaths. lightest-TS algebra contains a loop. Let



p = (Up,Up_1,...,Vk,...,01,05) be the leading IV. CONCLUSION
subpath of this path at the point that the loop is \we have shown that the optimality of all sub-
formed atvy, and letp’ = (vn,vn—1,...,vk+1,vk)  paths of paths computed by a routing function is
be the loopfree subpath offrom v, to vj. a sufficient condition for these paths to support

The word-weights forp’ are of the form: hop-by-hop forwarding. We have used this result
WEW) = wy . n—k+1 > i > 1 The to sho_w that__the L-IlghFest-TS path _algebra, Wh_en
word-weights for the corresponding elements dfS€d in a Dijkstra routing computation, results in
p, expressed in terms of/, are: w't, (p) = loop-free, lightest paths that support hop-by-hop
Wy +wy  +wis=wy +c forwarding. This work builds on Sobrinho’s work

P Pk,1 ’ P . . . . . .. .

: ’ in [3] by showing that, while strict isotonicity is

For p to be lighter thanp’ (i.e. w**(p) <z~ needed for loop-free hop-by-hop forwarding in the
w'(p")) it must either be that the length af*(p)  general case, there may be less restrictive solutions
(i.e. n) must be less than the length ©f*(p’) (i.e. in circumstances where the routing algorithm itself
n — k), which is clearly not true, or that there isensures more structure for the paths actually com-
ani, n —k+1 >4 > 1, such that all leading pared during a computation. A secondary contri-
components are equal, i.ef’, ;(p) = w(p'), bution is the L-lightest-TS algebra, which provides
n—k+1>j>i,andw!s, (p) < wi*(p) forthe an existence proof of this claim. | would like to
first unequal element. include a note of credit to Ted Nitz and Professor
Debra Lewis from the Math Department at UCSC
for their insight to use the contrapositive form of
the isotonicity for proving Theorem 3.

By the contrapositive form of property5, the
last condition thaztufikfl(p) = wp, +e<wy  +
0 = w!*(p) implies ¢ < 0, which is not allowed in
this algebra. ] REFERENCES
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