CrowdAidRepair: A Crowd-Aided Interactive
Data Repairing Method

Jian Zhou, Zhixu Li"™*, Binbin Guf, Jia Zhut,
An Liuf, Guanfeng Liuf, Pengpeng Zhao!, and Lei Zhao!

T School of Computer Science and Technology, Soochow University, China
¥ School of Computer Science, South China Normal University, China
{jzhou_jz,gu.binbin}@hotmail . com
{zhixuli, anliu, gfliu, ppzhao, zhaol}@suda.edu.cn,jzhulm.scnu.edu.cn

Abstract. Data repairing aims at discovering and correcting erroneous
data in databases. Traditional methods relying on predefined quality
rules (e.g., FD/CFDs) to detect the conflict between data may fail to
choose the right way to fix the detected conflict. Recent efforts turn to
use the power of crowd in data repairing, but the crowd power has its
own drawbacks such as high human intervention cost and inevitable low
efficiency. In this paper, we propose a crowd-aided interactive data re-
pairing method which takes the advantages of both rule-based method
and crowd-based method. Particularly, we investigate the interaction be-
tween crowd-based repairing and rule-based repairing, and show that by
doing crowd-based repairing to a small portion of values, we can greatly
improve the repairing quality of the rule-based repairing method. Al-
though we prove that the optimal interaction scheme using the least
number of values for crowd-based repairing to maximize the imputation
recall is not feasible to be achieved, still, our proposed solution iden-
tifies an efficient scheme through investigating the inconsistencies and
the dependencies between values in the repairing process. Our empirical
study on three data collections demonstrates the high repairing quality
of CrowdAidRepair, as well as the efficiency of the generated interaction
scheme over baselines.

1 Introduction

Data repairing aims at discovering and correcting erroneous data in databases.
So far, various data repairing solutions have been developed to automatically
detect and repair erroneous data in databases [13]. The main stream of rule-based
solutions [2,8,9] rely on a variety of quality rules such as FD/CFDs [1,4,12] to
detect violations and conflicts between data. By resolving these violations and
conflicts, they expect to fix the erroneous data. However, without having the
background knowledge, the existing rule-based method just follows some simple
modification-strategy (such as minimum-modification) to make modifications [2,
9], which as a result, may produce more errors.

* The corresponding author

2 J. Zhou et. al.

Recent efforts use the power of Crowd for data repairing, which let the crowd
to help make right modification decisions according to predefined quality rules.
Basically, these crowd-based methods can effectively improve the quality of the
data after the repairing. For instance, Yakout et. al. [14] use user’s feedback to
repair a database and to adaptively refine the training set for a repairing model.
However, dislike using rules, no repairing method can solve all the conflicts with
one single repairing model. On the other hand, the NADEEF system [3] allows
the users to specify data quality rules and how to repair it through writing code
that implements predefined classes. However, although some efforts are made, it
still requires high labor cost for data repairing. In addition, any methods relying
on humans can not be very efficient since humans need to take rest anyway.

In this paper, we propose a novel combined repairing method, CrowdAidRepair,
which performs crowd-based repairing and rule-based repairing alternatively for
achieving a high repairing quality at the minimum crowd cost. Specifically, we
still rely on FD/CFDs to identify conflicts between values, but we do rule-based
repairing to a conflict only when this repairing operation can satisfy a prede-
fined quality constraint. When no more conflict can be repaired by the rules,
we select some values for crowd-based repairing to let more values be repairable
to rule-based method. We continue with this interactive repairing process itera-
tively until no more values can be modified. To this end, CrowdAidRepair faces
a challenge of selecting the least number of values for crowd-based repairing to
maximize the number of values for rule-based repairing. Ideally, an optimal inter-
action scheme minimizes the number of issued crowd-based repairing operations
for resolving the detected conflicts correctly.

This scheduling problem for the interaction is nontrivial: Primarily, to reach
the minimum crowd cost, we hope to do crowd-based repairing only to those
conflicts that can never be resolvable to rule-based repairing. However, we do
not know a priori which conflicts can never be resolved correctly by rule-based
repairing until all the other conflicts are resolved. Furthermore, the whole inter-
action issue is considered in a dynamic setting. As more and more conflicts are
resolved, the rule-based repairing result to every unresolved conflict might be
changed, and the set of unresolved conflicts will also be changed as some new
conflicts will be generated while some old ones will be solved/dismissed.

We analyze in theory that the optimal interaction scheme is not feasible to
be achieved, and thus we propose our alternative algorithm that can generate
an efficient scheme for the interaction between rule-based repairing and crowd-
based repairing. In particular, we investigate the inconsistency that each value
brings to the database, according to which we estimate a disharmonious score for
each value. We will justify that a value with a higher disharmonious score should
have a high priority to be checked with the crowd. Besides, although we are in a
dynamic setting to schedule conflicts and their covered values for repairing, we
can still fix something based on the dependency relations between conflicts and
then make decisions accordingly. A challenge is to solve the dependency loop
between conflicts and some greedy heuristic algorithm will be proposed to tackle
with this NP-hard problem.

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 3

Name Inst City | State | Country Zip
tH J. Davis [/e] Brisbane AU 4072
t2 T. Smith uQ Brisbane AU 4072
t3 | B. Wilson uQ QLD AU 4072
4 Z. Wang Brisbane QLD AU 4072
5 | A. Jones Brisbane QLD AU 4001
6 U

H. Cheng USTC Hefei Anhui PR

B. Brown uTs Sydne NSW A 2006
E. Widom UST
W. Wan, UST PRC
J. Aref PRC 230026
C

230026

J. Han UIUC | Champain L USA

61801

(a) Example Table with 13 Errors Highlighted

Ps.99

Name

g

1D Given FD/CFDs in the Sketch

Confidence

@1 [Name — Inst

0.85

Institution %» Country + Zip ¢2 | [Country="AU", Inst] — City
;

92, ¢Jl

City

|

1.00

$3 | [Country="PRC”, Inst] — City

0.95

¢4 | City — State

0.90

s ¢5 | State — Country

0.95

6 Inst — [Country="AU" or “PRC”, Zip]

1.00

@7 |[Country="AU" or “PRC”, Zip] — Inst

1.00

$8 | [Country="AU", Inst] — State

0.90

$9 | [Country="PRC”, Inst] — State

State

0.85

(b) A set of the Constraints (FDs/CFDs) holding on the Table

Fig. 1. A Running Example for Illustration

Contributions. We develop CrowdAidRepair, a novel Crowd-Aided Data Re-
pairing approach, which performs crowd-based and rule-based repairing alter-
natively for achieving a high repairing quality at the minimum crowd cost. We
identify and study the quality-constrained interaction problem between crowd-
based and rule-based repairing, targeting at a balance between repairing quality
and repairing cost. After proving in theory that the optimal interaction scheme
is unlikely to be identified, we propose our algorithm to generate efficient inter-
action schemes.

Roadmap. The rest of the paper is organized as follows: We define the problem
in Sec. 2, and then present our algorithm in Sec. 3. The experiments are reported
in Sec. 4, followed with related work in Sec. 5. We conclude in Sec. 6.

2 Preliminary and Problem Statement

2.1 Preliminary on Rule-based Repairing

Definition 1. We say a set of values are correct if all values in this set are
correct. We say a Conflict happens between two sets of values if the two sets of
values cannot be both correct.

The rule-based repairing method relies on a set of predefined quality rules
to detect conflicts between data, and then work to resolve these conflicts with
expecting to clean relevant errors that have aroused these conflicts. Particularly
in this paper, we take FD/CFD as an example of quality rules to show how
our method works. For easier understanding, we present the preliminary with a
running example.

Ezample 1. Given a personal contact data depicted in Fig. 1(a), where each
tuple contains the Name, Email and Inst (Institution) of a person, in addition
to one’s address information: City, State, Country and Zip. We highlight errors
waiting to be unveiled and corrected in the table. A set of FD/CFDs holding on
the table are listed in Fig. 1(b).

1) Conflicts Detection. According to the given FD/CFDs, a number of conflicts
between data can be detected from the table. For example, according to ¢o,

4 J. Zhou et. al.

Brisbane

o
15

Canp > CAav > a2z
64

QLD

-AU —-4072 a 4
! Table-based Repairing g o
4072 . Wilson
{13 o t4_| Z Wang
Caorz > 5| A

Brisbane QLD
4% 6
Caut > ((Brisbane) (AU |\ 4001 > 7 | E. Widom
Cuts D CSydney D 2006 D The Details of some Conflicts for Demonstration g 230026
HLEJ’gT ID_| Conflicted Values | Referred Values | FD/CFD 110 | H. Chen: Hefei 230026
n (ua. Qun) AU + 4072 o t11 . Champain IL uUS 61801
25 26 [15| (Brisbane, Sydney) ua 02 ™ O I ™ I »
[(NSW, QLD) Brisbane. o4 =
230026 :;: (‘:222'::3:) S:VE iz Note that the correct information about UST should be:
usm (Hefei Canui > (CpPrc D (230026 D - [UST [Kowloon [_HK | PRC | 999077

(a) The Conflicts Identified with FD/CFDs in the Running Example

Fig. 2. The Performance of Rule-based Repairing Method

t1[City] (“Brisbane”) and t3[City] (“Sydney”) are conflicted with each other
as they both correspond to the same Inst (“UQ”). Fig. 2(a) shows that 26
conflicts can be identified according to the constraints in Table 1(a), where each
node denotes an attribute value in the table (erroneous values are highlighted),
and each line between two nodes denotes a conflict between the two nodes.

2) Conflicts Resolution. When a conflict happens between values, some values
should be modified in order to resolve the conflict. In order to resolve all the
conflicts in a database, some works tend to make the least changes to the data
set [2,9], while others prefer to make the most likely correct changes based on
some simple prediction model [8,13]. For example in Fig. 2(a), since t4][Inst]
(“QUT”) is conflicted with three other values (“UQ”). To resolve the three
conflicts, we either change t4[Inst] (“QUT”) into “UQ” (cost is 1), or change
the three “UQ” into “QUT” (cost is 3). The first modification way is preferred
according to either of the two criterions. Fortunately, this is also the correct
modification way.

However, the criterions will make wrong decisions in three situations below:

1) Tt is very likely to make wrong decisions based on a simple criterion. For
example, both tg[Inst] (“UST”) and tg[Inst] (“ UST”) are conflicted with
t10[Inst] (“USTC”), to make the least change, t19[Inst] (“USTC”) will be
changed into “UST”. As a result, one more error is produced.

2) Some conflict contains no errors, such as the conflict f19 between tg[Inst]
(“UST”) and t1p[Inst] (“USTC”) in Fig. 2, but the method tends to make
corrections to every conflict;

3) The method can not make right corrections when there is no correct correction
value to a position within the data set. For instance, in the conflict fi3 and
f14, both the two values (“Sydney” and “Hefei”) are incorrect City that
“UST” locates at (which should be “Kowloon (HK)”), but the method will
still pick one from these erroneous values as the correction value.

3) Correction Confidence Estimation. A correction by rule-based repairing is de-
cided jointly by the FD/CFD and all relevant values that used in deducing this
correction value. Therefore, the quality of a correction is also determined by the
quality of these referred values that are used to deduce this correction value, and

(b) The Table after Table-based Repairing

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 5

the confidence of the referred FD/CFD, that is,

c(ve) = e(¢) x [T elwi) (1)

v, €EVR

, where VR contains a set of referred values that used to deduce v, for the position,
c(v) denotes the confidence of a value v, and ¢(¢) denotes the confidence of ¢.

2.2 Problem Statement in the Interaction

We still rely on FD/CFDs to identify conflicts between data, but to identify
and correct erroneous values in these conflicts, we consider to involve the crowd
into the repairing process to help improve the repairing quality in an efficient
interactive way. Particularly, we temporarily neglect the wrong modifications
that might be made by the crowd in this paper, and will take it as future work.

The basic interaction can be described as: We set a quality constraint and
do rule-based repairing to those conflicts that can satisfy the quality constraint.
Then we select some values for crowd-based repairing to let more values be
repairable (or so-called deducible) to rule-based method. We continue with this
interactive repairing process iteratively until no more values can be modified.

The interaction between crowd-based and rule-based repairing can be repre-
sented by a sequence of value sets, denoted as S = (7o, W1, T1, Wa, T2, - -+, Wi, Tn),
where W; is a set of values for repairing at the i-th crowd-based repairing step
and 7; is a set of values for repairing at the i-th rule-based repairing step,
Vi jWiNT,=WnNT; =W,NW; =T,NT; =0, and Vi, W; CV,T; CV,
where V denotes the domain of all values in the data set. Note that there is no
fix number of values for repairing. An interaction scheme is a qualified one as
long as it resolves all the detectable conflicts in the data set.

Since the cost of a crowd-based repairing operation is much more expen-
sive than a rule-based repairing operation or any other computational process,
the cost of CrowdAidRepair following an interaction scheme S can be rough-
ly represented by the number of values for crowd-based repairing in S, i.e.,
cost(S) = Y1 <;<n [Wil, where | - | is the size of a set.

Definition 2. (Quality-Constrained Interaction Problem). Given a rela-
tional table T for repairing, a set of predefined FD/CFDs ® holding on T, a
quality measuring scheme c(-) and a quality threshold 7 (0 < 7 < 1), the object
is to identify an optimal interaction scheme S,p for repairing values in T, which
satisfies: (1) resolving all the conflicts in T w.r.t. D; (2) Yve, c(ve) > T, where v,
denotes a correction value; (3) VS’ satisfying the above two conditions, we have
cost(Sep) < cost(S’).

See the situation in the running example, an optimal interaction scheme
constructed manually can be:

< {t4[Inst]}., {t3[City], t2[State]}s, {t7[Country]|, t7[Zip]], ts[Zip]], to[Inst]}ey,

{ts[City]], ts[State]|}+, {t7[City], t7[State]]},, {ts[City]], ts[State]]}+ >, which
has 7 values for crowd-based repairing, and the left 6 values for rule-based re-
pairing.

6 J. Zhou et. al.

However, the optimal interaction scheme is not feasible to be constructed
automatically as described below. Due to the limitation of space, we put the
proof to Theorem 1 at: http://pan.baidu.com/s/1c05Cpqg.

Theorem 1. The optimal interaction scheme to the Quality-Constrained Inter-
action problem is not feasible to be achieved.

3 A Quality-Constrained Interaction Algorithm

We present our algorithm for generating an efficient interaction scheme. The
key problem here lies on how to select values for crowd-based repairing at each
crowd-based repairing step.

Initially, we tend to choose the value that has aroused the most conflicts
between data for crowd repair, such that the most values will become deducible
in the next rule-baed repairing step. In order to find out the value that has
aroused the most conflicts between data, we estimate a so-called “disharmonious
degree” (or dScore for short) for each value, to denote the “disharmony” between
this value and all the other values in the data set. We will introduce how we
estimate the dScore of each value in Sec. 3.1.

In addition to dScore, the dependency relations between conflicts should also
be taken into account. We say a conflict f, depending on another conflict fj, if
some values in f, are the reasons (or part of the reasons) that have aroused the
conflict in f, according to some FD/CFD. Let a conflict f, depends on another
conflict fy, we normally should process f; prior to processing f, for three reasons
below: (1) Initially, It is possible that after the conflict in f; is resolved, the
conflict in f, is dismissed automatically without any repairing operations. (2)
To say the least, even if f, is a true conflict and we need to do crowd-based
operations to check the values inside it, sometimes we have no other choices but
to rely on those values in the conflicts that f, depends on to formulate crowd-
based repairing queries. (3) Lastly, after we process all conflicts it depends on,
we can update the dScores for the values in f, for better judging which value is
more likely an error.

Although we are in a dynamic setting to schedule conflicts and their covered
values for repairing, we can still fix something based on the dependency relations
between conflicts and then make decisions accordingly. A challenge is to solve
the dependency loop between conflicts. We will discuss this in Sec. 3.2.

3.1 dScore: Estimating the Incorrectness of Values

The dScore of a value can be roughly reflected by the number of conflicts it brings
to the data set. We first introduce how to calculate the dScore for each value in a
simplified case. To begin with, we assume that the data set is consistent without
the value at a position, that is, all the other values in the data set appear to be
in harmony. Then the value at this position comes, which may bring conflicts
in two ways: (1) itself conflicts with some values; (2) it may let some values

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 7

involved in a conflict. Usually, the more conflicts it brings to the data set, the
higher probability it is an erroneous value. In other words, the dScore of a value
can be manifested as the number of conflicts it caused in this simple setting.

We now consider the situation in real case, where there are already erroneous
values and conflicts in the data set. When a new value at a position comes, either
an erroneous one or not, it brings some changes anyway, such as producing new
conflicts, or voting for existing conflicts. In this case, the dScore of a value can be
manifested by two things: (1) the new conflicts produced, and the “credibility”,
or what we call the c¢Score of these conflicts, which will be discussed in Eq. (3);
(2) the changes on the cScore of existing conflicts. Specifically, dScore(v) of a
value v can be calculated by:

dScore(v) = a X Z A(ceScore(f)) (2)
feF(v)

where « is a normalization factor to scale dScore(v) between 0 and 1, F(v)
contains all conflicts that are influenced by putting v into the data set, and
A(eScore(f)) is the change on the cScore of a conflict f.

Attris X Attri Y

ta [v | ... According to CFD: ¢: (X ->Y),

""""""""" v1 and v2 consist a conflict

Fig. 3. An Example Conflict with Relevant Values and CFD

In particular, the cScore of a conflict f is decided by four relevant values as
given in Fig. 3. Previous work considers that a conflict is consisted by two values
such as v; and ve in the figure, but a conflict is also closely related to another
two values which are referenced to identify the conflict according to a certain
CFD, such as the two v3 in the figure. Thus, the correctness of the four values
jointly decide the c¢Score of a conflict f. Furthermore, when a conflict is voted
as a conflict by several groups of values w.r.t. different CFDs, we only pick the
one with the highest cScore as the final cScore of the conflict. More specifically,

cScore(f) = ArgMax[c(¢) X H (1- dScOTE(’U;))})
PCP(f) 1)£€V(f7¢)

where @(f) is the set of CFDs that voted f as a conflict, and V(f, ¢) contains
all values related to the conflict f w.r.t. ¢.

8 J. Zhou et. al.

3.2 Employing Dependencies between Conflicts

We consider the dependencies between conflicts in scheduling conflicts for repair-
ing. We first get the dependency relations among all conflicts, and then build a
conflicts dependency graph based on these relations.

1) Relations between Conflicts. Basically, there are three kinds of relationships
between each pair of conflicts. The first is the Dependency Relation as we in-
troduced above. Note that the dependency relation is transitive, that is, if f,
depends on fp, and f, depends on f., then f, also depends on f.. Secondly, we
say two conflicts are in a Overlapped Relation if they share some positions, such
as f1 and fy sharing t4[Inst](“QUT”) in Fig. 2(a). Finally, If two conflicts are
in neither of the two relations above, they are Independent from each other.

State L] 16,17,18,19, 110, 111, f12, f20, f21 |&—— ;

St I - L e j

Fig. 4. The Dependency Graph of the Conflicts in Table 1(a)

2) Building Conflicts Dependency Graph. With the relations between all con-
flicts, we can built a conflicts dependency graph as in Fig. 4 (which is built on
Table 1(a)) through the following steps:

(1) Initially, we take each conflict as a node in the dependency graph.

(2) We then put a directed edge pointing from every conflict f, to every other
conflict f; if f, depends on f,. Note that we only need to put an edge between
two conflicts if one directly depends on the other.

(3) Finally, to make the graph easier to process, we merge nodes sharing at least
one value into one node (i.e., we put overlapped conflicts into one node), and
the directed edges of the same direction between the two nodes are merged
into one directed edge.

As introduced above, a conflict should be processed after all the conflicts it
depends on are processed. But for those overlapped conflicts in the same node,

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 9

we need to consider the priority of each value that involved in the conflicts for
checking. Here we can still rely on the dScores of these values. A value with a
highest dScore in a node can be checked firstly. Each time a value is modified,
the graph needs to be updated accordingly.

3.3 Tackling Dependency Loops

The main challenge here is how to schedule those conflicts in dependency loops
for processing. We say a number of conflicts are in dependency loop if they
depend on each other such as f1, fo, f3 and f14. In this situation, the dependency-
based interaction principle mentioned above dose not work at all. Things become
more intractable when there are several loops overlapped with each other at
different nodes. As in Fig. 4, there are 19 loops in total and almost every loop is
overlapped with some other loops at some nodes. Basically, we have to choose
one (or more than one) node in a loop to process to “break up” the loop. In
order to minimize the cost, we have to be very careful in selecting the break-up
node for a loop as different break-up nodes will bring different costs.

Theorem 2. It is an NP-hard problem to break up loops in a dependency graph
with the minimum crowd-based repairing cost.

Proof: We prove it by reduction from constrained minimum spanning tree
problem [11]. Constrained minimum spanning tree is defined over an undirected
graph G = (V, E) and nonnegative integers l. and w, for each edge ¢ € E, where
le and w, are the length and weight of e respectively. The problem is to find
a spanning tree that has low total cost with respect to both the cost functions
[and w. Although the dependency graph in our case is a directed graph, it
is worthy noticing that each undirected graph can be considered as a directed
graph.

To reduce the constrained minimum spanning tree problem to our problem,
we let the length of e = (vy,vs2) is the confidence between v, and vy. And we
let the weight of e = (v1,v2) is the cost for repairing vy. Assuming a spanning
tree G’ = (V',E’') € G is generated from G, then our object is to maximize
C(G") = > .cp We, where C(G") is the total cost of G'. This is equivalent to
minimize the cost of crowd-based repairing denoted by C(crowd), i.e. we have

Clerowd) = Y we =C(G) - C(G") (4)

ecE\E'

Hence, the objective function is consistence with the objective function in the
constrained minimum spanning tree problem. Thus, theorem 2 is proved.
Due to the limitation of space, we put the proof to Theorem 2 at: http://pan.baidu.com/s/1c05Cpqg.
U
In the following, we give our greedy algorithm to break up loops in a depen-
dency graph.

1) Breaking up a Single Loop. We basically consider two factors in selecting the
break-up node for a loop: (1) factor 1: the number of values that must be verified

10 J. Zhou et. al.

in a node for breaking up the loop (for easier presentation, we call these values
as break-up values); (2) factor 2: the dScores of these break-up values in a node.
Usually, we tend to select the node with the least number of break-up values
holding the highest dScores as the break-up node for the loop. More specifically,
we calculate a break-up score, or bScore for short, for each node in a loop as
given in Eq. 5 below. Among all nodes in a loop, the node with the highest
bScore will be selected as the break-up node in priority.

bScore(N, L) = H dScore(v) (5)

veVy (node,loop)

where V;, (N, L) is the set of break-up values in node for breaking up loop.

Algorithm 1: Dependency-Aware Interaction

Input : A table with a set of conflicts F

Output: A repairing scheme & = (7o, W1, 71, , Wy, Tn)

Set i = 0;

while F # (do

. Ti+All deducible values at the moment;

. Deducing all values in T;;

. Updating F;

i+ +;

. Calculating dScores for all values in F with Eq. 2;

. Building the Dependencies Graph on F;

. while no new deducible values do

V' < Values in conflicts depending on nothing;

if V # 0 then W;+ W, UV else
Calculating gbScores for all conflicts in F with Eq. 6;
V' < Values with the highest dScore in conflicts with the highest gbScore;
Wi+ W; UV

end

Checking/Repairing V' with the Web;

if V is updated with correction values then

| Updating F and dScores;
end

end
end

return (7o, W1, 71, , Whn, Tn);

2) Breaking up Multiple Loops. For a number of loops overlapped with each oth-
er, we can not simply decide the break-up nodes for a single loop. Otherwise,
we may not be able to reach the best performance in minimizing the number of
crowd-based operations. For each node, we consider a global bScore, or gbScore
for short, to denote its break-up score for all loops in the graph, and the one
with the highest gbScore will be selected as the break-up node in priority. The
gbScore of a node is decided by two factors: (1) the local bScore of the node in
each loop; and (2) the benefit of solving each loop, which is actually the number
of values that can be moved out from the loops. More specifically,

gbScore(N) = Z [bScore(N, L) x benefit(N, L)] (6)
LEL(N)

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 11

where L(N) is the set of loops having A as its node in the graph, and the
benefit(N, L) is the benefit of breaking up £ by solving A, which is mainly
decided by the number of values in L.

3.4 Dependency-Aware Interaction Algorithm

A formal description of this algorithm is given in Alg. 1. Initially, we build
the conflicts dependency graph for a data set. For those nodes depending on
nothing, we keep on choosing the value with the highest dScore within each
node for crowd-based repairing until all the conflicts in the node are resolved.
When there is no node of this kind but only loops, we calculate the gbScores
for all nodes in these loops, and choose the one with the highest gbScore to
process to break up the loops. Each time a value is modified, we need to update
the graph and all bScores and gbScores. The algorithm stops when the graph
is empty. Basically, the computation complexity of Alg. 1 is O(mlog m + n),
where m is the number of nodes which are in the loops of the graph and n is the
number of nodes which are not in the loops of the graph.

Table 1. The Interaction Scheme generated by Alg. 1

To [0

t7[Inst](“UST”) is correct, not changed;
t4[Inst](“QUT”) is incorrect, modified;
t3[City](“Sydney”) is incorrect, modified;
ta[State](“NSW?”) is incorrect, modified;
tg[Inst](“UST”) is correct, not changed;
to[Inst](“UST”) is incorrect, modified;
to[City](“Sydney”) is incorrect, modified;
T1 | to[state](“NSW?”) is incorrect, modified;
tg[Country](“PRC”) is correct, not changed;
Wa | ¢5[21ip](“230026”) is incorrect, modified;

T2 | t7[2ip](“2006”) is incorrect, modified;

Ws | tg[City](“Hefei”) is incorrect, modified;

T3 | t7[City](“Sydney”) is incorrect, modified.
W, | ts[State](“Anhui”) is incorrect, modified;
Ta | t7[State](“NSW”) is incorrect, modified;
W5 | t7[Country](“AU”) is incorrect, modified;
Ta | tg[Country](“PRC”) is correct, not changed

Wi

Ezample 2. We apply the algorithm to the running example and the interaction
scheme generated is depicted in Table 1. Overall, we issue crowd-based operations
for 10 values, among which 8 values are true erroneous values while the other 2
values are correct values. Meanwhile, 5 erroneous values are corrected by rule-
based repairing.

Theorem 3. The crowd-based repairing cost of Algorithm 1 is not larger than
e;el times of the cost of the optimal dependency-aware interaction algorithm.

12 J. Zhou et. al.

Proof: Consider the iteration where the dependency-aware interaction algorith-
m implements. We define the following function to represent our algorithm.

B'(S) = B(G(V)) = B(G(V)\S) (7)

U

Denote the sequence S = {G(v1),G(v2),...,G(v,)} the result of algorithm 1.

And denote OPT = {G(v}),G(vS),...,G(v))} the optimal sequence for the

dependency-aware interaction algorithm. And let P = {G(v}), G(v5), ..., G(v},) },

where k < n. Let G(v) the first element from OPT\P and A = C(G(E\v) U
P) — C(G(E\v)), then we have the following inequality according to [6].

B'(G(E)\S)+ A > (1—1/e)B'(OPT\P) (8)

Notice that B’(-) is an non-decreasing function which means repairing more
nodes will produce more benefit. Besides, please recall Eq. 7, we then have

B(G(V)) = B(G(E)\S) + B(G(E)\G(E\v))
> B(G(E)\S) + (1 —1/e)B(OPT\P) — A
> B(P) + (1 — 1/¢)B(OPT\P)
= (1-1/e)B(OPT)

9)

where B’(-) and B(-) are the benefit functions when we identify -. Consider the
nodes which are not in the loops, then our algorithm is equivalent to the optimal
one in this situation. Thus, B(G(V)) > (1 — 1/e)B(OPT) always holds. Mean-
while, we notice that the benefit of identifying a node is inversely proportional
to its cost. Thus we have

cGv) < <2

C(OPT) (10)

Hence, theorem 3 is proved.

4 Experiments

We experiment on two real and one synthetic data sets.

1) Personal Information Table (PersonInfo): This is a 50k-tuples, 9-attributes
table, which contains contact information for academics including name, e-
mail, title, university, street, city, state, country and zip code.

2) DBLP Publication Table (DBLP): This is a 100k-tuples, 5-attributes table.
Each tuple contains information about a published paper, including its title,
first author and his/her affiliation, conference name, year and venue.

3) Synthetic Table (Syn): We also generate a lmillion-tuples, 100-attributes
table following a scheme containing 100 randomly generated approximate
attribute dependencies with confidences near-uniformly distributed between
0.7 and 1, where the first attribute is the key attribute.

All the three data sets are relational tables without erroneous data. To gen-
erate tables with errors for the experiments, we keep the key attribute value
in each tuple and replace non-key attribute values at random positions with
attribute values selected from random picked tuples of the table.

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 13

4.1 Repairing Quality Evaluation

In the following experiments, we compare the repairing quality of PureCrow-
dRepair (Pure crowd-based Repairing) and CrowdAidRepair with four state-of-
the-art general textual data repairing approaches on the three data sets.

1) Rule-based Least-Change (CFD-LC): This is the mainstream approach re-
lying on FD/CFDs to detect and correct erroneous data in a data set [4, 8],
which follows the least-change modification criterion in repairing.

2) Rule-based Most-Likely (CFD-ML): This approach also relies on FD/CFDs
to detect and correct erroneous data [2], but follows the most-likely correct
modification criterion as introduced in Sec. 2.1.

3) Model-based 1 (ERACER): This is a model-based repairing based on be-
lief propagation and relational dependency networks [10]. In contrast to pri-
or work that cleans tuples in isolation, this approach exploits the graphical
structure of the data to propagate inferences throughout the database [10].

4) Model-based 2 (SCARE): This is another model-based repairing approach
based on maximizing the correctness likelihood of replacement data given
the data distribution, which is modeled using statistical machine learning
techniques [13].

Table 2. Comparing the Repairing Quality with Previous Methods

PersonlInfo DBLP
Prec |Recall| F1 Prec |Recall| F1
CFD-LC 0.506 | 0.517]0.511 ([0.613 | 0.423 | 0.501
CFD-ML 0.535]0.521] 0.528 [0.645 | 0.451 | 0.531
ERACER 0.638] 0.489 [0.554 [0.698 | 0.421 | 0.525
SCARE 0.655(0.512 | 0.574 || 0.743 | 0.453 | 0.563
PureCrowdRepair [|0.836(0.756(0.794(/0.931|0.722|0.813
CrowdAidRepair||0.821(0.753(0.785(/0.928(|0.719|0.810

We first make a comprehensive comparison on the Precision, Recall and F1
of all methods at an erroneous ratio of 10% on the two real-world data sets.
The parameter setting for each method lets the method reach the best repairing
quality (w.r.t. F1). As shown in Table 2, the precision and recall of the two rule-
based methods (CFD-LC and CFD-ML) are not high, as they can only make
correct modifications to about half of the erroneous values in the data sets, and
in 40-60% chances they make wrong corrections. The reasons are two: (1) about
20% erroneous values in each data set can not be detected at all by the em-
ployed conflict detector as these errors do not arouse any conflicts in the data
set; (2) without external knowledge for guidance, following a simple modifica-
tion criterion is very likely to make mistakes. Comparatively, the precision of
the two model-based methods (ERACER and SCARE) is a bit (5-10%) higher
than the rule-based methods since the models they build can understand the
correlation between data and thus make better judgements. On the other hand,
their recall is as low as that of the rule-based method, since there are some

14 J. Zhou et. al.

non-quantitive attributes like email, street, author, and venue which can not
be handled well by models. In contrast, the precision and recall of PureCrow-
dRepair and CrowdAidRepair are much higher (80-90% precision and 80-85%
recall), which benefits from the external data on the Web.

1 L T T T 1 L T T T
0.9 B 0.9 B
08 %i@:g:i o |]
0.7 £ N 0.7 B
© 06 g o 06F g
o I=}
& 05 h & 05 R
T o4l E T o4l i
03 B 03 B
02 L CFD-ML —3— | 02 L CFD-ML —3— |
: SCARE —%— : SCARE —%—
0.1 | GuidedRepair 4 0.1 | GuidedRepair 4
1l \VvebA\DARE Il Il 1l \VvebA\DARE Il Il
0 0
0135 10 20 30 40 0135 10 20 30 40
Erroneous Ratio(%) Erroneous Ratio(%)
(a) PersonlInfo (b) DBLP

Fig. 5. Comparing the F1 Scores of all Methods

We then compare the F1 scores of all methods at various erroneous ratios
(1%, 3%, 5%, 10%, 20%, 30%, 40%) by setting 7=0.7 over the two real-world data
sets. As demonstrated in Fig. 5, CrowdAidRepair always reaches much higher
F1 scores than all the other four methods, which proves the advantage of Crow-
dAidRepair over the four other methods. Besides, although PureCrowdRepair
reaches as high (or even a bit higher) F1 scores as CrowdAidRepair, it is much
more expensive to do pure crowd-based repairing than CrowdAidRepair, which
will be reflected in the next experiments.

4.2 Repairing Cost Evaluation

We now compare the cost of CrowdAidRepair with pure crowd-based method
(PureCrowdRepair) and pure table-based method (CFD-ML) on #Queries,
which is the number of issued queries to the Web.

(2) #Queries: To better reflect how can CrowdAidRepair be much more ef-
ficient than PureCrowdRepair, we also compare the two methods on their is-
sued queries over the two data sets. As demonstrated in Figure 6(c)(d), Crow-
dAidRepair only retrieves about 20% of the values retrieved by PureCrow-
dRepair and thus greatly reduces the overhead of the repairing process. Note
that the #Queries of a method is usually a bit larger than the number of re-
trieved values, provided that a fired retrieving query may fail to retrieve the
target erroneous value, and then we need to fire alternative ones.

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 15

920

90 T

' ‘P‘ureTal‘)IgRepair % h PureTabIgRepair %
PureWebRepair PureWebRepair
-~ WebAidRepair i - WebAidRepair i 1
S 60 S 60
L] &
0 n
2 2
5] 5]
& 30 & 30
F* * N
N
0 BRSK f g * 0 *
135 10 20 30 40 135 10 20 30 40
Erroneous Ratio(%) Erroneous Ratio(%)
(a) Personlnfo (# Queries) (b) DBLP (# Queries)

Fig. 6. Comparing #Queries on the Real Data Sets(7 = 0.7, erroneous ratio = 10%)
4.3 Interaction Schemes Evaluation

We do experiments to evaluate the interaction schemes generated by the three
proposed algorithms over the three data set. We set the erroneous ratio to 10%,
and then compare the repairing quality (precision and recall) and cost of the
interactive repairing following each interaction scheme by changing the quality
threshold 7 from 0 to 1. As shown in Fig. 7(a)(b)(c), although the probabilistic-
based scheme and the dependency-aware scheme can reach a higher recall than
the quality-aware scheme, their precision is always 5% lower than that of the
quality-aware scheme. Overall, the quality-aware scheme reaches a higher com-
bination of precision and recall than the other two methods. On the other hand,
the cost of all the schemes increases as 7 increases from 0 to about 0.8, but de-
creases sharply as 7 increases from 0.8 to 1.0 as shown in Fig. 7(d). This makes
sense since when the quality constraint becomes too strict, much less values
can be repaired to satisfy the constraint. Nonetheless, the cost of the quality-
aware interaction scheme is always about 20% less than the dependency-aware
scheme and about 40% less than the probabilistic-based scheme, which proves
the advantage of the quality-aware scheme over the other two schemes.

Prec
Prec

#Queries(*10%)

08 Prob-Based 1 08 Prob-Based 1 s Prob-Based

Dependency-Aware) Depengency-Aware -

Dependency-Aware -

05
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 09 1 0 01 02 03 04 05 06 07 08 09 1

Recall Recall T

(a) PR (Personlnfo) (b) PR (DBLP) (¢) #Queries (Syn)

Fig. 7. Comparing the Schemes: Precision and Recall in Subfigures (a)(b) (on the two
real data set), and #Queries in Subfigures (c) (Syn data set)

5 Related Work

Existing data repairing solutions can be roughly put into three categories below.

16 J. Zhou et. al.

The traditional category of methods relies on a variety of constraints includ-
ing FDs [1,12], CFDs [4], Integrity Constraints [9] and Inclusion Dependencies
(INCs) [1] to detect inconsistency (or conflicts) between data aroused by erro-
neous data, and then work on resolving all the conflicts with expecting to fix all
erroneous data in this way [2,8,9]. For general textual databases, most work in
this category use FD/CFDs for repairing as they are the constraints within a
single relational table, while some other work uses INCs for repairing between
multiple relational tables. Usually, this category of methods can effectively de-
tect a large percent of erroneous data involved in the identified conflicts in a
wide range of databases, but to repair these errors and resolve the conflicts,
some work tends to make the least changes to the data set [2,9], while others
prefer to make the most likely correct changes based on some simple prediction
model [8,13]. However, neither criterion can have all errors modified correctly.

The second category of solutions are model-based repairing, which usually
build some prediction models for detecting and correcting erroneous values in
a data set [7,10,13,15]. The construction of the model employs statistical Ma-
chine Learning (ML) techniques for data cleaning, which can effectively capture
the dependencies and correlations between data in the dataset based on various
analytic, predictive or computational models [13,15]. However, not every erro-
neous data can be identified and corrected in the right way since there are always
outliers that do not obey the captured constraints.

The third category of solutions are external source based repairing approach-
es, which leverage the information in reference master data set [5] or user’s in-
teraction data [14] for better data cleaning performance. However, the required
external information is not always available and thus the methods can not be
applied in general scenarios. In this paper, we propose CrowdAidRepair, which
is also an external source-based repairing approach. Compared to previous ap-
proaches of the kind, CrowdAidRepair is more general as we rely on the Web.

6 Conclusions and Future Work

We propose CrowdAidRepair, a novel crowd-aided data repairing approach that
can greatly enhance the repairing quality of the existing rule-based repairing
method with the Crowd help. Extensive experimental results based on several
data collections demonstrate that the generated interaction scheme decreases on
average 80% cost of a baseline, and reaches almost the same high repairing quali-
ty that was reached by a pure crowd-based retrieving approach. Future work may
consider combining CrowdAidRepair with state-of-the-art model-based methods,
and apply CrowdAidRepair to databases with both incorrect values and missing
values.

References

1. P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective
heuristic for repairing constraints by value modification. In SIGMOD, pages 143—
154, 2005.

10.

11.

12.

13.

14.

15.

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 17

G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: Consistency
and accuracy. In PVLDB, pages 315-326, 2007.

. M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and

N. Tang. Nadeef: a commodity data cleaning system. In SIGMOD, pages 541-552,
2013.

W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-
dencies for capturing data inconsistencies. ACM Transactions on Database Systems
(TODS), 33(2):6, 2008.

W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules
and master data. PVLDB, 3(1-2):173-184, 2010.

S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39-45, 1999.

J. L. Koh, M. L. Lee, W. Hsu, and K. T. Lam. Correlation-based detection of
attribute outliers. In Advances in Databases: Concepts, Systems and Applications,
pages 164—175. Springer, 2007.

S. Kolahi and L. V. Lakshmanan. On approximating optimum repairs for functional
dependency violations. In ICDT, pages 53-62, 2009.

A. Lopatenko and L. Bravo. Efficient approximation algorithms for repairing in-
consistent databases. In ICDE, pages 216225, 2007.

C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database approach for statis-
tical inference and data cleaning. In SIGMOD, pages 75-86, 2010.

R. Ravi and M. Goemans. The constrained minimum spanning tree problem.
Algorithm TheorySWAT 96, pages 66-75, 1996.

J. Wijsen. Database repairing using updates. ACM Transactions on Database
Systems (TODS), 30(3):722-768, 2005.

M. Yakout, L. Berti—Equille, and A. K. Elmagarmid. Don’t be scared: use scalable
automatic repairing with maximal likelihood and bounded changes. In SIGMOD,
pages 553-564, 2013.

M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and 1. F. Ilyas. Guided
data repair. PVLDB, 4(5):279-289, 2011.

X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22(3):177-210, 2004.

