Purse-Based Scoring for Comparison of

 Exponential-Time Programs> Allen Van Gelder
> University of California, Santa Cruz E-mail avg@cs.ucsc.edu.

Daniel Le Berre
min Biere
KU, Linz, Austria
Oliver Kullmann
CRIL, Université d'Artois
E-mail leberre@cril.univ-artois.fr

E-mail biere@jku.at
E-mail O.Kullmann@swansea.ac.u
Laurent Simon $\begin{array}{ll}\text { E-mail O.Kullmann@swansea.ac.uk } & \begin{array}{c}\text { LRI, Université Paris } \\ \text { E-mail simon@rifr }\end{array}\end{array}$

June 17, 2005

Abstract

purse-based method for scoring solving competitions is introduced. Its application is intended for benchmark suites in which it is expected that solvers will not be able to solve all instances. The main idea is that each benchmark
problem has an associated purse (in the sense of prize) that is divided among those solvers that are able to solve it. There is no "penalty" for failing to solve an instance beyond not sharing in that purse. Properties of this scoring method are discussed. Preliminary experimental data is given, based on stage one of the satisfability solver competition held
in connection with SAT 2005 , St. Andrews, Scotland, June 2005 .

1 Introduction

Over recent years, the importance of the international SAT competition has grown to being an awaited event in the community. The major impact of being ranked among the best solvers is beneficial both for academic a
competitors. As a consequence, the scoring scheme of the competition needed some more formal basis.
The method described ince, this papering is designed to overcome some of the drawbacks observed in earlier methods. set very easy problems to be sure all solvers can succeed or one must allow for the fact that some solvers will succeed on some instances. It is commonly agreed that the first alternative does not lead to interesting outcomes. The paper outline is as follows. After presenting the design objectives and discussing drawbacks with current re discussed. Then we take some examples from stage one of the SAT 2005 competition to illustrate how the ser e discussed. Then we take some examples from stage one of the SAT 2005 competition to illustrate how the scoring
cheme works and how the rankings would change if alternative ranking schemes were used. Preliminary experimental esults are presented for the first stage of the SAT 2005 Competition, involving about 30 solvers and hundreds of benchmark instances. The paper concludes with a brief discussion of the critical issues regarding the new scoring

2 Design Objective

One key idea behind the SAT compeetion is to award a solver that is good on a wide range of SAT instances. In the previous year of the competition, this was implemented using a scoring scheme that ranked the solvers with a tiered system: First, the solvers were ranked by being able to solve some instance in a highest number of different series. Ties
were then broken using the total number of benchmarks solved. Unfortunately, in this system there is no difference etween solving a benchmark solved by all solvers or one solved by only a few solvers. The same andies to series

Another key idea of the compenition was to focus on solvers that are the only ones to solve some benchmarks: in he SAT and CASC competitions, those solvers are called state-of-the-art contributors (abbrevialed SOTAC). In the revious were usully among the top raked solvers. Third, the time needed to solve a given bencl
ased for scoring the solvers in the previous years of the SAT competitions, by using a fixed timeout per benchmark. here was no way to discriminate among the solvers able to solve a given benchmark within that timeout. Furthermore, the second stage ranking was based only on the number of benchmarks solved during the second
tage, among those benchmarks that had not been solved by any solver during the first stage. This criterion is based on very strong assumptions:

- The remaining benchmarks are representative of the initial set of benchmarks.
- The solvers will behave in the second stage in a way similar to the first stage.

However, these assumptions did not necessarily hold. Although it is likely that the winners of the previous competiions could have been declared winners using various scoring schemes, nevertheless, the rankings of the remaining top solvers could have changed a lot.
The scoring scheme used for
ing scheme used for the SAT 2005 competition is designed to address these issues. It incorporates these .
It gives more credit for solving hard benchmarks than solving easy ones.

- It gives more credit for solving a benchmark fast.
- It gives extra credit for each series solved.
- It stabilizes the rankings of the solvers at the end of the competition.

While the scoring scheme was designed on a purely theoretical basis, the results of the SAT 2005 Competition indicate that the new scoring scheme meets its expectations in practice.

3 The Purse-Based Scoring System

The implemented scoring plan works as follows. A run is defined to be the execution of one solver on one benchmark instance, or problem. Each run is allocated a certain amount of CPU t. If te solver succeeds, timeU Ssed records
the time.
For SAT 2005, there are three categories of benchmark, INDUSTRIAL, CRAFTED, and Random. Within each category, there are several specialties, such as SAT, SAT +UNSAT, UNSAT, and CERTIFIED-UNSAT. The scoring system is applied separately within each combination of category and specialty.
Each problem has a solution purse which is divided equally among
Each problem has a solution purse, which is divided equally among all competition solvers that solve the problem. For SAT 2005, all problems have the standard solution purse (sttdP).
The speed purse is a fixed multiple (spdM) of the solution purse for all problems in the entire competition; it gives a weighting between solving and speed.
.
speedFactor $(p, i)=\left\{\begin{array}{cl}\frac{10000}{1+\operatorname{timeUsed}(p, i)} & \text { if } i \text { solved } p ; \\ 0 & \text { if } i \text { did not solve } p .\end{array}\right.$
$\operatorname{speedAward}(p, s)=\frac{\text { speedPurse }(p) * \text { speedFactor }(p, s)}{\sum_{i s p e d F a c t o r ~}(p, i)}$
Thus, the speeaAward is pro rata by speedFactor
The series purses reward breadth of application. Each series (within specialty within category) has a series purse,
any problem in a certain series, its series purse in not distributed.
For SAT 2005, all series contaning 5 or more benchmark instances have the same series purse, which is a fixed multiple (serM) of the standard solution purse. (Recall that scoring is separately applied within each combination of ategory and specialty, e.g., SAT within RANDOM, or SAT+UNSAT within CRAFTED.) All series containing 4 or The coefficients and m

$$
s t d P=1000.0 ;
$$

$$
\text { stdP }=1000.0 ; \quad \text { spdM }=1.0 ; \quad \text { ser } M=3.0 .
$$

4 Discussion

 The new scoring scheme and particularly some of its parameters are a first shot. After the competition they mostlikely will need to be adjusted. The general goal should be to advance the state-of-the-rt of SAT solvers. There are
multiple contradictory interperetaions what this means: speed on specific instances versus robustness versus breadth multiple contradictory interpretations what this means: speed on specific instances versus robustness versus breadth
of application. We plan to investigate various intuitive parameter settings and compare the resulting ranking of the top solvers manually. It is hoped that only for extreme settings the ranking will change considerably. It is also important to verify that all scores have an influence on the final ranking. If a certain parameter is not important, its contribution is not needed and the scoring scheme can be simplified accordingly. In principle, it should be possible to adjust the deters dynamically during at the next competition

(A) Sattunsat				(B) Sat $^{\text {a }}$				(c) unsat			
	Nor Solved					Nor Solved		Nbr Solved			
Solver	Sore	Sat	Unsat	Solver	Score	Sat	Unsat	Solver	Sore	Sat	Unsat
solverl	5130.5	87	0	solver36	${ }^{1352.7}$	20		solver	0	0	0
solver32	5221.3	97	0	solver43	4205.0	49	0	erl5	0	0	0
solve	7875.5	101	0	solver1	5566.5	${ }^{87}$	0	-127	0	0	0
solve	8269.1	49	${ }^{34}$	32	5735.2	96	0			0	0
solve	9561.3	${ }^{134}$	0	er38	7274.2	${ }^{86}$	0			0	0
solve	10933.5	128	0	ver28	9420.5	99	0	[132	0	0	0
solv	11312.8	146	0	er27	10360.2	${ }^{134}$	0	er42		0	0
solve	119123	86	50	ver8	10543.0	125	0	er43	4299.4	0	${ }_{3}$
solver	17047.5	132	0	er24	10837.4	${ }^{61}$	0	Er38	6000.2	0	50
	19055.6	61	37	solver7	10848.5	127	0	H24	8551.5	0	${ }^{36}$
	68.0	${ }^{124}$	63	solver15	111060.1	127	0		9902.5	0	${ }^{63}$
	21063.6	127	${ }_{6}$	solver9	113927	${ }^{124}$	0	solver5	10613.6	0	${ }^{83}$
		136	${ }^{73}$	31	12184.3	146	0	er33	11204.4	0	${ }^{73}$
		125	67		12395.0	136	0		12173.6	0	${ }^{66}$
	23	143	83	solves	14952.3	143	0		9.9		67
		153	96	solver17	16959.1	153	0	er16	127.5	0	${ }^{95}$
	31482.8	111	66	12	17869.9	130	0	erl7	14525.7	0	${ }_{96}$
		167	100	solver20	18887.5	111	0	solver20	14637.9	0	${ }_{6}$
		156	${ }^{5}$			167	0		${ }^{15885} 3$	0	100
solver39	3760.4	169		-40	18975.0	159	0	(139	18849.0	0	97
	42123.5	157 158 158	105	solver6	12257.6	${ }^{158}$	0	solver18	20056.9	0	${ }^{105}$
Sole		158	109	16	20078.4	156		隹			109
Solve	45957	158	109	${ }^{\text {selder }}$	220190. 2	169	${ }_{0}$	Solverl	${ }_{2}^{245585}$	0	111
solver		163	136	19	22894.1	157	0	26	311366.9	0	${ }^{36}$
solve		159	119	18	2,	158	0		33365.6	0	129
solvert		182	111		3.2	163	0			0	
solver36		20	78		2966.8	195	0			0	113
solver37		195	130			182					145
	7906	173	145		38063.1	173		solver36	55211.4		

These tables present the results of stage one for the SAT 2005 Competition.

(A) Sat + UnSat				${ }^{(B)}$) Sat				(c) unsat			
	Nbr Solved			Nbr Solved				Nbrsold			
Solver	Score	Sat	Unsat	Solver	Score	Sat	Unsat	Solver	Score		Unsat
	1544.0	28		Solver36	1544.0	28		solver			
solver1	3154.0	50	0	solver	3154.0	50	0		0	0	0
solver43	3178.0	40	0	solver43	3178.1	40	0			0	
solver32	3442.2	56	0	solver32	3422.2	56				0	
er 24	4117.7	56	0	(124	4117.7	56		er28		0	
er27	4563.3	59	0	solver8	4422.4	60	0	solver31	0	0	
solver28	5248.8	65	0	solver7	4479.2	61	0	solver32	0	0	0
solver15	5291.4	65	0	solver27	4563.3	59	0	solver36	0	0	0
solvert2	5369.8	67	0	solver9	4647.7	60	0	solver 22	0	0	0
solver8	5330.1	60	5	solvert1	5175.8	67	0	solver43	0	0	0
	5799.3	60	5	solver28	5248.8	65	0	solver8	907.7	0	5
	6028.8	${ }^{71}$	0	-15	5291.4	65	0	solver9	947.6	0	5
	7116.1	${ }^{61}$	24	solver42	536	67	0	solver38	994.4	0	5
	100	67	${ }^{39}$	solver20	5960.7	66	0	solver7	2436.8	0	24
	1182.4	66	29	solver31	6028.8	71	0	solvert1	4576.1	0	39
sol	12623.2	82	5	solve	7880.9	80	0	solver20	5836.1	0	29
solver	1527	${ }^{80}$	63	solve	8445.5	88	0	solver18		0	45
solver33		88	61		9.3	91	0		11.3	0	45
solver18	17645.9	91	45	solver9	10739.3	91	0	solver21	7480.8	0	${ }^{65}$
solver19	185993.2	91	45	solver21	11262.1	94	0	solver33	7919.3	0	
cole	122358.5	${ }_{96}$	65	Solver	${ }_{\text {l }}^{1316516.2}$	${ }_{94}$	${ }_{0}$	-	${ }_{8420.5}^{826.2}$	0	${ }_{65}^{65}$
soly	25	94	78	solverto	12429.2	91	0		8470.4	0	67
soly	2695	88	67	22	14598.7	96	0	er39	13.3	0	
solver39	27201.3	90	${ }^{60}$	solver39	15350.1	${ }^{90}$	0	solverf	12684.7	0	${ }^{78}$
solver40	${ }^{30410}$	91	${ }^{78}$	solver17	15821.4	${ }^{94}$	0	solverl7	${ }^{15324,4}$	0	77
solverl7		44	7	sover	1850.5	8			20,	0	\%
solveri6	5	99	7	隹	19851.5	9		Solver26	20092921	0	
Soler		117	${ }_{78} 7$	sver2	cosile 5	117	0	solve	${ }_{3}^{2088281}$	0	78

Table 3. Random best performers last
(A) SAT+UNSAT

$$
{ }_{(B)}^{\text {(B) } \text { Sat }}
$$

(C) UUSAT

