
Annals of Mathematics and Arti�cal Inteligence 0 (1998) ?{? 1

Parallel Cooperative Propositional Theorem Proving �

Fumiaki Okushi

Department of Computer Science, California State University, Bakers�eld, CA 93311, U.S.A.

E-mail: okushi@cs.csubak.edu

A parallel satis�ability testing algorithm called Parallel Modoc is presented. Par-

allel Modoc is based on Modoc, which is based on propositional Model Elimination

with an added capability to prune away certain branches that cannot lead to a

successful subrefutation. The pruning information is encoded in a partial truth

assignment called an autarky.

Parallel Modoc executes multiple instances of Modoc as separate processes and

allows processes to cooperate by sharing lemmas and autarkies as they are found.

When a Modoc process �nds a new autarky or a new lemma, it makes the informa-

tion available to other Modoc processes via a \blackboard". Combining autarkies

generally is not straightforward because two autarkies found by two separate pro-

cesses may have con
icting assignments. The paper presents an algorithm to com-

bine two arbitrary autarkies to form a larger autarky.

Experimental results show that for many of the formulas, Parallel Modoc achieves

speedup greater than the number of processors. Formulas that could not be solved

in an hour by Modoc were often solved by Parallel Modoc in the order of minutes,

and in some cases, in seconds.

Keywords: Satis�ability, Model Elimination, autarky, Modoc, cooperation, parallel

search

1. Introduction

The Satis�ability Problem (SAT) is a fundamental problem in computer

science. Its acceptance problem is NP-complete, suggesting that it is unlikely

for it to have a polynomial-time algorithm. However, because of its importance,

many practical algorithms have been proposed.

Modoc [25] is a SAT decision procedure based on propositional Model Elim-

ination [17], extended to prune away certain branches that cannot lead to a

� Majority of the work was done while the author was at University of California, Santa Cruz.

2 F. Okushi / Parallel Cooperative Propositional Theorem Proving

successful subrefutation. The pruning information is encoded in a partial truth

assignment called an autarky [20]. As a descendant of Model Elimination, Modoc

also includes a mechanism to record successful subrefutations as lemmas and to

recall them as necessary.

An advantage of Modoc over the more traditional model-search procedures

is that it is able to be goal sensitive [25]. Many real-world problems can be

viewed as theorem-proving problems. Given this view, Modoc can start a search

from one of the goal clauses, i.e., the clauses expressing the negated conjectured

theorem; this may allow it an e�cient backward-chaining search to be performed.

When there is more than one goal clause, there is currently no sure way to

predict which goal clause would �nd a proof in the shortest amount of time. It

has been observed that the search time varies widely depending on the order of

goal clauses. (See Table 1 for an example.) Because of this, if we could identify

\good" goal clauses that would allow Modoc to reach a conclusion quickly, we

may be able to cut down on the search time dramatically. Not knowing which

ones are good, one way to simply avoid this problem is to simultaneously run

multiple Modocs, one for each goal clause, all at the same time. Although this

would obviously work, the question is, can we do better?

The paper describes a parallel SAT algorithm called Parallel Modoc, which

executes multiple instances of Modoc as separate processes. Modoc processes

communicate with each other to share autarkies and lemmas. The processes

bene�t from each other as, for instance, a lemma found by one process can

be used by another process to complete its subproof in progress. Combining

autarkies generally is not straightforward because two autarkies found by two

separate processes may have con
icting assignments. The paper presents an

algorithm that allows two arbitrary autarkies to be combined to form a larger

autarky. (See Section 4.1.)

Parallel Modoc di�ers in spirit from other parallel SAT algorithms [24,27,2].

In these algorithms, each process works independently on its share of the search

space, with communication used to balance the work load. However, in Parallel

Modoc, the processes cooperate [4,3,12]. Communication is used to deliver vital

information about the formula, which could then be used to shorten the cost of

�nding a refutation proof, or showing that no refutation is possible.

After standardizing terminologies and notations in Section 2, we begin with

an informal review of Modoc in Section 3. Section 4 describes Parallel Modoc,

including theorems on multiple autarkies that are used in Parallel Modoc. Sec-

F. Okushi / Parallel Cooperative Propositional Theorem Proving 3

tion 5 reports experimental performance results obtained by running several SAT

testers, including Parallel Modoc, on planning formulas. The main part of the pa-

per ends with a summary and on future works in Section 6. For self-containment,

two appendices are provided on topics that are not directly related to Parallel

Modoc but are referred to in the paper. Appendix A reviews the ideas behind

formulating planning problems as SAT problems [13], and Appendix B summa-

rizes goal-sensitive simpli�cation [26], which is a simpli�cation scheme suited for

backward-chaining theorem provers.

2. Terminologies and Notations

We consider formulas in conjunctive normal form (CNF). A CNF formula

is a conjunction of clauses, each of which is a disjunction of literals. A literal is

either a variable, or the negation of a variable. Negation will be denoted by \:".

Double negation is ignored, as usual. Formulas and clauses will be expressed using

set notation; for clarity, clauses will use \[. . .]" instead of the usual \f. . . g". A

formula will thus be expressed as in f[a; b], [a;:b], [:a; c], [:a;:c], [:a;:b; d],

[:a; b;:d]g.

A partial truth assignment is a partial function from the set of variables to

the boolean set. Partial truth assignments will be expressed using set notation,

as in fa;:b; cg; this means that variable a is assigned true, variable b is assigned

false, and variable c is assigned true, and that no other variables are assigned

values. A satisfying truth assignment is a partial truth assignment that satis�es

the formula; that is, each clause has a literal that is in the truth assignment.

The Satis�ability Problem (SAT) is: Given a CNF formula, determine

whether it has a satisfying truth assignment or not. Although the problem is

stated as a decision problem, in practice, we are often interested in a satisfying

truth assignment, should the formula turn out to be satis�able. (For example,

in the planning formulas used in Section 5, satisfying truth assignments encode

successful plans.)

An autarky A of a CNF formula F is a partial truth assignment that parti-

tions F into two subsets, autsat(F ; A) and autrem(F ; A), such that any clause in

autsat(F ; A) has a literal in common with A (and hence is satis�ed by A), and

any clause in autrem(F ; A) has no variable in common with A (and hence is not

a�ected by the assignments made to the variables in A). Autarky A allows the

satis�ability problem of F to be reduced to that of autrem(F ; A). The concept

4 F. Okushi / Parallel Cooperative Propositional Theorem Proving

of autarky was �rst introduced by Monien and Speckenmeyer [20].

Example 1. Let the formula F be f[a;:c;:e], [:b; c], [:a; b; d], [:d; e]g. Then,

fa; b; cg is an autarky of F , but fa; cg is not. Using the autarky fa; b; cg, the

satis�ability problem of F is reduced to that of f[:d; e]g. �

A property of autarkies that will be used later in a proof is the following.

Lemma 2. A partial truth assignment A is an autarky of F if and only if every

clause in F that contains a false literal, also contains a truth literal.

Proof. Suppose A is an autarky. Then, A partitions F into autsat(F ; A) and

autrem(F ; A). Since clauses in autrem(F ; A) have none of their literals assigned

values, any clause that contains a false literal must belong to autrem(F ; A), which

implies that they are satis�ed.

Suppose that any clause that contains a false literal also contains a true

literal. This allows F to be partitioned into two sets|the set of satis�ed clauses,

and the set of clauses none of whose literals are assigned values. This quali�es A

to be an autarky. �

3. Modoc

Modoc is a SAT decision algorithm introduced by Van Gelder [25]. It is

based on propositional Model Elimination [17] and incorporates a new pruning

technique based on the concept of autarky. Although the concept of autarky was

�rst introduced by Monien and Speckenmeyer for use in their model-search algo-

rithm [20], Van Gelder adapted it to be used in a refutation-search procedure, to

prune away certain branches that cannot lead to a successful subrefutation. Van

Gelder also showed that autarkies can be derived during failed subrefutation at-

tempts, and that a satisfying truth assignment can be obtained by combining the

autarkies, should the formula turn out to be satis�able. This section informally

describes the algorithm. Details of Modoc can be found elsewhere [25].

As a refutation-search procedure, the aim of Modoc is to �nd a refutation

proof, demonstrating that the formula is inconsistent. In Modoc, a refutation

proof is embodied in a refutation tree, and its progress is represented by a propo-

sitional derivation tree (PDT). Modoc tries to construct a refutation tree using

the basic operation|PDT extension.

F. Okushi / Parallel Cooperative Propositional Theorem Proving 5

We de�ne PDT below. PDT essentially has the same structure as the clause

trees used by others [19,15].

1. A propositional derivation tree (PDT) is a tree in which two types of nodes|

clause nodes and goal nodes|alternate by level. A clause node is labeled with

a clause in the formula, and a goal node is labeled with a literal in the formula

(or with >, described later).

2. A clause node labeled with C has exactly one goal node labeled with g as a

parent if and only if

� :g is in C (or g is >, described later), and

� no literal in C labels an ancestor goal node.

3. A clause node labeled with C has a goal node labeled with g as a child if and

only if

(a) g is a literal in C, and

(b) :g does not label any ancestor goal node of C.

Note that if all the literals in C are complements of some ancestor goal nodes,

then this clause node has no child.

A refutation tree is a PDT whose root is a goal node labeled with a special

symbol >, called the verum, and whose leaf nodes are all clause nodes. If no

refutation tree can be constructed, the formula is satis�able. For convenience,

we will call a subtree of a refutation tree a refutation subtree.

Modoc tries to construct a refutation tree in a depth-�rst fashion starting

from a tree with only the verum node using its only operation, PDT extension.

The PDT extension operation extends a goal node with a clause node that con-

tains the complement of the goal node but does not contain any of the ancestor

goal nodes. (If the goal node is the verum node, then any clause can be used to

extend the goal node. The clause used to extend the verum node is called the

top clause.) This operation also adds goal nodes beneath the just-added clause

node; there is one goal node for each literal in the clause node that is not the

complement of some ancestor goal node. We say that goal node creation was

suppressed for a literal in a clause node if the complement of the literal labels an

ancestor goal node other than the parent goal node.

For sake of e�ciency, it is not necessary for Modoc to actually construct

every part of a refutation tree. That is, if the outcome of subtree construction

6 F. Okushi / Parallel Cooperative Propositional Theorem Proving

is known, Modoc may move on to other parts of the tree whose outcome is not

known. There are two situations where this could happen. One is when it is

known that it is possible to construct a refutation subtree beneath a goal node.

Another is when it is known that it is not possible to construct a refutation

subtree using a particular clause in a PDT extension operation. The former

involves the use of a lemma, and the latter involves the use of an autarky.

When a refutation subtree is successfully constructed for a goal node, that

fact could be recorded as a lemma. A lemma records the complement of the

literal labeling the goal node, as well as the \premise" in which it was successful;

the premise consists of the ancestor goal nodes that suppressed the creation of

goal nodes below the refuted goal node. At a later time, if a goal node with the

same literal is created, and the set of its ancestor goal nodes is a superset of the

premise in which the literal had a refutation subtree constructed earlier, subtree

construction need not be carried out as it is obvious that a refutation subtree

could be constructed.

The original lemma strategy of Model Elimination was to record lemmas

as clauses. However, this had the problem of increasing the number of eligible

extension clauses that need to be tried [9]. Also, the lemma clauses tend to

be highly redundant because they were often subsumed by other clauses [23].

Modoc's lemma strategy is an extension of Shostak's C-literal strategy [23] that

solved these problems.

A behavior discovered by Van Gelder and exploited in Modoc is that an

autarky can be derived during a failed attempt to construct a refutation subtree.

In essence, all the goal nodes that were part of the failed attempt can be turned

into an autarky. (See Example 3.) Further, he also discovered that any clause that

is satis�ed by an autarky cannot label any clause node in a successful refutation

subtree. Modoc uses this fact to safely exclude clauses from the set of possible

PDT extension clauses.

Example 3. Consider the formula

f[a; b]; [a;:b]; [:a; c]; [:a;:c]; [:a;:b; d]; [:a; b;:d]g:

Figures 1a through 1g show how Modoc may try to construct a refutation tree

for the formula. Details of the operations of Modoc are given in the captions. In

particular, suppression of goal node creation can be seen in Figures 1c and 1g,

autarky derivation can be seen in Figures 1c and 1d, autarky pruning can be seen

F. Okushi / Parallel Cooperative Propositional Theorem Proving 7

>

a b

a b

Figure 1a. (Example of Modoc execution.) We consider the formula f[a; b], [a;:b], [:a; c],

[:a;:c], [:a;:b; d], [:a; b;:d]g in this example. Clause nodes are shown in rectangles and goal

nodes are shown in circles. Thick circles indicate where the search is. Clause [a; b] is chosen as

the top clause. Two goal nodes a and b are immediately created.

>

a b

a b

:a :b d

:b d

Figure 1b. (Example of Modoc execution.) All four clauses containing :a are eligible to extend

goal node a. Here, Modoc extends goal node a with clause node [:a;:b; d]. This creates two

new goal nodes :b and d.

in Figure 1f, lemma derivation can be seen in Figure 1h, and the use of a lemma

can be seen in Figure 1i. �

One advantage of Modoc (and other backward-chaining search procedures)

over model-search procedures is that it is able to be \goal sensitive" [25]. Many

real-world problems can be viewed as theorem-proving problems. A formula de-

rived from such a problem comprises of two parts|the axioms, and the negated

conjectured theorem, i.e., the goal clauses. The axioms are obviously consis-

tent; thus, to test whether the formula is inconsistent or not, it is su�cient to

start a refutation attempt only from the goal clauses. Goal-sensitive search has

allowed Modoc to achieve search performance comparable to incomplete model-

search procedures (which are considered to be among the fastest methods to �nd

satisfying truth assignments) on various planning formulas [26].

While the idea of goal-sensitive search has been a success for Modoc, a

8 F. Okushi / Parallel Cooperative Propositional Theorem Proving

>

a b

a b

:a :b d

:b d

:a b :d

A

:d

Figure 1c. (Example of Modoc execution.) Only clause [:a; b;:d] is eligible to extend goal

node :b. (Clause [a; b] is ineligible because it contains an ancestor goal node a.) Thus, Modoc

extends goal node :b with clause node [:a; b;:d]. This creates a new goal node :d. Note that the

creation of goal node :a was suppressed (indicated by A). This is because its complement a

is a non-parent ancestor goal node. Modoc now tries to extend goal node :d. However, no

clause is eligible to extend it. (Clause [:a;:b; d] is ineligible because it contains an ancestor

goal node :b.) This implies that the refutation attempt for goal node :d has failed. This causes

Modoc to derive an autarky f:dg.

>

a b

a b

:a :b d

:bf:dg d

Figure 1d. (Example of Modoc execution.) Modoc now backtracks to goal node :b with autarky

f:dg. The autarky is conditional in the sense that it is an autarky for the formula resulting

from strengthening the original formula with the partial truth assignment implicit by the set

of ancestor goal nodes|in this case, fa;:bg. Modoc now tries to extend goal node :b with

some other eligible clause. However, no other clause is eligible to extend it. This implies that

the refutation attempt for goal node :b has failed. This causes Modoc to derive an autarky

f:b;:dg, constructed as the union of :b (the current goal node) and the current autarky f:dg.

F. Okushi / Parallel Cooperative Propositional Theorem Proving 9

>

a b

af:b;:dg b

Figure 1e. (Example of Modoc execution.) Modoc now backtracks to goal node a with autarky

f:b;:dg. Again, the autarky is a conditional autarky that is conditioned on the set of ancestor

goal nodes fag. Modoc now tries to extend goal node a with some other eligible clause.

>

a b

af:b;:dg b

:a c

c

Figure 1f. (Example of Modoc execution.) There are two clauses eligible to extend goal node a.

(Clause [:a; b;:d] is not eligible as it is satis�ed by the autarky f:b;:dg.) Here, Modoc extends

goal node a with clause node [:a; c]. This creates a new goal node c.

Table 1

Search times of modoc on a block-world planning formula (bw large.c for deadline 14) for di�erent

goal-clause orders. Times are CPU seconds on an SGI Challenge (150MHz R4400). The formula

has 15 goal clauses, which were cyclically permuted to create 15 runs. Permutations not listed

exceeded the one-hour time limit.

goal-clause order CPU seconds

3,. . . ,15,1,2 911

7,. . . ,15,1,. . . ,6 4

8,. . . ,15,1,. . . ,7 24

11,. . . ,15,1,. . . ,10 745

problem remains in deciding in what order should we try the goal clauses? Our

experience with Modoc shows that the search time varies widely depending on

the order of goal clauses. Table 1 shows how search time varies on one planning

formula reported in Section 5. Because of the wide variability, from a practical

10 F. Okushi / Parallel Cooperative Propositional Theorem Proving

>

a b

af:b;:dg b

:a c

c

:a :c

A

Figure 1g. (Example of Modoc execution.) Only clause [:a;:c] is eligible to extend goal node c.

Thus, Modoc extends goal node c with clause node [:a;:c]. The creation of goal node :a was

suppressed (indicated by A) because its complement a is a non-parent ancestor goal node. This

completes the refutation along this branch.

>:a

a b

af:b;:dg:c b

:a c

c

:a :c

A

Figure 1h. (Example of Modoc execution.) The successful refutation of goal node c causes a

lemma literal :c to be derived and attached to goal node a. It also causes a lemma literal :a

to be derived and attached to the verum node. Search must now continue to refute goal node b.

point of view, it is crucial for us to be able to defer \bad" goal clauses in favor

of \good" goal clauses. However, it is unlikely that we will one day be able to

tell them apart without actually solving the problem. Not knowing which ones

are \good" and which ones are \bad", one obvious solution to this would be to

simply run multiple copies of Modoc, one for each goal clause, all at the same

F. Okushi / Parallel Cooperative Propositional Theorem Proving 11

>:a:b

a b

af:b;:dg:c b

:a c

c

:a :c

A

a :b

L

Figure 1i. (Example of Modoc execution.) There are two clauses eligible to extend goal node b.

Here, Modoc extends goal node b with clause [a;:b]. The creation of goal node a is suppressed

because its complement :a is a lemma literal attached to an ancestor (indicated by L). This

completes the refutation along this branch, and also the refutation for this formula, as all leaf

nodes are now clause nodes.

time. While this would avoid the problem of a search getting \caught" with a

bad top clause, as a research question, we would like to know if it is possible to

do better.

4. Parallel Modoc

Parallel Modoc executes multiple instances of Modoc as separate processes,

one for each goal clause. It can be viewed as a simple multi-agent system, in

which Modoc processes act as agents. The processes cooperate [4,3,12] in �nding

a solution by sharing lemmas and autarkies as they are found. As an example, a

lemma found by process 3 could help process 2 complete its subproof in progress,

which then derives a lemma that could be used by process 1 to complete its

subproof. This contrasts with many other parallel SAT testers [24,27,2] whose

processes work independently, and communication used merely to balance the

work load. It could be said that the main use of parallel processing in these

algorithms is to simply increase throughput (i.e., to examine more \nodes" in a

unit time). In Parallel Modoc, parallel processing is also used to allow coopera-

tion. It executes multiple searches starting from di�erent goal clauses and allows

information discovered about the formula to be shared.

12 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Modoc
process

Modoc
process

Modoc
process

Modoc
process

......

blackboard

autarky
literals

lemmas

w

write

Figure 2a. (Lemma sharing in Parallel Modoc.) A Modoc process �nds a new lemma w and

writes it to the blackboard.

Modoc
process

Modoc
process

Modoc
process

Modoc
process

......

blackboard

autarky
literals

lemmas

w

read
w

Figure 2b. (Lemma sharing in Parallel Modoc.) A di�erent Modoc process incorporates the

new lemma w into its collection of lemmas.

In Parallel Modoc, when a Modoc process �nds a new autarky or a new

lemma, apart from saving it for its own future use, it makes the information

available to other Modoc processes via a \blackboard". The blackboard is a

shared data structure to which new information about the formula is written.

Other Modoc processes will later incorporate the new information found in the

blackboard into their local pool of information.

In the current implementation of Parallel Modoc, only the autarkies and

lemmas that are not conditioned on any ancestor goal nodes are shared. Such

autarkies and lemmas are called top-level autarkies and top-level lemmas, respec-

tively. Top-level autarkies and lemmas have no premise under which they hold

true (i.e., they are always true), thus allowing immediate use by other processes.

Figures 2a and 2b describe how Modoc processes may share a top-level

F. Okushi / Parallel Cooperative Propositional Theorem Proving 13

lemma with other Modoc processes in Parallel Modoc. Note that a top-level

lemma consists only of a single literal (as it has no \premise"). When a Modoc

process derives a new top-level lemma w, it writes it to the blackboard (Figure 2a).

At a later time, other Modoc processes will incorporate w into their collection

of lemmas (Figure 2b). If the process is currently attempting to refute a goal

node labeled with :w, the lemma may be used to complete that subrefutation.

Further, the process may use the new lemma to avoid constructing a refutation

subtree for goal nodes labeled with :w in future refutation attempts,

4.1. Combining Autarkies

Sharing autarkies is not straightforward. This is because a formula may

have con
icting autarkies, that is, two autarkies A1 and A2 such that for some

variable x, x is in A1 while :x is in A2. Although this would not happen within

a lone Modoc process, with multiple Modoc processes running allowing multiple

searches to be made at the same time, it becomes a possibility. Without a means

to combine them, it would require Modoc to store multiple autarkies separately,

which may possibly become a bookkeeping nightmare. However, Theorem 6 below

shows that there is a simple way to combine any two autarkies to form a new

autarky that satis�es exactly the same set of clauses satis�ed by either of the two

autarkies.

To do this, we �rst de�ne a new operator over the set of partial truth

assignments.

De�nition 4. Let A1 and A2 be partial truth assignments. Then, we de�ne

A1 x A2 as

A1 x A2 = A1 [(A2 � �A1)

where �A1 = f:x jx 2 A1g. We will say that A1 is given preference over A2 in

resolving con
icting assignments. �

Example 5. Let two partial truth assignments A1 and A2 be as in Theorem 6

below. Then,

A1 x A2 = fu1; : : : ; um; v1; : : : ; vn; w1; : : : ; wkg;

A2 x A1 = fu1; : : : ; um; v1; : : : ; vn;:w1; : : : ;:wkg:

�

14 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Theorem 6. Let two autarkies of a CNF formula F be as follows:

A1= fu1; : : : ; um; w1; : : : ; wkg;

A2= fv1; : : : ; vn;:w1; : : : ;:wkg:

That is, only the variables in fw1; : : : ; wkg have di�erent polarities in A1 and A2.

(Note that some of the uis may be vjs and vice versa.) Then,

1. both A1 x A2 and A2 x A1 are autarkies of F , and

2. both A1 x A2 and A2 x A1 satisfy exactly the same set of clauses as the

set of clauses satis�ed by either A1 or A2.

Proof. We only prove for A1 x A2. The other case can be shown to be true by

symmetry. Let A = A1 x A2 for brevity.

1. By Lemma 2, it is su�cient to show that any clause that contains :ui or :vi

or :wi for some i contains a literal that is in A.

Let C be a clause that contains :wi for some i. Since A1 is an autarky that

includes wi, A1 satis�es C, and thus, there must be some literal x in A1

that is also in C. Since A1 is a subset of A, x must also be in A. A similar

argument can be made for a clause that contains :ui for some i.

Let C be a clause that contains :vi for some i. Since A2 is an autarky that

includes vi, A2 satis�es C, and thus, there must be some literal x in A2 that

is also in C. There are two cases to consider: (1) x is vj for some j, and (2) x

is :wj for some j. In the �rst case, we are done as vj is in A. The second

case reduces to an earlier case.

2. It is su�cient to show that set containment holds both ways.

Let C be a clause that is satis�ed by A. This means that there is some

literal x in C that is also in A. There are three cases to consider: (1) x is

ui for some i, (2) x is vi for some i, and (3) x is wi for some i. In the �rst

and third cases, x is also in A1, and thus, C is satis�ed by A1. In the second

case, x is also in A2, and thus C is satis�ed by A2.

Let C be a clause that is satis�ed by A1. This means that there is some

literal x in C that is also in A1. Since A1 is a subset of A, x must also be

in A, and thus, C is satis�ed by A.

Let C be a clause that is satis�ed by A2. This means that there is some

literal x in C that is also in A2. There are two cases to consider: (1) x is

vi for some i, and (2) x is :wi for some i. In the �rst case, x is also in A,

F. Okushi / Parallel Cooperative Propositional Theorem Proving 15

and thus, C is satis�ed by A. In the second case, since A is an autarky that

contains wi, C is satis�ed by A as well.

�

As a result of combining, it is possible for a literal that was in one of the two

autarkies to not be in the new autarky. This may raise a concern that the new

autarky may not encode the information that any clause containing this literal

cannot lead to a successful subrefutation. However, one need not worry. By

Theorem 6, any clause that contains this literal is satis�ed by the new autarky.

This means that for each clause that contains this literal, there is some other

literal in that clause that is in the new autarky. Thus, we arrive at the following

corollary.

Corollary 7. From the point of view of pruning away certain branches that

cannot lead to a successful subrefutation, no information is lost during combining

autarkies. �

As a practical concern, particularly in a distributed computing environment

where communication is made over a computer network, transmitting new au-

tarkies as they are found may be costly, as they tend to be large. Theorem 8

below shows that it is su�cient to transmit only the new autarky literals found

since the last transmission.

Theorem 8. Let A1, A2, and A3 be autarkies for a formula such that A2 � A3.

Then,

1. (A1 x A2)x A3 = (A1 x A2)x (A3 �A2), and

2. A3 x (A2 x A1) = (A3 �A2)x (A2 x A1).

Proof. We only prove 1. The same approach could be used to prove 2.

Let A1, A2, and A3 be as follows:

A1= fu1; : : : ; um; w1; : : : ; wkg;

A2= fv1; : : : ; vn0 ;:w1; : : : ;:wk0g;

A3= fv1; : : : ; vn0 ; : : : ; vn;:w1; : : : ;:wk0 ; : : : ;:wkg:

16 F. Okushi / Parallel Cooperative Propositional Theorem Proving

That is, only the variables in fw1; : : : ; wkg have di�erent polarities in A1 and A3.

(Note that some of the uis may be vjs and vice versa.) Then,

(A1 x A2)x A3 = (fu1; : : : ; um; w1; : : : ; wkgx fv1; : : : ; vn0 ;:w1; : : : ;:wk0g)

x fv1; : : : ; vn;:w1; : : : ;:wkg

= fu1; : : : ; um; v1; : : : ; vn0 ; w1; : : : ; wkgx fv1; : : : ; vn;:w1; : : : ;:wkg

= fu1; : : : ; um; v1; : : : ; vn; w1; : : : ; wkg:

(A1 x A2)x (A3 �A2) = (fu1; : : : ; um; w1; : : : ; wkgx fv1; : : : ; vn0 ;:w1; : : : ;:wk0g)

x (fv1; : : : ; vn;:w1; : : : ;:wkg � fv1; : : : ; vn0 ;:w1; : : : ;:wk0g)

= fu1; : : : ; um; v1; : : : ; vn0 ; w1; : : : ; wkg

x fvn0+1; : : : ; vn;:wk0+1; : : : ;:wkg

= fu1; : : : ; um; v1; : : : ; vn; w1; : : : ; wkg:

�

Remark 9. It should be noted that when only the di�erence is transmitted be-

tween two processes, the same process must always be given preference in resolv-

ing con
icting assignments. A counter-example can be constructed if this is not

followed. (See Example 10 below.)

Example 10. Let the formula F be f[x], [y; v], [z], [u], [w], [t]g. Suppose

there are two processes P1 and P2, and that while P1 �nds autarky A1 =

fx;:y; u; v; wg, P2 �nds autarky A2 = fx; y; zg and then later �nds autarky

A3 = fx; y; z; u;:v; tg.

Now, consider the following sequence of combining autarkies:

1. Combine A1 and A2, giving preference to P1 to resolve con
icting assign-

ments. Let A12 denote the resulting partial truth assignment.

2. Combine A3 � A2 and A12, giving preference to P2 to resolve con
icting

assignments. Let A312 denote the resulting partial truth assignment.

Then,

A12=A1 x A2

= fx;:y; u; v; wg x fx; y; z; g

= fx;:y; z; u; v; wg;

F. Okushi / Parallel Cooperative Propositional Theorem Proving 17

revise

Modoc
process

Modoc
process

Modoc
process

Modoc
process

......

blackboard

autarky
literals

lemmas

x y ...

write

Figure 3a. (Autarky sharing in Parallel Modoc.) A Modoc process �nds a new autarky. It

writes to the blackboard the new autarky literals that do not con
ict with the autarky in the

blackboard. The process must revise its autarky if there is a con
ict.

A312 = (A3 �A2)x A12

= (fx; y; z; u;:v; tg � fx; y; zg)

x fx;:y; z; u; v; wg

= fu;:v; tgx fx;:y; z; u; v; wg

= fx;:y; z; u;:v; w; tg:

The partial truth assignment A312 is not an autarky because clause [y; v] has a

false literal but it does not have a true literal. �

One way to satisfy the condition in Remark 9 is to give only one entity pref-

erence over all other entities in resolving con
icts among autarky assignments. In

the current implementation of Parallel Modoc, the blackboard is given preference

over all Modoc processes. This requires a Modoc process to revise its autarky if

there is a con
ict between its autarky and the autarky in the blackboard.

Figures 3a and 3b show how autarkies are communicated in Parallel Modoc.

When a Modoc process �nds a new autarky, it writes to the blackboard new

autarky literals that do not con
ict with any of the autarky literals in the black-

board (Figure 3a). If there are con
icts, the process must revise its autarky.

At a later time, other Modoc processes will incorporate the new autarky literals

by possibly revising their own autarky (Figure 3b). If the process is currently

attempting a subrefutation that includes a clause node that is now satis�ed by

the enlarged autarky, the search may fail and backtrack to the parent goal node

of the highest such clause node. Further, the process may use the new autarky to

18 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Modoc
process

Modoc
process

Modoc
process

Modoc
process

......

blackboard

autarky
literals

lemmas

x y ...

read

revise

x y ...

Figure 3b. (Autarky sharing in Parallel Modoc.) A di�erent Modoc process incorporates the

new autarky literals by possibly revising its autarky.

exclude clauses that are now satis�ed by it from future PDT extension operations.

5. Experimental Results

To assess the relative performance of Parallel Modoc over Modoc and other

SAT testers, Parallel Modoc was implemented in C. In this section, results ob-

tained on running various SAT testers on planning formulas are reported. The

results show that Parallel Modoc often exhibits super-linear speedup. Such im-

provement is due to the extreme skewness of the distribution of search times

depending on the top clause, as observed in Tables 1, often helped by cooper-

ation among the Modoc processes. The amount of improvement varies widely

depending on the formula.

The skewed distribution of combinatorial search times has been studied by

others [22,10]. While the author's experience with Modoc agrees with the no-

tion of \heavy-tailed" distribution, the author does not have su�cient data to

fully explain the distribution of Modoc search times at this time. Others have

studied the behavior of parallel searches [18], among them are studies showing

that not only is super-linear speedup possible, it can be expected under certain

circumstances [21,22].

Planning formulas are formulas generated from planning problems. In

the experiments, the formulas were generated using two \SAT compilers"|

Satplan [14] and Medic [7]. Satplan takes hand-coded axioms, while Medic takes

axioms described as STRIPS-style operators [8]. Each formula has a deadline

associated to it and has the property that it is satis�able if and only if there is a

F. Okushi / Parallel Cooperative Propositional Theorem Proving 19

successful plan that meets the deadline. For the experiments, two formulas were

generated for each problem. One formula had the deadline set to the optimal

plan length, making it satis�able, and another formula had the deadline set to

one less than the optimal plan length, making it unsatis�able. Basic ideas behind

formulating planning problems as SAT can be found in Appendix A. Details can

be found elsewhere [13,14,7].

After the formulas were generated, they were simpli�ed. For Modoc and Par-

allel Modoc, simpli�cation must preserve not only satis�ability, but also models

and goal clauses. We call this type of simpli�cation goal-sensitive simpli�ca-

tion [26]. More information on goal-sensitive simpli�cation can be found in Ap-

pendix B. In contrast, we will refer to the usual simpli�cation as goal-insensitive

simpli�cation.

The particular C implementations of Modoc and Parallel Modoc that were

used in the experiments are denoted by modoc and pmodoc, respectively. In

pmodoc, the blackboard was implemented in System V shared memory segments.

Other SAT testers included in the experiments are satz [16] and relsat [1],

which are both complete model-search procedures based on DPLL [6,5]. satz

incorporates a highly optimized branch-variable selection heuristic that uses unit

propagation to score variables. relsat incorporates a two-step branch-variable

selection heuristic that may make stochastic choices, as well as a mechanism to

record (and discard) nogoods, which are information derived from failed searches.

Learn orders of 3 and 4 were used, as recommended by the author. However,

because learn order of 4 did better in almost all cases, only the search times from

that runs are reported.

Two four-processor computer systems with di�erent memory sizes were used

to run the experiments. The SGI Challenge system had 64MB of main memory

and was used to run experiments with smaller formulas. The SGI Onyx sys-

tem had 256MB of main memory and was used to run experiments with larger

formulas. Both systems had four 150MHz R4400 processors. The time-sharing

capability provided by the operating system (IRIX version 5.3) was used to exe-

cute as many Modoc processes as necessary.

5.1. Improvements by Parallel Search and Sharing

Tables 2a and 2b show the search times on hard planning formulas gener-

ated by Medic. (Medic may generate formulas in a number of di�erent encodings.

20 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Table 2a

Search times of various SAT testers on the satis�able hard planning formulas generated by

Medic. Because of the criterion used to choose the formulas (see Section 5.1 for details), the

numbers are not a fair representation of modoc's capabilities. Number of variables and literals

are after simpli�cation. Times are CPU seconds for satz, relsat, and modoc, and elapsed

seconds for pmodoc; they were obtained on a 4-CPU SGI Challenge (150MHz R4400). relsat

times are average of 5 runs. `?' indicates that the run was terminated after 1 hour; for relsat,

it means that none of the 5 runs found a solution in 1 hour.

problem/ num of encod- num num search time (seconds)

deadline goal ing of of satz relsat modoc pmodoc (share?)

clauses vars literals (no) (yes)

big-bw1/11 6 ccse 980 77,629 ? 863 ? ? ?

ecse 798 14,090 3 13 ? 16 16

fridge2/13 2 cbse 180 10,485 ? 9 ? 25 24

ccse 346 10,370 ? 17 ? 78 78

crse 310 9,880 ? 15 ? 582 581

hanoi3/7 3 cbse 158 25,468 ? 2088 618 98 70

monkey2/9 2 cbse 250 37,696 ? 31925 ? ? ?

cfst 331 14,465 ? 22 974 909 387

crse 601 48,757 1075 77235 ? ? ?

tire2/14 6 ccse 677 41,343 5 598 3375 164 83

cfst 623 34,944 ? 3213 ? ? ?

crse 628 40,002 66 3097 ? ? 1281

efst 512 19,309 229 14 ? 3 3

The encoding has been included in the tables to merely help identify the formula.

Explanation of these encodings may be found elsewhere [7].) The problems were

selected based on an earlier study in which the corresponding satis�able formulas

caused modoc to time out after 10 minutes. Because of this selection criterion,

the numbers are not a fair representation of modoc's capabilities. The number of

variables and clauses are for the formula generated after goal-insensitive simpli-

�cation.

With few exceptions, the factor of improvement by pmodoc over modoc was

far greater than the number of processors. Formulas that could not be solved in

one hour by modoc were often solved in the order of minutes, and in some cases,

in seconds. This shows that pmodoc bene�ts greatly from the parallel searches

and not simply from the increase in the number of processors.

F. Okushi / Parallel Cooperative Propositional Theorem Proving 21

Table 2b

Search times of various SAT testers on the unsatis�able hard planning formulas generated by

Medic. More information can be found in the caption for Table 2a.

problem/ num of encod- num num search time (seconds)

deadline goal ing of of satz relsat modoc pmodoc (share?)

clauses vars literals (no) (yes)

big-bw1/10 6 ccse 888 69,851 ? 1408 ? ? ?

ecse 707 12,375 5 3 222 223 115

fridge2/12 2 cbse 166 9,616 ? 11 ? 216 108

ccse 318 9,492 ? 13 ? 2113 1869

crse 285 9,043 ? 16 ? 1528 444

hanoi3/6 3 cbse 135 21,388 ? 628 79 45 26

monkey2/8 2 cbse 222 33,194 ? ? ? ? 1701

cfst 291 12,532 2241 16 301 302 61

crse 529 42,641 903 ? 1626 462 178

tire2/13 6 ccse 625 38,014 802 1016 ? ? ?

cfst 577 32,177 ? 2358 ? ? ?

crse 580 36,783 623 4325 ? ? ?

efst 467 17,385 94 7 1900 1902 1968

Autarky sharing did not help, in the sense that when an autarky was found,

it was actually a satisfying truth assignment, and thus, no further search was nec-

essary. Lemma sharing occurred on all the formulas, but no correlation appears

to exist between the number of shared lemmas (not shown) and the amount of im-

provement in search time. Actually, this was expected. A derivation of a lemma

only implies a potential to save time, not a guarantee. Unless a goal node labeled

with the complement of the lemma literal is attempted refutation, the lemma

is of no value at all. In fact, a small overhead to derive and record the lemma

must be incurred at the time of derivation, making lemma strategies costly if the

lemmas are never (or rarely) used. For each problem, the unsatis�able formula

generally had more shared lemmas than the satis�able formula.

On four satis�able formulas (fridge2 in cbse, ccse, and crse encodings, and

tire2 in efst encoding), the two Modoc derivations that led to determining that

the formula was satis�able, one using sharing and another without sharing, were

the same. This means that the shared lemmas did not help at all to shorten the

search for these formulas.

22 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Table 3a

Search times of various SAT testers on the satis�able hard planning formulas generated by

Satplan. Number of variables and literals are after simpli�cation. Times are CPU seconds for

satz, relsat, and modoc, and elapsed seconds for pmodoc; they were obtained on a 4-CPU SGI

Onyx (150MHz R4400). relsat times are average of 5 runs. `??' indicates that the run was

terminated after 5 hours.

problem/ num of num num search time (seconds)

deadline goal of of satz relsat modoc pmodoc (share?)

clauses vars literals (no) (yes)

logistics.a/11 8 638 13,089 1.07 0.31 0.54 8.71 3.38

logistics.c/13 7 897 21,412 413 10 3 39 5

bw large.c/14 15 2,222 78,146 7 31 15439 25 17

bw large.d/18 19 4,714 205,559 4518 431 58 239 101

Table 3b

Search times of various SAT testers on the unsatis�able hard planning formulas generated by

Satplan. More information can be found in the caption for Table 3a.

problem/ num of num num search time (seconds)

deadline goal of of satz relsat modoc pmodoc (share?)

clauses vars literals (no) (yes)

logistics.a/10 8 541 10,598 0.72 0.24 3.15 9.83 4.55

logistics.c/12 7 787 18,244 2412 149 1132 2401 1195

bw large.c/13 15 1,935 66,547 17 16 5389 2695 2010

bw large.d/17 19 4,275 184,180 2796 663 ?? ?? ??

In comparison with the two other SAT testers, satz and relsat, pmodoc did

better on some of the formulas and worse on the others. (relsat runs that timed

out were rerun with the same seed if one of the runs for the same formula had

�nished within 1 hour. This was to allow the average to be computed. However,

this has allowed more numbers to be represented for relsat than for the other

SAT testers.) As a SAT tester, the performance of pmodoc is limited to some

degree by the underlying search engine, modoc. At this time, modoc incorporates

very limited heuristics to guide its search.

Tables 3a and 3b show the search times on hard planning formulas generated

by Satplan. The cause of exceptional improvement by pmodoc over modoc on the

satis�able bw large.c formula was that modoc started with a \bad" top clause.

A separate mini-study (Figure 1) shows that had it started with the 7th goal

clause, it could have solved the formula in 4 seconds. Although this formula

F. Okushi / Parallel Cooperative Propositional Theorem Proving 23

Table 4a

Search times of various SAT testers on the satis�able checker formulas. Number of variables

and literals are after simpli�cation. Times are CPU seconds for satz, relsat, and modoc, and

elapsed seconds for pmodoc; they were obtained on a 4-CPU SGI Onyx (150MHz R4400). relsat

times are average of 5 runs. `??' indicates that the run was terminated after 5 hours; for relsat,

it means that none of the 5 runs found a solution in 5 hours.

num dead- num of num num search time (seconds)

of line goal of of satz relsat modoc pmodoc (share?)

checkers clauses vars literals (no) (yes)

2 8 4 105 3,900 0.34 0.07 0.02 0.08 0.13

3 15 6 282 18,294 4 64 39 2 3

4 24 8 597 55,934 13431 11377 12883 1626 1606

Table 4b

Search times of various SAT testers on the unsatis�able checker formulas. More information can

be found in the caption for Table 4a.

num dead- num of num num search time (seconds)

of line goal of of satz relsat modoc pmodoc (share?)

checkers clauses vars literals (no) (yes)

2 7 4 90 3,238 0.33 0.15 0.12 0.30 0.48

3 14 6 261 16,794 93 112 121 199 186

4 23 8 570 53,252 ?? ?? ?? ?? ??

may be an exceptional case, this is exactly the kind of situation Parallel Modoc

attempts to \rescue" by means of parallel searches. For a formula like this, even

running pmodoc on a single-processor system can easily outperform modoc. In

fact, pmodoc solved it in 76 (elapsed) seconds on an equivalent single-processor

system.

Tables 4a and 4b show results on the \checker" formulas. The checker for-

mulas are planning formulas generated from a game based on the one-dimensional

version of Chinese Checkers. Figure 4 shows the aim of the 4-checker problem; it

also shows the possible �rst few moves. The problem is interesting in that it is

believed to have only two plans, counting symmetries, regardless of the number

of checkers.

Improvements by pmodoc were observed on the satis�able formulas. How-

ever, sharing did not help at all in most cases. On the unsatis�able 3-checker

formula, the (elapsed) search time of pmodoc was more than the search time

of modoc. This was re
ected in the number of PDT extensions performed by

24 F. Okushi / Parallel Cooperative Propositional Theorem Proving

Initial State

Move 1

Move 2

Final State

Figure 4. Aim of the 4-checker problem. The possible �rst few moves are also shown.

the Modoc process that proved that the formula was unsatis�able|while modoc

found a refutation in 698,469 PDT extensions, the Modoc process that found a

refutation in pmodoc took 720,413 PDT extensions without sharing and 722,043

PDT extensions with sharing.

5.2. Improvements by Increasing the Number of Goal Clauses

One problem in the current implementation of Parallel Modoc is that the

amount of parallelism is tied to the number of goal clauses in the formula. To

study the e�ect and the potential improvement due to increasing the number

of goal clauses, a preprocessor was run on the formulas in Tables 2a and 2b

to increase the number of goal clauses. The preprocessor �rst derived all the

resolvents involving the goal clauses, and then it replaced the goal clauses with

the resolvents and made the resolvents the new goal clauses.

Tables 5a and 5b compare search times of pmodoc on some of the formulas

listed in Tables 2a and 2b. To allow comparison between di�erent numbers of goal

clauses (and hence between di�erent numbers of processes on a 4-CPU system),

times were estimated for an equivalent system with as many processors as goal

clauses using the following formula:

T (estimated) =

8<
:
T (measured) if Num(goal clauses) � 4

T (measured)� 4
Num(goal clauses)

if Num(goal clauses) > 4
:

The estimates computed using the above formula were con�rmed to give rough

estimates by running some of the runs on a similar computer system with more

F. Okushi / Parallel Cooperative Propositional Theorem Proving 25

Table 5a

E�ect of the increased number of goal clauses on pmodoc search times. The formulas are sat-

is�able and were derived from the formulas reported in Table 2a. Times were obtained on a

4-CPU SGI Challenge (150MHz R4400) and then estimated for an equivalent computer system

with as many CPUs as goal clauses.

problem/ encod- num of pmodoc search time

deadline ing goal clauses (elapsed seconds)

orig inc'd original increased

big-bw1/11 ecse 6 18 11 6

fridge2/13 cbse 2 18 24 11

ccse 2 28 78 63

crse 2 28 581 218

hanoi3/7 cbse 3 45 70 40

monkey2/9 cbse 2 15 ? ?

cfst 2 14 387 308

tire2/14 efst 6 23 2 2

Table 5b

E�ect of the increased number of goal clauses on pmodoc search times. The formulas are un-

satis�able and were derived from the formulas reported in Table 2b. More information can be

found in the caption for Table 5a.

problem/ encod- num of pmodoc search time

deadline ing goal clauses (elapsed seconds)

orig inc'd original increased

big-bw1/10 ecse 6 18 77 55

fridge2/12 cbse 2 18 108 107

ccse 2 28 1869 1759

crse 2 28 444 773

hanoi3/6 cbse 3 45 26 18

monkey2/8 cbse 2 15 1701 1208

cfst 2 14 61 45

tire2/13 efst 6 23 1312 190

processors. Improvements of varying degree were observed on most of the formu-

las.

Improvement in search time on the unsatis�able version of fridge2 in cbse en-

26 F. Okushi / Parallel Cooperative Propositional Theorem Proving

coding was negligible. However, the execution log shows that the Modoc process

that found the refutation proof found it in 463,830 PDT extensions, which is down

26% from 553,709 PDT extensions with the original formula, and that the num-

ber of shared top-level lemmas increased from 28 to 41. However, it also shows

that the number of PDT extensions performed per processor-second (Pe/ps) went

down from 4824 Pe/ps to 3873 Pe/ps, down 20%. This may have countered the

decrease in the number of PDT extensions performed by the Modoc process that

found a refutation, and explain the near lack of improvement in search time.

However, we are currently not able to fully explain the decrease in the number

of PDT extensions per processor-second.

Similar decrease in the number of PDT extensions per processor-second

was observed on the unsatis�able version of fridge2 in crse encoding; it went

down from 5140 Pe/ps to 3994 Pe/ps, down 22%. However, what made this

run interesting was that the number of PDT extensions performed by the Modoc

process that found the refutation went up from 2,177,401 to 3,239,738, by 49%. It

is worth mentioning that there is no guarantee that the searches performed using

the original formula will be among the searches performed using the formula with

the number of goal clauses increased. This is despite that running pmodoc on the

formula with the number of goal clauses increased is essentially running Modoc

for each clause node that is one level-down from the top clauses with the original

formula. This is because of the following reason: In deciding the order in which

to extend the goal nodes, the Modoc search procedure in pmodoc tests whether

they are lemmas or not; goal nodes that are lemmas are deferred in favor of goal

nodes that are not. Thus, with a di�erent set of lemmas, it is possible for a search

to be steered away from the search in the previous run, even if the search started

from the same top clause.

6. Summary and Future Works

A parallel satis�ability tester called Parallel Modoc was presented. Parallel

Modoc runs multiple Modoc processes to allow simultaneous searches from di�er-

ent goal clauses and to allow cooperation among the processes by sharing valuable

information found about the formula. The approach contrasts with other parallel

SAT testers in that communication is a vital part of the algorithm.

Experimental results show that the factor of improvement over Modoc on

many of the planning formulas was greater than the number of processors. This

F. Okushi / Parallel Cooperative Propositional Theorem Proving 27

shows that Parallel Modoc bene�ts greatly from the parallel searches and not

simply from the increase in the number of processors. Potential improvement

due to increasing the number of goal clauses was also observed. In all cases, the

amount of improvement varied widely depending on the formula.

It is worth mentioning that Parallel Modoc does not require a parallel com-

puter to run it. As long as multiprocessing is supported, Parallel Modoc will run,

albeit slower. As an extreme case, running Parallel Modoc on a single-processor

computer system may still be faster than running Modoc. This is because of

the extremely skewed distribution of search times depending on the order of goal

clauses, found in many of the formulas. Parallel Modoc takes advantage of this

distribution and executes multiple searches from di�erent goal clauses, all at once.

Future work could proceed along several directions. One would be to increase

the degree of parallel search and the extent of cooperation. Another would be

to decouple the maximum number of Modoc processes from the number of goal

clauses.

Acknowledgements

The author wishes to thank Allen Van Gelder for discussion on Modoc.

\SAT compilers" were provided by their respective authors. The author wishes

to thank Henry Kautz and Bart Selman for providing Satplan, and Michael Ernst,

Todd Millstein, and Daniel Weld for providing Medic. SAT testers other than

modoc and pmodoc were provided by their respective authors. The author wishes

to thank Chu Min Li for providing satz, and Roberto Bayardo for making relsat

available via his home page. The author's work at the University of California,

Santa Cruz was supported in part by NSF grant CCR-95-03830.

References

[1] R. J. Bayardo, Jr. and R. C. Schrag. Using CSP look-back techniques to solve real-world

SAT instances. In Proceedings Fourteenth National Conference on Arti�cial Intelligence

(AAAI-97), pages 203{208, 1997.

[2] M. B�ohm and E. Speckenmeyer. A fast parallel SAT-solver|E�cient workload balancing.

Annals of Mathematics and Arti�cial Intelligence, 17(3-4):381{400, 1996.

[3] S. H. Clearwater, T. Hogg, and B. A. Huberman. Cooperative problem solving. In B. A.

Huberman, editor, Computation: The Micro and the Macro View, pages 33{70. World

Scienti�c, 1992.

28 F. Okushi / Parallel Cooperative Propositional Theorem Proving

[4] S. H. Clearwater, B. A. Huberman, and T. Hogg. Cooperative solution of constraint

satisfaction problems. Science, 254(5035):1181{1183, 1991.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-

munications of the ACM, 5:394{397, 1962.

[6] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of the

Association for Computing Machinery, 7:201{215, 1960.

[7] M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic SAT-compilation of planning

problems. In 15th International Joint Conference on Arti�cial Intelligence, pages 1169{

1176, 1997.

[8] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.

[9] S. Fleisig, D. W. Loveland, A. K. Smiley, and D. L. Yarmush. An implementation of the

model elimination proof procedure. Journal of the Association for Computing Machinery,

21(1):124{39, January 1974.

[10] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial search.

In Proceedings of the Third International Conference on Principles and Practice of Con-

straint Programming (CP97), pages 121{135, 1997.

[11] C. Green. Application of theorem proving to problem solving. In Proceedings First Inter-

national Joint Conference on Arti�cial Intelligence, 1969.

[12] T. Hogg and C. P. Williams. Solving the really hard problems with cooperative search.

In Proceedings Eleventh National Conference on Arti�cial Intelligence (AAAI-93), pages

231{236, 1993.

[13] H. Kautz and B. Selman. Planning as satis�ability. In ECAI 92. 10th European Conference

on Arti�cial Intelligence Proceedings, pages 359{363, Chichester, UK, 1992. Wiley.

[14] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochas-

tic search. In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence

(AAAI '96), 1996.

[15] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection

tableau calculi. Journal of Automated Reasoning, 13(3):297{337, December 1994.

[16] C. M. Li and Anbulagan. Heuristics based on unit propagation for satis�ability problem. In

Proceedings International Joint Conference on Arti�cial Intelligence, pages 366{371, 1997.

[17] D. W. Loveland. A simpli�ed format for the model elimination theorem-proving procedure.

JACM, 16(3):349{363, 1969.

[18] W. G. Macready, A. G. Siapas, and S. A. Kau�man. Criticality and parallelism in combi-

natorial optimization. Science, 271, 5 January 1996.

[19] J. Minker and G Zanon. An extension to linear resolution with selection function. Infor-

mation Processing Letters, 14(3):191{194, June 1982.

[20] B. Monien and E. Speckenmeyer. Solving satis�ability in less than 2n steps. Discrete

Applied Mathematics, 10:287{295, 1985.

[21] V. N. Rao and V. Kumar. On the e�ciency of parallel backtracking. IEEE Transactions

on Parallel and Distributed Systems, 4(4):427{437, April 1993.

F. Okushi / Parallel Cooperative Propositional Theorem Proving 29

[22] R. Shonkwiler and E. Van Vleck. Parallel speed-up of monte carlo methods for global

optimization. Journal of Complexity, 10:64{95, 1994.

[23] R. E. Shostak. Refutation graphs. Arti�cial Intelligence, 7(1):51{64, 1976.

[24] E. Speckenmeyer, B. Monien, and O. Vornberger. Superlinear speedup for parallel back-

tracking. In E.N. Houstis, T.S. Papatheodorou, and C.D. Polychronopoulos, editors, Su-

percomputing. First International Conference Proceedings, pages 985{993. Springer-Verlag,

1988.

[25] A. Van Gelder. Autarky pruning in propositional model elimination reduces fail-

ure redundancy. Journal of Automated Reasoning, 1997. (to appear, preprint at

ftp://ftp.cse.ucsc.edu/pub/avg/JAR/aut-jar-dist.ps.Z).

[26] A. Van Gelder and F. Okushi. A propositional theorem prover to solve planning and other

problems. Annals of Mathematics and Arti�cial Intelligence, 1997. (to appear, preprint at

ftp://ftp.cse.ucsc.edu/pub/avg/AMAI/planning-dist.ps.Z).

[27] H. Zhang and M. Bonacina. Cumulating search in a distributed computing environment:

A case study in parallel satis�ability. In H. Hong, editor, First International Symposium

on Parallel Symbolic Computation PASCO '94, pages 422{431. World Scienti�c, 1994.

Appendix

A. Planning as SAT: A Review

One way to approach the planning problem is to formulate it in some suitable

logic and solved it as a theorem-proving problem. In this view, legal operations

are described as axioms, and initial and �nal conditions are added as further

constraints. To deal with changing facts over time, situation variables [11] are

traditionally introduced. For example, axioms describe changes made to situa-

tions by possible actions. Finding a plan thus becomes �nding a situation s in

which the �nal conditions hold:

axioms ^ init! 9s[�nal(s)]:

This is often achieved by resolution, by proving that the following formula is

inconsistent:

axioms ^ init^ 8s[:�nal(s)]:

A successful plan can then be obtained from the substitutions made in the situ-

ation variables.

Alternatively, it is possible to formulate the problem as an implausibility

axioms ^ init! 8s[:�nal(s)]:

30 F. Okushi / Parallel Cooperative Propositional Theorem Proving

and then try to show that this is not the case by showing that the following

formula, after Skolemizing s, is satis�able:

axioms ^ init ^ 9s[�nal(s)]:

In this formulation, a model describes a successful plan.

Recently, formulation in propositional clausal logic has been reported with

much success [14,7]. This allows a planning problem to be solved as a SAT prob-

lem. The formulation is based on the second formulation. Since no quanti�cation

symbol nor function symbol are allowed in propositional logic, this requires few

changes to the formulation. First, the quanti�cation must be constrained over

a �nite domain. This is to allow the subformulas that are in the scope of uni-

versal quanti�ers to be \grounded" for each domain value. Second, we rewrite

axioms to describe what relations hold on or between discrete time instances.

This change is necessary because we are no longer able to construct arbitrary

situations (because of the lack of function symbols). This also requires actions to

be represented by propositions (as opposed to functions). Since the domain must

be �nite, we must also set a deadline. Re�nements to the original propositional

formulation [13] can be found elsewhere [14,7].

If the desire is to seek an optimal-length plan, it is necessary to determine

the satis�ability of at least two formulas. That is, to show that L is the optimal

plan length, it is necessary to show that the formula with deadline L is satis�able

and that the formula with deadline (L � 1) is unsatis�able. In practice, several

formulas with di�erent deadlines must be generated before an optimal solution

is found.

Once a formula is found satis�able, and a satisfying truth assignment ob-

tained, a successful plan could be obtained by interpreting the assignments made

to the variables.

In this paper, we are interested in the performance of SAT testers on for-

mulas generated from planning problems. Thus, we only generate formulas for

the optimal plan length, and one less than the optimal plan length.

B. Goal-Sensitive Simpli�cation

After a formula is generated, the formula is usually subjected to a simpli�er.

A simpli�er tries to make the formula as small as possible using various quick

and easy simpli�cation techniques while preserving satis�ability. Examples of

F. Okushi / Parallel Cooperative Propositional Theorem Proving 31

formula

theorem clauses

rename

axioms + initial condition

simplify
renaming information

goal-sensitively simpli�ed formula

Figure 5. Steps involved in goal-sensitive simpli�cation. For details, see Appendix B.

simpli�cation techniques include unit-implication/unit-propagation, pure-literal

elimination, equivalent-literal substitution, and subsumption.

When solving SAT using a backward-chaining theorem prover, it is strongly

recommended that additional attributes be preserved across simpli�cation. First,

the simpli�ed formula should be logically equivalent to the original formula. Sec-

ond, all goal clauses should be retained across simpli�cation. Among the sim-

pli�cation techniques listed earlier, pure-literal elimination is not guaranteed to

produce a logically equivalent formula, and unit implication may eliminate goal

clauses, which tend to be unit clauses in practice. A quick solution would be to

not use these techniques at all. While giving up pure-literal elimination is not

considered a huge loss, giving up unit implication generally is.

To overcome these problems, Van Gelder and Okushi [26] came up with a

simpli�cation scheme that will guarantee all three requirements|preservation of

satis�ability, models, and goal clauses. The process is called goal-sensitive sim-

pli�cation. (To make the distinction clear, we call the traditional simpli�cation

goal-insensitive simpli�cation.)

Figure 5 outlines the steps involved in goal-sensitive simpli�cation. The

clauses in the input formula are partitioned into two sets|one that consists of

the goal clauses and another that consists of the clauses that express the axioms

and the initial condition. Then, we run a regular simpli�er to the second set (the

axioms and the initial condition), with the following requirements:

32 F. Okushi / Parallel Cooperative Propositional Theorem Proving

1. Pure-literal elimination is not to be used.

2. Any renaming of the literals that occurred during simpli�cation is to be

recorded.

Simpli�cation techniques such as equivalent-literal substitution may rename lit-

erals. If such techniques are used, we need to make sure that the literals in the

�rst set (the goal clauses), which was not subjected to the simpli�er, are renamed

in the same way. The goal-sensitively simpli�ed formula is obtained as the union

of the �rst set (renaming done, if applicable) and the simpli�ed second set.

Note that a goal-sensitively simpli�ed formula can be considered as being

in an intermediate form to becoming a goal-insensitively simpli�ed formula. In

particular, applying goal-insensitive simpli�cation to a goal-sensitively simpli�ed

formula produces the same formula as the formula produced by applying goal-

insensitive simpli�cation directly to the original formula. This means that formu-

las that are goal-sensitively simpli�ed are generally slightly larger than formulas

that are goal-insensitively simpli�ed.

