
An Inclusive Taxonomy of Player Modeling

Adam M. Smith, Chris Lewis, Kenneth Hullett, Gillian Smith, Anne Sullivan
Center for Games and Playable Media
University of California, Santa Cruz

{amsmith,cflewis,khullett,gsmith,anne}@soe.ucsc.edu

May 2011

Technical Report UCSC-SOE-11-13

Abstract

“Player modeling” is a loose concept. It can equally apply to everything from a
predictive model of player actions resulting from machine learning to a designer’s de-
scription of a player’s expected reactions in response to some piece of game content.
This lack of a precise terminology prevents practitioners from quickly finding introduc-
tions to applicable modeling methods or determining viable alternatives to their own
techniques. We introduce a vocabulary that distinguishes between the major existing
player modeling applications and techniques. Four independent facets define the kind
for a model: the scope of application, the purpose of use, the domain of modeled de-
tails, and the source of a model’s derivation or motivation. This vocabulary allows the
identification of relevant player modeling methods for particular problems and clari-
fies the roles that a player model can take. It is intended to be a general vocabulary,
applicable to all game genres and research approaches.
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1 Introduction

Consider this vignette: You’ve had some exposure to the concept of player modeling via
a mixture of mentions in literature and an intuitive sense of what a model of a player
must describe. Seeking your wisdom, a colleague asks you “Can you recommend a good
introduction to player modeling?”. “Depends,” you say, “what kind?” But what are the
kinds of player modeling? How do you tell if something even is a player model?

This paper was borne out of a conversation between the authors that started as the
above. Each of us had a different perspective on the kinds and desiderata of player modeling
emerging from our exposure to different literature and undocumented game design practices.
The term “player model” is nebulous, and a broad spectrum of possible definitions have
been used in various publications. While many people have described player modeling and
discussed its importance, the definition and usage of the idea has grown organically over
time, with no single clear definition or scope.

Our goal is to categorize the different kinds of player modeling that exist in practice in a
way that makes clear which kinds of player models are applicable to which problems, what
related kinds of models make for viable alternatives and what areas have yet to be explored
– to help researchers provide colleagues such as the one in the vignette with some helpful
direction. To do this, we introduce a vocabulary based on four independent facets which
distinguish player models on the basis of who they apply to (scope), what they are used for
(purpose), the kind of details they model (domain), and how they are derived or motivated
(source). This vocabulary abstracts over the type of game and is readily applicable to games
from any genre.

Our strategy in introducing this language is not to provide a final definition of player
modeling. Instead, we adopt an inclusive approach, casting a wide net to consider any work
that has been published using the term “player modeling” to be a valid instance. We will
also include several techniques implicit in game design practices that are not traditionally
called player modeling, such as the process of interpreting actions observed in playtesting,
because they are highly relevant to the purposes of other player modeling work.

It is not our intention to provide a comprehensive survey of player modeling. Instead,
we often elect one or two examples of a particular kind of player modeling to stand for the
whole, introducing published applications and techniques as they arise in the exposition.

We begin with a brief sampling of existing player models to establish the breadth of
examples we wish to classify and to suggest how easily distinctions arise when talking about
many applications at a time. Then, we introduce and apply the concepts and terminology of
our taxonomy, demonstrating how to drill down on the kind of a player model by making a
series of small judgments. Later, we visualize the space of modeling techniques suggested by
the taxonomy and share discussions our own internal use of the taxonomy has prompted. Fi-
nally, we suggest new avenues of research that hinge on the presence of an effective taxonomy
of player modeling.
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2 Breadth of Player Modeling

To the best of our knowledge, the earliest published work that explicitly defines player
modeling is Houlette’s “Player Modeling for Adaptive Games” from 2003 [9]. Houlette
describes models of individual players that are created by monitoring gameplay, recording
numerical values such as the number of smoke grenades a player throws. The game’s artificial
intelligence (AI) can query these values to adapt itself: to “change and evolve with time to
suit the player.” Around the same time, Charles and Black called for games to become more
adaptive to different types of players with their proposed framework for “player-centered”
games [5]. This was achieved by using input from both Houlette-inspired gameplay metrics
and explicit interrogation of the player. As in Houlette’s description, the player model
created from these inputs is used by the game’s system to realize an experience uniquely
adapted to a single player. Charles and Black go on to describe player models as having
two main purposes: classifying player behavior, and to “instill human-like qualities into a
non-player character.”

The more general concept of a player model as a computational model of player behavior
predates Houlette’s usage of player models for adapting to particular individuals. Laird’s
QuakeBot [12] used a model of its opponent – the human player – as an integral part of
its functioning. This model was neither specific to any individual nor adaptive to observed
opponent play. Further, QuakeBot’s model of the player was implemented as a recursive
query to itself (“what would I do in the opponent’s situation?”). That is, QuakeBot is both
a system that uses a player model and indeed a meaningful player model itself. QuakeBot’s
design is an instance of the much older game playing AI tradition of using generic models
of an opponent to reason over their potential next moves when selecting its own, an idea
dating back to 1950 [17].

These two threads alone demonstrate that the broader idea of player modeling has never
been tied uniquely to a particular kind of application (e.g. adaptation or forward simulation).
Attempting to synthesize these initial examples into a definition of a player model – perhaps
as a software process which represents a certain observed individual or general class of
players that can be queried by a game system to predict actions in play – is inadvisable.
This would miss the even more pervasive kind of player modeling naturally engaged in by
game designers when they form internal models of players from a mixture of observation and
accumulated design experience. Schell advises new game designers: “you must adopt their
mental perspective as well, actively projecting yourself into the mind of your player” [16].
These models, though rarely externalized, arguably influence the gameplay experience at a
far deeper level than any realized adaptive game system. They inspire specific choices in the
design and production of the game.

Houlette’s original terminology applied to a kind of prototypical player modeling, models
that describe in-game actions of an individual player as induced (learned) from recorded data.
This prototype provides an interesting contrast with more recent work. In EMPath [20], a
Zelda-style adventure game utilizing an AI system for drama management, two additional
distinct types of player modeling are used. In the drama manager’s look-ahead search in
story-space, one kind of player model generates game actions (triggering plot points), and
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another kind of player model generates reactions in place of a human player (reporting how
well the story seemed to flow or how manipulative the drama manager felt). These models
are motivated by the designers’ understanding of the game’s world and story components,
as opposed to an empirical view. A different pairing of player model types occurs in a track
generator for racing games [26] where action generators (driving agents) are fit to individual
human players’ performance, and a separate model (one which is equally applicable to all
players) generates subjective reactions to proposed tracks (the fitness function mapping the
performance of the individually-trained controllers to an evaluation of fun).

There are other models of players in use today that do not appear in the literature under
the index of player modeling. The concept of perfect play, where an imagined player makes
choices with full knowledge of all of a move’s possible futures, is a player model despite the
non-existence of perfect players for most games. Labeled strategies such as the specification
of a build order for a real-time strategy game must be a kind of player model as well, in
that they allow interesting conclusions to be drawn about the potential behavior of players
who adopt these strategies. However informal, the player models indicated by lines sketched
over two different routes through a platformer level allow distinguishing between different
styles of play (one, perhaps, showing the route of a “speed-runner” and the other of a
“completionist”).

Today, we are faced with a variety of systems that all use what they call a player model,
but have no means of precisely communicating what type of model each one is. Nor do we
have a means of explaining how this relates to similar concepts that model players without
reference to the the key words “player modeling”.

3 Taxonomy

It is safe to introduce local distinctions when talking about only a few different examples
of player modeling at a time. However, to help guide newcomers to the field and resolve
the relationships between existing techniques, we need a set of terms that can be defined on
their own. In this section, we introduce the organization of the key terms of our taxonomy
and then provide a definition and contextual examples for each. It is important to note that
the four primary facets of our taxonomy are non-hierarchical; they are orthogonal to each
other.

3.1 Overview

Each player model in our taxonomy is described with a kind. These kinds are defined by a
selection from each of the four independent facets. In Figure 1, a kind of player model can
be formed by picking a single selection from each of the columns. Stringing the names of the
selections together (in any convenient ordering) provides a very dense label for one corner of
the space of player models we imagine, e.g. “Individual Induced Descriptive Reaction” and
“Universal Synthetic Generative Action.” In such labels, we capitalize the selection names
to make it clear that we are referring to the sense of these words defined in our taxonomy as
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Scope Purpose Domain Source 

Individual 
applicable only to one player 

Class 

applicable to a sub-population 

Universal 
applicable to all players 

Hypothetical 
unlikely to be applicable to any 
players, but interesting 
nonetheless 

Generative 

literally produces details in 
place of a human player 

Descriptive 

conveys a high-level 
description, usually visually or 
linguistically 

Game Actions 

details recorded inside 
of the game’s rule 
system 

Human Reactions 

details observable in 
the player as a result of 
play 

Induced 

learned/fit/recorded by 
algorithmic means 

Interpreted 

concluded via fuzzy/subjective 
reasoning from records 

Analytic 
derived purely from the game’s 
rules and related models 

Synthetic 
justified by reference to an 
internal belief or external theory 

 

Figure 1: An overview of the terms in our taxonomy. For each facet (column), choose one
selection, and the resulting labels will compactly describe a kind of player modeling such as
“Class Synthetic Descriptive Action” player models

opposed to a more colloquial sense. Facets can be omitted to abstract over a broader range
of player models as in “Action Generators” and “Hypothetical Analytic models.”

It is important to think of the kinds of player models definable with this vocabulary as
archetypes. Practical applications of player modeling may not strictly conform to one kind
or another, but they will often have a single archetype which they most closely resemble.
Additionally, a single application may meaningfully embody more than one kind of player
model, as in EMPath’s distinct Action and Reaction Generator components.

In the definitions that follow, we work from left to right in Figure 1. Occasionally, we
make use of selection names that have not yet been defined in an effort to demonstrate the
full vocabulary in use. In these cases, the table can be used to look up which facet defines
the unfamiliar term in later subsections.

3.2 The Scope Facet

The Scope of a model describes to whom the model is intended to be relevant or who is
being distinguished in the model.

3.2.1 Individual

Individual models pertain only to one player, allowing comparisons between “this player”
and “that player.” These models are the basis of personalization in games, such as the kind
proposed by Charles and Black [5], and capture the scope intended by Houlette’s player
models [9].

Drivatars in the game Forza Motorsport [8] are AI systems that are trained on a par-
ticular player’s driving style by recording the player’s performance over reference track seg-
ments. Once trained, the model can stand in place of the original human player, allowing
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asynchronous competition with friends by simply having them race against your personal
Drivatar. Applying a complete label, Drivatars are Individual Induced Generative Action
models.

Individual models need not by tied to human players; our taxonomy allows one to speak
of the player model embodied in any identifiable game playing agent. In this way, we can
refer to the Individual model of Deep Blue, the chess-playing computer, and draw contrast
between the machine’s style of play and its most famous human opponent, Gary Kasparov
– likewise for the machine Watson1 and the humans Ken Jennings and Brad Rutter on the
televised game show Jeopardy!.

3.2.2 Class

Class models distinguish between populations of players, often taking the form of a par-
titioning of the audience for a particular game into recognizable categories. Class models
are pervasive as they correspond to reasoning about stereotypes; for example, it is easy to
imagine that a designer might think “I want my game to be completable by speed-runners
in no less than six hours, but I want explorers to be able to find at least twenty hours of
content.”

Bartle’s player types are Class-scoped models that partition multiplayer online game
players into the categories of “achievers”, “explorers”, “socializers”, and “killers” [3]. For
each category, Bartle describes both in-game actions (that achievers will seek a 100% com-
pletion rating) and personal reactions (that explorers will experience enjoyment in having
found a game glitch). Thus, Bartle’s player types are Interpreted Descriptive Class models.

In contrast to Bartle’s well-reasoned vocabulary, informal player types such as “newbie”
and “griefer” may not provide a clean partitioning of the space of players, nor will “casual”
and “hardcore” be possible to formally define in a universally satisfying way. Nonetheless,
the use of such labels in the definition of a model simultaneously signifies the intent to scope
the conclusions of that model to a specific sub-population of all players while not drawing
distinctions at the level of individual players.

3.2.3 Universal

Universal models apply equally to all players. Where Individual and Class are often used
to draw distinctions between players, Universal models are intended to capture assumptions
or conclusions that should hold in general. Almost any system component which Generates
or Describes Actions or Reactions (in the senses we describe later) without being explicitly
scoped to a class or individual can be seen as an instance of a Universal model. Concretely,
the fitness functions used in genetic algorithms, such as the fun estimate in the previously
mentioned track generator [26], are Universal player models (the same code runs for all
players).

As attempts at expressing universal truths, these player models will certainly demonstrate
a range of accuracy. The creators of EMPath created a sequence of increasingly refined

1http://artsbeat.blogs.nytimes.com/2011/02/14/on-jeopardy-watson-rallies-then-slips/
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player models for the plot-point selection component of their system, ranging from a simple
uniform probability distribution model, which completely ignored the traversability of the
game world’s map, to a richer model that used a spatially anchored distribution to capture
expectations about a player’s tendency to wander [20]. While each of these models would
occasionally generate actions that would be impossible for a human player to realize, the
intent of these models to stand in place of human players (though no player in particular) is
what makes them Universal Generative Action models.

3.2.4 Hypothetical

Where individual models are defined with a particular, usually human, player in mind,
Hypothetical models speak to unlikely, edge-case, or counter-factual situations in gameplay.
The idea of a player with foreknowledge of his opponent’s next move, knowledge of the
location of hidden pieces, or the ability to manipulate dice rolls in his favor is a player model
that, despite being impossible to realize, is valuable for what it can expose about the design
of a game (e.g. the presence of an exploit or rare catastrophic failure case). The notion of
perfect play in chess is a familiar Hypothetical Analytic Descriptive Action model.

In Ludocore [18], a tool for producing logical models of video games, a designer can ask the
system for traces of actions that demonstrate how to satisfy arbitrary logical constraints in
play. Using the mechanism of “speculative assumptions”, the designer can shape a Ludocore
model into a Hypothetical Action Generator that is specific to the sharply defined spaces of
the designer’s current interest, often as part of debugging the game’s core mechanics (perhaps
defining a Hypothetical player model that generates only those actions which achieve victory
in twelves steps while holding no more than one item in a character’s inventory at a time in
an effort to expose an exploit in the rules).

Selecting amongst design alternatives at the conceptualization stage of game design re-
quires applying a kind of “what if” reasoning over the play for games that have yet to be
realized. To the degree that this reasoning allows a designer to describe potential actions or
reactions, the imagined play encodes a player model, particularly a Hypothetical Synthetic
model. These are the models that permit the creation of visual storyboards which “simulate
a player moving through the game” despite the game only existing at the level of an idea [7].

3.3 The Purpose Facet

The Purpose of a model describes the function of a model in its intended application. While
a given player modeling technique may afford multiple functions, the Purpose of a model
refers to its actual use.

3.3.1 Generative

Generative player models generate data where a human player could otherwise be consulted.
These models are generally algorithms, taking the form of either a specialized procedure or a
set of inputs to a previously defined procedure (parameters to a function, index into a table,
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etc.). Often, Generative models will only be able to stand in for a human player in one
area of competency. Drivatars intend to capture and reproduce a particular player’s racing
performance [8]; however, the Drivatar cannot be used to predict which cars and upgrades
the player would buy outside of the racing game mode. Polymorph, a platformer level
generator with dynamic difficulty adjustment [10], is an example of a system that uses two
Generative Reaction models: one that learns the difficulty of level segments according to a
Universal model of difficulty, and one that learns the skill of Individual players. Automating
the difficulty evaluation process for level segments allows the system to cull generated levels
that are a poor fit for the current player.

3.3.2 Descriptive

While Generative models are most useful in the context of live software systems, Descriptive
models intend to convey information to human interpreters, such as game designers wishing
to better understand their games and the people who play them. Descriptive models contain
high-level, informative messages, often encoded in natural language or visual imagery. The
Playtracer system [2], a tool for analyzing recorded play traces, produces Individual Induced
Descriptive Action player models. These take the form of a directed graph indicating (for
several players at a time) trajectories through the abstract puzzle space of Refraction. These
highlight common stumbling blocks on a player’s progression towards a goal state. The
generated heat maps for Halo 3 describe a distribution of actions, such as being killed
at particular locations on a map, across the game’s entire player base [22], making them
Universal Induced Descriptive Action models.

The depth of the message conveyed by a Descriptive model varies dramatically, ranging
from lengthy articles in the case for Bartle’s player types [3] to a single word paired with
only its conflicting, informal definitions, as in the case of “hardcore.” When a Descriptive
model describes a concrete strategy, it is tempting to create a Generative model that serves
as an executable reference of this strategy (as done in the NonyBot system described later).

In the context of the late-stage design of new games, descriptive models can be used to
document assumptions made about the game or its intended audience. The walkthrough
solutions (or input scripts) sometimes provided with interactive fictions are Individual Syn-
thetic models that afford both Generative and Descriptive purposes: they are both executable
as Action Generators and readable as natural-language Action Descriptions [14]. That is, to
judge the Purpose of such models, one needs to reference a particular usage of the script.

3.4 The Domain Facet

The Domain of a model answers the question of what it is that the model generates or
describes.
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3.4.1 Game Actions

Actions are in-game choices made by the player – moves in combat, navigation, upgrade
selection, inventory arrangement, team management, etc. – including choices that do not
directly affect gameplay such as avatar personalization. At this point, we have already
introduced several of these models: the player model that triggers plot points in EMPath;
QuakeBot that is able to run, jump, collect and equip weapons, and fire at opponents (an
Individual Synthetic Generative Action model); and two kinds of player models that are able
to drive race cars (Drivatars and the evolved controllers of Togelius’ system).

3.4.2 Human Reactions

Human reactions cover the properties of a gameplay experience that exist outside of the
game’s simulated world. These include objective physiological measures such as heart rate
and eye movement as well as subjective measures such as the level of fun, challenge, and frus-
tration that player might report in a survey or interview. Reactions also include unrecorded
sentiments about the game itself or other human players who were met in game-mediated
interactions. Finally, our definition of human reactions include game-related activities such
as purchasing a game, cancelling a subscription, or conversing with other players in simul-
taneous voice chat.

Yannakakis has devoted a long line of work to building models of player reactions [28].
Where this work generally produces Induced Reaction models, game designers will often build
up strong expectations for how their audience will react to their work, exercising Synthetic
Reaction models. These models that are similar in character to Csikszentmihalyi’s theory
of flow which predicts reactions such as boredom and arousal or anxiety and relaxation in
response to the balance to the game’s challenge and the player’s skills [6].

3.5 The Source Facet

Finally, the Source facet describes how a player model is motivated or derived. Broadly,
player model sources can be categorized as Empirical or Theoretical (which we will occa-
sionally use as pseudo-selections), but we provide four mutually distinct selections below to
help further distinguish player models. Empirical (Induced and Interpreted) models intend
to capture the external truth present in data recorded from the play of real human players.
Meanwhile, Theoretical (Analytic and Synthetic) models intend to represent the truth of
a gameplay situation, absent of any direct references to data. Splitting these four labels
another way, Subjective (Interpreted and Synthetic) models hinge on the credibility of their
inventor (an analyst or designer), where as Objective (Induced and Analytic) attempt to
stand on their own.

3.5.1 Induced

Induced models use recorded data with an objective, often automated, inductive analysis.
The best Induced models will use the established form of machine learning other statistical
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analysis for the modeling problem so that uncertainty about the model applies mostly to the
data itself as opposed to the choice of inductive method. Player modeling work descended
from Houlette’s original work focuses specifically on Induced models, even if the learning
method is only maintaining weights or counts of events. The training process for Drivatars
is another such induction process. In an application to World of Warcraft, a very large scale
data analysis effort (and even the invention of a new matrix factorization technique) resulted
in a Class Induced Descriptive Action model for player guilds which illustrated archetypal
guild experience distributions [24].

In many systems, an Induced model is paired with a different kind of model that makes
more detailed statements about the player. In Thue’s PaSSAGE system [23], an Individual
Induced Descriptive Action model maps a player to a label (associating players who often
engage in combat actions with the “fighter” label). Another model in the same system, a
Class Synthetic Generative Reaction model, takes the form of a table encoding how players
of a given type rate the suitability of a given event happening in their play experience
(predicting that a fighter would rate “headlong assault” strongly positive). Layering these
two player models together results in an Individual Synthetic Generative Reaction model
which is able to, on a person-by-person basis, generate suitability scores which can be used
to select the best event to trigger in the game world next (realizing an adaptive, personalized
gameplay experience). This kind of layering (pairing a Descriptive model with a Generative
model) can be used to incorporate Descriptive models into the live execution of a game. In
layering, two different kinds of models are used to implement a larger player model, that
when treated as a black box has a distinct kind of its own.

3.5.2 Interpreted

Interpreted models are a more subjective alternative to Induced models. To create some
of the richer Descriptive models (such as Bartle’s player types), human interpretation is
needed to map the empirical observations to informative descriptions. Given access to a
set of recorded play traces or unstructured player interviews, an interpreter can use their
past experience and intuition to make more sense of the data than a hard statistical method.
The interpretive process may involve generalization from incomplete data, producing natural-
language summaries, or hand-picking interesting examples to be used as references in defining
the player model.

Not all Interpreted models are Descriptive, however. The process of capturing a player’s
moves in a hand-coded algorithm produces an Individual Interpreted Generative Action
model. NonyBot2 is a bot for StarCraft that intentionally attempts to parody the repetitive
play style and strategy of a particular well-known expert human player.

3.5.3 Analytic

On the Theoretical side, Analytic methods use other automated methods (such as theorem
proving, search, or optimization) to extract the truths inherent in a game’s design in a useful

2http://www.youtube.com/watch?v=AxBHwpItv84
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form. Machine-generated endgame tablebases for chess are a simple example of Universal
Analytic Generative Action player models – the rules of the game have been exhaustively
searched to yield the objectively best outcome (and moves to achieve this) for a variety of
late-game situations [4].

Analytic models exist outside of board games; metrics already computed by a game’s
system can be used with existing optimization and learning methods (e.g. applying policy
optimization or reinforcement learning with the game’s score as a reward function [21]) to
produce Analytic Action Generators. In a genetic algorithm setup for evolving game bots,
the genetic individuals which the algorithm manipulates are Individual Analytic models
because they are mutually distinguished, while having been constructed purely syntactically
by some series of mutation and crossover operations (objectively). If the (Universal) fitness
function used in the genetic algorithm simply evaluates genetic individuals by a predefined
in-game metric, we say that the fitness function itself is an Analytic Generative Reaction
model (that is, we imagine the fitness function as a kind of stand-in in for a post-play survey
asking the individual how it thought that it had performed). Togelius et al. use this setup
to evolve agents for Infinite Mario Bros [25].

Dropping the reference to a particular agent framework or metric to be optimized, the
naked rules of a game directly define an implicit player which describes players as potentially
capable of doing anything the rules allow; Ludocore falls back to this default Universal
Analytic Generative Action model when no special player modeling assertions are provided
[18].

3.5.4 Synthetic

The hallmark of a Synthetic player model is a reference to some concept that comes from
outside of the game itself. Two published systems make this reliance on external ideas
clear. Smith’s platformer level generator, Launchpad, operates under the assumption that
players experience levels rhythmically and uses this to derive a model of level traversal times
[19], a Universal Synthetic Generative Action model. In another content generation project,
Togelius and Schmidhuber’s “An Experiment in Automatic Game Design” [27] derives its
model of fun (the fitness function, a Universal Synthetic Generative Reaction player model)
from Koster’s theory of fun [11] and Csikszentmihalyi’s notion of flow [6].

The use of hunches, intuition, and other beliefs which are not traceable to any particular
piece of evidence is a kind of Synthetic player modeling that is pervasive in game design. This
is not to say these models are unfounded; they may derive from knowledge transferred from
an Interpreted player model for another design project or from game design wisdom that is
difficult to communicate. The uses of informal player models for documenting assumptions
about the audience that we mention when discussing Descriptive models are all Synthetic as
well.
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4 Visualization

Looking at all combinations of selections for facets yields sixty-four distinct kinds of player
models (notwithstanding the ability to layer different modela together or using models for
separate purposes within a single application). To concisely summarize all of the player
models we have explicitly mentioned, we created a visual representation of our taxonomy
in Figure 2 which maps different paths through the four facets down to non-overlapping
regions. Although this paper is not intended as a comprehensive survey of player modeling,
some regions of the diagram are clearly more active research areas than others. Possible
reasons for this are discussed in the following section.

5 Discussion

In performing a deep analysis of player models in order to create the taxonomy, a number
of questions regarding the character of player modeling were raised. This section discusses
the broader implications of the taxonomy.

5.1 Character and Opponent AI

Although our taxonomy includes Action Generators, we caution that not everything that
generates actions taken by a character in a game should be considered a player model.
There are two major questions we can ask to determine if a particular AI system uses a
player model: does it take the same actions that a player can take, and does it reason about
player behavior?

Consider the prototypical shopkeeper in a fantasy computer role-playing game. The
character takes a set of actions in the same game world as the human player, and these
actions are generated. However, the shopkeeper fails both of our requirements for an AI to
be considered a player model. No human player can take on the role of the shopkeeper, and
in reacting to the player’s requests for purchasing weapons and potions, it does not typically
reason about the player’s behavior.

Market trading bots for games like World of Warcraft and EVE Online are an example
of AIs that do use player models [15]. Even though the bots have a limited set of actions
that they can take, they are actions that are normally able to be taken by the player. The
bots use a Universal (or Individual, if customized) model of player behavior that describes
the appropriate time to buy and sell items in the market.

However, we should also consider the case of opponent AI. Opponents in asymmetrical
games, such as Tetris, take different actions from those of the player (in this case, deciding
which piece comes next) but may make use of a player model to better adapt its choices.
Bastet3, a particularly evil variant of Tetris, uses a player model to determine the worst
possible piece to give the player next. While it uses a player model, the piece-giver in Bastet
is not a player itself. Meanwhile, recall QuakeBot, the agent for Quake which imagined its

3http://fph.altervista.org/prog/bastet.html
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Instance Scope Source Purpose Domain 

"Speed-runner" and "completionist" Class Interp. Descr. Act. 

Bartle's player types Class Interp. Descr. Both 
WoW guild archetypes (Thurau) Class Induced Descr. Act. 

PaSSAGE (Thue) Class Synth. Gen. React. 

Storyboards (Fullerton) Hypo. Synth. Descr. Act. 
Ludocore (Smith) Hypo. Analytic Gen. Act. 

Houlette Indiv. Induced Descr. Act. 
Playtracer (Andersen) Indiv. Induced Descr. Act. 

PaSSAGE (Thue) Indiv. Induced Descr. Act. 
Race track generation (Togelius) Indiv. Induced Gen. Act. 

Drivatars Indiv. Induced Gen. Act. 
NonyBot Indiv. Interp. Gen. Act. 

Polymorph (Jennings-Teats) Indiv. Induced Gen. React. 
Interactive fiction walkthroughs (Reed) Indiv. Synth. Both Act. 

QuakeBot (Laird) Indiv. Synth. Gen. Act. 
IBM's Deep Blue and Watson Indiv. Synth. Gen. Act. 

Mario bots (Togelius) Indiv. Analytic Gen. Act. 
PaSSAGE (Thue) Indiv. Synth. Gen. React. 

Heatmaps for Halo 3 Uni. Induced Descr. Act. 
Preference modeling (Yannakakis) Uni. Induced Descr. React. 

Polymorph (Jennings-Teats) Uni. Induced Gen. React. 
Engames tablebases (Bellman) Uni. Analytic Gen. Act. 

EMPath (Sullivan) Uni. Analytic Gen. Act. 
IMPLANT (Tan) Uni. Analytic Gen. Act. 

Ludocore (Smith) Uni. Analytic Gen. Act. 
Market bots Uni. Synth. Gen. Act. 

Launchpad (Smith) Uni. Synth. Gen. Act. 
EMPath (Sullivan) Uni. Synth. Gen. React. 

Race track generation (Togelius) Uni. Synth. Gen. React. 
Flow inspired (Csikszentmihalyi) Uni. Synth. Gen. React. 

Mario bots (Togelius) Uni. Analytic Gen. React. 

 

 

 

 

 

Figure 2: A visual summary of all of the player models explicitly mentioned in the body
text. The Induced and Interpreted selections have been collapsed into the Empirical label to
reduce visual complexity, likewise for Analytic and Synthetic with the Theoretical label. In
the accompanying table, rows are ordered as to label the dots in a clockwise fashion starting
at the top. 12



opponents actions to decide which was best to choose for its own. QuakeBot both is a player
model and uses a player model (likewise for tree-searching Deep Blue).

An interesting edge case to examine is that of the cheating AI. When an opponent AI
usually makes use of only player actions, but occasionally “cheats” by using special AI-only
actions, the categorization is less clear. If opponent bots in a racing game drive fairly while
on screen, but when not visible rubber-banding allows them to drive faster than their cars
allow, the bots are Generative Action player models (albeit with times when they become
very inaccurate models). The same is true for a real-time strategy opponent which can
spend unearned resources but nonetheless builds buildings and orders units around as the
player does. Creating an executable model that closely matches human players (especially
particular individual players) is very difficult, and falling back to occasional cheating or
the use of generic procedures is common. For example, the pit stop behavior of individual
Drivatars is not specialized to individual players (a Universal model takes over for pitting)
[8].

5.2 Demographics

We considered including “demographics” as a selection of its own for the Domain of a player
model. This selection would have covered work that primarily focused on who the player
was in terms of gender, age, nationality, educational background, etc. However, upon closer
examination, we found that some of this work actually links demographically-defined sub-
populations to what they will do in a game or how they react to play, thus communicating
Empirical Descriptive player models.

The book “Gender Inclusive Game Design” [13] is one such example: it delves deeply into
both the Actions and Reactions of male and female players in various kinds of games. Other
work that covers demographic details without talking about implications for play, such as the
ESA’s report [1] on the state of the game industry, is not considered player modeling. Such
analyses seem to not be modeling populations of players as players, but more as populations
of consumers.

5.3 Usage and Publication Bias

In our informal estimation, published work seems to cluster around Universal Theoretical
models and Individual Empirical models. We think this is because theories usually attempt
to be universally applicable and individuals are the primary source of empirical data, making
these models the most direct. Class models are more difficult to motivate in an academic
context, requiring either justification of a theory of stereotypes or aggregation of sufficient
individual data to build up class descriptors. Thus, we expect class models to be used more
in practice than they are reported.

Game designers regularly invent Individual and Class Synthetic models as a product of
their amassed design experience. These ephemeral models are difficult to convey without
the sum of indirect experience and other pet theories that inspired then, and thus they do
not appear in the record of literature.
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Finally, Hypothetical player models are ubiquitous in work published as game theory
or optimal control where they apply to game-theoretic games or state-transition formalisms
(such as Markov decision processes). This work does not seem to be true to the sense of games
foregrounded by work that explicitly mentions player modeling. However, the introduction
of formal logic tools for video game design, such as Ludocore [18], are starting to allow
rigorous statements about edge-case and counter-factual play for constructs recognizable as
video games.

5.4 Unpopulated Taxonomy Areas

Figure 2 visually suggests that there are holes in our taxonomy: categories that apply to
no realized player models. While some areas would remain unpopulated in even the most
comprehensive survey of player modeling work, we assert that there are no unrealizable
combinations. Consider the seemingly contradictory kind of Hypothetical Induced models:
at first blush, it seems unlikely that one could build a model of hypothetical player behavior
when looking at data from real players.

However, suppose that an analysis of logs from a first person shooter shows that all but
one weapon in the game is used relatively frequently. Immediately one tries to think of what
it is like to play using that weapon to guess at why it would be ignored – this is a Hypothetical
Induced Descriptive Action player model. It is Hypothetical because the designer is exploring
behavior demonstrably unlikely to arise in normal game play. It is Induced because the
motivation to examine this particular weapon comes from an empirically-determined gap in
the data. Finally, it is a Descriptive Action model because it is constituted in the simple
description “the player uses this weapon,” regarding a player’s in-game choice.

6 Future Work

One function of our taxonomy is to quickly decide when two or more player models are
related (i.e. sharing some or all selections for their facets) and when they are not. With the
ability to clearly define a region in the space of player models, we imagine further research
tackling the problem of providing a more comprehensive survey of work done on a single kind,
such as one covering Individual Induced Generative Action models (player-specific bots akin
to Drivatars), or of a collection of kinds, as in simply Individual Induced models (the larger
set of systems that learn from individual players).

Having exposed several implicit yet meaningful kinds of player modeling that are system-
atically underrepresented in literature (particularly those that relate to the mental processes
in the not-well-understood practices of game design), we can also imagine an effort to doc-
ument these otherwise invisible instances of player modeling. Currently, the explicit use of
such mental models cannot be found in any introductory text and it must be rediscovered by
each game designer in the course of their early experiences. Statements such as “designers
imagine how different kinds of players will play through their games and react to what they
experience” might seem too obvious to publish, but they convey a player-centric philosophy
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that can help new designers separate their own play style or reactions to a game from a more
objective view of how players other than themselves would react or play.

Finally, it seems the ability to actually define player modeling in an inclusive way is
now within our grasp. Player modeling has indeed been defined many times before (recall
Houlette), but no definition spans the space of relevant techniques we have collected in this
document. While this taxonomy can be used as a kind of default definition of player modeling
(“if you can classify it, it’s a player model”), we have not tested the boundaries of this model
so carefully as we have considered the distinctions it draws between realized systems.

7 Conclusion

Our goal has been to clean up the terminology of player modeling in a way that ties modeling
methods (best distinguished by their Source) to the modeling problem they solve (described
by their Scope, Purpose, and Domain). We have taken an inclusive strategy that intends
to address all work published as “player modeling” and beyond into the internalized models
used by game designers.

Using the rich vocabulary we have defined, it is now possible to make very concise de-
scriptions of specific instances of player modeling, for example identifying Drivatars as Indi-
vidual Induced Generative Action player models. Further, we can now point out the general
strategy behind the nuanced layering of player models in PaSSAGE in which an Individual
Induced Descriptive Action models was plugged into a Class Synthetic Generative Reaction
model to produce an Individual Synthetic Generative Reaction models which was exactly
the technology in PaSSAGE that enabled the novel gameplay experience in that system.

By considering different player modeling approaches within the same kind, drop-in alter-
natives can be found. In fact, a study of EMPath integrated a series of increasingly refined
player models of the same kind and observed their effects on play [20]. Looking outside of
a specific kind, player models of a nearby kind can inspire new development. For example,
replacing EMPath’s single Universal Synthetic Generative Reaction model (the story qual-
ity evaluator) with a set of hand-coded Class-scope model would allow for coarse-grained
player adaptation with only limited changes to surrounding systems in the game. Doing this
would imply a subtle redefinition of the problem of player modeling in that system without
changing the Source (the author’s hunches about player reaction).

We hope this taxonomy inspires the reader to adopt a more inclusive view of player
modeling and inspires them use the distinctions it draws to formulate new and interesting
conclusions about player modeling that were previous difficult to express in a general way.
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