## Learning transformations between directed subspaces ... online!

Adam Smith<br>amsmith@cs.ucsc.edu<br>University of California - Santa Cruz<br>\[ \begin{aligned} \& June 7, 2006 - CMPS 290C<br>\& Last update - June 14, 2007 \end{aligned} \]

# (1) Setting 

(2) Approach
(3) Example
(4) Future

## Outline

## (1) Setting

## (2) Approach

## (3) Example

(4) Future

## Motherspace

The motherspace $\mathcal{M}$...

- is an infinite dimensional vector space
- includes every subspace of instances we might consider
- includes every subspace of labels we might consider


## Transformation

Some linear function $f(\cdot)$

- maps instances vectors to label vectors $\left(\mathbf{y}_{t}=f\left(\mathbf{x}_{t}\right)\right)$
- may really be from a restricted class of functions
- may shift over time (need to adapt online!)


## Homogeneous Transformation Problem

## Definition

The homogeneous tranformation problem

- Receive an instance vector $\mathbf{x}_{t}$ in instance space.
- Predict a label vecor $\hat{\mathbf{y}}_{t}$ in motherspace.
- Receive true label vector $\mathbf{y}_{t}$ in label space.
- Incur a loss $L_{y_{t}}\left(\hat{\mathbf{y}}_{t}\right)$.


## Solution

- pick some class of linear functions and find a parameterized form
- initialize parameter $\mathbf{P}$ to something reasonable
- predict $\mathbf{y}_{t}=f_{\mathbf{P}}\left(\mathbf{x}_{t}\right)$
- update parameter to minimize tradeoff of divergence from last value and loss
- exactly $\mathbf{P}_{t_{1}}=\inf _{\mathbf{P} \in \mathcal{P}}\left\{\Delta\left(\mathbf{P}, \mathbf{P}_{t}\right)+\eta L_{\mathbf{y}_{t}}\left(f_{\mathbf{P}}\left(\mathbf{x}_{t}\right)\right)\right\}$


## Outline

## (1) Setting

(2) Approach

## (3) Example

## Universal Geometric Algebra $\mathcal{G}$

- set: an infinite dimensional vector space
- operators: geometric sum and the (non-commutative) geometric product
- the closure of operations on the space is called $\mathcal{G}$ (the algebra of the multivectors)
- all real vector algebras are subalgebras of $\mathcal{G}$ (as is the algebra of the real numbers)
- contains a subalgebra just for our problem!


## Some classes of linear functions

Focus on classes of linear functions with a simple, interpretable parameter.

- reflection (useful in embeddings)
- parameter is a vector $\mathbf{n}$, the normal to the hyperplane of reflection
- $f_{\mathbf{n}}(\mathbf{x})=-\mathbf{n x n}$
- rotation (we will focus here shortly)
- parameter is a rotor $\mathbf{R}$, the two-dimensional plane of rotation and angle
- a quaternion-like package of a scalar and a bivector (in general, the product of two unit vectors)
- $f_{\mathbf{R}}(\mathbf{x})=\mathbf{R x}$
- projection onto a subspace (good for PCA?)
- a multivector $\mathbf{S}$ that is the geometric product of vectors spanning that space
- $f_{\mathbf{S}}(\mathbf{x})=(\mathbf{x} \cdot \mathbf{S}) \mathbf{S}^{\mathbf{- 1}}$
- scale (not very interesting, but still in same setting)
- a scalar $\lambda$
- $f_{\lambda}(\mathbf{x})=\lambda \mathbf{x}$


## Divergences

Identify the divergence $\Delta(.,$.

- $|A-B|^{2}$, the "norm squared of difference" is a natural choice
- defined the same way for all multivectors
- for multivectors of the same grade (just scalars, just vectors, just bivectors, etc) it is exactly the euclidean distance
- ???, a "geometric relative entropy"
- $\Delta(A)=\frac{1}{2}\langle\langle A \log A-A+1\rangle>$ is an entropy-like measure defined for all multivectors
- for rotors, it yields a 'distance from identiy rotation' (proportional to $-\theta \sin \theta-2 \cos \theta$ )
- only convex on hemisphere of rotations near identity (not unexpected)
- no clean Bregman divergence derived yet


## Losses

Identify the loss $L_{y_{t}}($.

- norm squared of difference is suitable, $L_{\mathbf{y}_{t}}\left(\hat{\mathbf{y}}_{t}\right)=\left|\mathbf{y}_{t}-\hat{\mathbf{y}}_{t}\right|^{2}$
- geometric relative entropy may be suitable too (someday) $\left(L_{y_{t}}\left(\hat{\mathbf{y}}_{t}\right)=\Delta\left(\mathbf{y}_{t} \mathbf{y}_{t}\right)\right)$
- we just need some notion of a distance between vectors in motherspace


## Mapping into Motherspace

Some coordinate-free and domain-indepdendent methods of mapping application-level vectors into the motherspace:

- identity transformation - consider only homogeneous subspace of original space
- projective transformation - consider non-homogeneous spaces in ororiginalig space
- conformal transformation - consider generalized circles in original space
- conic transformaion - consider generalized conics in original space General strategy: make homogeneous subspaces more powerful! Domain-specific transformations should be applied outside of this discussion.


## Outline

## (1) Setting

## (2) Approach

(3) Example

## Rotation Problem

## Definition

## Rotation Problem

- instances come from a specific $n$-dimensional vector space $\mathcal{V}$
- labels also come from $\mathcal{V}$
- an hidden rotation $\mathbf{R}_{\mathbf{C}}$ correctly maps the data
- hidden rotation may shift over time (adapt online!)


## Attack

- use rotations as the class of linear functions
- use the norm squared of difference as the divergencne
- use the norm squared of difference as the loss
- use the identity transformation to map vectors (no changes)


## Details

- $\mathbf{R}$ is the parameter, has $1+n(n-1) / 2$ degrees of freedom, one less if we keep it normalized
- $\mathbf{R}_{1}=1$ (just the scalar), the identity rotation
- predict with $f_{\mathbf{R}}(\mathbf{x})=\mathbf{R x R}^{-\mathbf{1} *}$
- update with $\mathbf{R}_{t+1}=\inf _{|\mathbf{R}|^{2}=1}\left\{\left|\mathbf{R}-\mathbf{R}_{t}\right|^{2}+\eta\left|\mathbf{R} \mathbf{x}-\mathbf{y}_{t}\right|^{2}\right\}$
- at every step we may interpret the state of the algorithm by decomposing $\mathbf{R}=e^{-\mathbf{B} \theta}$ where $\mathbf{B}$ is the plane of rotation (a bivector) and $\theta$ is the half angle of rotation in radians


## Deriving the Update

Actual ugly math ommitted for the talk, general idea:

- form Lagrangian of minimization problem with dual parameter $\alpha$ to enforce normalization contraint
- differentiate with respect to $\mathbf{R}$ (using geometric calculus!)
- set differential equal to zero
- solve for $\mathbf{R}$
- solve for $\alpha$ to enforce normalization

And the result is not pretty in component form, but is equivalent to ...

## Geometric Update

$$
\mathbf{R}_{t+1}=\frac{\mathbf{R}_{\mathbf{t}}+\eta \mathbf{y}_{\mathbf{t}} \mathbf{x}_{\mathbf{t}}}{\alpha}
$$

## Interpretation

"The best new rotor is simply the normalized sum of the previous rotor and the shortest rotor that explains the mapping from $\mathbf{x}$ to $\mathbf{y}$ (weighted by the tradeoff factor)."

## Comments

- the math is devastatingly elegant (IMHO)
- can be loosely connected back to expert framework: "There is an expert for (half) rotation in each of the principle planes plus one extra for the identity rotation."
- this algorithm was derived completely mechanically (setting + problem $\rightsquigarrow$ algorithm)
- actually indepdentent of the dimensionality and signature of instance and label spaces (may even be orthogonal!)
- it has clear advantages over other formulations that the problem might suggests without adopting geometric algebra (oh really?)


## Comments - Rotation Matrix

What if parameter is a rotation matrix?

- update is not coordinate-free
- no clear interpretation of matrix after an update (but an un-normalized rotor performs the same rotation as the normalized one! - the set is closed!!!!)
- requires orthonormalization to rebuild rotation matrix after update, might undo progess (rotor only requires a divide of all components in parallel)
- has lots of extra degrees of freedom


## Comments - Euler Angles

What if parameter is vector of Euler angles (rotation about each principle axis)?

- update is not coordinate-free
- update is makes heavy use of trigonometric functions
- sensitivity to noise is not uniform (gimbal lock, singularties)


## Comments - Quaternions

What if parameter a quaternion?

- limited to only 3D case
- rotor algorthm reduces to quaternion case in 3d


## Outline

## (1) Setting

(2) Approach
(3) Example

4) Future

## Future Work Directions

- get formal bounds (already known to converge for batch case)
- explore "geometric relative entropy" more (for other parameter classes as well)
- try to derive online PCA using subspace projections
- find interpretable parameter(s) (not a matrix) for other important linear function classes
- plug into some real-world thingy

It's a $\mathcal{G}$ thing.

