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Setting

Motherspace

The motherspace M ...

is an infinite dimensional vector space

includes every subspace of instances we might consider

includes every subspace of labels we might consider
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Setting

Transformation

Some linear function f (·)

maps instances vectors to label vectors (yt = f (xt))

may really be from a restricted class of functions

may shift over time (need to adapt online!)
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Setting

Homogeneous Transformation Problem

Definition

The homogeneous tranformation problem

Receive an instance vector xt in instance space.

Predict a label vecor ŷt in motherspace.

Receive true label vector yt in label space.

Incur a loss Lyt (ŷt).
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Setting

Solution

pick some class of linear functions and find a parameterized form

initialize parameter P to something reasonable

predict yt = fP(xt)

update parameter to minimize tradeoff of divergence from last value
and loss

exactly Pt1 = infP∈P {∆(P,Pt) + ηLyt (fP(xt))}
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Approach

Universal Geometric Algebra G

set: an infinite dimensional vector space

operators: geometric sum and the (non-commutative) geometric
product

the closure of operations on the space is called G (the algebra of the
multivectors)

all real vector algebras are subalgebras of G (as is the algebra of the
real numbers)

contains a subalgebra just for our problem!
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Approach

Some classes of linear functions

Focus on classes of linear functions with a simple, interpretable parameter.

reflection (useful in embeddings)
parameter is a vector n, the normal to the hyperplane of reflection
fn(x) = −nxn

rotation (we will focus here shortly)
parameter is a rotor R, the two-dimensional plane of rotation and angle
a quaternion-like package of a scalar and a bivector (in general, the
product of two unit vectors)
fR(x) = Rx

projection onto a subspace (good for PCA?)
a multivector S that is the geometric product of vectors spanning that
space
fS(x) = (x · S)S−1

scale (not very interesting, but still in same setting)
a scalar λ
fλ(x) = λx
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Approach

Divergences

Identify the divergence ∆(., .)

|A − B|2, the “norm squared of difference” is a natural choice

defined the same way for all multivectors
for multivectors of the same grade (just scalars, just vectors, just
bivectors, etc) it is exactly the euclidean distance

???, a “geometric relative entropy”

∆(A) = 1
2 〈< AlogA − A + 1〉 > is an entropy-like measure defined for

all multivectors
for rotors, it yields a ‘distance from identiy rotation’ (proportional to
−θ sin θ − 2 cos θ)
only convex on hemisphere of rotations near identity (not unexpected)
no clean Bregman divergence derived yet
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Approach

Losses

Identify the loss Lyt (.)

norm squared of difference is suitable, Lyt (ŷt) = |yt − ŷt |2

geometric relative entropy may be suitable too (someday)
(Lyt (ŷt) = ∆(ytyt))

we just need some notion of a distance between vectors in
motherspace
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Approach

Mapping into Motherspace

Some coordinate-free and domain-indepdendent methods of mapping
application-level vectors into the motherspace:

identity transformation - consider only homogeneous subspace of
original space

projective transformation - consider non-homogeneous spaces in
ororiginalig space

conformal transformation - consider generalized circles in original
space

conic transformaion - consider generalized conics in original space

General strategy: make homogeneous subspaces more powerful!
Domain-specific transformations should be applied outside of this
discussion.
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Example

Rotation Problem

Definition

Rotation Problem

instances come from a specific n-dimensional vector space V
labels also come from V
an hidden rotation RC correctly maps the data

hidden rotation may shift over time (adapt online!)
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Example

Attack

use rotations as the class of linear functions

use the norm squared of difference as the divergencne

use the norm squared of difference as the loss

use the identity transformation to map vectors (no changes)
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Example

Details

R is the parameter, has 1 + n(n − 1)/2 degrees of freedom, one less if
we keep it normalized

R1 = 1 (just the scalar), the identity rotation

predict with fR(x) = RxR−1 *

update with Rt+1 = inf |R|2=1

{
|R− Rt |2 + η|Rx− yt |2

}
at every step we may interpret the state of the algorithm by
decomposing R = e−Bθ where B is the plane of rotation (a bivector)
and θ is the half angle of rotation in radians
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Example

Deriving the Update

Actual ugly math ommitted for the talk, general idea:

form Lagrangian of minimization problem with dual parameter α to
enforce normalization contraint

differentiate with respect to R (using geometric calculus!)

set differential equal to zero

solve for R

solve for α to enforce normalization

And the result is not pretty in component form, but is equivalent to ...
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Example

Geometric Update

Rt+1 =
Rt + ηytxt

α

Interpretation

“The best new rotor is simply the normalized sum of the previous rotor
and the shortest rotor that explains the mapping from x to y (weighted by
the tradeoff factor).”

Adam Smith (UCSC) Learning Transformations 19 / 25



Example

Comments

the math is devastatingly elegant (IMHO)

can be loosely connected back to expert framework: “There is an
expert for (half) rotation in each of the principle planes plus one
extra for the identity rotation.”

this algorithm was derived completely mechanically (setting +
problem  algorithm)

actually indepdentent of the dimensionality and signature of instance
and label spaces (may even be orthogonal!)

it has clear advantages over other formulations that the problem
might suggests without adopting geometric algebra (oh really?)
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Example

Comments - Rotation Matrix

What if parameter is a rotation matrix?

update is not coordinate-free

no clear interpretation of matrix after an update (but an
un-normalized rotor performs the same rotation as the normalized
one! – the set is closed!!!)

requires orthonormalization to rebuild rotation matrix after update,
might undo progess (rotor only requires a divide of all components in
parallel)

has lots of extra degrees of freedom
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Example

Comments - Euler Angles

What if parameter is vector of Euler angles (rotation about each principle
axis)?

update is not coordinate-free

update is makes heavy use of trigonometric functions

sensitivity to noise is not uniform (gimbal lock, singularties)
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Example

Comments - Quaternions

What if parameter a quaternion?

limited to only 3D case

rotor algorthm reduces to quaternion case in 3d
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Future

Future Work Directions

get formal bounds (already known to converge for batch case)

explore “geometric relative entropy” more (for other parameter
classes as well)

try to derive online PCA using subspace projections

find interpretable parameter(s) (not a matrix) for other important
linear function classes

plug into some real-world thingy

It’s a G thing.
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