
Learning Transformations Between Directed
Subspaces Online

Adam Smith
University of California, Santa Cruz

CMPS 290C, Advanced Topics in Machine Learning
amsmith@cs.ucsc.edu

June 15, 2007

Abstract

In this project we tackle the rotation problem (learning the rota-
tion between instance and label vectors in an online setting) by devel-
oping a novel problem setting. We adopt a geometrically-motivated
approach in the framework of the univeral geometric algebra, a pow-
erful mathematical tool for manipulating directed subspaces. Us-
ing this approach we mechanically derive a remarkably simple and
approximation-free algorithm for learning rotations in arbitrary spaces.
Finally, we explore several standard transformations that can greatly
expand the power of a solution to the rotation problem.

1 Introduction

In supervised learning, the problem is to infer a function from example data
that performs desirably on new data. This problem can be approached in
either a batch or online setting, and we will focus on the (seemingly harder)
online setting here. In classification prorblems, we are told that the unknown
function mapping the data has a codomain of class identifiers (possibly just
‘yes’ or ‘no’). However, there is an important class of problems where the
codomain of the unknown function, which we conventionally call the space
of labels, is same as the space of data points, conventionally called the space

1

of instances. We call these problems subspace transformation problems be-
cause they are equivalent to learning a transformation from one subspace
to another. In particular, we will focus on the rotation problem, learning
an unknown rotation from instances to labels that may shift over time. To
attack this problem, we develop a powerful new problem setting and a sim-
ple, geometrically-motivated approach that can be used to derive solutions
to various problems in the new setting.

2 Transformed Subspaces Setting

First, let us consider a new concept, the motherspace M. The motherspace
is a construct we use to motivate our approach, but is not necesary for
understanding out final results. The motherspace is an infinite dimensional
vector space that includes every subspace of instances and labels we might
consider. By formulating our problems in this single space, we can discuss a
large space of problem classes all at once.

Next, consider the space of all linear functions f(·) on the motherspace.
In a machine learning context, we can identify each one of these functions
as mappings yt = f(xt) from instances to labels as the unknown function
underlying a particular problem in our setting. We focus on the case where
we are promised that these functions are chosen from specific, restricted
classes of linear functions. Additionally, in the online setting, we assume the
function used to map instances to labels may change over time (necesitating
the need to develop online algorithms to track this behaviour).

2.1 Definition of Problem Setting

Now we can formulate a clean definition of general problems in the trans-
formed subspaces setting. This solution will serve as a template for instanti-
ating an algorithm for the rotation problem when we focus on it later in this
paper.

Online Homogeneous Transformation Problem

1. Receive an instance vector xt from the instance space.

2. Predict a label vector ŷt in the motherspace.

3. Receive true label vector yt = ft(xt) in label space with ft(·) from a
specific class of linear functions.

2

4. Incur a loss Lyt(ŷt).

Note that the predicted laabel vector ŷt need not necesarily live in the
label space. In particular the definition of the label space is not explicity
provided (and may even be the focus of the problem as it is in principle com-
ponent analysis). Also note that we are considering a noise-free case. That is,
there is always a particular f that exactly explaints the transformation from
instance to label vectors. Again, in the transformation from application-level
geometry we may also relax this contraint. Finally, we call this the homoge-
nous transformation problem because any linear function f : M→M must
be homogeneous. Intuitively, we can identify f with a transformation on
entire homogeneous linear subspaces of the motherspace.

2.2 Solution Template

From our problem statement, we can formulate a general solution to homo-
geneous transformation problems that echos the standard skeleton for online
algorithms. First, we should pick a class of linear functions (that may or
may not be more specific than the class of unknown functions for the prob-
lem) and identify a parameterized form of this class. Initially, the algorithm
should initialize its parameter P to some chosen initial value. These are our
only creative choices in the derivation of an algorithm to solve the prob-
lem at hand. On each instance xt recieved, the algorithm should predict
ŷt = fP(xt). After a true label yt is received, the algorithm should update
the parameter in such a way as to minimize the tradeoff of the divergence of
the parameter to its last (presumably succesfull) value and and the loss the
new parameter would incur on the previous example. That is, we have the
following equation where η is a tradeoff parameter conventionally called the
learning rate.

Pt+1 = inf
P∈P

{∆(P,Pt) + ηLyt(fP(xt))} (1)

3 Approach

So far, we have only setup the machine learning commitments of our algo-
ritms and not yet commited to a specific mathematical framework in which
we can actually peform computations. As such, we exercise our freedom to

3

choose an somewhat obscure but immensely powerful framework called ge-
ometric algebra. As we will see, this choice lends a healthy dose of clarity
and expressiveness in the transformed subspaces setting. Geometric algebra
is sometimes billed as algebra of directed subspaces, an ideal tool for our
problem.

3.1 Geometric Algebra

The universal geometric algebra G (as defined in [1]) is an infinite-dimensional,
real, Clifford algebra. The generating set for the algebra is an infinte dimen-
sional vector space (the motherspace for us), and the basic operations are a
geometric sum and a geometric product. The geometric sum is exactly the
familiar add-the-components sum in vector algebra. The geometric product,
however, is of a less familiar variety. The geometric product is an informa-
tion preserving bilinear operator that captures the parallel and perpendicular
parts of its operands in one quantity. The closure of the sum and product
operations on the given vector space produces a space of objects called mul-
tivectors that (similar to quaternions) have a scalar part, a vector part, and
higher order (bivector, trivector, etc.) parts that each have a clear geometric
interpretation in the motherspace. Interestingly, all real algebras are subal-
gebras of G (complex algebras are embedded as purely real algebras as well).
Thus, G contains a subalgebra just for our problem!

In the rest of this section we will describe familiar mathematical tools in
the framework of geometric algebra by only introducing concepts as needed
to reduce the overhead required to understand our solution in this largely un-
familiar framework. All of the concise expressions we work with have beau-
tiful geometric intepretations that are, unfortunately, outside of the scope of
this paper to discuss in detail. Before continuing, absorb just a few bits of
notation. The justaposition AB signifies the (non-commutative) geometric
product between two multivectors. The expression A−1 signfies the inverse
of a multivector (always defined except when A = 0). The inner (·) and
outer (∧) products are derivable from the definition of the geometric prod-
uct and, for vectors, coincide with the definition of the familiar Euclidean
dot product and Grassmann (progressive) outer product. Finally 〈A〉 de-
notes an operation that selects only the scalar part of a multivector (related
to a trace).

4

3.2 Transformations

We claimed that deriving an algorithm from our template in the previous
section requires selecting a parameterized family of linear functions. Here we
lay out the form a few restricted classes of transformations.

First, consider reflections. A reflection can be parameterized by a sin-
gle vector n which can be interpreted as the normal to the hyperplane of
reflection. The function takes the form fn(x) = −nxn−1.

Rotations (our focus) are parameterized by a rotor R. Rotors are a
quaternion-like normalized package of a scalar and a bivector (in general, the
geometric product of two unit vectors). Rotors concisely encode the two-
dimensional plane of rotation and angle of rotation. Note that the notion
of “axis of rotation” does not generalize to non-three-dimensional spaces. A
rotation tranformation takes the form fR(x) = RxR−1 (the similarity to
the reflection case is due to rotations really being a pair of nested reflection
operations).

We can also represent another kind of transformation, projection onto
a subspace. The parameter of this transformation is S, the outer product
of linearly indepdent vectors spanning the space onto which the projection
occurs. A projection transformation takes the form fS = x · SS−1 (con-
ventionally, the inner product binds tighter than the geometric product).
Note that presence of the inner product in this expression indicates that this
tranformation is capable of destroying information (geometric algebra often
leads to self-documenting expressions like this), a property that is actually
desirable for projection.

Finally, consider a scaling tranformation. This tranformation has a single
real scalar parameter λ and takes the form fλ(x) = λx. Scaling is not a very
powerful transformation, but we include it here for variation. General linear
transformations are indeed expressable, but we will not make use of them.

3.3 Divergences and Losses

For any of the parameters that we might choose of the above, it is nece-
sary to select a parameter divergence ∆(P,Pt). An obvious, geometrically-
motivated options is the “norm squared of difference” |P − Pt|2 which is
derivable as a Bregman divergence from the norm operation. The norm is
defined for all multivectors and for multivectors of similar grade (either only
scalars, only vectors, only bivectors, etc.) it corresponds exactly to the fa-

5

miliar notion of Euclidean distance.
Another option, that we have not developed enough for general use,

is an attempt at a “geometric relative entropy”. The expression ∆(A) =
1
2
〈A lnA −A + 1〉 is also defined for all multivectors (in terms of the Tay-

lor expansion). For rotors, this yields strange entropic-distance-from-the-
identity-rotation that is proportional to −θ sin θ − 2 cos θ that is convex on
[−π, +π]. We have not yet derived a Bregman divergence for general multi-
vectors based on this expression. As such, we will focus on the norm squared
as the generator for our divergences in this discussion.

Finally, part of problem definition, the loss of the prediction, deserves
some discussion with respect to our geometric algebra approach. In selecting
a loss, we just need some notion of distance between vectors in the moth-
erspace. Again, an obvious choice is the norm squared of difference. A
geometric relative entropy may someday be suitable. In this discussion we
will focus on the norm squared as the generator for our losses as well.

4 Rotation Problem

With the above notions formalized, we may now take any problem and derive
an algorithm to solve it. Here, as an example, we focus our attention on the
rotation problem. In the online rotation problem, instance as well as label
vectors come from a specific n-dimensional vector space V . At each step, a
hidden rotation Ct correctly maps the instance in the example. The hidden
rotation may shift over time.

4.1 Attack

As a summary of our solution, we will use rotations as the class of linear
functions (exactly mirroring the problem definition). The norm squared of
difference will serve as our parameter divergence as well as our loss function.
Finally, we will use the indentity rotation as our initial parameter state.

In the language of geometric algebra, the above approach is codified as
follows. Our parameter, the rotor R is an object with

(
n
2

)
= n(n − 1)/2

degrees of freedom after normalization. The initial setting, is simply the
concisely expressed identiy rotation: R1 = 1. To predict, we will use a
function of the form fR(x) = Rx. Note, this is called a one-sided rotation
and has slightly different properties than the standard two sided rotation.

6

We have chosen it here to easier exploration of a new framework and our
result should be reformulated for the two-sided case before use. The parame-
ter update, Rt+1 = inf |R|2=1 {|R−Rt|2 + η|Rxt − yt|2} follows the solution
template. After every update, we may interpret the new state of parameter
by decomposing Rt+1 = exp(−Bθ) where B is a bivector that encodes the
plane (with handedness) of rotation and θ is the angle of rotation in radians.

4.2 Geometric Update

The derivation of the of the update will held our until the next section to
keep the discussion transparent. However, to skip to the exciting part, we
will now present the resulting update expression in its clean, compact form.
Note, z is a normalizing scalar.

Rt+1 =
Rt + ηytxt

z
(2)

Without any leaps of creativity, this update can be read in English as
the following: The best new rotor is simply the normalized sum of the previ-
ous rotor and the shortest rotor that explains the mapping the last example
weighted by the tradeoff factor.

4.3 Discussion

Technically, the subexpression ytxt is not a rotor but instead a spinor because
it is unnormalized (it encodes a dilation as well). An effect of this is that the
algorithm will effectively learn more from pairs of vectors that are longer.
This is to be expected, however, because our tradeoff is in terms of distance
between the prediction and the true label vectors and not in terms of angles.
If the hidden function was not strictly a rotation as the problem defined
(possibly with the addition of noise), this length sensitivity can be interpreted
as the intuition that examples of longer vectors being transformed gives us
greater confidence in the apparent rotation.

This algorithm is very simply to explain yet was mechanically derived
from the problem setting and our solution template. It does not depend on
dimensionality nor the statement in the problem definition that instances
and labels come from the same space. As such, we may use this solution
in much more general settings. Furthermore, we predict that it may have

7

distinct advantages over other algorithms that the problem statement might
suggest if we had not already developed our approach seated in geometric
algebra.

First, consider if we had used a rotation matrix the parameter to our
algorithm. Matrices are explicitly defined in terms of their components,
so necesarily the update step of the algorithm could not be expressed in a
coordinate-free manner. After somehow combining the previous rotation ma-
trix and a rotation matrix that explains the last rotation, it is not clear that
the result is again a rotation matrix. This value may not have a clear geo-
metric meaning until it is projected back to have the right properties. This
projection would likely be operationalized as a Graham-Schmidt orthonor-
malization process could possibly undo learning progress the algorithm has
made. In our approach, spinor normalization has no effect on the direction
or magnitude of the rotation action. This stems from the fact that a n × n
matrix has too many degrees of freedom to only represent rotations.

Next, consider an algorithm based on Euler angles. Euler angles usually
refer to rotations about the three principle axes in three dimensions, but
we can consider a generalizable version that tracked a rotation about each
principle plane (the spans of any two different basis vectors). The update
in this formulate, again, is necesarily not coordinate-free. It is impossible
to interpret the state of the parameter without establishing a orthonormal
reference frame. Furthermore, this approach would likely make heavy use of
trigonometric functions in its update. Well known problems of gimbal-lock
and non-uniform sensitivity to noise are also likely. Despite having the ideal
number of degrees of freedom in their representation, Euler angles are too
ridgid in their structure.

Finally, a common answer to the issues of gimbal-lock with Euler an-
gles is quaternions. Quaternions, when normalized, have the ideal number
of degrees of freedom and store very similar information to that of Euler
angles. However, because quaternions have an extra component they are
more flexible during manipulation. Quaternions are actually equivalent (up
to naming conventions) to rotors in three dimensions. So, while it is exactly
the properties of the quaternion that make it so convenient for working with
rotations in three dimensions that make the rotor a suitable parameter in
higher dimensions, the use of a literal quaternion would immediately lock us
into only very low dimensional applications.

8

5 Derivation of the Update

With our context, motivation, and initial results clearly laid out, it is now safe
to inspect the process by which we arrived at the parameter update for the ro-
tor problem. The following derivation should be prefaced with the comment
that while we have been touting the benefits of coordinate-free expressions
for simpler interpretation, we nonetheless revert to coordinates here. This is
not because this problem (or any in this setting) requires working with coor-
dinates, but because we are not experienced enough with geometric calculus
to carry out these computations with confidence in another way.

To begin, recall the expression for the ideal new rotor as translated from
our solution template.

Rt+1 = inf
|R|2=1

{
|R−Rt|2 + η|Rxt − yt|2

}
(3)

Now, form the Lagrangian of this extremization problem. Recall that
|Rt|2 = 1 because it is normalized after each update. Let x = xt and y = yt

for now.
L(R, α) = |R−Rt|2 + η|Rx− y|2 + α(|R|2 − 1) (4)

Expand the distances using a general form of the law of cosines.

L(R, α) = |R|2 + |Rt|2−2〈RRt〉+η(|R|2x2 +y2−2〈Rxy〉)+α|R|2−α (5)

Collect terms around Rs.

L(R, α) = (1 + α + ηx2)|R|2 − 2〈RRt〉 − 2η〈Rxy〉+ (ηy2 − α + 1) (6)

Now, to ease our burden when working with the coordinate form of the
above expression, let us introduce an arbitrary orthonomal basis {e1, . . . , en}
and decompose R = a +

∑
j,k bjkejek. Likewise, let us define xy = ad +∑

j,k bjk,dejek for product of the labelled data. Here, a sum over j, k collects
terms for 1 ≤ j < k ≤ n and a sum over i collects terms for 1 ≤ i ≤ n.

L(R, α) = (1 + α + ηx2)(a2 +
∑
j,k

b2
jk)

−2(aat +
∑
j,k

bjkbjk,t)

−2η(aad +
∑
j,k

bjkbjk,d)

+(ηy2 − α + 1)

(7)

9

To carry out the extremization, find the differential with respect to R
and set zero. We will begin with the scalar part of the new rotor.

∂L

∂a
= 2a(1 + α) + ηx2)− 2at − 2ηad = 0 (8)

Solving for a, observe that the following partial update is almost in the
form of the full update discussed in the previous section.

a =
at + ηad

1 + α + ηx2
(9)

Repeat the same for each bivector component of the new rotor.

∂L

∂bjk

= 2bjk(1 + α + x2)− 2bjk,t − 2ηbjk,d = 0 (10)

bjk =
bjk,t + ηbjk,d

1 + α + ηx2
(11)

Observe that each of the components resulting from the update above is
divided by a common expression that contains the unconstrained Lagrange
multiplier α. Thus, we can always normalize the resulting spinor. Finally, if
we reform the rotor R by summing all of the components together, we can
recover the update in terms of the Rt,x,y as desired.

A intesting aside, that may someday lead to an alternative method of
derivation, arises when we recall the plane-angle decomposition of the new
rotor. Let exp(Bt) be the previous rotor and exp(Bd) be that rotor that
explains the recent data. The rotor we have after the update can be de-
composed similarly ln(Rt+1) = ln(exp(Bt) + exp(Bd + c(η))) − ln(z). This
appears to be a simple soft-max calculation where the final term ensures that
the result has no scalar component. That is, that the result is always a pure
bivector (the expected type for the generator of a rotor).

6 Extensions of Rotation Problem

We mentioned that a solution to the rotation problem could be very power-
ful. Here we will describe some methods for expanding the rotation problem
to handle other problems without changing the algorithm at all. All exten-
sions are made possible by transforming the application-level vectors before

10

and their processing by the rotation learning algorithm described above. Ef-
fectively, these map interesting subspaces at the application level to homo-
geneous subspaces in the motherspace. We appologise for not chasing down
references to all of these techniques, however most are summarized or derived
from [2].

The projective transformation (associated with the notion of homoge-
neous coordinates) can allow the rotation algorithm to map between arbitrary
linear subspaces (those not passing through the origin). It is accomplished by
adding one additional basis vector. Rotations in the transformed space can
affect translations in the application’s space. This technique is well known
in machine learning and is usually embedded into the standard algorithms.
We maintain it outside of our core algorithm for clarity.

Next, the conformal transformation can allow for transformations be-
tween oriented arbitrary generalized circular spaces (lines and circles, planes
and spheres, hyperplanes and hyperspheres, etc.). It is accomplished by
adding two additional basis vectors. The power of this tranformation comes
from the fact that the operation to move things to and from the application
space is quadratic.

Continuing, the conic transform can allow for transformations between
the generalised conic surfaces centered at the origin (parabolas, ellipsoids,
hyper-hyperbolae). It is not clear what a rotation on a space like this really
means, but we will see this need not stop us from using this technique.

The final transformation we mention is the balanced transformation. This
transformation is the most aggressive, doubling the dimensionality of the
application space. Every linear function action on the original space can be
represented by a by a transformation by a member of a subgroup of the spin
group for the geometric algebra of the expanded space. This is promising
for representing general linear functions in our problem setting, however it is
not clear the limitations only using rotations are in under this scheme.

7 Conclusion

We have defined a new problem setting, a general approach with a solution
template, and dug into an example problem and produced a very simple
algorithm to solve it. The work in this area is far from over, however. We
have evidence that the algorithm can always make progress in learning a
rotation, but do not have a clear answer for how well it performs. Continued

11

practice with geometric calculus should expand our ability to prove things
about this new algorithm. The idea geometric relative introduced early on
needs to be developed more and its connection to known matrix algorithms
explored. Even the case presented above motivated by the Euclidean distance
might provide some insight into standard algorithms. In this same space of
problems, the projection operation seems promising for developing a clean,
simple, matrix free online PCA algorithm. Finally, a more general direction,
the effects of composing several of the standard transformations discussed
in the last section should be explored. Knowledge in this area can help us
understand generalizations of many existing algorithms that work only on
strictly linear subspaces.

References

[1] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometic Cal-
culus: A Unified Language for Mathematics and Physics. D. Reidel Pub-
lishing Company, 1984.

[2] Anthony Lasenby Chris Doran. Geometic Algebra for Physicists. Cam-
bridge University Press, 2005.

12

	Introduction
	Transformed Subspaces Setting
	Definition of Problem Setting
	Solution Template

	Approach
	Geometric Algebra
	Transformations
	Divergences and Losses

	Rotation Problem
	Attack
	Geometric Update
	Discussion

	Derivation of the Update
	Extensions of Rotation Problem
	Conclusion

