
Computational Caricatures: Probing the Game Design Process with AI

Adam M. Smith and Michael Mateas
Expressive Intelligence Studio

University of California, Santa Cruz
1165 High Street, Santa Cruz, CA 95064

{amsmith,michaelm}@soe.ucsc.edu

Abstract

We propose the creation of computational caricatures as a de-
sign research practice that aims to advance understanding of
the game design process and to develop the reusable technol-
ogy for design automation. Computational caricatures cap-
ture and exaggerate statements about the game design pro-
cess in the form of computational systems (i.e. software and
hardware). In comparison with empirical interviews of game
designers, arguments from established design theory, and the
creation of neutral simulations of the design process, com-
putational caricatures provide more direct access to inquiry
and insight about design. Further, they tangibly demonstrate
architectures and subsystems for a new generation of human-
assisting design support systems and adaptive games that em-
bed aspects of automated design in their runtime processes. In
this paper, we frame the idea of computational caricature, re-
view several existing design automation prototypes through
the lens of caricature, and call for more design research to be
done following this practice.

Introduction
Design research generally intends to understand and ad-
vance the process of design or to transform the space of arti-
facts that might result from that process. In many cases, this
takes the form of carrying out design projects with larger
questions in mind. In this paper, we describe a design re-
search practice which targets game design, specifically ad-
dressing questions about the role of artificial intelligence
(AI) in the game design process.

In the design of game content artifacts (such as music,
level maps, and story fragments), many automated systems
draw heavily on AI search techniques (Togelius et al. 2010).
In our own game content generation work, we have shown
how to use automated inference tools to generate game con-
tent from design space captured in a concise knowledge rep-
resentation (Smith and Mateas 2011a). Earlier, we employed
learning and retrieval in a generative art installation (outside
of games) that adapted to its audience to stay interesting over
multiple months of interaction (Smith et al. 2008).

That the full spectrum of AI has come into contact with
automated content generation should be no surprise. The de-
sign of artifacts by machines has been a central topic of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

discussion in computational creativity (Colton, de Mántaras,
and Stock 2009), a field that uses theory and system building
to advance understanding of both machine and human cre-
ativity. Recently, we proposed a connection between several
computational creativity and AI topics (artificial curiosity,
automated scientific discovery, and knowledge-level model-
ing) and the full context of creative game design, making
predictions about the game design process as carried out by
human designers and future machines (Smith and Mateas
2011b).

We believe that following the program of computational
creativity in the context of game design will continue to ad-
vance our understanding of the design process and unlock
the building blocks of a new generation of human-assisting
design automation tools and currently-unreachable game
systems that embed aspects of the design process in their
runtime systems. Thus, the key question to ask is whether a
machine can design, and, if so, how? Noted design studies
researcher Nigel Cross echoes this sentiment (2006):

Asking ‘Can a machine design?’ is an appropriate re-
search strategy, not simply for trying to replace human
design by machine design, but for better understanding
the cognitive processes of human design activity.

This question can be tentatively answered by many
means. Taking an empirical approach, Nelson and Mateas
(2009b) interviewed expert game designers and, through
playing the role of the interface between a designer and auto-
mated reasoning tools, they drew several conclusions about
the potential roles for AI in assisting game designers (includ-
ing accelerating exploratory prototyping, performing early-
stage verification of designs, and supporting design-level
regression testing). In contrast, our own development of a
knowledge-level theory of creativity in game design (Smith
and Mateas 2011b) draws weight from established theory in
computational creativity, AI, and game design. Distinct from
purely-empirical or purely-theoretical approaches, we be-
lieve the most convincing answers to the question of whether
and how a machine can design games will take the form of
computational systems, inspired by theory and constrained
by the practicalities of what is implementable with today’s
computational resources.

We claim that building computational caricatures of the
game design process (with all of the subjectivity and bias



that the term implies) will provide direct access to insight
regarding the role of AI in the game design process. In this
paper, we frame the idea of a computational caricature, re-
view several existing design automation prototypes through
the lens of caricature, and call for more design research to
be done following this practice.

Computational Caricatures
The practice of building computational caricatures of the
game design process is tied strongly to the sense of cari-
cature familiar from visual art, it has precedents in the crit-
ical technical practice of AI, and it holds special promise
for game design (where aspects of automated design are
increasingly being embedded into generative and adaptive
games).

Visual Caricature
In visual art, caricature refers to a style of portraiture (cre-
ating images of a person with the intent to capture likeness,
personality, and mood) in which distortion is used to make
the subject more easily identifiable. Caricatures attempt to
be a better representation of a subject than an accurate depic-
tion (such as a photograph or photo-realistic painting) would
be. Through exaggeration and oversimplification, an artist
makes a statement about what is most salient about that sub-
ject. Different artists may decide that different aspects of a
subject are the most salient or, agreeing on saliency, they
may decide to present the same aspects in different ways.
As a vehicle for the artist’s claims, these loaded portraits can
express some ideas more quickly than the equivalent verbal
description.

What makes a caricature notable is not just the choice
of aspects of the subject which are emphasized but also all
of the other choices that go into it. One artist may decide
to borrow stylistic elements such as line weight or shading
techniques from another when creating future caricatures.
In actuality, a caricature captures two kinds of beliefs: “this
is what is interesting about the subject”, and (implicitly),
“this is the most obvious way for it to be recognizably rep-
resented”.

In the remainder of the paper we will be discussing a kind
of abstract caricature which is related to visual caricature
through analogy. In this analogy, the subject of a caricature
(conventionally a human face) is replaced by a cultural pro-
cess. In the example systems we describe later, the subject
of each caricature is a proposed process for automating some
aspects of game design through the use of AI. The medium
of the caricature (conventionally ink and airbrush on white
paper) is replaced with computational media: software and
hardware. The representation strategies used to carry out
oversimplification and exaggeration (conventionally enlarg-
ing eyes, noses, chins, and ears while eliminating wrinkles
and other blemishes) are translated into choices in a com-
putational system’s implementation: ignoring certain inputs,
focusing on specific subproblems, or placing very strict re-
quirement on potential users of the system.

However popular, the presence of large, airbrushed chins
is not the essence of caricature. Instead, it is the general use

of oversimplification and exaggeration techniques to make
the subtleties of subject more identifiable. As such, in the
subsequent discussion of computational caricature, it is not
our goal to understand the different ways in which cultural
processes can be distorted in order to transform them into
software. Instead, we want to highlight the use of caricatur-
ists techniques in a computational medium for the purposes
of making deeply technical claims more identifiable.

Procedural Portraits and Computational
Caricature
In the general context of using AI in cultural production
(which includes the use of AI in the game design process),
Mateas (2003a) proposed the idea of building “procedural
portraits”: representations of human cultural processes in the
form of realized computational systems.

Portraits of processes are easily recognizable as simula-
tions. However, simulations greatly vary in the degree to
which the simulator agrees with the simulated. ACT-R, a
system-as-theory cognitive architecture, has been used to
make quantitative predictions about human behavior (Gun-
zelmann et al. 2011). Such simulations are an attempt at ac-
curate modeling (equivalent to photo-realism in portraiture).
By contrast, Weizenbaum’s Eliza, a simulation of Rogerian
psychotherapy in the form of a chatterbot, is best described
(in Weizenbaum’s own words) as a “parody” (1976). Eliza
captures the “nondirectional” nature of Rogerian therapy in
a near-stateless program that simply asks the user about the
most recent input. Exaggeration and oversimplification are
used liberally and openly in a charged simulation like Eliza
whereas they would be rationalized or explained away in a
neutral simulation like ACT-R.

By contrast to general portraiture, caricature allows us to
be taken seriously in going after nuggets of truth (or at least
proposed truth) without having gotten all of the surrounding
details right. One of the values of caricature is rapidity of
recognition. The kind of flash-communication afforded by
caricatures makes them well suited as conversation-starters.
In the context of system building, procedural portraits can
make complicated and deeply technical arguments accessi-
ble, tangible even. The translation of a (too) familiar human
practice into cold, machine crunching can make it unfamil-
iar enough that we gain the new perspective required to put
some old questions to rest and ask more important ones.

In the same way that visual caricature encoded two kinds
of beliefs (statements about the subject and statements about
representational strategies), caricature in procedural por-
traits conveys two messages: “this is what is interesting
about the human cultural process”, and (implicitly), “this
is the most obvious way to implement it on a machine”.
When a particular system architecture provides better affor-
dances for embedding our message than expected, we say
that there is “architectural surplus” (Mateas 2003b). Identi-
fying sources of architectural surplus not only improves our
ability to communicate through the building of systems, it
paves the way for new kinds of systems that use AI to manip-
ulate and create human-appreciable meaning automatically.
This process becomes much more concrete when we zoom
into the context of game design.



Computational Caricature of the Game Design
Process

Computational caricatures are procedural portraits created
with the the values of caricature in mind (enhancing rec-
ognizability through exaggeration and oversimplification).
As such, every computational caricature of the game de-
sign process will embed one or more exaggerated and often
controversial statements about game design (alternatively
thought of as propositions, claims, or hypotheses). Likewise,
every computational caricature will make wildly simplify-
ing assumptions in the process of reducing their perspective
on design into an arrangement of code that is executable on
a machine. The choice of which concerns to abstract away
tells us about the intersection of what the caricaturist be-
lieves is salient and what is realistically feasible given the
implementation techniques known to them. That a particular
computational caricature of game design does not address
a well-known aspect of human game design practice (per-
haps learning through observing human playtesters) does not
immediately imply a statement of unimportance. Instead, it
might imply that the caricaturist knows of no promising ar-
chitecture for realizing that practice in their caricature.

The creation of a computational caricature (whether by
a game designer, AI scientist, or design studies researcher)
will always invite questioning beyond whether the statement
the caricature seems to push is simply valid or not. They in-
vite questioning into how accurately the system’s knowledge
representation models a designer’s beliefs, into how the cho-
sen algorithms (perhaps a specific kind of search) captures
the designer’s working processes, into how the machine’s
apparent values overlap with or diverge from those in tradi-
tional human practice (such as whether the value of a game
flows from it’s internal structure, from empirical properties
only observable in playtests, or some interesting balance of
these), and so on.

Tanagra (Smith, Whitehead, and Mateas 2010), a demon-
stration of mixed-initiative design for platformer levels,
seems to invite us to explore the statement “humans and
machines should produce game content cooperatively, asyn-
chronously editing a shared design” (our words). Playing
with this system suggests follow-up questions: When an in-
feasible design arises, should it always be the human’s re-
sponsibility to resolve this? How do we know when a level
design is finished, and can machines have an opinion on the
subject? Should two humans cooperate to design level in
this way? (They currently do not.) The machine seems to be
faster at verifying basic playability properties than the hu-
man; what other asymmetries are there and how should they
be exploited in future design assistance tools?

A visual caricaturist’s preference for certain line weights
and shading techniques translate into a computational cari-
caturist’s preference for code-level implementation details.
Every computational caricature sets, reinforces, or breaks
precedents in implementation techniques. Every system
(whether the caricaturist is conscious of it or not) makes the
implicit suggestion that future systems should use a similar
problem formulation, programming language, or software li-
brary to a given concern.

Even the details of a caricature that are invisible without
deep inspection become potential foundations for future sys-
tem and theories. In a review of content generation systems
based on answer set programming that involved a code-level
analysis (Smith and Mateas 2011a), we found that every
system assembled fragments of logic programs on the fly
in a process of “dynamic program construction”. Dynamic
program construction, an architectural motif that appeared
to its first users as an implementation detail, has emerged
as a standard practice that future declarative, solver-based
content generators should employ. In an interpretation of
logic program fragments as encodings of a designer’s beliefs
about a design space, dynamic program construction implies
a computational model of designers that heavily recycle do-
main knowledge between the analysis and synthesis phases
of design.

Taken together, the building of computational caricatures
is a design research practice that, while advancing personal
goals (such as sharing opinionated claims about game de-
sign and the technology that should power future design
automation systems), is centered on rapidly communicating
deeply technical statements about game design and the role
AI can play in its process. By building and sharing these
systems, the caricaturist simultaneously accelerates the dis-
course around game design and produces tangible products
of value along the way: systems which engage in a human
cultural process. The reader should not be convinced by our
claims alone, however. The best demonstrations of the value
of the practice of computational caricature are the carica-
tures themselves.

Exemplars
In this section we review three (of many) examples of com-
putational caricatures of the game design process found in
the wild. None of these systems were designed explicitly as
computational caricatures; nevertheless, it is possible to pick
out statements about design that each system seems to be
pushing and note where unintended details have also lead to
revelations about game design. While many of the systems
are the product of joint work, we attempt to identify the cari-
caturist behind each system and speculate on their individual
motivations. A sketch of how each of these examples works
as a computational caricature can be seen in Table 1.

A Designer in a Box
Cameron Browne’s Ludi is a board game designer in a box,
or in Browne’s words “a system for playing, measuring and
synthesizing games” (Browne and Maire 2010). In its game
synthesizing subsystem, Ludi uses a genetic algorithm to
search the space of games expressible in the same language
understood by its (also search-based) game playing subsys-
tem. Ludi judges the value of potential games based on prop-
erties of typical playthroughs (records of simulated play be-
tween modeled players). These game properties are encod-
ings of natural-language concepts like “completion”, “dura-
tion”, and “uncertainty” in a mathematical formulation.

Ludi seems to answer our question of whether a ma-
chine can design with resounding “yes” and continues with



the claim that “machines are human-competitive designers”.
Yavalath is a grid-based strategy game designed by Ludi
(named by Ludi as well) that is commercially available.
On the popular site BoardGameGeek, Yavalath ranks1 just
above the puzzle card game Set.

In reaching directly for the machinic construction of a
human-appreciable game, Ludi is blissfully unaware of the
potential feedback from the human playtesters (it does not
employ any), the design patterns used by any of the games
outside of its very specific niche genre, and the need to rede-
fine one’s own representation system to eventually express
new kinds of artifacts. These are not shortcomings of the
system; instead they are the simplifications that made pos-
sible transforming Ludi from a thought experiment into a
live system. The physical existence of Ludi and its prod-
uct, Yavalath, materially changes the conversation around
machine design: machines demonstrably can design real,
valuable games, and what remains now is the question of
how machines should design (why machines design, how we
should assign credit/blame between machine and program-
mer, and the multitude of related open questions).

Though the particular properties selected for use in Ludi’s
game evaluation routine are presumably not part of the cari-
caturist’s intended claim, Ludi demonstrates that there are
mathematical properties that we should look for in two-
player, strategic board games that do not immediately reduce
to classical game theory. This is an unexpected result for hu-
man game design that also suggests a role for machines in
the design of future board games (as verifiers and automated
explorers of localized design spaces).

For machine design, Yavalath’s terse construction in
Ludi’s game description language raises interesting ques-
tions about how much the designer of a representation lan-
guage affects the products of the systems that use it. Did
Browne, who is independently an experienced board game
designer, do the hard work behind inventing Yavalath by
pre-selecting a representation that was rich with interesting
game designs? Similar issues were raised by the by the rein-
vention of fragments of set theory by the mathematical dis-
covery system AM (Lenat and Brown 1983), resulting in a
discussion that has shaped the discourse around automated
discovery for several decades.

Cooperating with the Machine
Gillian Smith’s Tanagra is “a prototype mixed-initiative de-
sign tool for 2D platformer level design, in which a human
and computer work together to produce a level”. Upon start-
ing, Tanagra presents the user (assumed to be a level de-
signer) with a blank canvas and the basic ability to paint
platforms into the game world. A large button labeled “Start
Generator” is also present and, when pressed, results in the
near instantaneous filling of the canvas with familiar plat-
forming elements (platforms with gaps, enemies and stom-
pers), all placed to conform to the systems internal rhythm-
inspired design theory and the limits placed on the player’s
avatar by the associated game’s mechanics. With functional-

1http://boardgamegeek.com/boardgame/33767/
yavalath

ity in place for both completely unassisted human level de-
sign and completely automated machinic level design, Tana-
gra invites us to reflect on the give-and-take between the two
designers at work. In a typical demonstration, the human
operator will draw only a few sparse platforms, place high
level requirements on large gaps in the partial design to be
filled, and perform minor aesthetic clean-up activities before
declaring the level completed (leaving nearly all of the low
level platform sizing, placement, splitting and recombining
to the machine).

Just a few minutes of observing Tanagra interacting with
a human user (level designer or otherwise) begins to raise
the questions mentioned in the previous section. The idea of
mixed-initiative design for geometric artifacts where the hu-
man operator expresses high level constraints and leaves the
machine to adjust the details is hardly new, perhaps originat-
ing in Sutherland’s Sketchpad system (1963). Nonetheless,
the existence of Tanagra, operating in the more familiar do-
main of platformer level design transforms the abstract dis-
cussion about the distant potential of a mixed-initiative setup
in future game design tools into a more concrete discus-
sion. We can now ask very specific, technical questions in-
spired by Tanagra’s implementation: Why do no commonly
used level design tools have any support for expressing de-
sign constraints (such as reachability of some location by
the player’s avatar), even without the ability to automatically
satisfy them?

Where Tanagra zooms ahead of the industry standard plat-
former level design tools in support for intelligent assistance
(perhaps providing more support than is needed as an ex-
aggeration to ease one’s recognition of the system’s aims), it
sharply oversimplifies other aspects usually required of plat-
former level design tools: exporting files for use in an exter-
nal game (Tanagra lacks a “save” button), importing custom
tilesets, and placing additional level details such as back-
ground art, flying enemies, optional paths, etc. As a compu-
tational caricature, these distortions of platformer level de-
signed are welcomed in exchange for a tangible, interactive
demonstration of a potential future for level design tools and
a validation of the software architecture that made it possi-
ble.

On the implementation side, Tanagra is the composition
of a reactive planner and a numerical constraint solver (an
unprecedented choice in level design tools, to say the least).
The caricaturist suggests that reactive planning is a useful
top-level architecture for managing the mixed-initiative in-
teraction and orchestrating the high-level search processes
involved in geometry generation. However, she does not at-
tempt to characterize level design as a constraint solving
process (nor is the integrated constraint solver used, archi-
tecturally, as anything more than a supporting software li-
brary). That constraint solving (through answer set program-
ming) played a key role in several content generation sys-
tems (Smith and Mateas 2011a) suggests that the use of
constraint solvers is a source of architectural surplus. That
this surplus can be attributed generally to constraint solvers
(which take a declarative specification of a problem’s design
concerns and produce a satisfying assignment of numeri-
cal and structural properties) and not specifically answer set



solvers is a direct result of Tanagra’s seemingly incidental
use of a numerical constraint solver. Given the leverage pro-
vided by constraint solvers, we are inspired to think of al-
ternate formalizations of game design that foreground the
creation and satisfaction of constraints.

Imagining Gameplay
Adam Smith’s (the first author’s) Ludocore is a “logical
game engine” for producing queryable, logical models of
the core rule systems of a game (Smith, Nelson, and Mateas
2010). Many game engines intend to ease implementation
of complex videogames by abstracting away the details of
3D rendering, asynchronous resource loading, and many
other technical challenges. By contrast (and through ex-
treme exaggeration), Ludocore is intended to ease imple-
menting games that lack not only graphics and sound but
also any form of live player input. Instead, Ludocore ab-
stracts a videogame down to the central rules that govern
the primary game state and how that state is affected over
time by game events.

Using Ludocore, a designer can rapidly encode and it-
erate on the design of the most formal aspects of their
game’s design. In exchange for hyper-formalization, Ludo-
core promises the ability to imagine gameplay for these as-
yet incomplete games. The system’s “gameplay trace infer-
ence” affordance allows a designer to ask for a symbolic
gameplay trace, from the vast space of potential low-level
action sequences possible in a game, that satisfies arbitrary
logical constraints. In this representation, questions such as
“is the game winnable?”, “how would someone get from
here to there without using this special item”, and even “how
should I connect the various regions in my level design such
that they player cannot escape without encountering all of
my content?” all reduce to a common representation.

Through exaggeration and oversimplification, Ludocore
manages to realize an interactive prototype of a system that
can imagine play for arbitrary games. This capability, of
course, is conditioned on the “designer” being an experi-
enced logic programmer, the rules of the game being primar-
ily symbolic as opposed to numerical, the requested proper-
ties of gameplay being expressible in a subset of first-order
logic, and having to wait unreasonable lengths of time for
the results of certain kinds of queries. It is on top of this
admittedly shaky foundation that Ludocore makes it’s state-
ments about AI in the game design process: deeply model-
ing videogames requires capturing not just the game’s rules,
but also the configuration of the game’s world, a body of
assumptions about the kinds of players who might play the
game, yet another body of assumptions about the situation
in play that currently interests the designer, and, on top of
that, the ability to reason through all of this to generate con-
crete gameplay traces which tell the designer something that
was out of range of their human inferential ability. In other
words: deep computational modeling of gameplay is hard,
but possible.

Ludocore’s method of inference (using an answer set
solver) is based on a system of exhaustive search. While
this procedure for reasoning is alien to us (it is a poor
model of how designers actually imagine gameplay traces),

it does lead to example gameplay traces which we would
not likely think of ourselves. Relatedly, Ludocore’s hyper-
declarative programming language (which recycles Prolog
syntax) is highly unfamiliar to most game designers (who
are more likely to be familiar with an imperative program-
ming paradigm, if any). Nonetheless, this logical representa-
tion seems to be particularly well suited for use by machines,
and it has seen reuse in other design automation prototypes
(Nelson and Mateas 2008).

Where Ludocore is the most extreme instance of compu-
tational caricature that we review here (with the least gen-
erally accessible results), such extreme distortion allows for
demonstrating interactions that would be entirely unreason-
able in a neutral simulation of design processes. The more
promising facets of an extreme caricature can be recycled
into and evaluated in the context of more tame caricatures.
For example, the “structural query” feature of Ludocore
(which produces static world configurations as a result in-
stead of traces of dynamic gameplay) was isolated and ex-
tracted as the less complicated practice of simply using an-
swer set solvers to power game content generators (men-
tioned above). Ludocore’s knowledge representation (but
not inference techniques) were recycled in the Biped game
prototyping tool which added graphics, sound, and (most
importantly) live player interaction with early-stage game
prototypes (Nelson and Mateas 2009a).

Summary
As a caricature, each of the example systems attempts to
make some technical claim about AI in the game design pro-
cess easily recognizable. In doing this, it will make many
simplifying assumptions, some of which are oversimplifica-
tions of the design process that should be overlooked while
others are promising abstractions to be reused in future com-
putational systems (be they subsequent caricatures or future
design automation and game systems). Table 1 summarizes
each of the above system’s status as a caricature with a list
of claims, oversimplifications, and abstractions.

Conclusion
Towards the goal of better understanding the role of AI in the
game design process (both for what this tells us about human
game design and future design assisted by and embedded in
machines), we have described how creating computational
caricatures accelerates discourse and uncovers promising
implementation techniques which exhibit architectural sur-
plus. These caricatures (rich with subjective bias, exagger-
ation, and oversimplification) provide more direct inquiry
into the questions of if and how machines can design than
would more neutral simulations of the design process. Fur-
ther, they appear to be more effective at exploring deeply
technical ideas about the design process than do purely em-
pirical or purely theoretical approaches.

We hope to inspire the creation of many more computa-
tional caricatures of the game design process, and we wel-
come exaggeration and oversimplification in the service of
transforming distant ideas into tangible systems. We intend
that this design research practice produce valuable results
for AI, game design, and design studies generally.



Table 1: A (non-exhaustive) summary of the example systems’ claims about and oversimplifications and abstractions of the role
of AI in the game design process.

System Claims (to be quickly recog-
nized)

Oversimplifications (to be over-
looked)

Abstractions (to be reused in the
future)

Ludi Machines can automatically de-
sign games that humans genuinely
appreciate.

• Ruleset invention boils down
to sampling from a given, genre-
specific grammar.

• Using simulated play to evaluate
candidate rulesets

• Games can be evaluated without
any human player interaction.

• Quickly rejecting potential de-
signs with easy to detect flaws

Tangra Humans and machines should col-
laborate by asynchronously modi-
fying a shared design.

• Produced levels need never be
extracted from the tool nor im-
ported into a separate game.

• Using constraint solvers to
quickly resolve low-level design
problems

• Two designers can sufficiently
communicate through design edits
alone.

• Enforcing limits imposed by the
game’s mechanics during level de-
sign

Ludocore Beyond worlds and rule sys-
tems, designers amass assump-
tions about players and play.

• Designers think like SAT
solvers, and they read/write logic
programs.

• Using pre-existing solvers to au-
tomatically generate content and
imagine gameplay traces

• Arbitrary game rules are natu-
rally expressed in declarative logic
formalism.

•Quickly capturing the high-level,
symbolic mechanics of a game in a
small amount of declarative code

Acknowledgments
This work was supported in part by the National Science
Foundation, grant IIS-1048385. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1).
Colton, S.; de Mántaras, R. L.; and Stock, O. 2009. Compu-
tational creativity: Coming of age. AI Magazine 30(3):11–
14.
Cross, N. 2006. Designerly Ways of Knowing. Springer.
Gunzelmann, G.; Moore, L. R.; Salvucci, D.; and Gluck,
K. A. 2011. Sleep loss and driver performance: Quantitative
predictions with zero free parameters. Cognitive Systems
Research 12(2):154–163.
Lenat, D. B., and Brown, J. S. 1983. Why AM and Eurisko
appear to work. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-83), 236–240.
Mateas, M. 2003a. Expressive AI. In Electronic Art and
Animation Catalog, Art and Culture Papers, SigGraph 2000.
Mateas, M. 2003b. Expressive AI: A semiotic analyis of ma-
chinic affordances. In Proceedings of the 3rd Conference on
Computational Semiotics and New Media (COSIGN 2003).
Nelson, M. J., and Mateas, M. 2008. Recombinable game
mechanics for automated design support. In Proceedings of
the 4th Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE 2008).
Nelson, A. M. S. M. J., and Mateas, M. 2009a. Computa-
tional support for play testing game sketches. In Proceed-

ings of the 5th Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 2009).
Nelson, M. J., and Mateas, M. 2009b. A requirements anal-
ysis for videogame design support tools. In Proc. 4th Intl.
Conf. on the Foundations of Digital Games (FDG).
Smith, A., and Mateas, M. 2011a. Answer set programming
for procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and AI in
Games preprint.
Smith, A. M., and Mateas, M. 2011b. Knowledge-level
creativity in game design. In Proc. of the 2nd International
Conference in Computational Creativity (ICCC 2011).
Smith, A.; Romero, M.; Pousman, Z.; and Mateas, M. 2008.
Tableau machine: A creative alien presence. In AAAI Spring
Symposium on Creative Intelligent Systems.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludo-
core: A logical game engine for modeling videogames. In
IEEE Conference on Computational Intelligence and Games
(CIG 2010).
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
a mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209–216.
Sutherland, I. E. 1963. Sketchpad: A man-machine graphi-
cal communication system.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2010. Search-based procedural content generation. In
Proceedings of the EvoStar Conference. Springer-Verlag.
Weizenbaum, J. 1976. Computer Power and Human Rea-
son: from Judgment to Calculation. W. H. Freeman and
Company.


