
Experience in the Game Design Seminar 
Adam Smith (amsmith@cs.ucsc.edu) 
Spring Quarter 2006 

Introduction 
In UC Santa Cruz’s first ever offering of a Game Design Seminar, I had 

the involving experience of developing four games from scratch, participating in 
discussions relevant to the times, and developing my skill in computer game 
design.  This paper documents my thinking, efforts, and analysis of mine and 
other’s games developed for the seminar.  In the first section, I will briefly discuss 
the mechanics of the seminar.  In the second, I will describe a model for the 
analysis of games that I developed the quarter before this seminar.  Next, in the 
third, I will take an in-depth look at my own games, analyzing them under my 
game model, and discussing their strengths and weaknesses.  In the fourth section 
I will apply the same analysis to a sampling of games written by other students.  
Finally, I will look at the effectiveness of the themes provided in the seminar as a 
guide for game design and some alternative phrasings of the given themes that 
expressed themselves in the games developed this quarter. 

Overview of the Seminar 
The Game Design Seminar, recorded as Independent Study on the record, 

was a 5-credit (standard weight) class targeted at those students who had 
completed the Introduction to Game Design class the quarter before.  Extensive 
programming and media creation experience was not required, however the 
varying skill-sets among students was visible and lent a wide diversity to the look 
and feel of the games developed.  The seminar met weekly for two hours during 
which class time was split between discussion and demonstration of student 
games.  Discussion topics included the effectiveness of different input devices, 
analysis of the popularity of platform jumping games, reactions to technology 
demonstrated at E3, and the importance of story to creating involving games 
(among many other topics).  During demonstrations, the student developer was 
given roughly ten minutes to show off the game-play of their creation as well as 
discuss any motivations or development issues that were not visually evident.  
Other students were given a chance to play each game while discussion of the 
strengths and weaknesses of the game, as well as suggestions for further 
development continued.  Most students provided written feedback to the presenter 
in the form of a small paper slip with a few numeric options and a free-form 
response section.  This free-form response was often the most helpful to gaining 
insight as to what people really thought of a game.  It is worth mentioning that the 
class was split into two teams.  Blue team games were presented a week after red 
team games as a way to give more time to allow students to present each meeting 
and allow for discussion to be mixed into each meeting.  Only within optional 
groups did students work together.  The colored team members shared the 
common experience of having been exposed to the same inspirations from the 



week before.  A new game was due each two-week interval and students were 
heavily encouraged to try to build a given theme (a simple word) into their games.  
Students had mixed reactions to the themes.  My reaction is described in the last 
section of this paper. 

I should point out, to clarify my position amongst the other students, that I 
was one of two computer science graduate students in the seminar.  I had previous 
computer game design experience (mostly focused on web based games) and 
significant media creation experience from personal projects.  My perspective on 
game design was most heavily shaped by my recent experience as the teaching 
assistant for the Scientific Visualization, Computer Animation, and Games class 
the quarter before, where I taught students my vocabulary (which I describe in the 
next section) for talking about the structure of games and guided them through the 
development of one, and, in some cases, two, physically-based, real-time, 3D 
games in the space of a few weeks. 

Game Model 
In my model for games, it is important distinguish four independent 

components.  These are rules, mechanics, inputs, and outputs.  This model was 
designed to guide discussion of real-time, 3D computer games, however it is 
applicable to many types of games.  As such, the model implicitly deals with 
games having some notion of game state and time.  Events are also involved in 
this model simply as a statement about action at a certain time.  The complex 
connections between the game state, time, and player(s) are what these four 
components describe.  I attempt to directly define, in clear language, what each of 
these components are and leave showing examples of them to subsequent 
sections. 

Rules, in this model, refer to a collection logic that defines a mapping of 
game state and events to new game events.  Events spawned by the rules may 
represent victory or loss, thus encoding goals or objectives of the game.  
Alternatively, rules may define the capability of the player to take and action at 
the next turn.  This capability can be thought of as an event nonetheless because it 
may either be present or not at certain time steps.  Rules can be applied in either a 
continuous or discrete fashion if considered to be general event-handlers, where 
some rules respond to a per-frame tick event. 

Mechanics refer to logic that defines a mapping of game state and events 
to new game states.  In the absence of any events (or the presence of only the tick 
event) the mechanics directly encode the dynamics of the game world.  With 
events present, the mechanics define how intended actions are actually carried 
out.  Because rules and mechanics are both a function of game state and events, 
and each component produces the next round of each game state and events, the 
dividing line between these two components is sometimes hard to find and may 
be arbitrary.  Mechanics may attempt to follow a strict physical model or encode a 
more-fun-than-realistic notion of how the abstract game world works. 

Inputs refer to the means by which the player creates events in the game 
world.  By spawning events with input the player is able (through mediation by 
rules and mechanics) to attempt changing the game state to their liking. 



Importantly inputs do not involve the game-state at all (beyond what is indirectly 
influenced by the rules).  In the realm of computer games this maps to discussion 
of to what the keyboard, mouse, joysticks and any other input devices are 
logically hooked.  Aesthetics aside, it is usually desirable to provide the player 
with fairly direct input to the aspects of the game world that it makes sense to 
control.  However, even cheat codes and game configuration options can be 
discussed as inputs of a game. 

Finally, outputs refer to the means by which the game state is 
communicated to the player.  Outputs deal only with game state and not game 
events.  If it seems that game events are being represented in the outputs of the 
game, it might be useful to consider the presence of that event a part of the game 
state for consistency.  Usually, this refers to how what aspects and how 
effectively the game state is represented via the computer’s output devices (audio, 
video, force-feedback).  Again, aesthetics aside, it is usually desirable to have a 
direct connection between the part of the game state that the player should 
intuitively have access to and the outputs provided by the game.  Often, this 
means that there is much of the game state that the user cannot see and must 
observe indirectly. 

As a disclaimer, the terminology I just introduced will be used heavily in 
the subsequent sections as a way of talking about the individual parts of a game, 
ignoring holistic properties of a game.  Often, however, it is possible to trace the 
strengths and weaknesses of the design of a game to one of the components.  
There are, obviously, other ways to break down the design of a game.   

Additionally, an important component, which I will adopt for discussion 
(although it does not clearly fit into the above model), is the notion of a core 
mechanic.  I take the core mechanic of a game to refer to the simple, general 
action that describes what the player is doing while playing the bulk of the game.  
In my model, this is an aspect that cuts across the components of input and 
mechanics. 

As a final note, it is often easier to phrase the rules and mechanics of a 
game as the sort of thing one would find in the rules section of the manual for a 
board game.  The more mathematical definition of rules and mechanics maps well 
implementation of a game but is slightly inconvenient when it comes time to 
enumerate all of the possible events and state variables required to define the 
game.  In further discussion I will use this more rulebook-like approach. 

My Games 
In this section I will look at the details of the games I created.  For each 

game I will provide a screenshot and simple description, my assessment of how 
the theme for the game was tied into its design, an analysis of the game under my 
model, analyze the success of the game (tying back to the game model where 
possible), and, finally, add any reactions I had to the final result.  Before I go on 
with the per-game description there are certain crosscutting motivations I had that 
are worth mentioning. 

In every game I made, I tried, at least initially, to build the given theme 
into the core mechanic.  That is, I tried to make the given theme be the thing that 



the player actually does in the game, and not only tie it in superficially.  This was 
consistently a difficult design task.  Furthermore, I aimed to do something very 
non-obvious, often tying the game back to mathematics or computer science at a 
deep level. 

the.discrete.gardener 
 
This game was a real-time, 

3D, growth simulation.  During 
game-play, the player prunes a 
slowly growing abstract tree in 
attempt to improve its “allure.”   
Depending on how often the player 
decides to take an action the game 
has either an action or strategy 
feel.  Evolving procedural visuals 
and original electronic music 
accompany the core game-play and 
provide futuristic, hacking feel to a 
game that would otherwise evoke a 
more traditional, bonsai tending 
feel.  The title was picked mainly 
to allow the play on words for 
“discrete” and to create contrast 
between the image evoke by the 
title for those who had seen the 
game and its title spelled out and those who had only heard its title. It was 
programmed in Python using OpenGL and the game template I developed in C++ 
as a teaching assistant for use in the class the previous quarter. 

The theme for this game was evolution.  I turned to the dictionary to find 
an interesting, alternative definition for this word.  A secondary definition of 
evolution, devoid of references to this history of life on the earth, involves the 
gradual development of something from a simple to more complex form.  In my 
game, this is expressed as the tree slowly growing more complex, hence evolving, 
over time. The inclusion of pruning and the fitness measure of the tree allude to 
the primary definition of evolution.  By careful selection (intelligent design!) the 
player can guide the development of the tree in a somewhat natural way to their 
desired configuration. 

In term of my game model, I will analyze this game in more depth than 
others to give a clear example of decomposition into the four components. 

Rules:  Player may prune any node in the current tree but the root.  
Pruning a node removes its children from the tree.  The tree grows with every 
fourth beat of the music. 

Mechanics:  Allure is calculated as the quotient of the number of nodes in 
the tree and the size of the tree (this builds in a preference for complexity and 
compactness).  When a new node is created its parameters are inherited from its 



parent node with some mutation (this is a direct tie-in to the evolution theme).  
There is an equal probability of any node growing next (creating leaf-heavy 
trees). 

Input:  The player may user the keyboard digits are used to enter numeric 
identifier of node to be pruned.  In this sense, the partially typed node identifier is 
part of the game state.  Hitting the Enter key attempts a prune action with the 
current identifier. 

Output: The tree is rendered in 3D.  It continuously rotates to better show 
its structure.  Music loops to indicate continuous nature of game.  Noises play to 
confirm keystrokes and prune operations. 

Overall, I feel that this game was very successful.  There are several 
reasons for this: The mechanics were simple, the rules were not unnecessarily 
restrictive, the input was fairly direct (however clicking with the mouse might 
have been easier), and the output was a clear representation of the game state.  On 
a holistic level, the “feel” of the game was consistent and reinforced by the input 
and output components of the game.  One general shortfall of the game was that it 
was not accessible to everyone.  Its dynamics and goals were highly abstract and 
had little connection to real world activities (although this only strengthened the 
computer science connection). 

I was surprised by the final balance of time that went into this project.  
Roughly 40% of the time was spent creating media (art, music, tuning animation 
parameter), 40% was spent porting the game template to Python for faster 
development, and only 20% of the time was spent programming the solid rules, 
mechanics, input and output of the game. 

Sequence Sleuth 
 
This game was a web-

based, handheld-friendly puzzle of 
function fitting.  The player is 
presented with a few data points 
and a sample hypothesis, f(n)=0.  
From here, the player must 
iteratively guess new functions that 
might fit the data and test them to 
progress through the puzzle.  As 
the hypothesis becomes better at 
fitting the data points, new points 
are exposed.  This game was 
developed in PHP, outputting 
XHTML 1.0 Strict for maximum 
device compliance. 

Discovery was the theme 
for this game, and, again, I tried to 
build this into the core mechanic of 
the game.  During game-play the 



player is actively discovering how well various hypothesis fit the given data 
points.  The cubic and quadratic terms of the sequence generator are only visible 
after several terms have been fit, ensuring that it is very unlikely that the user 
would discover the best formula early on. 

As this game is far from the real-time, 3D simulation that my model was 
developed around, its description is fairly simple in terms of the four components.  
Rules: A new hypothesis triggers a reevaluation of the player’s guesses.  A 
flawless hypothesis triggers the victory message.  Mechanics:  A hypothesis is 
evaluated by comparing the values generated by the player’s expression to the 
puzzle’s hidden expression.  New data points are revealed until the player’s 
hypothesis was violated more than some threshold number of times.  At this point 
the game sleeps until a new hypothesis is proposed.  Input:  The player inputs 
their hypothesis, in a simplified PHP syntax (sigils automatically added), into a 
web form.  An interesting side effect of this is that the game state can be trivially 
saved using a browser’s bookmark feature.  Output: A table of data values and 
predictions is displayed on a web page. 

As described, the game was successful.  I was unable to demonstrate play 
over the network in class, however, there is nothing limiting this ability.  The 
game was extremely simple in its aim for core mechanic and hit that mark.  At a 
holistic level, however, the game was somewhat disappointing having no enticing 
media or story.  In this sense, it is entirely suitable to the devices for which I 
targeted the game.  More so than the previous game, the game play was 
inaccessible to many, especially those with an ingrained impatience for 
mathematics. 

My original vision for the game involved a system by which puzzles could 
be simply created and sent to friends with a simple link.  Furthermore, I wanted to 
add additional mechanics that would keep track of the number of iterations 
required to reach a flawless hypothesis.  I even considered rendering colorful 
plots of the player and data functions.  This, however, would not have changed 
the game play much. 

I Loves Me Sum 
 
At its core, this game is a 

search-based puzzle, however, due 
to changing aim several times it 
feels much more like a real-time, 
3D whack-a-mole game.  The goal 
of the game is to collect stars from 
the night sky.  The player 
accomplishes this by activating 
sets of stars with values summing 
to zero. This game uses the Python game template I created for the first game and 
some hand-created but not-for-this-project art and original ambient music.  The 
feel and mood of this game are somewhat spoiled as input and output for this 



game were borrowed from the first, evoking memories of a very different game at 
the core. 

The theme for this game was love.  In contrast to the rest of the games I 
tried to make what player does in the game not be described as love (the verb), 
although I later went back on this aim.  In the story (only presented verbally, not 
in the code) the player is collecting stars to give as a gift from a romantic skyline 
on a clear night.  The screen was purposely made to be too visually busy for one 
person to handle, to encourage play with a loved one.  Finally, as a last campy 
hack, the core mechanic was tied back to love (without being love related at all) 
by focusing on a score or value of zero in the tennis sense. 

In terms of my game model, this game has a rather complex, though 
artificial description.  Rules:  Only existing stars may be added to the active set.  
If the stars in the active set have values summing to zero, they are all collected.  A 
new star is added every fourth beat of the music (this was a mistake). 

Mechanics: When a new star is added, it is assigned a random integer 
value within a fixed range (this was a killer mistake). When stars are collected 
they no longer exist and their count (not value) is added to the collected stars 
score.  Input: Keyboard keys are used to input a star’s (non-unique) value.  
Depending on mode the identified star is added or removed from the active set.  
Output:  The contents of the active set are displayed in text along with the running 
sum of the set’s members.  A rotating, 3D night sky shows randomly distributed 
stars (some stars are too high for the camera to see, unfortunately). Music and 
noises are present in similar effect as in the first game. 

This game was clearly unsuccessful.  The (quite artificial and unintuitive) 
rule that created a new star at regular intervals, while making the sky very busy as 
intended, made it too easy for the player to enter numbers at random without 
looking at the sky to do any searching.  Additionally, the mechanic that assigned 
values to new stars at random made confused the game play, as active set was a 
true set while the sky was a multi-set.  The input scheme was certainly not 
optimal, though the player had quite a few more possible actions in this game than 
the evolution game. In contrast to the discovery game, all that this game really 
had of value was its feel (afforded by its output). 

The motivation for this project was a bit of advice I gave out but never 
took myself the quarter before.  I told my students that if they needed a game idea 
they could simply go find a list of NP-Complete programs and easily adapt any of 
them into a puzzle game that, despite our researchers best efforts, have no simple 
solution.  While I had several examples of games ideas that followed this pattern, 
I had trouble adapting even the subset-sum problem to the love theme.  This was 
primarily an issue of creativity and I am still confident that there are many NP-
Complete problems that can easily be adapted to puzzle games in the case of 
decision problems and time-based or high-score-based action or strategy games in 
the case of optimization problems. 



 

RainMakr 
 
This game was a 2D, real-

time game of transmutation.  The 
player manipulates a cloudy sky 
using a tool that attracts clouds 
and converts them to rain.  This 
rain, hopefully, falls on plants that 
convert it into health and new 
growth.  By really only 
manipulating the interaction of 
cloud puffs the player is able to 
manage the well being of several 
simulated plants.  This game was 
programmed in Processing, a 
Java-based environment for 
creating simple interactive visual 
programs (similar to but in different aim than Flash).  Before this project, I was 
unfamiliar with development in Processing and this style of development in 
general. 

For the tie-in to the theme, water, I originally planned the game being 
about the player watering some plants.  As I discovered more of the graphical 
capability of Processing the focus shifted to showing off the various water-
looking particle systems I had created.  This still, of course, ties into the theme, 
but in distinctly different way. 

This game was somewhat incomplete, and this shows up in the 
decomposition into my model.  Rules:  When a cloud touches the tool it turns to 
rain.  When rain touches a plant it waters the plant.  Victory and loss condition 
rules are notably missing.  Mechanics:  Clouds drift with gravity-like attraction 
towards the tool.  Rain falls downward with predictable constant acceleration.  
When a plant is watered its water storage, health, and size are updated according 
to a complex (difficult to tune) system of differential equations.  The tool moves 
directly to the motion target each frame.  Input: The player creates a motion target 
for the tool by moving the mouse.  This is the player’s only input (intentionally).  
Output:  Fluffy clouds and rain chunks indicate the position of point-particles in 
the game state.  The size and color of a plant represent its abstract size and health 
respectively.  The water storage part of the plants’ state is not represented to give 
the user something to guess at and learn by experience.  The tool is represented by 
a Firefox logo. 

This game could have been quite fun if it was completed.  Additional 
rules, multiple levels, high scores stored on the web all would have made this 
game more fun.  Processing applets are well suited to added web back-ends.  
However, I feel it is a good example of a successful demonstration of the core 



mechanic and a complex output component.  Iterative development like this was 
sorely underrepresented in the seminar, I believe. 

I regret spending so much time experimenting with Processing that I lost 
sight of a complete game.  The Firefox logo, an arbitrary placeholder, while cute, 
made very clear the incomplete feel of this game.  On the brighter side, not 
emphasizing the growth model of the plants and focusing on the transmutation 
aspect instead made this game more accessible to those who I had turned off with 
my mathematical games. 

Games by Other Students 
In this section I will follow a similar thread of discussion to the previous 

section but explore the details of some of the games created by other students.  I 
will focus on three games from the first theme presented to the seminar, 
evolution, as an example. 

Populution 
This was a 2D game of cellular-automata based population growth 

simulation.  It was developed in Java in a group of two people.  Its game-play 
follows a guess-and-check pattern for improving the parameters of competing 
civilizations to create interesting growth patterns. 

My game model describes simulations without trouble and this game has a 
clear decomposition.  Rules:  Player announces civilization parameters and starts 
simulation. Mechanics:  Fairly complex, parameterized cellular-automata rules 
define the state of the world directly for the next time step.  This state, in addition 
to grid-space values, included overall values representing quantities like the level 
of development in technology, medicine and culture.  The simulation runs until 
terminated without further input.  Input: The player edits XML configuration files 
in their favorite text editor. Output: pixels are mapped to grid cells and colored 
based on population density.  Overall values are displayed as text.  Other grid-
space values like resources and local development are not displayed. 

While, by some models, this is strictly not a game I still quite enjoyed the 
demonstration of this project.  The theme was clearly represented in several 
aspects of the simulation, both in the increasing complexity of the competing 
civilization as well as the iterative genetic improvement in the meta-game of hand 
editing the configuration files between runs.  I would consider this game very 
successful despite its lack of a clear, holistic feel.  The simple story of the world 
(civilizations with certain attitudes and intentions) was cute and motivated 
inventing narratives to go along with the evolving visual representation of the 
world.   

Darwin 
This comedic but simple game was a variant of the simple warmer-colder 

game played with children.  The player, represented by the sprite of a monkey 
with a drawing of Charles Darwin for a head, waters around a colorful terrain 
including trails, cliffs, and a realistic water surface simulation looking for a 
particular creature.  The world is full of strange combinations of real creatures 



(Photoshop products, certainly) that inform the player whether they are getting 
closer or farther way from the target creature.  The creatures speak with silly 
voices and sometimes give nonsensical reports. 

This game is straightforward in terms of my model.  Rules:  If the player is 
in range of a creature they have never spoken with and the user wants to speak, 
have that creature report the distance using knowledge of the location of the last 
creature you talked to (and a very complex path finding system).  If the player 
attempts to speak with the target creature, have that creature report a 
disappointing victory message.  Mechanics:  Darwin can walk around the terrain 
(sinking in water) with simple vehicle navigation.  The surface of water is 
simulated according to common equations for this application (completely 
unimportant to game-play).  Input:  Standard first-person shooter controls map to 
Darwin’s movement.  Holding down a certain key will attempt talking to a 
creature (successful if on is in range, according to the rules).  Output:  An opaque 
height field is rendered to represent the terrain.  Other Creatures are simple 
billboard sprites like Darwin and become tinted green when in range and tinted 
red after they have been spoken with.  Original MIDI music plays in the 
background, representing that, indeed, time is moving forward. 

In my estimation this simple game was successful, however the 
complexity of underlying simulation only serves to poke fun at the simplicity of 
the game play.  Some graphical bugs were evident, but none that affected game-
play.  The vocals (original) and art (borrowed) went a long way to creating a 
feeling that was clearly described as fun.  The theme was tied in a story element 
only, but did so in a clean, complete manner, so this is just more evidence of 
success. 

Feathuckers 
This game was a simple, 2D, Java game that attacked the theme directly.  

During game-play the player, a pellet, chases down other pellets that have varying 
characteristics (genes) that determine their reaction to the player’s pellet’s relative 
distance and distance to the edge of the screen.  The player must eat (run over) 
half of the pellets in a level to complete it, at which time the next generation of 
pellets is prepared from the genes of the surviving pellets.  The games difficult 
progressively went up in direct response to the player’s action and not a 
predefined schedule. 

This game was another clear case for my model.  Rules:  Player must eat 
half of pellets to clear level.  Pellets choose action based on their genes.  The 
Player warps around the sides of the screens (toroidal topology).  Mechanics: All 
pellets are subject to momentum, drag, and their navigation force.  New genes are 
created by mutation from survivors of previous generation. Input: Arrow keys 
control the navigation force on the player’s pellet.  Output: Pellets are drawn as 
simple outlined circles on a flat colored, square field.  Level number and progress 
are indicated in text. 

This had a clear aim for putting evolution in the core mechanic and 
achieved this goal.  The holistic feel of the game was somewhat bland, meaning 
this game probably is less impressive than others in terms of screenshots, but its 



more playable than others.  The dynamic, procedural nature of the game is 
impressive from a technical standpoint, but it probably lost on those who only see 
it as a simple chasing game that eventually gets too hard.  Nonetheless, it is 
another successful game. 

Themes as Guides 
In the games demonstrated in the seminar, I observed several ways to 

apply the given themes to a game’s design.  The different ways can be broken 
down, roughly, by the choice of the part of speech attributed to the theme.  In 
class experience, which I will present below, verbs match nicely with integration 
into the core mechanic. Adjectives and adverbs are easy to use to flavor the media 
and feel of a game.  Finally, nouns often easily map to story elements such as 
setting and plot.  The themes given in the seminar were all presented as nouns so 
its not surprising so many games (other than the ones I previously discussed) 
included the theme as a story element.  As guides, however, the themes could 
have been more effective with only simple changes. In general, I think presenting 
the themes only as nouns, or without a specific sense in mind left too much 
freedom for students to interpret the theme, lessening the amount of experience 
they would have shared solving the same problem.  If themes had been presented 
with a clear sense or application, I feel they would have been better guides. 

Consider the examples: “smash (verb) – core mechanic,” “icy (adjective) – 
feel,” and “guitar (noun) – story element.”  These all have a clear guide for what 
to do (though calling them themes may be less appropriate now).  Below, I 
propose some alterations to the given themes and how these new themes were 
already expressed interestingly in the games demonstrated in the seminar. 

Evolution: evolve/grow(v), evolutionary(adj), evolution/growth(n) 
In the the.discrete.gardener, I represented the idea of evolutionary(adj) in the 
visual representation that grew more complex, despite perfect play being possible 
with a less complex display.  In Feathuckers, evolve(v) was directly involved in 
the as the player caused the other pellets to evolve in the genetic sense.  Finally, in 
Darwin, evolution(n) was added as a story element without touching the other 
words listed above. 

Discovery: discover/invent(v), discovery/development(n) 
In CyBuilder, invent(v) was integrated into the core mechanic as player invented 
novel combat robots by combining a wide array of parts together.  In PING.EXE, 
discovery(n) was used as a story element as the civilzation of Mary’s New Laptop 
being exposed to the wild world if the Internet for the first time in their history.  
No adjective variations for discovery were listed above because I found it difficult 
to thinking of a clean mapping of the idea of discovery to an adjective, especially 
one that could be applied to shaping the media or feel of a game, that was also 
demonstrated in class. 

Love (a challenging theme): build/tighten/adapt/collect/yearn(v), 
warm/cozy/infinite/idealized/romantic(adj), 
excitement/mystery/romance/relationship/sex/gifts/sacrifice(n) 
In I loves Me Sum, I attacked collect(v), romantic(adj), and gifts(n), and missed 
on most counts. In Diamond Solitaire, romantic(adj) was used in the art and 



media as sparkling diamonds for puzzle tokens.  Finally, in Cupid’s Conundrum, 
relationship(n) is used in the story as people loved or hated others in response to 
arrows from the good or evil Cupids. 

Water: hose/pour/dilute(v), watery/wet/cool(adj), water/liquid/ocean(n) 
In  Fire, hose(v) was used in the core mechanic as player pushed around and 
soaked many different object.  In RainMakr, the core mechanic was not water(v) 
despite it being a component of the game.  I centered the story around water(n), 
leaving transmute(v) as the core mechanic.  In Jack the Basilisk Lizard (a 
platform game), watery(adj) was used in art as level and enemies had watery 
components (but could fly/walk nonetheless).  Very clearly, in Deep Descent, 
ocean(n) was used in the story as a submarine saves world by disarming 
underwater bombs. 

Final Thoughts 
The class was composed of discussion, demonstration, and (for the graduate students) a 
critical analysis.  These elements, combined, had a very significant contribution to my 
experience of game design.  The in-class discussion of games opened my eyes to the 
many levels at which games can be understood and enjoyed.  This discussion applied to 
my own games showed me that there were significant levels at which the majority of the 
audience was not interesting in my game.  In my critical analysis and experience with 
others demonstrations, I realized my model was completely missing the vocabulary to 
talk about the holistic feel of a game, which is extremely important in the enjoyment of a 
game from a non-technical standpoint.  In comparing the discussion of individual games 
with the discussion of general game design topics I realized people are much happier 
talking about what they know and are comfortable expressing solid opinion about.  
Despite having a very different background than most of the students in the seminar, I 
feel I was still able to take away a wealth of knowledge and new experience.   


