Education Associate Final Report

Adam Smith, UC Santa Cruz (amsmith@cs.ucsc.edu)
Sponsor: Terry Fong, Intelligent Robotics Group
Project: Wide Area Motion Tracking with PhaseSpace

June 20 to September 30, 2005

Abstract

This report outlines my experience with the Education Associates program this
summer working with the Intelligent Robotics Group. I was tasked with evaluating
and improving a wide area indoor motion tracking system made by PhaseSpace for
the purpose of tracking humans and robots working together in the framework of the
Peer2Peer project. I discuss my educational experience in terms of theoretical (ideas,
concepts, and algorithms) input and output as well as practical (procedures, techniques,
and other technical experience) input and output.

Contents

1 Introduction 3
2 Theory 3
2.1 Input 3
2.1.1 Filtering 3

2.1.2 Linear Algebra 4

2.1.3 Algorithmic Constraints of FPGAs 4

2.1.4 SIFT, SLAM, and other STUFF 4

2.2 Output 5
2.2.1 Efficient two stage image filter for consistent peak detection)

2.2.2 Constraint weighting for graceful boundary conditions)

3 Practice 6
3.1 Imput . . . o e 6
3.1.1 PhaseSpace 6

3.1.2 Visualeyez 6

3.1.3 ICE . . . 6

3.1.4 GNU Make 7

3.1.5 Inline::C 7

3.1.6 Dynamic Linking oo 7

3.1.7 Octave/Gnuplot 7

3.2 Outpubt 8
3.2.1 Data Analysis Tools 8

3.2.2 Data Extraction Tools 8

3.2.3 Data Filtering Tools 8

3.2.4 PhaseSpace Test Procedures 9

3.2.5 PhaseSpace How-to 9

3.2.6 System Evaluations 0oL 10

3.2.7 Demonstrations 10

4 Conclusion 10

1 Introduction 2 THEORY

This summer I spent a lot of time thinking of systems of input and output, be that a
collection of log parsing tools or a system of linear equations minimizing the sum of squared
errors while localizing a point in 3D given an arbitrary number of planar constrains. In all of
these systems, some information goes into a magic box, something happens, and something
different comes out. I think its fitting, given that my mind is still stuck in this mode,
to organize my final report on my experience this summer as a mapping of what bits of
information came into head and what bits of information (code, documentation, concepts)
I put out. Of course, there are other inputs (food from Tuesday IRG lunches) and other
outputs (dusty, crumpled balls of painters’ tape that I accidentally left in the Moonscape)
but I'll try not to emphasize too many of these fun but not-so-educational bits of experience.

2 Theory: Ideas, Concepts, and Algorithms

I've been pretty picky about what I put in this theory section as a lot of what I've dealt
with could be considered ideas, concepts or algorithms. I make the distinction here between
those ideas that are applicable to many general problems and those that were tied to specific
applications.

2.1 Input

My primary mode of inputting theory was to find a nice PDF and lean back in the one of
twenty or so office chairs in N260-107D and soak in the information throug one of the two
giant CRT monitors attached to my work station. Often I'd have to keep a web browser
open viewing Wikipedia on the other monitor to help me chase down what some of the
unfamiliar methods the paper’s author was assuming I already knew. I often began reading
certain topics because I thought their application would be able to improve the PhaseSpace
system, however, I often followed tangents and found myself reading interesting, educational
documents about other topics that really had no application back the problem at hand, but
were exciting nonetheless.

2.1.1 Filtering

“Filtering” turns out to be a much bigger topic than I had imagined — especially when I
include the topic of “estimation.” I was looking to apply a good filter to three specific
aspects of the PhaseSpace system. First, I wanted to clean up the noisy photo-detector
data being processed by the cameras. Second, I wanted to smooth over noise and reject
outlier points in the 3D position of the markers reported over time. Third, I wanted smooth
motion for the reported pose (position and rotation) of the rigid bodies. Without listing
the countless names and key terms surrounding the filters I learned about here, I can say I
did some pretty hefty reading from theory to implementation and analyzing results. 1 was
happy to see that a lot of what I read about looking at signals in the frequency domain

2.1 Input 2 THEORY
and applying certain filters overlapped a lot with my intuitive knowledge coming from my
experience playing with electronic music hardware and developing an image codec a year or
so back.

2.1.2 Linear Algebra

I had taken a few linear algebra classes in the past, and I can derive the Pythagorean
Theorem for any finite dimensional inner product space, but I had yet to actually apply
what I knew to a real world application. A lot of the filters and methods for pose estimation
I read about were essentially powered by solving a system of linear equations in the end.
To really get a feel for why these methods worked I found some good (and by good I mean
rigorous) explanations and review of the processes that were used.

2.1.3 Algorithmic Constraints of FPGAs

Being a mostly software-kind-of-guy I usually don’t spend too much time thinking about how
all of the algorithms I think about actually get run on real hardware. The image filter I was
developing for the PhaseSpace cameras was going to have to run on the cameras themselves
if it was going to be useful in the real world. It turns out despite their bulk processing power
FPGAs have some important limitations that I was not aware of. After learning a bit more
about how they operate and looking at a few simple applications I made some major changes
to my image filter so that it could still work efficiently in the FPGAs. Most importantly,
I organized the processing into a per-pixel pipeline that needed only limited information
about nearby pixels and unrolled and broke apart the ugly convolution I had planned into a
few simpler parts that when combined together yielded a very similar result with much less
work.

2.1.4 SIFT, SLAM, and other STUFF

The rest of the ideas I absorbed were less related to my work but I found myself spending
several hours exploring them anyway (often while my lunch was digesting or I was at a
roadblock in the main project). SIFT, or scale-invariant feature transform, is a method
of extracting recognizable features from an image so that they can be recognized in other
images even if the camera position has changed or the image is of a different size. SLAM,
simultaneous localization and mapping, is the term for the problem (often in robotics) of
building a map of a new environment while at the same time trying to figure out where
you are in that map. I read several articles relating these techniques together and several
considering them on their own. I know some of these ideas are already implemented on
the current rovers and it was exciting too see what progress others are making with robots
rolling around their lab, exploring offices and recognizing circular hallways.

2.2 Output 2 THEORY
2.2 Output

The process of outputting theory was a little bit more involved than the input process. My
two somewhat-theoretical contributions were presented at the PhaseSpace office. For both
of these methods I communicated the ideas in ad-hoc scribbling on either whiteboards or
graph paper using generous hand-waving. There was plenty of example code, test data, and
analysis graphs to back it up, but I hadn’t written up the idea itself in any formal way.

2.2.1 Efficient two stage image filter for consistent peak detection

One of the problems I encountered while analyzing the PhaseSpace system was that slight
imperfections in the optics of the cameras were causing clusters of spikes to appear on the
cameras’ photo-detector instead of smooth lumps. Depending on the exact distribution and
height of the spikes the location of a marker reported by the camera could jump around
even when the marker had not actually moved. This was creating overall jitter in the system
that was very noticeable at the edge of the field of view of many cameras. I came up with
an image filtering method, that should have an efficient implementation on the camera’s
FPGAs that turns the spiked input from the detectors into a smoother, marker-likelihood
graph. Instead of looking for a certain shape using the matched-filter techniques I had
originally planned to use, I experimented with a bank of filters, each looking for certain
features of good peak shapes and combining their results in a second stage filter. The input
spikes proved too unpredictable so I settled on a simpler solution that simply applied a high-
pass filter followed by a low-pass filter on the magnitude of the output of the first filter. In
simpler words, it looks for clusters of strong high frequency noise. I found this method to
yield significantly more consistent results in the face of shifting spike patterns that did any
of the other methods I tried.

2.2.2 Constraint weighting for graceful boundary conditions

Another major problem with the way the PhaseSpace system was implemented is that it
trusts the input from each of its (usually) sixteen cameras equally whenever they report data.
In this setup, a known noisy camera, a far away camera, a camera with intermittent view
of the a marker, and close, clean, camera with a consistent view of a marker all contribute
equal information to the localization of the marker in 3D. The method I proposed applies
a weight to the constrains imposed by the information from each camera based on how
much that camera is to be trusted given its position and history. Initially, simple factors
including where the marker was in the camera’s field of view and approximate distance from
the camera would be used to weight-down constraints. Even with just these adjustments we
would eliminate the harsh jumps that appear in the reported location of the marker when
the marker moves out of the field of view of one camera or into the field of view of another
one. In-place occlusions could still cause certain constrains to flicker in and out with this
setup even when the marker is in a good position relative to the camera. To combat this case
I proposed tracking how long a marker has been visible by a camera and fade in the weight
of the constraint applied by that camera until the camera is trusted, and if the camera looses

3 PRACTICE

sight of a marker, trust the camera’s last known constraint a little further in time while its
weight fades out. This method cannot make up for errors in calibration or camera modeling,
but it can turn the effect of these errors into smooth sliding or warping of the reported space
rather than harsh position jumps.

3 Practice: Procedures, Techniques, and Other Tech-
nical Experience

3.1 Input

Practical input took place in several ways, though most were variations on “reading the
manual” — something I used to avoid when I was younger.

3.1.1 PhaseSpace

I got a lot of hands-on experience working with the PhaseSpace system hardware. This was
hands-on in the sense that I edited configuration files and source code and also in the sense
that I got up on a step-ladder and added new camera mounts with a screw driver. 1 had
the system setup process memorized by the end and managed to document a few helpful
insights about it in my how-to. Beyond what was covered in the manual I learned some
tricks and techniques from our local Anne and some of the guys from PhaseSpace for marker
preparation, calibration, cabling, aiming, etc. I also learned the procedures that had been
used to evaluate the system before the summer and got familiar with the resulting data.
In some informal conversations with the engineers at PhaseSpace I learned a lot about the
internal workings of and a some of the design choices made in developing their system.

3.1.2 Visualeyez

Visualeyez, the other optical motion tracking system I worked with during the summer,
had its own setup process, special considerations for preparing subjects to be tracked, and
calibration. I also got familiar with the test procedures and results that Dan had come
up with when the system first arrived. Much of what I learned about this system went
into making my test procedures for the PhaseSpace more fair, and not overly-specific to the
design of the system.

3.1.3 ICE

ICE, or Internet Communications Engine, is the middle-ware solution chosen to link together
most of the low level components in the P2P project. This framework was all new to me
(although T was familiar with the idea of what it did beforehand). In order to accomplish
what I did I had to learn to write both client and server ends of an ICE application as well
as help decide how an indirect proxy server work function to allow access to data from both
PhaseSpace and Visualeyez at the same time.

3.1 Input 3 PRACTICE

3.1.4 GNU Make

Though I thought I was pretty good with it already, I learned a lot more about GNU Make
this summer. I was comfortable writing Makefiles that worked in different environments
but looking back they were unnecessarily redundant and often took a lot of typing just to
get the default action to be performed. This summer, I learned a lot of new techniques for
writing Makefiles with GNU Make (most notably implicit rules) and now think of it more
as of a logic programming engine than a build system. I used Makefiles to automate a lot
of my testing and analysis — managing the whole process from data collection to including
generated graphs in the final analysis.

3.1.5 Inline::C

Nagging Systems Group for a week to get this installed turned out to be a great time-saver
for me. Inline::C is a module for Perl that lets the programmer call C functions from inside
a Perl script without having to go through the process of manually creating interface files.
To have low-level control of the image filter I was writing I needed to be coding in C. In
development, I went through the edit-compile-link-run cycle many times to get the filter
doing what I wanted. Using Inline::C, this reduced to a simple edit-run cycle and all of the
dirty work was taken care of for me. All of my testing an analysis code was written in Perl
where it was easy to modify to test different applications.

3.1.6 Dynamic Linking

Most of the software in the world starts its life as source code, gets compiled into object
files, gets linked into an executable, then gets loaded into memory by the operating system
and run. In classes, I had written a compiler and an executable loader, but I never really
got hands on experience with what happens at the linking stage. This summer I took some
time to figure out what really happens, especially regarding dynamic linking. The Inline::C
programs I wrote generated little dynamic-link shared libraries when they were run for the
first time. Using these and my new found knowledge of dynamic linking I was able to speed
up my testing process by writing code that simply linked against some libraries I was building
at runtime rather than having to be recompiled each time, slowing down my development
cycle.

3.1.7 Octave/Gnuplot

I am an only occasional user of Mathematica, so when it came time to do some serious
analysis I looked, instead, use whatever tools I had on the local system to help me out.
Octave, a free GNU clone of Matlab, took care of a lot of number crunching for me. Paired
with Gnuplot (which was also new to me) I had a powerful way to view and manipulate the
multi-dimensional data that was coming to me from the motion trackers. These tools served
me well for doing interactive computation as well as being very useful in automating my test

3.2 Output 3 PRACTICE

procedures. My Makefiles managed hooking up Octave, Gnuplot, Perl and I¥TEXall in the
right way to give me nice reports of the tests I ran with a single command line.

3.2 Output

Practical output is simply the results of all the actions I took, though most of it was embodied
in a handful of programs and documents that I wrote.

3.2.1 Data Analysis Tools

Mostly as a side-effect to all of the data analyzed, I ended up creating several generic tools
to help me automate my work. Instead of creating a monolithic analysis engine, I decided to
structure my tools as filters, little building blocks which I could assemble together in different
ways when the need arose. The most general of these tools were my comma separated value
parsing tools. The program “csvstat” read a bunch of numbers in CSV format from standard
input, crunched them, and wrote interesting statistics to standard out. Any time I reported
a mean, standard deviation, covariance, or correlation in a report those numbers came from
“csvstat.” Another tool, “csvdelta,” computed row-wise differences for a stream of input
and wrote it to standard out — instantly transforming position data into velocity data, or
whatever the application demanded. I had an option for this program that would compute
Euclidean distances between successive vectors producing a single column result for any
number of dimensions. Finally, “csvpatch” was a utility for filling in missing values in a
table. Many of the data files I worked with had holes when markers were discovered and lost
over time.

3.2.2 Data Extraction Tools

The analysis tools are no good unless they have some data to operate on. To get data out of
the PhaseSpace system and into my analysis pipeline, I wrote several extraction tools. The
logging tools (“log2d,” “log3d,” “logrb” and “csvscope”) hooked into the PhaseSpace system
using its C interface and printed out the data it got to standard out where I could route
and manipulate it with the standard UNIX tools. My tools weren’t limited to PhaseSpace
though, I had an “extract-marker” tool for Visualeyez that would convert the sensor’s text
dump format into something parse-able by the rest of my tools.

3.2.3 Data Filtering Tools

In the tradition of the simple UNIX filter programs that I had been writing, I wrote more
tools to test out my signal filtering ideas on live data. The simplest, “csvfir” and “csvema”
applied a finite impulse response and exponential moving average, respectively, to data they
read in. These tools proved more useful for testing in general than they did for improving
the motion tracking systems at all. Another tool, “csvadaptema” was supposed to be a
reactive, adaptive EMA-based filter, but it was never really very successful — an idea that I
had wanted to experiment with nonetheless.

3.2 Output 3 PRACTICE

The two (one-dimensional) image filters I produced (using Inline::C) were “cfilt-bandpass”
and “cfilt-treble.” The bandpass filter did was it’s name says, looking for medium frequency
humps and calling them a marker. It turned out not to perform as well as I had planned
because many other light sources would have the same characteristic hump that the PhaseS-
pace markers did. The “treble” filter, counter-intuitively, works by “looking for noise” and
calling clumps of it a marker. None of the background interference sources I encountered
were sharp enough points to create high-frequencies in the photo-detector signal, so looking
for these seemed to single out the markers from the rest better. I had some simple Perl code
wrapped around these filters to see their response to single frames of data at a time, but to
get a good evaluation of them I needed to apply them to whole streams of data recorded from
the detectors. I created another tool, “ridfilter,” to filter the data in the raw-image-data
files. This tool linked against the C parts of my filters at runtime and thus didn’t require
recompilation each time I changed a piece of the filter.

3.2.4 PhaseSpace Test Procedures

The first big document I produced, “PhaseSpace Motion Digitizer Test Procedures” de-
scribed a process for evaluating any changes to the system in the future. I went beyond
the procedures that had already been followed to test the sensor and created several new
processes and documented how to use the automated analysis system. I made a point to
declare all of the assumptions made by each of the tests in their descriptions. In creating
these I realized that I needed to add more options to my data analysis tools. After (and
during) creating this document I went through several test runs to, first, make sure my pro-
cedure documentation made sense, and second, to collect data about the system so it can
be compared to future iterations of the system. This was the first major document I had
written using IXTEXand I had to get familiar with a few more commands before finishing it.

3.2.5 PhaseSpace How-to

The other large document I produced was “How-To: Motion Tracking with PhaseSpace.”
It was a high-level walk-through for using the motion tracking system. It was intended to
compliment the documentation that came with the system, adding tips and techniques I
had figured out from my own experience with the system. In it, I recorded a dump of the
important bits of knowledge I had discovered this summer. One of the bigger contributions
that I talked about in the how-to was the the idea of using the logging tools I had created
as a sort of text API. Being able to record, manipulate, and analyze data from the sensor
without having to write any software — just composing UNIX filter programs together —
greatly reduces the effort required to use the system. I think for future use of the PhaseSpace
system at Ames this method will be the smarter choice (especially in terms of researcher
labor). T even dedicated a section of the appendix to code (shell) examples using this method.
It is my hope that the PhaseSpace documentation included with the system will improve
over time, but until then hopefully my document can help fill in the details.

4 CONCLUSION

3.2.6 System Evaluations

In a less formal manner (text files and email) I submitted evaluations of the two motion
tracking systems. For the PhaseSpace system, I reported interesting statistics for different
types of sub-regions of the space tracked by the system. Also, I tried to analyze the causes of
the inaccuracies I discovered and came up with an interesting model. I compared the space
reported by the system to a fractured grid on paper. In this analogy (which is best explained
by an image I can’t find anymore), measurements given by the system are locally consistent
until certain boundaries are crossed where large discontinuities are observed. What I really
claim is that there is a very complex six-dimensional function warping the space based on the
position an calibration of all of the cameras. In terms of precision the PhaseSpace system was
more than sufficient for our needs but the large scale discontinuities destroyed the accuracy
of the system. The Visualeyez system was much more well behaved, though my analysis
reported that the space it covered was much less than that of PhaseSpace and it was much
more susceptible to occlusion problems because only two viewpoints were involved. Without
a better knowledge of what was going on inside the Visualeyez system 1 was only able to
draw simple conclusions.

3.2.7 Demonstrations

The least demanding of my duties, although probably the most visible, was getting the
motion tracking equipment ready and showing it up during demonstrations. For this I had
to make sure that the cameras were well distributed around the space so that a mobile mob
of interested audience members wouldn’t block the path of the light from the markers to
the cameras. I made sure markers were securely attached (using velcro and painters tape)
to whichever rovers we happened to be showing off that day. And finally, I made sure the
robots left pretty colored trails on the screen when they drove around. K10, in its best
handwriting, was programmed to spell out its name in the marker trails in the PhaseSpace
viewer.

4 Conclusion

This summer was, indeed, a great learning experience but it also changed the way I think. In
retrospect, I think the best preparation for this job I had came from taking natural sciences
classes in school. Understanding the scientific method helped me organize my work more
than having a lot of programming experience. After all, a lot of what I learned this summer
would have been basic background knowledge for an electrical engineer, not new material
for a computer scientist (in training) like me. Since I've started grad school this year I've
been reading papers with different questions in my mind than I used to. Beyond looking
to see what cool new idea they have, I look to make sure their claims are supported by
their evidence and that their tests measure something that is relevant to the the problem
they propose to solve. Knowledge, curiosity, and rationality are some of my most important
values. My experience this summer enriched all of these.

10

