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Abstract 

Brandwajn, A. and A.K. Sahai, Aspects of the solution of some multiclass loss systems, Performance Evaluation 17 (1993) 
141-154. 

Stochastic service systems in which no queueing is allowed have been used for quite some time as models of telephone 
systems. Recently, such loss systems with a finite number of request sources were shown to be of interest in the modeling of 
path contention occurring in many current I / O  computer architectures. 

This paper considers two aspects of finite source loss systems with several classes of requests ("customers") arising, for 
instance, in the representation of more realistic I / O  workloads. First, we present a simple approach to the solution of such 
systems in the case of classical multiple servers. This approach is based on the use of recurrence relationships among 
conditional averages, and leads to an efficient computation of server utilizations and loss probabilities. 

In the second part of this paper, we consider generalized loss systems in which the service resources are viewed as a global 
quantity (rather than a specific fixed number of servers), and each class of customers requests a given amount of the global 
resource. Such systems are useful, for example, as models of bus bandwidth shared among several types of transfers. We find 
that, although these systems exhibit a product-form solution, the simple recurrences derived for regular multiserver loss 
systems do not carry over to the generalized systems. Therefore, we present an alternative approach based on equivalence 
techniques which produces the solution of such generalized systems through repeated solutions of a single-class loss model. 
A comparison with the existing convolution method for evaluating the product-form solution indicates that the proposed 
method is significantly more efficient both in terms of computational complexity and computer memory requirements. 

Keywords: multiserver loss systems; multiple classes of requests; generalized Engset model; simultaneous server acquisition; 
recurrent solution; equivalence approach; application to bus bandwidth sharing. 

I. Introduction 

If no queueing is allowed in a service system, 
requests that arrive to find all servers busy are 
subject to loss (i.e., forced to leave the system), 
which may or may not mean that they will be 
reissued again later ("blocked calls cleared" or 
"block calls retried", in telephone terminology). 
Such systems have been widely used in the past as 
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models of telephone exchanges. Recently, the 
evaluation of the performance of current com- 
puter disk I / O  subsystems has provided a new 
domain of application for loss models [6]. Indeed, 
a disk device typically needs to use one of the 
data transfer paths that link it to the central 
processing unit only during a small portion of the 
overall request service time. Hence, it is common 
to organize some number of disks (several tens) 
into a "string" sharing a given smaller number of 
transfer paths. The devices disconnect from the 
paths for the duration of mechanical orientation 
motion, and request reconnection to a transfer 
path when the required data area is about to pass 
under the r ead /wr i t e  head. Of course, since there 
are typically many more disks in a string than 
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there are transfer paths, it can happen that no 
path is available when a device needs it. The disk 
then temporarily loses its opportunity to transfer 
data, and will try again to acquire a transfer path 
after a full device revolution. 

There is a conceptual similarity between an 
attempt to dial and redial a call and an attempt 
by a disk to reconnect to one of the string trans- 
fer paths, and comparisons with discrete event 
simulations indicate that a loss model is a valu- 
able tool when assessing the expected delays 
caused by the inability of a disk device to acquire 
a transfer path when needed. In I / O  subsystem 
modeling, the disk devices may be viewed as 
sources of requests (customers) competing for the 
use of the transfer paths (the servers). As men- 
tioned above, the number of disks in a string is 
relatively low, and, since the level of activity and 
the transfer times (i.e., the path holding times) 
can vary widely from one disk to another, it is 
natural to represent the reconnection process 
through a finite source loss model with several 
classes of customers and the number of servers 
equal to the number of paths. 

The resulting model is known in the teletraffic 
literature as the generalized Engset model, and a 
number of its variations have been considered by 
several authors e.g. [10,12,16,26]. The Engset 

models have been shown to possess a product- 
form solution and to exhibit properties of distri- 
butional robustness. As noted in [20], the compu- 
tational evaluation of their solution presents a 
challenge because the size of the system state 
space grows extremely rapidly with the dimen- 
sions of the model. It is on the computationally 
efficient solution of such models that we focus in 
this paper. 

In the modeling of telephone trunks or dis- 
crete I / O  transfer paths, the number of servers is 
given and fixed. This is not necessarily the case 
when a loss system is used to model the acquisi- 
tion of bus bandwidth in a modern disk con- 
troller. Indeed, some controllers (Amdahl Stor- 
age Processor [2]) include an internal bus used 
for all transfers. In order to proceed, a disk 
transfer must acquire the bandwidth correspond- 
ing to its data rate. With increasing disk data 
rates, the available bus bandwidth may not be 
sufficient to always provide for all transfers. Also, 
recent announcements of IBM disks [1] allow one 
to mix faster (3390) and slower (3380) devices on 
the same controller. This leads to a generalized 
multiclass loss model in which the service re- 
source gets partitioned into a variable number of 
servers, depending on the requirements of the 
customers (requests) currently in service. In the 
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case of I / O  busses, the bus bandwidth is the total 
resource, and the data rates of individual trans- 
fers define its partitioning. 

Systems in which customers acquire simultane- 
ously several servers have been studied by a num- 
ber of authors, e.g. [14,15,19,20]. In particular, a 
model similar (albeit different) to ours is dis- 
cussed in [20]. This generalized Engset system 
possesses a product-form solution, and Iversen 
proposes a convolution type of algorithm for its 
computational evaluation. Note that in our model, 
unlike in [20], the requirements of individual re- 
quest may represent  arbitrary fractions of the 
total available service resource. We introduce a 
new computational approach to the evaluation of 
the product-form solution of our system. This 
approach appears  to significantly reduce the com- 
putational complexity of the solution of our 
model. 

Both in telephone systems and in computer  
modeling, the probability of successfully acquiring 
the resource (or, equivalently, its complement,  
the loss probability referred to as call congestion 
in teletraffic literature) is among the performance 
measures of direct interest. Denote  by C the 
total number  of distinct request classes, and let 
hi/ be the number  of sources of class i requests 
(i = 1 . . . . .  C). Let also U i be the average number  
of class i requests in service (using the resource). 
By considering the ratio of the number  of re- 
quests successfully processed to the total number  
of requests issued by a given customer class, it is 
easy to see that the probability of successfully 

acquiring the service resource by a class i cus- 
tomer can be expressed as 

s, p , (Ni -  U,.) (1) 

where Pi = a J /* i ,  a~ is the (idle time) request 
rate of a class i source, and >i is the service rate 
for a customer of class i (i = 1 . . . . .  C). 

Note that (1) is valid both in the case of 
classical regular servers and of global service re- 
source. The use of this Little's type of relation- 
ship avoids the explicit enumerat ion of states in 
the computation of the success probability, and 
thus contributes to the reduction of overall com- 
putational complexity. 

If the Pi are known, the solution of the loss 
systems model must yield the average numbers in 
service (U,). In computer  modeling applications, 
one often analyzes the performance for a specific 
assumed I / O  rate, so that the attained ("carr ied")  
rates of requests for each class are taken as given. 
Then, a fixed-point iteration can be used to de- 
termine the p#s from the known Uis. In such an 
iteration, the loss system is solved a number  of 
times with different Pi values, and the obtained 
average numbers of customers in service are com- 
pared with the target values U~, i = 1 . . . . .  C. Thus, 
both when the Pi are known and when the U i are 
given, it is important to be able to efficiently 
compute the average numbers of requests in ser- 
vice in a multiclass loss system. 

Section 2 of this paper  presents a simple ap- 
proach to the solution of such systems in the case 
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Fig. 1. Multiclass multiserver loss system. 
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of a classical generalized Engset loss model. This 
approach is based on the use of recurrence rela- 
tionships which are shown to exist among condi- 
tional averages, and leads to an efficient compu- 
tation of server utilizations (and, hence, loss 
probabilities, i.e., call congestion). 

In Section 3, we consider a generalized loss 
system with a global service resource. Although 
such a model exhibits a product-form solution, we 
find that the simple recurrences derived in Sec- 
tion 2 for the "regular"  Engset loss system do not 
carry over to this generalized model. Therefore,  
we present an alternative approach based on 
state equivalence techniques which reduces the 
solution of such generalized systems to repeated 
solutions of a simple single-class loss model. A 
comparison with the convolution algorithm of [20] 
shows that our method tends to result in signifi- 
cant computational savings. 

In Section 4, we present an application of the 
generalized loss system to the evaluation of a bus 
shared by disk devices with different data transfer 
rates. These results show some unexpected 
trade-offs related to bus bandwidth contention. 

Finally, Section 5 briefly summarizes the con- 
clusions of this paper and addresses the issue of 
adequacy of a memoryless loss system as a model 
of disk service reconnection. 

2. Recurrent solution of multiclass loss models 

Consider an Engset loss system with a total of 
M identical servers (M>~ 1) and C classes of 
customers (Fig. 1). As discussed in the introduc- 
tion, N~ denotes the number of request sources of 
class i, Ai is the idle time request rate generated 
by a class i source, and /zg is the rate of service 
for a class i customer. We assume memoryless 
distributions for the request generation times, 
i.e., the times customers of each class spend at 
their "source". We also assume that, if a request 
finds all servers busy, the source will generate 
another request after an exponentially distributed 
time with the same mean 1/A s as for originating 
requests. For simplicity, the service times are also 
taken to be exponentially distributed with means 
l / i x  i. Such a generalized Engset loss system is 
known to be insensitive to the distributions of 
inter-arrival and service times (cf. [10]). 

We focus our attention on the steady-state 

behavior of the system described. Under our 
memoryless assumptions, it is straightforward to 
obtain the global balance equations for the loss 
model of Fig. 1. These equations are given in 
Appendix A. Note that the Markov chain under- 
lying our model is clearly irreducible and aperi- 
odic, so that, given the finite number of states, 
the existence of a steady state is guaranteed (cf. 
[3]). It is easy to show that local balance (sep- 
arately for each request class) holds in such a loss 
system, so that its equations possess a product- 
form solution for the joint probability distribution 
p(m 1 . . . .  , mc),  where m i is the number of class i 
requests in service (cf. [10,16,23,26]). This solu- 
tion involves products of factors pertaining to 
each request class, as well as a normalizing con- 
stant. As is usually the case, the cardinality of the 
state space grows quickly with the number of 
classes and serves. Recall that, for our purposes, 
we are mostly interested in the average numbers 
of requests of each class in service. For queueing 
networks with product-form solutions, several ef- 
ficient algorithms exist allowing the computation 
of specific averages without the explicit evalua- 
tion of the probability of every state [5,8,9,11, 
18,21,22]. Unfortunately, they do not seem to 
extend readily to the loss system under considera- 
tion. It is, however, possible to base a quick 
computation of the performance measures of in- 
terest on a simple recurrence for conditional av- 
erages. 

Let p(mi ,  m) denote the stationary probability 
that there are m i customers of class i in service 
and a total of m servers are busy ( m i =  
0 . . . .  , min(N/, m), m = 0 . . . . .  M). Local balance 
holding for this system implies the following rela- 
tionship 

P(m i ,  m)lximi 

= P ( m i - l , m - 1 ) ( N i - m i + l ) A  i (2) 

Denote by p ( m i l m )  the conditional probabil- 
ity of having m i class i requests in service given 
that a total of m servers are busy, and by p (m )  
the probability of the latter event. With these 
notations, (2) yields 

P ( m i l m ) m i  = p ( m  i -  l l m -  1 ) ( N , - m i +  1) 

X p i P ( m  - 1 ) / p ( m )  (3) 
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By summing (3) over values of m i > 1, we get 

~ i ( m )  = [ N i - ~ i ( m  - 1 ) ] p i p ( m  - 1 ) / p ( m )  

(4) 

where ~ti(m) is the conditional average number  
of class i requests in service given that a total of 
m servers are busy. Of  course, we must have 
E c = l m i ( m )  = m, so that 

mi(  m )  = m [ N / - - ~ l i ( m  -- l ) ] P i  

C 

/ Y'~ [ N j - ~ j ( m -  1)]& (5) 
j = l  

and 

1 m [ ] 

= §   lo,/i , 
j = l  

m = 0 ,  1 , . . . , M ,  (6) 

where G is a normalizing constant for (5). 
Note that (5) represents in fact a simple recur- 

rence for the conditional a v e r a g e s  ~ti(m). Start- 
ing with the trivially known ~i(0)  = 0, it allows us 
to consecutively compute conditional average 
numbers of requests of each class in service for 
increasing numbers of busy servers. The regular 
nonconditional averages can be easily computed 
a s  

M 

U i = ~_, ~ t i ( m ) p ( m  ) (7) 
m = l  

The actual computation can take advantage of 
the fact that the numerator  in the solution factor 
of (6) involves the same sum of expressions with 
the conditional averages for m -  1 as the right 
hand side of (5). This allows us to proceed as 
follows. For increasing values of m, we first com- 
pute the s u m  Y ~ c = l m j ( m  - 1)&. We use it both to 
compute the next value of the factor in (6), and to 
obtain new values for the mi(m). Since the aver- 
ages U/can be cumulated as we go, it is clear that 
a single array of values can be used for the ~ti(m) 
across all values of rn. 

From a computational standpoint, the numeri- 
cal stability of a recurrence like (5) is always of 
concern. In particular, with very different pi s and 
Nis the sum of expressions in the denominator  of 
(5) can be subject to loss of accuracy, leading to 
incorrect values for the ~ti(m) a t  the next step. 
Indeed, we have observed such loss of accuracy 
under extreme conditions. Fortunately, the fol- 

Multiclass loss systems 

Table 1 
Results  for average number  of  users in service 

Method Class 1 Class 2 Class 3 

Direct solution of equat ions 16.0181 0.2037 34.0071 
Recurrence  with removal 16.0057 0.2000 33.9994 
Relative er ror  (%) 0.0774 1.8163 0.0226 

Parameters:  no. of classes = 3; no. of servers = 60; N~ = 20, 

tz I = 1.0, A 1 = 4.0228, N 2 = 30, #2 = 1.0, A 2 = 6.8380, N 3 = 35, 
iz 3 = 1.0, h 3 = 3.4249. 

lowing simple steps can be applied in practice. A 
loss of accuracy for class i becomes obvious when 
the conditional average with a total of m busy 
servers computed from (5) exceeds N i (or be- 
comes less than the average with m - 1). From 
that point on, we set the conditional average for 
class i to N i, and we remove this class from the 
pool considered in the sum in (5), i.e., we use 
(m - N i) as the sum of the remaining conditional 
averages. Clearly, it is possible that more than 
one class of requests will be thus removed. 

The occurrence of such a visible loss of accu- 
racy tends to be confined to rather extreme cases, 
and can be minimized by rearranging the compu- 
tation of the sum in (6) so as to cumulate smallest 
terms first. As indicated by a number  of direct 
numerical solutions of the balance equations as 
well as by discrete-event simulations, the proce- 
dure outlined above tends to have little adverse 
effect on the overall accuracy of the averages ~ .  
Table 1 shows a comparison of the results of a 
direct numerical solution of the balance equa- 
tions and of our recurrence for 3 classes and 60 
servers which happens to be one of the worst 
cases among the ones explored. Here,  class no. 3 
was most subject to removal by our procedure. 

We observe that the relative errors remain 
quite low. 

Overall, we think that (5) and (6) represent a 
useful way of computing the average numbers of 
requests of each class in service in a multiserver 
loss system without having to enumerate  detailed 
system states. As a " f ree"  by-product, we also 
obtain the probability distribution of the occupa- 
tion of the servers. Note that the computational 
complexity of the proposed algorithm is propor- 
tional to the product CM, i.e., grows linearly with 
the number  of classes and the number  of servers. 
The storage requirements of the algorithm are 
quite modest. 
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The multiclass Engset loss system considered 
in this section has been studied by a number of 
authors. The product-form of the solution is given, 
in particular, in [16] but without an efficient 
method to evaluate it. Cohen [10] has studied the 
distributional robustness of the Engset formula. 
His paper contains also an expression for the call 
congestion for each class (formula 4.4 in [10]). 
However, the evaluation of this formula requires 
the enumeration of system states, and, most prob- 
ably, an application of an iterative solution 
method, e.g., of the Newton-Raphson type. Thus, 
we believe that our method represents a novel 
computationally efficient approach to the evalua- 
tion of average numbers in service, and, hence, 
individual call congestion. 

The next section is devoted to the efficient 
evaluation of generalized loss systems with a total 
service resource partitionable into varying num- 
bers of servers. 

3. Generalized multiclass loss models 

Consider now a generalized Engset system with 
a total service resource of, say, B units (e.g., bus 
bandwidth of B MBytes/s)  as shown in Fig. 2. 
Again, there are C classes of customers, N, is the 
number of sources of requests of class i, and Ai is 
the idle time rate of requests generated by a class 
i source. A class i request requires a "chunk" of 
size b i of the global resource (e.g., disk data rate 
of b i MBytes/s) ,  anal uses it for an average time 
1//zi (e.g., data transfer time). For the sake of 

simplicity, both the sources and the resource 
holding times are taken to be memoryless. 

As before, we are interested in the average 
numbers of requests of each class in service. 
Unlike in the classical loss system, however, we 
now have no fixed number of servers. Rather, the 
service resource gets partitioned into variable 
numbers of servers, depending on the class make- 
up of the requests being served. The system con- 
sidered exhibits some similarity to multiserver 
models in which requests may require several 
servers to proceed (cf. [5,13,14,15,17,18,20,21,24, 
25]) with the difference that, in our case, the 
individual resource requirements b i can repre- 
sent arbitrary fractions of the total service re- 
source B. 

The system described possesses a simple prod- 
uct-form solution for the joint probability 
p ( m  1 . . . . .  m c)  where rni, i = 1 . . . . .  c is the num- 
ber of class i requests being served. For each 
class, local balance holds between service activa- 
tions and completions in a feasible state, leading 
to 

P ( m l , . . . , m c )  
1 m l  m 2  

= - -  I - I  ( N I  - i x  + 1 ) p l / i l  I-I (N2  - i e  + 1) 
a il=l i2= 1 

m c  

× P : / i 2  " '"  I-I ( N c  - ic  + 1 ) p c / i c  (8) 
i c= l  

where G is a normalizing constant corresponding 
to the sum of the product terms over all feasible 
states, i.e., those compatible with the total re- 
source and individual class requirements. 

Sources 
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Fig. 2. Generalized multiclass loss model. 
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Note that, in most cases, our model can be 
mapped onto the multi-service loss system consid- 
ered in [20] by converting all resource quantities 
involved (i.e., B and the bis) into integers. The 
resulting total resource is then viewed as a given, 
potentially very large, number of servers. Iversen 
[20] gives the product-form solution for such a 
model in terms of a state description involving 
the numbers of busy servers, and states the insen- 
sitivity of the steady-state solution to the distribu- 
tion of holding times. Here, we concentrate on 
efficient computation of the probability that a 
request is able to successfully acquire the needed 
resource (or, equivalently, the call congestion) for 
each class of requests. For reasons which will 
become apparent shortly, we keep the state de- 
scription introduced earlier in this section, i.e., in 
terms of the current numbers of requests of each 
class in service. 

Unlike for a regular loss system with a fixed 
number of servers, the maximum number of cus- 
tomers of a given class in service does not neces- 
sarily increase when the total number of busy 
servers increases. For example, consider a system 
with a total resource of 10 and 2 classes of 
requests with resource requirements of 4 and 2, 
respectively. With a total of 3 requests in service, 
there can be 0, 1 or 2 class 1 requests in service 
(and thus 3, 2, and 1 requests of class 2). When 
there are a total of 4 requests being served, 
however, there can be only 0 or 1 customers in 
service, since 2 requests of class 1 would leave 
only 2 units of resource, i.e., enough for only one 
customer of class 2 (while 2 would be required for 
a total of 4). For this reason, a recurrence like (5) 
does not appear to hold for the generalized loss 
system, so that we look for another way to effi- 
ciently evaluate its solution. 

An efficient way of organizing the enumera- 
tion of system states, which allows a significant 
degree of computational savings, is an approach 
based on a repeated application of the equiva- 
lence and decomposition method (cf. [7]). Rather 
than develop general notations, let us illustrate 
this approach using an example with three classes 
of requests. 

Denote by p(m 1, m 2, m 3) the joint probability 
distribution of requests in service. The basis for 
the approach is the following probability identity: 

P( ml,  m2, m 3 )  

= p ( m  3 I m2, m l ) "p (m 2 I m l ) ' p ( m l )  (9) 

A'I 

%(-,1) 

r\ 
b I 
) I 

I I 
I I 

I_ 1 . 3  

I 

rejected 
(loss) 

~, :  Mi Servers 

Fig. 3. Equivalent loss system for class 1. 

where P(m3]m2,  m 1) is the conditional probabil- 
ity distribution of m 3 given m 2 and m l, 
P(m2 I ml) is the conditional distribution of m 2 
given rn~, and p(m l) is the marginal probability 
of having rn~ class 1 customers in service. Con- 
sider class 1 requests. The available resource 
allows for a maximum of M 1 = [B/b l] requests in 
service ([.] denotes the ' integer'  function), so 
that, for class 1, the system appears as a loss 
system with M 1 servers (see Fig. 3). The interfer- 
ence of customers of other classes is represented 
through the "activation" function al(m ~) defined 
as follows 

a , ( m l )  = ~ , ( m 2 ,  ml)P(m2[m,)  (10) 
t t l  2 

where 

t~l(m2, ml)  

= y" P(m31m2, m,) 
m3:B mlb I-m2be-m3b3>~bl 

(11) 

Clearly, the activation function al(m 1) corre- 
sponds simply to the probability that (given m l) 
other classes leave enough resource for at least 
one additional class 1 request. Indeed, the sum- 
mation in (11) is over all values of m 2 such that, 
with the given values of m 1 and m 2, there is at 
least b~ resource left available. With known 
a~(ml), the solution of such a loss model is quite 
simple: 

l mj 

p(ml )=- -~  l - - I (Nl - - i+ l )a l ( i - -1 )Pl / i  (12) 
i=1 

To compute a~(mL), consider our system with 
m~ customers of class 1 in service. This leaves 
B -  blm 1 as the available system resource. Thus, 
for class 2 customers, given that m I customers of 
class 1 are in service, the system can be viewed as 
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\ 
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I 

A 
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kJ  
I 
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(loss) 
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Fig. 4. Equivalent loss system for class 2 given in class 1. 

a loss system with M 2 ( m l ) = [ ( B - b l m l ) / b 2 ]  
servers (see Fig. 4). The activation function 
a2(rn 2, m~) is used to represent the interference 
of class 3 customers, and is formally defined as 

a 2 ( m 2 ,  m t )  

= E p(rn3lm2,  m l )  
m3:B-mlb  l -m2b  2-rn3b 3>~b 2 

(13) 

Again, this is simply the conditional probabil- 
ity that class 3 requests leave enough resource for 
at least one additional request of class 2. When 
the activation function is known, the solution of 
this system yields the conditional probability 
p ( m 2 l m l ) .  The solution is analogous to (12). 

Now consider our system with m I and m2 
customers of class 1 and class 2 in service, respec- 
tively. The service resource left is B - m l b  1 - 
m2b 2. Given m~ and rn 2 customers in service, for 
class 3 users, the system can be viewed as the 
simple loss model represented in Fig. 5. Note that 
there are M3(m 2, m 1) = [(B - mlb I - m2b2) /b  3] 
servers, and, since class 3 is the last in our analy- 
sis, there is no need for an activation function. 
Indeed, all interference of other classes is already 
accounted for in the reduced amount of the ser- 
vice resource. The solution of this simple Engset 

3 

Fig. 5. Equivalent loss system for class 3 given classes 1 and 2. 
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model (cf. [3]) produces the conditional probabil- 
ity p ( m 3 l m 2 ,  m~), as well as the functions 
al(m 2, m 1) and a2(m2, ml). 

Using the product-form of the joint probability 
distribution (8), it is easy to show that the ap- 
proach based on equivalence and decomposition 
generates the exact solution for the generalized 
Engset loss system under consideration. 

We outline in Appendix B the computation 
flow for our method using as an example the 3 
class system discussed above. 

As mentioned earlier in this section, in many 
cases, our generalized loss model can be mapped 
onto the multi-service Engset system studied in 
[20]. As a matter of fact, Iversen proposes in his 
paper a computational approach to the evalua- 
tion of the product-form solution of such a sys- 
tem through the use of multiple convolutions, 
based on the distribution of the number of busy 
servers. Because we use a different state descrip- 
tion (the number of requests in service and not 
the number of busy servers), our approach tends 
to be considerably more efficient than that of 
[20]. The precise savings depend on system pa- 
rameters. As an example, consider the case of a 
total resource B = 18 shared by three classes with 
b I = 3, b z --- 4.2, and b 3 = 6. This can be mapped 
onto a full availability system with 30 servers, and 
individual class requests for 5, 7, and 10 servers, 
respectively. A direct comparison with the com- 
plexity numbers as provided by Iversen, makes 
our approach an order of magnitude faster. Even 
if we modify the algorithm in [20] so as to avoid 
unnecessary computations, our method is still sig- 
nificantly more efficient. 

In the case when every class of requests needs 
the same amount of the service resource, our 
model becomes clearly equivalent to the multi- 
class Engset loss system considered in the preced- 
ing section. It is interesting to note that, in such a 
case, significant additional computational savings 
can be achieved using our approach. Indeed, we 
notice that then all conditional quantities, such as 
the activation functions or the conditional aver- 
age numbers of requests of a given class in ser- 
vice, depend only on the total number of servers 
busy with requests from "outer"  classes. E.g., the 
activation function a(m 2, m 1) becomes the same 
for classes 2 and 1, and is a function only of the 
sum rn 1 + m 2. Hence, a highly efficient computa- 
tion can be organized by computing (and storing) 
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a single activation function as well as individual 
class averages only once for each decomposition 
level. For instance, in a system with four classes, 
the underlying probability identity is 

P( ml, m2, m3, m4) 

=P(m41m3, m2, ml)P(m3lm2,  ml) 

× p ( m  2 I ml )P(ml )  (14) 

First, we consider p(m4lm 3, mE, ml) , which 
is in fact a function of the total m 3 + m 2 + m 1. 
Thus, we compute and store the values of the 
activation function (conditional probability that at 
least one server is available) a( ' ) ,  and the condi- 
tional average m4( ')  for all values of the total 
number of requests of "outer"  classes (3, 2, or 1) 
in service. Then we use the activation function to 
solve the loss model for P(m31m2, m~). Again, 
this is a function of the total number m 2 + m~ 
and not individual values of m 2, m 1. We compute 
and store the values of the activation function for 
the next level and the conditional averages ~4 ( ' )  
and ~3( ' ) .  Note that the values from the preced- 
ing analysis level are no longer needed at this 
point, and can be overwritten. This results in very 
modest storage requirements of our method. 
Continuing our procedure, we use the latest acti- 
vation function to obtain p(m 2 ] ml). At this level, 
we compute the new activation function a(ml), as 
well as the conditional averages m4(ml), m3(ml), 
and ~2(ml) .  Finally, at the last level, we analyze 
p(rn~), and obtain the unconditional averages m4, 
m 3, m2, and ~1. 

It is clear that the computational complexity of 
our approach in this case is proportional to the 
product CM of the number of classes times the 
total number of servers. By contrast, the convolu- 
tion method of [20] exhibits then a computational 
complexity of the order of CM 2. Additionally, the 
storage requirements of the convolution method, 
not discussed in [20], are likely to be consider- 
able. 

It is interesting to note that our approach 
based on state equivalence can be readily applied 
to the limited availability model considered in 
[20]. Indeed, it suffices to view the total resource 
B as the number of available trunks and the 
individual bandwidth requirements b i as the 
number of trunks needed for a request of class i. 
The call intensity for class i, Ai(mi), replaces our 

arrival rate ( N / -  mi)A i. Also, the expression for 
the success probability for class i becomes 

S i = m i / ' ~  i (15) 

where Ai= E_ip(mi)Ai(mi), so that we have to 
include the Ais in the quantities evaluated. The 
limited availability appears simply as an addi- 
tional limit on the number of requests at each 
decomposition level. 

In the next section, as an example, we apply 
our generalized loss model to the performance 
analysis of a modern I / O  controller, and, in 
particular, we look at the effects of the sharing of 
the bus bandwidth by transfers of different speeds. 

4. Application to bus bandwidth sharing 

As mentioned in the introduction, multiclass 
loss models can be used to represent the con- 
tention for transfer paths experienced by disk 
devices in many I n p u t / O u t p u t  commercial com- 
puter organizations. Some modern disk control 
units [1] utilize an internal bus to handle data 
transfers for a relatively large number of devices 
(e.g., 128 disks). Such a bus possesses a given 
finite bandwidth corresponding to the maximum 
aggregate data rate that it can sustain. For trans- 
fers synchronous with the mechanical disk device, 
when the device is correctly positioned for data 
transfer, there must be enough bus bandwidth 
left to accommodate the device data rate, or else 
the device will be unable to successfully recon- 
nect to the bus, i.e., will miss a revolution, and 
will have to reattempt bandwidth acquisition af- 
ter a full rotation. It is the performance evalua- 
tion of such systems that motivated our interest 
in the generalized Engset loss model of the pre- 
ceding section. 

Note that in a regular disk I / O  operation, the 
service of a request by the disk device involves 
several phases. First, the disk movable arm may 
have to be positioned on the correct cylinder. 
This phase is the disk seek time. Then, when the 
seek is completed, the disk will typically find 
itself in a random angular position with respect to 
the target sector marking the beginning of the 
data on the disk surface. Thus, the second phase 
in disk service time is the rotational latency until 
the device reaches the target sector. Next, the 
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disk must reconnect to the transfer path. This 
may involve some number  of unsuccessful at- 
tempts, resulting in a missed revolution delay. 
Finally, after successful reconnection the device 
will be able to transfer the data records requested 
in the I / O  operation. Thus, the disk service time 
(exclusive of queueing for the device availability) 
may be seen as composed of seek time, rotational 
latency, missed revolution delay, and data trans- 
fer time. In reality, there are some additional 
overhead times necessary to process the opera- 
tion. For simplicity these are thought of as in- 
cluded in the data transfer time in this analysis. 

An interesting question arising in connection 
with such systems is whether  devices with faster 
data rate always outperform slower devices, and, 
since it is possible to mix several device types, 
whether such a mixing is always a good idea from 
a performance standpoint. Note that for a given 
transfer length (i.e., number  of bytes transferred), 
a higher data rate will result in a shorter transfer 
time, but possibly in more contention for the bus 
bandwidth, and thus in a longer bandwidth acqui- 
sition delay. The issue is whether the net result is 
a shorter total service time. 

To provide elements of answer to these ques- 
tions, we consider an idealized system with two 
classes of devices and restricted bandwidth. We 
set the number  of devices in each group to 16, 
and we start by assuming that the devices differ 
only in their data rates, We keep the data rate for 
the first group (b 1) at 3 Mbytes /s ,  and we vary 
the transfer rate for the second group (b 2) be- 
tween 3 Mbytes / s  and 9 Mbytes /s .  The total 
bandwidth is taken to be only 12 Mbytes /s .  

We take the seek time and the rotational la- 
tency as given (the latter is simply set to one half 
the device revolution time), and we use the gen- 
eralized loss model of the preceding section to 
evaluate the probability that a disk device is able 
to successfully reconnect to the controller bus. 
Having obtained this probability for each group 
of disks, it is easy to assess the expected number  
of missed revolutions per I n p u t / O u t p u t  opera- 
tion, i.e. the missed reconnection delay (cf. [6]). 
The expected transfer time is computed by con- 
sidering the number  of data bytes transferred and 
the disk transfer speed. Figures 6, 7, and 8 illus- 
trate the I / O  service times obtained for a bus 
bandwidth system with data transfers of 4 Kbytes, 
8 Kbytes, and 12 Kbytes, respectively. 
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Fig. 6. Effect of bandwidth on I/O service times: 4 Kbyte 
block transfers, total bandwidth 12 MB/s, b 1 = 3 MB/s. 
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These results correspond to an average seek 
time of 6.25 ms, disk revolution time of 16.67 ms, 
and an I / O  rate of 200 I / O s  per  second to each 
device class. We note that, with the limited band- 
width assumed in this example, especially for the 
longer transfers of 8 Kbytes and 12 Kbytes, the 
service time for devices of group 2 increases quite 
abruptly with the data rate for this group (b2). 
Not surprisingly, the changes are non-uniform, in 
the sense that once a given lower degree of 
concurrency has been attained, it is best to pro- 
ceed at the highest data rate that still corre- 
sponds to the same degree of concurrency of 
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operation. What  is rather surprising is the fact 
that the best performance for both groups of 
devices can be achieved when both groups pro- 
ceed at the lowest data rate of 3 Mbytes /s .  

This is apparent  from the results for 8 Kbytes 
and 12 Kbytes transfers. For the shorter 4 Kbytes 
transfers, the performance for devices of class 2 
initially shows a substantial improvement without 
much impact on class 1 service time. However, as 
the data rate b 2 continues to increase, we observe 
a sudden degradation in the performance of both 
groups of devices. 

It is worthwhile noting that discrete-event sim- 
ulation results fully confirm the findings of our 
analysis. Table 2 compares the probability of suc- 
cessfully acquiring the bandwidth on a first at- 
tempt estimated in the simulation with values 
computed using the solution approach of Section 
3. We observe that the generalized loss model 

Table 2 
Comparison of disk simulation and loss model results 

Band- Class I success Class II success 
width of probability probability 

Class II Simulation Anal- Simulation Anal- 

ytical ytical 

3.0 0.982 + 0.005 0.982 0.982 + 0.005 0.982 
3.5 0.939 + 0.009 0.940 0.925 + 0.012 0.931 
4.0 0.946 + 0.004 0.950 0.938 + 0.010 0.940 
4.5 0.957 + 0.009 0.959 0.917 + 0.007 0.922 
5.0 0.945 ± 0.006 0.946 0.849 + 0.011 0.849 
6.5 0.901 + 0.013 0.905 0.664:5:0.022 0.669 
7.0 0.910±0.018 0.912 0.687±0.018 0.685 
7.5 0.916 5:0.018 0.918 0.693 ± 0.029 0.700 
8.0 0.921 5:0.006 0.923 0.709 + 0.014 0.712 
8.5 0.927 ± 0.010 0.928 0.721 ± 0.010 0.723 
9.0 0.933 + 0.011 0.932 0.735 ± 0.010 0.733 

Fig. 9. Performance with mixed versus single disk types: 
comparison of I / O  service time, mixed versus single disk 

types. 

predicts quite accurately the success probability. 
The obtained results strongly suggest that, when 
total available resource is limited, unequal indi- 
vidual requirements tend to interfere with each 
other. The extent of interference can be such that 
it more than offsets any gains in the time the 
resource is used. In Fig. 9, we provide a further 
example of this phenomenon.  Here,  we again 
consider two types of devices. Type 1 has a data 
rate of 3 Mbytes / s  and a revolution time of 16.67 
ms. Type 2 has not only a faster data rate of 4.2 
Mbytes /s ,  but also a shorter revolution time of 
14.1 ms. The total available bus bandwidth is 
again assumed to be 12 Mbytes /s .  The results in 
Fig. 9 show the service time (exclusive of queue- 
ing) for a mixed environment where we have two 
groups of 16 devices of each type present simulta- 
neously, as well as the two cases where all 32 
devices are of a single type (1 or 2). The I / O  
rates are 200 I / O s  per second for each group of 
16 devices, and the average seek times are taken 
to be 6.25 ms for disks in each group. We observe 
that it is possible for the mixed environment to 
exhibit poorer  performance than either of the 
two types alone. 

Thus, mixing device types is not always a good 
idea. It should be stressed that these results per- 
tain to a rather limited total available resource. 
As the bus bandwidth increases, differences in 
performance,  as well as interference between re- 
quests of different classes, tend to dissipate. 
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5. Conclusion 

We have considered two related aspects of 
Engset loss models with multiple classes of cus- 
tomers. For systems with "classical" multiple 
servers, we have presented a method for effi- 
ciently computing the average numbers of cus- 
tomers in service as well as the probability distri- 
bution of the number of busy servers. Our method 
is based on recurrences that exist between condi- 
tional average numbers of customers in service 
given the total number of busy servers. As a 
related point, it is interesting to note that the 
recurrence derived for multiserver loss systems 
applies also to classical finite source queueing 
systems with product-form solutions [4]. 

Motivated by modern I / O  architectures, as an 
extension of such models we have considered 
"generalized" multiclass loss systems, in which 
the total available service resource gets parti- 
tioned into a variable number of servers accord- 
ing to individual class requirements. The recur- 
rences derived for classical models do not appear 
to hold for the generalized systems. Therefore,  
we have presented a different approach to the 
evaluation of these systems. Our approach relies 
on a repeated use of state equivalence and de- 
composition. 

A comparison with the existing convolution 
method indicates that the proposed approach is 
significantly more efficient in terms of both com- 
putational complexity and computer memory re- 
quirements. Our equivalence and decomposition 
approach can also be applied to the "classical" 
Engset multiclass multiserver model considered 
in Section 2. Its computational complexity then is 
of the same order as that of the recurrence 
method, so that is may represent a valuable alter- 
native, especially when quantities other than the 
average numbers in service or the call congestion 
are desired. Indeed, any quantity computable 
from the joint distribution of the numbers of 
requests of each class in service can be repre- 
sented in terms of the conditional probabilities 
used, and thus evaluated from our approach. 

As a practical application, we have looked at 
bus based systems simultaneously supporting two 
classes of disks with different data rates, i.e., 
bandwidth requirements. We have found that, 
when the available bandwidth is limited, such a 
mixture may not be a good idea from a perfor- 
mance standpoint. In particular, it is possible to 

have a situation where the contention for bus 
bandwidth more than offsets the shorter data 
transfer times afforded by a faster data rate. 

An intriguing point relates to the application 
of the Engset loss system as a model of disk 
reconnection. In the physical disk system, there is 
a clear distinction between first reconnection at- 
tempts which arrive "at random" after the com- 
pletion of the seek and rotational latency, and 
subsequent attempts which have a constant re- 
quest generation time of one revolution. In our 
model, we ignore this distinction in the request 
generation times. Experimental evidence indi- 
cates that the results produced by our model tend 
to match quite closely simulation figures for the 
success probabilities on the first reconnection at- 
tempt for a new request. Subsequent attempts 
may see typically a somewhat lower success prob- 
ability. While several "corrections" have been 
proposed to account for this difference [6], in our 
opinion, no truly satisfactory approach exists. The 
practical consequence of using the loss model is 
that the overall success probability tends to be an 
underestimation of the missed reconnection delay 
component of the I / O  service time. 
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Appendix A 

B a l a n c e  e q u a t i o n s  

Recall the multiclass multiserver system of Fig. 
1. We obtain the following global IPalance equa- 
tions. 

, ml . . . . .  

= Y'~p( . . . .  m i + 1 . . . .  ) ( m  i + 1)txi 
i 

+ }-'~p( . . . .  r n j -  1 . . . .  ) ( N i -  m j + 1)A i 
J 

(16) 
with m = F, k r n  k < M and m i < N i 
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The solution of the above system is given by 

p(ml  . . . . .  mc) 
m l  m 2  

= - -  1-I ( U l - i ,  + l)p~/il I-'I ( N 2 - i 2 +  1) 
G it= 1 i2= 1 

m C 

×P2/i2"'" 17 ( N c - i c +  l )pc / ic  (17) 
i c - 1 

where G is a normalizing constant corresponding 
to the sum of the product terms over all feasible 
states. 

The product-form solution given by (16) corre- 
sponds to the following local balance equations: 

p (  . . . .  mj . . . .  )mj/xj 

= p (  . . . .  m j - 1  . . . .  ) ( N j - m j  + 1) (18) 

p( . . . .  m i . . . .  )( Ni - mi) 

= p (  . . . .  mi+ 1 . . . .  ) (mi+  1)txi (19) 

P(m21m l) and the running sum of such factors 
used to normalize the solution. We denote these 
storage locations by h 2 and H 2, respectively. Sim- 
ilar memory locations for p ( m  1) are denoted by 
hi, and H1; h 1 is initialized to 1, H~ to 0. Also h 2 
is reset to 1 and H 2 to 0 for each new value of 
m~. An additional memory location, denoted by 
L, 2, is used to hold the values of the activation 
function a2(m2, ml) during the computation. 

After this initialization phase, we consider our 
system for values of m 1 = 0 , . . . , M  1, and m 2 = 
0 . . . . .  Mz(ml)  , i.e., we enumerate  the numbers of 
requests of the "outer"  classes in lexicographical 
order. For a given value of ml,  and each value of 
m 2 = 0 . . . .  , Mz(ml),  we obtain t~l(m2, ml), 
a2(m2, m 1) using (11) and (13), and the condi- 
tional average number  of class 3 customers in 
service ~3(m2,  m 1) as 

m3(m2, m,) = Em3p(m31ma,  ml). 

Appendix B 

Computation flow for algorithm of Section 3 

In practice the actual computation in our algo- 
rithm starts with the " innermost"  class, i.e., class 
3 in our three class example. In order to avoid 
recomputing the same expressions, we preeom- 
pute and store in memory several arrays of val- 
ues. The first one contains the product factors of 

m 3  the form Iqi=-I(N3-  i+ 1)p3/i corresponding to 
the terms of the solution for P(m3lm2, m~) for 
values of m 3 = 0, 1 . . . . .  [B/b3]. We denote by 
f3(m3) the elements of this array. In the second 
array, we keep the running cumulative sum of the 
corresponding entries in the first array. Thus, the 
elements of the second array provide precom- 
puted values for the normalizing constants in the 
solution for p(m3]m2, ml), and we denote them 

m 3 by s3(m3). We have s3(m 3) = F~i~_of3(t). For class 
2, we precompute  and store only a quantity anal- 
ogous to f3(m3), denoted by f2(m2), where 

m 2  

fz(m2) = I - I  ( U 2 - i  + 1)p2/i. 
i=1 

We need also auxiliary memory locations to 
store the current factor in the solution for 

Note that the precomputed f3(m3) can be 
used instead of p(m31 m2, m 1) in these expres- 
sions, and the values thus ob ta ined  for 
al(m2, ml) , az(m2, ml) , and m3(m2, m l) can be 
normalized simply at the end of the summation 
by dividing by s3(M3(m2, ml)). 

At this point, we use the factor h2 to compute 
one term in the sums representing N3(ml),  a ~(m 1) 
as well as ~2(ml). The latter is, of course, just 
the product m2h 2. We also update the cumula- 
tive sum H 2. Then, except for the last m 2= 
M2(ml), we update the product of activation fac- 
tors in t~ 2 by multiplying by az(m2, ml), then we 
compute a new value for the factor h e as f2(m2 
+ 1)c 2. When the last value of m 2 for the given 
m I (i.e. M2(m 0) has been considered, we normal- 
ize the accumulated sums ~ 3 ( m 0 ,  N2(ml),  and 
a l (m l) dividing them by H 2. We are also ready to 
update the overall averages m3, me, as well as 
N1 using the factor h 1. The cumulative sum H 1 is 
also updated by simply adding h v Except for the 
last value of m I (i.e., M1), we compute a new 
value for the factor h I using (12). Note that, in 
practice, this means that we multiply the preced- 
ing value by the factor ( N  1 - ml)al(ml)pl / (m 1 + 
1). 

When the last value for m 1 has been consid- 
ered, it simply remains to normalize the quanti- 
ties computed by dividing them by H~. 
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