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Abstract: 

Queueing network models of multiprogramming 
systems with memory constraints and multiple 
classes of jobs are important in representing 
large conm~rcial computer systems. Typically, an 
exact analytical solution of such models is 
unavailable, and, given the size of their state 
space, the solution of models of this type is 
approached through simulation and/or approximation 
techniques. Recently, a c(m~utationally efficient 
iterative technique has been proposed by 
Brandwajn, Lazowska and Zahorjan for models of 
systems in which each job is subject to a separate 
memory constraint, i.e., has its own memory 
domain. In some important applications, it is not 
unusual, however, to have several jobs of 
different classes share a single memory "domain" 
(e.g., IBM's Information Manages~ant System). We 
present a simple approximate solution to the 
shared domain problem. The approach is inspired 
by the recently proposed technique which is 
complemented by a few approximltions to preserve 
the conceptual simplicity and computational 
efficiency of this technique. The accuracy of the 
results is generally in fair agreement with 
simulation. 

Queueing network models of multiprogra~muing 
systems with multiple classes of jobs and mm~ory 
constraints are important in representing large 
conm*~rcial computer systems, like the well known 
IBM's MVS [I]. Such models typically do not 
possess a known exact analytical solution, and the 
direct applicability of standard numeric 
techniques to the state equations is hindered by 
the fast growth of the number of states as the 
number of job classes and jobs per class 
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increases. Thus, the solution of models of this 
type is approached through simulation or 
approximation techniques, or a mixture of both 
(e.g., [2,3,4,5]). In this paper, we take the 
route of approximate analysis that can handle 
relatively efficiently the inherent con~lexity of 
the model. 

By applying state aggregation (or as some 
call it, equivalence), it is possible to reduce 
the models under consideration to queueing 
networks with a single job class and state- 
dependent mutually coupled queues, each queue 
representing a job class of the original model. 
Because of the coupling between queues, the 
solution of this reduced network is still a 
difficult task (cf. [I]), a~d the size of the 
network state space, though considerably scaled 
down, still increases rapidly with the nm,ber of 
classes and jobs per class. An approximate 
solution of such a reduced i~el can be attempted 
through repeated use of ~quivalence (state 
aggregation) and decomposition (cf. [6,5] ), but 
this approach does not escape from the 
computational complexity since it enumerates the 
states of the reduced network. Reoently, 
Brandwajn [7] and Lazowska and Zahorjan [8] 
proposed an iterative technique for solving the 
reduced network. The basic idea of their approach 
is to de-couple the queues in the network by 
ass~ing that the influence of other job classes 
on any given class of jobs can be adequately 
represented through the use of the average numbers 
of jobs of the other classes (as opposed to 
instantaneous n~m~sers of users) in the state- 
dependent service rates of the coupled queues. 

This technique is co~utatiork111y efficient 
for systems in which each job class is subject to 
a separate memory constraint, i.e., has its own 
memory "domain." In some applications, it is not 
unusual, however, to have several jobs of 
differ~at classes share a single domain. A 
typical example is the I~M Information Managema~t 
System [9] where a set of different transactions 
r~y queue for a co~n set of multiprogramming 
slots called "message regions." In presence of 
such "shared domains," the use of average numbers 
of jobs to represent the influence of other job 
classes is not, by itself, sufficient to achieve 
complete decoupling of queues. The extension 
proposed in [8] to deal with shared domains 
defeats the conputational simplicity of the 
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iterative technique, while [7] disregards shared 
domains altogether. 

It is our goal in this note to present a 
simple approximate solution to the shared domain 
problem. The approach is inspired by the 
Brandwajn, Lazowska and Zahorjan technique which 
is coa~lemented by a few approximltions to 
preserve the conceptual simplicity and 
computational efficiency of this technique. 

Led by what appear to be the rest c~..6~n 
applications of shared domains, we concentrate our 
attention on transaction processing systems. We 
allow the transaction arrivals to be represented 
as generated by a finite number of term/na/s for 
some classes and an infinite source for others. 

In the next section, we describe in mare 
detail the queueing network model under 
consideration and we present the approach 
proposed. Section 3 is devoted to numerical 
examples illustrating the accuracy of the 
approximate solution. 

2. Model and Approximate Solution 

Consider the system depicted in Figure i. 
There are two types of transactions (jobs) with 
respect to arrivals to the system: transactions 
generated by a finite set of teminals, referred 
to by the acronym TS, and those originating at an 
infinite source, called TP transactions. We 
assume that there are f classes of TS 
transactions, each characterized by the number of 
terminals, N i the average think time, i/~ i , 
and a set of values for system resource 
requlren~nts. Similarly, there are o classes of 
TP transactions, each characterized by the source 
rate A~ , and a set of demands for system 
resources. Within each class, transactions are 
assumed to be statistically identical and 
indspenaent. 

The system possesses a limited number (M) of 
"slots" for the adm/ssion of jobs of all classes. 
When no free slots are available, arriving 
transactions wait for entry into this shared 
domain in a single admission queue which we assume 
to be of a First-In-First-Out discipline. 

TS type transactions are assumed to follow a 
cycle comprising a t h i n k  t i m e  at the terminal and 
an interaction time with the system. For 
simplicity, we assume that the think times of TS 
job classes are exponentially distributed random 
variables, that TP transaction arrivals from an 
infinite source constitute a Foisson process, and 
that the demands placed upon system resources by a 
job class can be represented as service times 
following Coxian [I0] probability distributions. 

with these assumptions, the system under 
consideration can be represented by the aggregated 
queueing network shown in Figure 2. For each 
class n of jobs, n = i,...,¢, the execution in the 
shared memory domain is represented as passage 
through a private exponential queue whose 
instantaneous service rate depends on the current 
numbers of transactions of each class in the 
domain. These service rates, denoted by 
Vn(ml,... ,ran,... ,me), can usually be assessed 
using a de6omix)si£ion technique (of. [5, 6] ). 
Here we assume that they are known, and our goal 
is to develop an efficient solution for the 
queueing network of Figure 2. 

Note that, even though all the servers in 
this queueing system are Markovian, the network, 
in general, does not possess a product-form 
solution [ii]. The two reasons for this are the 
coupling between the queues in the form of state 
dependent service rates v~(ml,... ,m~,... ,m~), and 
the admission oontrol based 6n the ~otal n~ber of 
users in the system. 

Ni' ki 
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a d m i s s i o n  M " s l o t s "  

A. ~ t queue 

j = f + l  . . . . .  f+o  
( e = f + o )  

Figure i: View of system considered 
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n 

Figure 2: A queueing network model of 
system considered 
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As a first step in our approximate solution, 
we ass~mle, following [7, 8], that, for any given 
job class, the influence of other classes is 
adequately represented by their average 
multiprogram~g degrees, i.e., n~ers of 
transactions in the domain. Thus, m s being the 
average n~,ber of class i transactlons in the 
domain, the service rate for class n becomes 
vn(ml, • • • ,mr~ • • • ,mc) • ~bte that this rate is a 
function of m n only for any fixed set of network 
parameter. 

Denote by m the total current number of 
transactions in the domain 

C 
m= Z mn • 

n=l 

Denote also by k the current length of the 
admission queue. In our second step, we c~se to 
look at the system from the standpoint of these 
two state variables. It is not difficult to show 
that the queueing system of Figure 2 can be 
reduced to the simple exponential queue of Figure 
3 with a single class of jobs. The total arrival 
rate of transactions when the state of the queue 
is (k,m) is given by 

f f+o 
~(k,m) = 2 [Ni-ki(k)-~i(k,m)]Xi + 2 A. (I) 

i=l j=f+l 3 ' 

where 

ki(k) is the average 
in the admission queue 
is k; 

number of class i jobs 
given that its length 

mi(k,m) is the average nm~ber of class i jobs 
id the domain given that there are a total of 
m jobs in the d(z~%in and k transactions in 
the admission queue. 

The instantaneous service rate of the exponential 
domain server when the state of the queue is (k,m) 
is denoted by u(k,m). It is simply the 
conditional completion rate for transactions in 
the domain given the number in admission queue and 
current n~ber of jobs in the domain. 

We make the additional simplifying assLmption 
that both mi(k,m) and u (k,m) are functions of m 
only. (Since k = 0 for all m < M, this assLm~tion 
actually pertains only to values for m = M). As a 
result, the arrival rate to the queue and its 
service rate become 

k m u(k,m) 
~(k,m) 

r rFO, . . .  ,M 

Figure 3: A reduced (equivalent) queueingmodel 

f f+o 
~(k,m)-~ Z [Ni-Ei(k)-~i(m)]~i + Z A. (2) 

i=l j=f+l J 

and u(m), respectively. 

The solution of this queue is quite 
straightfo_r%_~rd provided we have a means of 
evaluatir~g k~(k) and mi(m) for TS job classes, and 
the conditional completion rate _for transactions 
u(m). A simple approximation for ki(k ) as well as 
alternatives for the solution of the queue of 
Figure 3 are discussed in the Appendix. Assuming 
mn(m) and u(m) known, we obtain from the solution 
of this queue the following quantities of interest 

- p(m) : the distribution of the number of jobs 
in the domain; 

- -kn' ~: the average numbers of class n, 
n = i,. .. ,c, transactions awaiting admission 
and in the domain, respectively; 

- @ n : the throughput for class n transactions. 

The average response time for a transaction of 
class n, R n, can then be computed using Little's 
law [12] 

Rn = (kn + mn)~n" (3) 

The third and last step in the derivation of 
our approximate solution is the evaluation of 
mn(m) and u(m), i.e., the average number of 
class n jobs in the domain given that the total 
domain population is m, and the conditional" 
transaction throughput given m, respectively. To 
obtain these quantities, we apply the "short- 
circuit" approximation [13] which allows us to 
analyze the domain in isolation, under a constant 
load of m transactions. 

ml vl(ml_,m 2 . . . . .  ~ )  

[nI '"m'" C! - ~ "  iI 
u(m) 

r%+... +%=m 

m = 1 , . . .  ,M 

Figure 4: Closed queueing network 
for computation of u(m) 
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The resulting closed queueing network is 
represented in Figure 4. In order for this system 
to possess a co~utationally efficient product- 
form solution, we let the routing probabilities 
qn of joining the queue that represents class n 
transactions be independent of the network states 
and proportional to the average class n throughput 

C 

%--0n/ ~ 0 (4) 
i=l ]- 

This can be rewritten as 

qi = [Ni - ki - mi ]~i/e' i=l ..... f ; 

for TS transaction classes, and 

q3 = A3 / e , j=f+l ..... f+o ; 

for TP transaction classes, where 

8 = 
f f+o 
Z [N i - ki - ~i]li + Z A 

i=l j=f+l 3 

Assume for the moment that the values for the 
service rates v~(ml,...,mn,...,~c) and for the 
routing probabillties qn are known. The service 
rates in the closed exponential queueing network 
of Figure 4 are functions of local queue lengths 
only so that the solution of this network can be 
obtained by any of a number of standard methods, 
e.g., [14,15]. Given that we are mainly 
interested in the average queue lengths and job 
throughputs in this network, Mean Value Analysis 
[15] is a convenient approach. 

In accordance with the idea of the "short- 
circuit" approximation mathod, the values obtained 
for the average queue lengths and throug~rputs with 
a population of m jobs in the system of Figure 4 
approximate the corresponding conditional queue 
lengths ~n(m) and throughput u(m). Note that with 
Mean Value" Analysis, the throughputs for individ- 
usl queues (classes of transactions), denoted by 
Un(m), are obtained at no additional cost. 

In the approach outlined, we have reduced the 
solution of our original queueing network of Fig- 
ure 2 to the solution of two simpler systems: 
single server of Figure 3 and the closed network 
with c exponentialservers of Figure 4. Since the 
values of m_ and k i are needed to compute u(m), 
which in turn is needed to co~ute the ~.% and ki' 
an iterative scheme suggests itself. 

I. ~se initial values for ran' n = 1,...,c, and 
, i = l,...,f, so that 

1 

< M, and ki < Ni-mi ' ~n-- 
n = ] 

i=l,... ,f. 

Determine the service rates 
v (~I,'",~, "',~ ), n = l,...,c. Let m*~ be 
t~e closest intege~ to mi , J = l,...,c. °The 
following siaple estimate, borrowed from [7], 
has been found to work well in practice 

vnCml,...,m n .... ,mc ) -- vnCm~,... ,mn,... ,m*). C5) 

3. Solve the closed queueing network of Figure 4 
with a total of m = I,.o.,M jobs to obtain 
~'i(m) and u (m). 

The service rates are taken from step 2, and 
the routing probabilities qn are computed 
using (4). Note that if the nmnber of 
terminals for a TS class, Ni, is less than the 
domain capacity M, it is possible for the 
value of mi(m) in the network of Figure 4 to 
exceed N i in the course of iteration. (With 
the stat~ independent values for qi' nothing 
prevents states with mi> Ni). In practice, 
this turns out to be an infrequent occurrence 
that can be remedied through simple scaling as 
described in the Appendix. 

4o 

5. 

Solve the single server queue on Figure 3 to 
obtain p(m)'ran' ~n' On (see Appendix). 

If the maximum difference between old and new 
values for mn is less than a given limit, stop 
the iteration. Otherwise, set ~ to the 
arithmetic average of new and old values for 
~_ (n = l,...,c), and similar/y for kn, and 
r~urn to step 2. 

The averaging of iterates is used to avoid 
oscillations which otherwise may occur in some 
cases. 

6. Cx~pute Rn, the average response times for 
transactions of each class (n = l,...,c). 

We do not have a formal convergence proof for 
the above algorithm. It has been our experience, 
however, that it converges within a small number 
of iterations. 

The main potential sources of inaccuracies of 
this approach lie in 

a) the representation of the influence of 
other classes and, in particular, the use 
of v~(m~,...,mn,...,~ ) as the service 
rate ~or class n. 

b) the use of state independent branching 
probabilities qi for TS joD classes. 

c) the ass~tion used to c~)tain ki(k) and 
~i in the single server system (cf. 
AP~IX) • 

d) the use of the "short-circuit" technique 
to obtain conditional queue lengths and 
throughputs. 

Items b) and c) potentially affect more models 
with low numbers of tezminals. Despite this 
impressive list of ills, in practice, the accuracy 
of our approach turns out to be fair, even with TS 
classes with low nLm~ers of terminals. This is 
illustrated in the next section. 
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3. Nun~rical Results 

A number of discrete-event simulations were 
run to assess the accuracy of the approach 
presented in the preceding section. In order to 
relate to previous work on shared domains [4,8], 
we have included in our runs simulations of models 
corresponding to cases 10 through 18 in Sauer's 
paper [4], used also in [8]. Note that, unlike 
[4], we simulated the queueing network of Figure 2 
with service rates v~(m1,...,m~,...,m~) obtained 
by a decomposition te~l~nfque fr~ a CP~I/O Model. 
(These rates were also used in the analytical 
approximate solution.) Thus, our sin~/lation 
results, although close to those of [4], pertain 
to a somewhat different model. 

In all our examples, we report the values for 
the average number of transactions of each class 
in the admission queue, ~, in the domain, ~, and 
the average response ti~ for transactions of 
class n, R n (n=l,...,c). Simulation results are 
presented ~n the form of 90% level confidence 
intervals obtained using a regenerative technique 
with the same stopping rule as in [4]. For the 
analytical approximation, in addition to the 
actual values of ~n' mn and R~, we report in 
parentheses the percentage deviation from the 
simulation point estimate. 

Our first example corresponds to Sauer's case 
18 (2 job classes, total domain capacity of 6) and 
represents one of the poorest showings of our 
approach. We observe that, even though most of 
the approximation values do not fall into the 
simulation confidence interval, the relative 
deviations remain moderate (20%). 

Our second example illustrates what appears 
to be the typical accuracy of the approximation 
technique. It corresponds to Sauer's case 12 (2 
job classes, total domain capacity of 2). Here, 
many approximation values fall into the confidence 
intervals, and the relative deviations from the 
simulation point estimate is in the 10% to 15% 
range. 

Example 3 corresponds to case 17 (2 job 
classes, total domain capacity of 12) in [4], and 
is also one of t/~ better cases for our approach. 
All approximation values are contained i~ the 
confidence intervals, and most of the relative 
deviations are on the order of 5%. 

As a whole, our approximation fares quite 
well. These results were obtained using the first 
method described in the Appendix for the solution 
of the single server model. The second method 
discussed in the Appendix yields slightly less 
accurate results. This is illustrated in the 
~ix. 

Example i: 

solution class mn 

si~ 1 (4.58,4.59) 
2 (1.38,1.39) 

analyt 1 4.53(1.1%) 
2 1.46(5.6%) 

2 job classes, domain capacity of 6 

~n 
(12.04,12.74) (3.57,3.74) 
(0.49,0.54) (8.76,9.29) 

13.69(10.5%) 4.18(14.5%) 
0.61(18.3%) 10.74(19.1%) 

Example 2: 

solution class 

simul 1 (1.50,1.54) 
2 (0.40,0.45) 

analyt 1 1.50(1.5%) 
2 0.47(9.6%) 

2 job classes, domain capacity of 2 

kn Rn 

(5.75,6.24) (2.84,3.12) 
(0.26,0.29) (5.10,5.64) 

5.94(I.0%) 2.96(0.5%) 
0,29 (6.5%) 6.15 (14.6%) 

Example 3: 

solution class m n 

simul 1 (8.10,8.37) 
2 (2.06,2.22) 

analyt 1 8.37(1.6%) 
2 2.22(3.9%) 

2 job classes, domain capacity of 12 

kn Rn 

(1.88,2.29) (1.68,1.79) 
(0.04,0.06) (i0.84,13.39) 

1.90(1.0%) 1.74(0.5%) 
0.06(7.3%) 13.24 (9.3%) 
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With respect to computational complexity, the 
number of steps is on the order of 

f 
c M2+ c (ZN i) 

i=l 

when using the first method for the solution of 
the single server model, and 

cM 2 

when using the second method. The com@utations 
performed for each step are relatively simple. 
This complexity compares favorably with the 
complexity of other approaches to the shared 
domain problem. 

4. Conclusion 

We have presented a simple and efficient 
approximation technique for models of 
multiprogrammed systems with shared domains. The 
approach reduces the solution of the original 
model with coupled queues and limited total 
multiprogramming level to the solution of a single 
server exponential queue and that of a simple 
closed queueing network. Both resulting systems 
possess a product-form solution. 

Iteration between these two models is 
performed until a self consistent state is 
reached. Usually, a small number of iterations is 
needed, and the computational complexity grows 
only moderately with the number of classes and the 
maxinum multiprogrammdng degree° The accuracy of 
the results is in fair agr~t with discrete 
event simulation. 
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Append~ 

i. Solution of reduced sinole server model 

Let £ = k + m be the total number of 
transactions of all classes in the system. 
Probably the nDst straightforvard approach to the 
solution of the system of Figure 3 is to view this 
model as a single server state dependent M/M/I 
queue. The state of the queue is given by ~, the 
arrival rate is 

a(£) = 

X(O,Z) , £=0 . . . . .  M-1 

X(£-M,M) , £=M,M+I .... 
(6) 

and its service rate is 

= ~ u(Z)  , £=1 . . . . .  M-1 
B(z) 

! u(M) , ~:M,M+I .... 
(7) 

u(m) and the mi(m) entering into the expression of 
l(k,m) are computed in the solution of the system 
of Figure 4. Assume that the only missing 
element, the~i(k) in k(k,m), is known. 

Denote by p£ the equilibrium probability of £ 
transactions in ~he system. Formally, 

1 £ 
p£ = ~ II ~(n-l)/B(n), £=0,1 . . . .  (8) 

n=l  

where G is a normalization const~t 

G = Z II a ( n - 1 ) / B ( n )  
£=0 

(9) 

This solution exists iff G converges. If there 
are only TS classes, the maximum value of £ is 

f 
L = Z Ni, and G always converges. 

i=l 
With a mixture of TS and TP classes, we define an 
arbitrary value for £, £~ (~m>max(L,M)), at which 
we assu~e that all TS "~ran'sactions are in the 
system so that 

f+o 
c~(£) = Z A. 

j=f+l J ' £>--£m 

Note that the service rate for £miS a constant. 
The computation of P9 is thus partitioned into a 
finite part where (8) -is used for £ = 0,..., £m -i, 
and an infinite part where 

= p£-£m +1 PZ P£ -1  (10) 
m 

with P = ~ (~m)/8 (i m) • The evaluation of the 
infinite part oontribution to the normalizing 
constant G is straightfor%~rd. 

The ki(k) needed to compute ~ (k,m) can be 
estimated as follows. Let ~ = N i - mi(m ) . 
[Ni- ki(k) ] hi is the rate of arrivals of class i 
transac£ions given k. By analogy with ~ case of 
TP classes only, we_ assume that ki(k ) is 
proportional to IN i - ki(k)]l i, Her~e, 

ki (k) = [Ni - ki(k)]~i k/B(k), i=l ..... f; 

(11) 

kj(k) = Aj k/8(k) , j=f+l ..... f+o, 

where 
f 

O(k) = Z IN1 - ki(k)]Xi + f~o A. 
i=l j=f+l 3 

The system of equations (11) can be easily solved 
by a fast converging iteration. 

Note that (ii) implies an equal waiting time 
in the admission queue for all job classes. 
Strictly speaking, this is the case for TP classes 
but not, in general, for TS classes, although one 
%Duld expect the approximation to become better as 
the numbers of tenuinals increase. 

Using the same idea of equal waiting time in 
the admission queue,_ it is possible to simplify 
the computation of .k~, the average nlm~er of 
class n jobs in thls queue, and 0 , t h e  

transaction throughput. Given p£, we n readily 
obtain the average nmrber of class n jobs in the 
domain 

M-1 oo 

% = ~. % ( Z ) p £  + Z %(M)p% , (12)  
~=0 £=M 

the total average number of transactions awaiting 
admission 

co 

= }] (Z-M) p£ , (13) 
£=M 

and total job throug~m/t 

M-I 

8 = Z u(Z)p£ + Z=Z M u(M)p£ (14) 
£=0 

AssaiLing equal waiting time for admission yields 

E i = (N i - ~i)xi/Io/E + X i] and 
(15)  

e i = k i e / k  

for TS classes, and 

~j = AjE/B , (16)  

for a TP class. 
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It is also possible to devise an approach in 
which only a subset of values of p £ are computed 
explicitly. Denoting by p(m), m=0,...,M, the 
probability distribution for the total number of 
jobs in the dolrain, we have 

1 m 

p(m) =- H I (0,i-l)/w(m) , 
H i=l 

~0,...,M, (17) 

where 

w(m) =I u(m) , " m=l,...,M-1; 

! u(M) Prob{k=01m=M} , re=M; 
(18) 

and H is a normalization constant. 

~n order to use (17), we miss the value of 
the conditional probability that the admission 
queue is empty given that the domain is fully 
populated. As an approximation, consider the 
admission queue with the number of jobs in the 
domain maintained at M. Let k(M) be the current 
nm~er of transactions in the admission queue, 
k(M)=0, .... The rate of departures from this 
queue is u(M) (k(M)=l,...), and arrivals of TS 
transactions of class i, i=l,...,o, are generated 
by ~ = N~- m~(M) terminals with average think 
time Ii/~ i; ~fP transactions arrive with 
rate Aj, j=f+l,...,f+o. 

Disregarding the fact that, in general, the 
are not integer nLm~ers, we solve this queue 
ugh approximate mean value analysis (cf. 

[16] ). Denote by Wn(M) the average waiting time 
of jobs of class n,_ by On(M) the transaction 
throughput, and by kn(M) £he average number of 
class n jobs in the queue, n=l,...,c. We use 

wire) = [ k i  + 1] / u (m,  

0 i(M) = ~qi / [Wi(M) + 1 / t i  ] ,  (19) 

ki(M) = ei(M) Wi(M), i = l,...,f; 

for TS classes, and 

Wjm) = [k(M) + 1] / u(M), (20) 

kj(S) = ej(M) Wj(M), j = f+l,...,f+o; 

for TP classes, where 8j(M) = Aj, and 

k i = max [1-1/~i,  0] ki(M) + a [k(M)-ki(M)], (21) 

with 
f 

1 - 1 / Z Ni ,when there are TS classes only 
a = i=l 

1 , when TP classes are present. 

This set of equations is solved through iteration. 

We let 
C 

Prob{k=0 Ira=M} -~ 1 - z @n (M) / u(M) . 
n=l 

This allows us to evaluate the p(m), and we obtain 
~, the average total nLm~er of transactions in the 
admission queue, from 

k = k(M) p(M) . 

]~ n and 8 i are obtained from (15) and (16). 

2. Scalinu Procedure 

If, following step 3 in the iteration, 
mi(m) > N i for a TS class, then the following 
s~aling procedure is used. 

I. Check all TS classes _~ find mi (m) such that 
(m) > N. If m (m) IN - for all TS 

• 1 1 1 
c~asses, then _the procedure can stop; 
otherwise correct mi(m ) as follows. 

2. Let 
[mi(m) - Nil 

scale factor = 
m - Z mn(m) 

n 
where the SL,~ is over all TP classes and TS 
classes such that ran(m) < Nm and set mi(m) 
to N i . 

3. For all TP classes and all TS classes with 
ran(m) < N n (but not mn(m) = N~ : 

ran(m) = ran(m) * (I + scale factor) . 

4. Return to step i. 

The procedure will teminate in at most f passes 
since one ~+(m) is corrected on each pass, and, if 
there are nd TP classes, m < ~ N+ . Note that the 
sum of the Mn(m) will still 4qual m when the 
procedure is completed. 
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3. Description of Modals Used 

The models used correspond to cases i0 through 18 in Sauer's paper [4]. 
They are described below using the notation of our paper. 

Case c M N 1 N 2 I/l I I/X 2 

I0 2 6 20 2 5 s i0 s 
11 2 4 20 2 5 s 10 s 
12 2 2 20 2 5 s 10 s 
13 2 9 30 3 5 s 10 s 
14 2 6 30 3 5 s 10 s 
15 2 3 30 3 5 s 10 s 
16 2 18 40 4 5 s 10 s 
17 2 12 40 4 5 s i0 s 
18 2 6 40 4 5 s 10 s 

4. Results for Second Method 

solution class 

simul 1 
2 

analyt 1 
2 

Example i- 2 job classes, domain capacity of 6 

m n k n Rn 

(4.58,4.59) (12.04,12.74) (3.57,3.74) 
(1.38,1.39) (0.49,0.54) (8.76,9.29) 

4.48(2.2%) 13.96 (12.7%) 4.28(17.0%) 
1.46 (5.0%) 0.62 (21.3%) 10.82 (20.0%) 

s~ution c~s 

simul 1 
2 

anal~ 1 
2 

Example 2: 2 job classes, domain capacity of 2 

mn kn Rn 

(i .50,1.54) (5.75,6.24) (2.84,3.12) 
(0.40,0.45) (0.26,0.29) (5.10,5.64) 

1.47 (3.1%) 6.16 (2.6%) 3.08 (3.6%) 
0.44 (2.8%) 0.31 (13.1%) 6.01 (12.0%) 

solution class 

simul 1 
2 

analyt 1 
2 

Example 3: 2 job elasses, domain capacity of 12 

in -kn an 

(8.10,8.37) (1.88,2.29) (1.68,1.79) 
(2.06,2.22) (0.04,0.06) (i0.84,13.39) 

8.31(0.9%) 2.11(0.9%) 1.76(1.4%) 
2.22(3.7%) 0.06(19.4%) 13.27(9.5%) 
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