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Bbstract:

Queueing network models of multiprogramming
systems with memory constraints and multiple
classes of jobs are important in representing
large commercial computer systems., Typically, an
exact analytical solution of such models is
unavailable, and, given the size of their state
space, the solution of models of this type is
approached through simulation and/or approximation
techniques. Recently, a computationally efficient
iterative technique has been proposed by
Brandwajn, Lazowska and Zahorjan for models of
systems in which each job is subject to a separate
memory constraint, i.e., has its own memory
domain, In some important applications, it is not
unusual, however, to have several jobs of
different classes share a single memory "domain"
(e.g., IBM's Information Management System). We
present a simple approximate solution to the
shared domain problem, The approach is inspired
by the recently proposed technique which is
cofplemented by a few approximations to preserve
the conceptual simplicity and computational
efficiency of this technique, The accuracy of the
results is generally in fair agreement with
simulation,

4. Introduction

Queueing network models of mltiprogramming
systems with multiple classes of jobs and memory
constraints are important in representing 1large
conmercial computer systems, like the well known
IBM's MVS [1]). Such models typically do not
possess a known exact analytical solution, and the
direct applicability of standard numeric
techniques to the state equations is hindered by
the fast growth of the number of states as the
number of Jjob classes and jobs per class
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increases.
type is

Thus, the solution of models of this

approached through simulation or
approximation techniques, or a mixture of both
(e.g., [2,3,4,5]). 1In this paper, we take the
route of approximate analysis that can handle
relatively efficiently the inherent complexity of
the model.

By applying state aggregation
call it, equivalence), it is possible to reduce
the models under consideration to queueing
networks with a single job class and state-
dependent mutually coupled queues, each queue
representing a job class of the original model.
Because of the coupling between queues, the
solution of this reduced network is still a
difficult task (cf. [1]), and the size of the
network state space, though considerably scaled
down, still increases rapidly with the number of
classes and jobs per class. An approximate
solution of such a reduced model can be attempted

(or as same

through repeated use of equivalence (state
aggregation) and decomposition (cf. [6,5]), but
this approach does not escape from the

computational complexity since it enumerates the
states of the reduced network. Recently,
Brandwajn [7] and lLazowska and Zahorjan [8)
proposed an iterative technique for solving the
reduced network. The basic idea of their approach
is to de—couple the queues in the network by
assuming that the influence of other job classes
on any given class of jobs can be adequately
represented through the use of the average numbers
of jobs of the other classes (as opposed to
instantaneous numbers of users) in the state-
dependent service rates of the coupled queues.

This technique is computationally efficient
for systems in which each job class is subject to
a separate memory constraint, i.e., has its own
menmory "domain." In some applications, it is not
unusual, however, to have several jobs of
different classes share a single domain, A
typical example is the IBM Information Management
System [9] where a set of different transactions
may queue for a common set of multiprogramming
slots called "message regions," In presence of
such "shared domains," the use of average numbers
of jobs to represent the influence of other job
classes is not, by itself, sufficient to achieve
complete decoupling of gueues, The extension
proposed in [8] to deal with shared domains
defeats the computational simplicity of the



iterative technique, while [7] disregards shared
domains altogether.

It is our goal in this note to present a
simple approximate solution to the shared domain
problem, The approach is inspired by the
Brandwajn, Lazowska and Zahorjan technique which
is complemented by a few approximations to
preserve the conceptual simplicity and
computational efficiency of this technique.

Ied by what appear to be the most common
applications of shared domains, we concentrate our
attention on transaction processing systems. We
allow the transaction arrivals to be represented
as generated by a finite number of terminals for
some classes and an infinite source for others.,

In the next section, we describe in more
detail the queueing network model under
consideration and we present the approach
proposed, Section 3 is dewoted to numerical
exanples illustrating the accuracy of the
approximate solution.

2. Model and 2 ; Soluti

Consider the system depicted in Figure 1.
There are two types of transactions (jobs) with
respect to arrivals to the system: transactions
generated by a finite set of temninals, referred
to by the acronym TS, and those originating at an
infinite source, called TP transactions. We
assume that there are £ «classes of TS
transactions, each characterized by the number of
terminals, N, , the average think time, 1/2; ,
and a set " of wvalues for system resource
requirements. Similarly, there are o classes of
TP transactions, each characterized by the source
rate A. , and a set of demands for system
resourcks, Within each class, transactions are
assumed to be statistically identical and
independent.,

o
N;, Ay >_
o

i=1,...,f

terminals
{1

admission M "slots'
queue

j=f+1,...,f+o
(c=1+0)

Figure 1: View of system considered
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The system possesses a limited number (M) of
"slots" for the admission of jobs of all classes,
When no free slots are available, arriving
transactions wait for entry into this shared
domain in a single admission queue which we assume
to be of a First-In-First-Out discipline,

TS type transactions are assumed to follow a
cycle comprising a think time at the terminal and
an interaction time with the system, For
simplicity, we assume that the think times of TS
job classes are exponentially distributed random
variables, that TP transaction arrivals £from an
infinite source constitute a Poisson process, and
that the demands placed upon system resources by a
job class can be represented as service times
following Coxian [10] probability distributions.

With these assunptions, the system under
consideration can be represented by the aggregated
queueing network shown in Figure 2, For each
class n of jobs, n = 1,...,¢, the execution in the
shared memory domain is represented as passage
through a private exponential queue whose
instantaneous service rate depends on the current
numbers of transactions of each class in the
domain. These service rates, denoted by
Vo(mireearMpeae,m.), can usually be assessed
using a decomposition technique (cf. [5, 6]).
Here we assume that they are known, and our goal
is to develop an efficient solution for the
queueing network of Figure 2.

Note that, even though all the servers in
this queueing system are Markovian, the network,
in general, does not possess a product~form
solution [11]. The two reasons for this are the
coupling between the queues in the form of state
dependent service rates vV (Myseee M seessm;)s and
the admission control based on the total number of
users in the system.

Ni’ >‘i k
T,
m<M
admission
queue
A, >__
J
Vi@) = vi(ml, ceeaMy, e ,my)
m=1z m,

Figure 2: A queueing network model of
system considered



As a first step in our approximate solution,
we assume, following [7, 8], that, for any given
job class, the influence of other classes is
adequately represented by their average
multiprogramming degrees, i.e.,, _numbers of
transactions in the domain. Thus, m; being the
average number of class 1 transactions in the
domain, the service rate for class n becomes
VnM@ireeerMpyreeesMa). Note that this rate is a
function of m; only for any fixed set of network
parameter,

Denote by m the total current number of
transactions in the domain

c
m= § mp .
n=1

Denote also by k the current 1length of the
admission queue, In our secord step, we choose to
look at the system from the standpoint of these
two state variables., It is not difficult to show
that the queueing system of Figure 2 can be
reduced to the simple exponential queue of Figure
3 with a single class of jobs, The total arrival
rate of transactions when the state of the queue
is (k,m) is given by

f f+o
Ak,m) = % [N k. (k)—m (k, m)])\ + I A , (v
i=1 —f+1

vwhere
k;(k) is the average number of class i jobs
in the admission queue given that its length
is k;

m, (k,m) is the average number of class i jobs
in the domain given that there are a total of
m jobs in the domain and k transactions in
the admission gqueue.

The instantaneous service rate of the exponential
domain server when the state of the queue is (k,m)
is denoted by u(k,m). It is simply the
conditional completion rate for transactions in
the domain given the number in admission queue and
current number of jobs in the domain,

We make the additional simplifying assumption
that both ml(k,m) and u (k,m) are functions of m
only. {Since k = 0 for all m<M, this assumption
actually pertains only to values for m= M), As a
result, the arrival rate to the gueue and its
service rate become

k m u(k,m)

k) [TTT T .

Figure 3: A reduced (equivalent) queueing model

f f+o
Alk,m) = I [N -k (k)—m (m)])\ + I AJ (2)
i=1 j=f+1

and u(m), respectively.

The solution of this queue is quite
st.raightfomard provided we have a means of
evaluating k (k) and m;(m) for TS job classes, and
the conditional conpletmn rate for transactions
u(m). A simple approximation for kl(k) as well as
alternatives for the solution of the queue of
Figure 3 are discussed in the Appendix. Assuming
m (m) and u(m) known, we obtain from the solution
ot this queue the following quantities of interest

- p(m): the distribution of the number of jobs
in the domain;

o Tt the average numbers of class n,
l,...sc, transactions awaiting admission
and in the domain, respectively;

- 8,3 the throughput for class n transactions.

The average response time for a transaction of
class n, R, can then be computed using Little's
law [12]

= (ky+m)/Ay. (3)

The third and last step in the derivation of
our approximate solution is the evaluation of
m oim)  and u(m), i.e., the average number of
cJ.ass n jobs in the domain given that the total
domain population is m, and the conditional®
transaction throughput given m, respectively., To
obtain these quantities, we apply the "short-
circuit" approximation [13] which allows us to
analyze the domain in isolation, under a constant
load of m transactions.

94y vn(' see oMl e,my)
5 hin X

q, m V(_,...,mC
u(m)
m1+ +mc=m
m=1,...,M

Figure 4: Closed queueing network
for computation of u(m)
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The resulting closed queueing network is
represented in Figure 4., In order for this system
to possess a computationally efficient product-
form solution, we let the routing probabilities
d, of joining the queue that represents class n
transactions be independent of the network states
and proportional to the average class n throughput

c
z ei
i=1

9, =8,/ (4)

This can be rewritten as
q = N, -k -ma /6, is1,...,f
for TS transaction classes, and
.=A. /0,
ay 3 /
for TP transaction classes, where

j=f+1,...,f+o0 ;

f f+o
8= L[N, -k, -m]r, + I A,
=t * 0+ 7 j=f+1 9

Assume for the moment that the values for the
service rates v, (MiseessMpseessic) and for the
routing probabilities q, are known. The service
rates in the closed exponential queueing network
of Figure 4 are functions of local queue lengths
only so that the solution of this network can be
obtained by any of a number of standard methods,
e.d., [14,15]. Given that we are mainly
interested in the average queue lengths and job
throughputs in this network, Mean Value Analysis
[15) is a convenient approach.

In accordance with the idea of the "short-
circuit” approximation method, the values obtained
for the average queue lengths and throughputs with
a population of m jobs in the system of Figure 4
approximate the corresponding conditional queue
lengths M (m) and throughput u(m). Note that with
Mean Value Analysis, the throughputs for individ-
ual queues (classes of transactions), denoted by
un(m), are obtained at no additional cost.

In the approach outlined, we have reduced the
solution of our original queueing network of Fig-
ure 2 to the solution of two simpler systems: the
single server of Figure 3 and the closed network
with ¢ exponential servers of Figure 4. Since the
values of m, and k; are needed to compute u(m),
which in tumn is neaded to compute the & and k,,
an iterative scheme suggests itself.

1. Choose initial values for my, n = 1,...,c, and

ki r i=1,.04,f, so that

o
L m <M, and k., <N,-m, , i=1,...,
it i i

!. Determine h service rates
Vi miseessyy eeym ), n_=21p0000,Ce Let m* be
the closest intege% tom: , j=1,0eesCe J'l'he
following simple estimaté, borrowed from [7],

has been found to work well in practice

vn(ﬁ]l""’mn""’iﬂc) = Vn(m’{,-..,mn,.-.,mg). (5)
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3. Solve the closed queueing network of Figure 4
with a total of m = 1,...,M jobs to obtain

©;(m) and u(m).

The service rates are taken from step 2, and
the routing probabilities g, are computed
using (4). Note that if the number of
terminals for a TS class, N, is less than the
domain capacity M, it is™ possible for the
value of mi(m) in the network of Figure 4 to
exceed N, in the course of iteration. (With
the state independent values for q;, nothing
prevents states with m;>N.). In practice,
this turns out to be an in%requent occurrence
that can be remedied through simple scaling as
described in the Appendix.

4.

Solve the single server queue on Figure 3 to

obtain p(m), m, kn, en (see Appendix).
5., If the maximum difference between old and new
values for i, is less than a given limit, stop
the iteration, Otherwise, set m, to the
arithmetic average of new and old values for
B (n=1,...,C), and similarly for k,, and
réturn to step 2.

The averaging of iterates is used to awvoid
oscillations which otherwise may occur in some
cases.

Compute R,, the average response times for
transactions of each class (n = 1,...,C).

6.

We do not have a formal convergence proof for
the above algorithm., It has been our experience,
however, that it converges within a small number
of iterations.

The main potential sources of inaccuracies of
this approach lie in

a) the representation of the influence of
other classes and, in garticular, the use
of vy(mf,eeesMysees,mi) as the service
rate for class n,

b) the use of state independent branching

probabilities q; for TS job classes.

and

c) the assumption used to obtain kj(k)
server system (cf.

R; in the single
pendix) .

d) the use of the "short-circuit" technique
to obtain conditional queue lengths and
throughputs,

Items b) and c) potentially affect more models
with low numbers of terminals. Despite this
impressive list of ills, in practice, the accuracy
of our approach tums out to be fair, even with TS
classes with low numbers of temminals. This is
illustrated in the next section.



3, Numerical Regults

A nunber of discrete-event simulations were
run to assess the accuracy of the approach
presented in the preceding section. In order to
relate to previous work on shared domains [4,8],
we have included in our runs simulations of models
corresponding to cases 10 through 18 in Sauer's
paper [4], used also in [8]. Note that, unlike
[4], we simulated the queueing network of Figure 2
with service rates v (MyyeeesM pese,m,) oObtained
by a decomposition tecnlmlque frén a CPU~I/0 Model.
(These rates were also used in the analytical
approximate solution.) Thus, our simlation
results, although close to those of [4], pertain
to a somewhat different model.

In all our examples, we report the values for
the average number of transactions of each class
in the admission queue, K, in the domain, ® , and
the average response time for transactions of
class n, R, (n=l,...,C)s Simulation results are
presented 1in the form of 90% level confidence
intervals obtained using a regenerative technique
with the same stopping rule as in [4]. For the
analytical approximation, in addition to the
actual values of k , # and R, we report in
parentheses the percentage deviation from the
simulation point estimate,

OQur first example correspords to Sauer's case
18 (2 job classes, total domain capacity of 6) and
represents one of the poorest showings of our
approach. We observe that, even though most of
the approximation values do not fall into the
simulation confidence interval, the relative
deviations remain moderate (20%).

Our second example illustrates what appears
to be the typical accuracy of the approximation
technique. It corresponds to Sauer's case 12 (2
job classes, total domain capacity of 2). Here,
many approximation values fall into the confidence
intervals, and the relative deviations from the
simulation point estimate is in the 10% to 15%
ra‘ge.

Example 3 corresponds to case 17 (2 job
classes, total domain capacity of 12) in [4], and
is also one of the better cases for our approach.
All approximation values are oontained in the
confidence intervals, and most of the relative
deviations are on the order of 5%.

As a whole, our approximation fares quite
well. These results were obtained using the first
method described in the Appendix for the solution
of the single server model. The second method
discussed in the Appendix yields slightly 1less
accurate results, This is illustrated in the
Appendix,

Example 1: 2 job classes, domain capacity of 6

solution class my k, R,
simul 1 (4.58,4.59) (12,04,12.74) (3.57,3.74)
2 (1.38,1.39) (0.49,0.54) (8.76,9.29)
analyt 1 4.53(1.1%) 13.69(10.5%) 4,18(14.5%)
2 1.46(5.6%) 0.61(18.3%) 10,74(19.1%)
Example 2: 2 job classes, domain capacity of 2
solution class l;ln En R,
simul 1 (1.50,1.54) (5.75,6.24) (2.84,3.12)
2 (0.40,0.45) (0.26,0.29) (5.10,5.64)
analyt 1 1.50(1.5%) 5.94(1.0%) 2.96(0.5%)
2 0.47(9.6%) 0.29(6.5%) 6.15(14.6%)

Example 3: 2 job classes, domain capacity of 12

solution class m,

simul 1 (8,10,8.37)
2 (2.06,2.22)

analyt 1 8.37(1.6%)
2 2.22(3.9%)

kn Ry
(1.88,2,29) (1.68,1,79)
(0.04,0.06) (10.84,13,.39)
1,90(1.0%) 1,74(0,5%)
0,06(7.3%) 13,24(9.3%)
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With respect to computational complexity, the
number of steps is on the order of

g £
cM +c (INy)
i=1

when using the first method for the solution of
the single server model, and

cM2

when using the second method, The computations
performed for each step are relatively simple,.
This complexity compares favorably with the
complexity of other approaches to the shared
domain problem,

4. Conclusion

We have presented a simple and efficient
approximation technique for models of
multiprogrammed systems with shared domains. The

approach reduces the solution of the original
model with coupled queues and limited total
multiprogramming level to the solution of a single
server exponential queue and that of a simple
closed queueing network. Both resulting systems
possess a product~form solution,

Iteration between these two models is
performed until a self consistent state is
reached., Usually, a small number of iterations is
needed, and the computational complexity grows
only moderately with the number of classes and the
maximum multiprogramming degree. The accuracy of
the results is in fair agreement with discrete
event simulation,
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Appendix
1. Solution of reduced sinal el

Iet 2=Kk+m be the total number of
transactions of all classes in the system.
Probably the most straightforward approach to the
solution of the system of Figure 3 is to view this
model as a single server state dependent M/M/1

queue. The state of the queue is given by 2, the
arrival rate is
A(0,2) , 2=0,...,M-1
oty = (6)
ACMM) , =M MHL, ...
and its service rate is
u(f) , 2=1,...,M-1
B(R) = (N
u(M) , =M ML L L

u(m) and the m; ;(m) entenng into the expression of
AMk,m) are conputed in the solution of the systen
of Figure 4, Assume that the only missing
element, theE-(k) in A{k,m), is known.

Denote by p, the equilibrium probability of %
transactions in the system. Formally,

£
T o(n-1)/8(n),
n=1

2=0,1,...  (8)

Q=

Py =

vhere G is a normalization constant

w g
G= I T a(n-1)/8(n) (9)
2=0

This solution exists iff G conwverges. If there
are only TS classes, the maximum value of 2 is
f

L= I N;j, and G always converges.
i=1

With a mixture of TS and TP classes,

arbitrary value for 2, & (%,>max(L,M)), at which

we assume that all TS mtransactlons are in the

system so that

we define an

f+o
oa(f) = ¢ AL

98
j=f+1 7 -m

Note that the service rate for %,is a constant,
The computation of p, is thus partitioned into a
finite part where (8) 1s used for 2= 0ye0erpy -1,
and an infinite part where

-2 +1

Py = pgm_l P m (10)

with p=a(2,)/8 (2 ).  The evaluation of the
infinite part contribution to the normalizing
constant G is straightforward.
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The ki(k) needed to compute * (k,m) can be
egtimated as follows. Let Nj=N; - mj(m).
[N - ki(k)12; is the rate of arrivals of class i
transact:.ons glven k. By analogy with the case of

TP classes only, we assume that kl(k) is
proportional to [ﬁ ~ ki(k)]Aj. Hence,
B () = (N - K, (0 k/6(k), i=1,...,f;
an
Ej(k) = AJ. k/6(k) , J=f+1,.. ., f+o,
where .
0k) = I N, - K0, + 30 A
i=1 * o=t 9

The system of equations (11) can be easily solved
by a fast converging iteration.

Note that (11) implies an equal waiting time
in the admission queue for all job classes.
Strictly speaking, this is the case for TP classes
but not, in general, for TS classes, although one
would expect the approximation to become better as
the nunrbers of teminals increase.

Using the same idea of equal waiting time in
the admission queue,_ it is possible to simplify
the computation of kn' the average number of
class n jobs in this queue, and 6_, the
transaction throughput. Given py, we' readlly
gbtam the average number of class n jobs in the

omain

M-1 0

I mp, + £ @m@p, ,
2=0 =M

rﬁn = (12)

the total average number of transactions awaiting
admission

k= (M P, (13)
=M
and total job throughput
M-1
8 = 220 u(®)p, + z—M u(M)p,L (14)

Assuming equal waiting time for admission yields

= (N, - m A, /i8/kE + A.) and
1 171 1 (15)
6, = k;0/k ,
for TS classes, and
k.= Ak
3 l\J /9 ) (16)

for a TP class,



It is also possible to devise an approach in
which only a subset of values of pj are computed
explicitly. Denoting by p(m), m=0,...,M, the
probability distribution for the total number of
jobs in the domain, we have

lm
=- 1 X (0,i-1)/w(m) ,

p(m) =0,...,M, (17)
Hi=1
where
{u(m) I N IIFl,...,M—l}
w(m) = (18)
u{M) Prob{k=0 |m=M1}, m=M;

and H is a normalization constant.

In order to use (17), we miss the value of
the conditional probability that the admission
queue is empty given that the domain is fully
populated. As an approximation, consider the
admission queue with the number of jobs in the
domain maintained at M. Let k(M) be the current
nunber of transactions in the admission queue,
k(M)=0,... . The rate of departures from this
queue is u(M) (k(M)=1,... ), and arrivals of TS
transactions of class i, i=l,...,0, are generated
by N, = N; - m (M teminals with average think
time'1/2 ; TP transactions arrive  with
rate A J—f‘f’l, e o’f"O.

& Disregarding the fact that, in general, the
are not integer numbers, we solve this queue
tﬂ rough approximate mean value analysis (cf.
[16]). Denote by W,(M) the average waiting time
of jobs of class n,_ by 6,(M) the transaction
throughput, and by k(M) the average number of
class n jobs in the queue, n=l,...,C. We use

Wi(M) = [ki"‘ 1] / u(m),
65 =R/ Wy + 2/ 1, (19)
ki(M) =0i (M) Wi, 1=1,.0.,E;
for TS classes, and
Wi = [k(W + 11 / u(m, (20)

kM) = 0 500 W,
for TP classes, where 6;(M) = Ay,
k; = max [1-1/N;, 0] k(M) +a [k(M)~k;(M)], (21)

j = f+l'.cu(f"0;

and

fA
{1-1/22«1
as=s i=1
1 ’

This set of equations is solved through iteration,

(when there are TS classes only

when TP classes are present,
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We let

(6}
Prob{ k=0 | m=M} = 1 - Zlen ™ / u® .
n=
This allows us to evaluate the p(m), and we obtain
k, the average total number of transactions in the
admission queue, from

=k(M) p(m) .
TEnand 6; are obtained from (15) and (16).
2. _Scaling Procedure
If, following step 3 in the iteration,

ml(m) >Ny for a TS class,
scaling procedure is used.

then the following

1. Check all TS classes and find m. (m) such that
m(m)>N. If m(m)_gN for all TS
* then the procedure can stop;

otherwme correct m, (m) as follows.

2, Let _
[m;(m) - Nl

m—zxﬁ(m)

scale factor =

where the sum is over all 'I'P clagses and TS
classes such that mn(m) < Nn,  and set m;(m)
to N. .,

1

3. For all TP classes and all TS classes with
mn(m) <N_ (but not m (m) = N) 3

fn'n(m) = iﬁn(m) * (1 + scale factor) .

4. Return to step 1.

The procedure will temminate in at most £ passes
since one m_(m) is corrected on each pass, and, if
there are nd TP classes, m < % N. . Note that the
sum of the M (m) will stiil m when the
procedure is completed,



Degcription o

The models used correspond to cases 10 through 18 in Sauer's paper [4].
They are described below using the notation of our paper.

Case [o} M N1
10 2 6 20
11 2 4 20
12 2 2 20
13 2 9 30
14 2 6 30
15 2 3 30
16 2 18 40
17 2 12 40
18 2 6 40

4. Results for Second Method
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Example 1: 2 job classes, domain capacity of 6

By

(4.58,4.59)
(1.38,1.39)

4.48(2,2%)
1.46(5.0%)

kn

(12.04,12.74)
(0.49,0.54)

13.96(12.7%)
0.62(21.3%)

Rp

(3.57,3.74)
(8.76,9.29)

4.28(17.0%)
10.82(20.0%)

Example 2: 2 job classes, domain capacity of 2

My

(1.50,1.54)
(0.40,0.45)

1.47(3.18)
0.44(2.8%)

kn

(5.75,6.24)
(0.26,0.29)

6.16(2,6%)
0.31(13.1%)

Rn

(2.84,3.12)
(5.10,5.64)

3.08(3.6%)
6.01(12.0%)

Example 3: 2 job classes, domain capacity of 12

my

(8.10,8.37)
(2.06,2.22)

8.31(0.9%)
2,22(3.7%)

kn

(1.88,2.29)
(0.04,0.06)

2,11(0.9%)
0.06(19.4%)
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Ry

(1.68,1.79)
(10.84,13.39)

1.76(1.4%)
13.27(9.5%)



