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1.0 INTRODUCTION 

ABSTRACT 

Queueing network models of computer systems with 
multiprogramming constraints generally do not 
possess a product-form solution in the sense of 
Jackson. Therefore, one is usually led to 
consider approximation techniques when dealing 
with such models. Equivalence and decomposition 
is one way of approaching their solution. With 
multiple job classes, the equivalent network may 
be viewed as a set of interdependent queues. In 
general, the state-dependence in this equivalent 
network precludes a product-form solution, and 
the size of its state space grows rapidly with 
the number of classes and of jobs per class. 
This paper presents two methods for approximate 
solution of the equivalent state-dependent 
queueing network. The first approach is a 
manifold application of equivalence and 
decomposition. The second approach, less 
accurate than the first one~ is a fast-con- 
verging iteration whose computational complexity 
grows near-linearly with the number of job 
classes and jobs in a class. Numerical examples 
~llustrate the accuracy of the two methods. 
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There has been recently an increased interest 
in queueing network models with simultaneous 
resource possession in general (e.g. [I]), and, 

in particular, in models of computer systems 
with multiprogramming constraints, such as the 
one shown in Figure I, where memory and other 
resources may be simultaneously held by a job 
[2J. When the performance measures to be 
obtained from the models are limited to 
throughputs and averages, fast and efficient 
iterative approaches exist (see, e.g. [3,4]). 
These approaches are close in spirit to the mean 
value analysis [5J, and are not sufficient if 
one is also interested in distributions of, say, 
numbers of jobs in memory. The equivalence and 
decomposition method [6] seems a good candidate 
in such cases. 

We restrict our attention to memory admission 
policies with a maximum multiprogramming degree 
(i.e., number of jobs in memory) per class of 
jobs. For such systems, a useful equivalence is 
the one depicted in Figure 2. There is one 
server per job class, and its service rate 
depends, in general, on the current numbers of 
jobs of each class in memory. These service 
rates can usually be obtained by decomposition, 
i.e., by analyzing a submodel of the 
multiprogramming set. Here, we assume that the 
service rates are given, and we concentrate on 
the solution of the equivalent network. As 
pointed out in [2], generally, such a network 
does not possess a product-form solution [7S, 
and the size of its state space increases 
rapidly with the number od classes and the 
maximum numbers of jobs in each class. This 
renders the solution of the equivalent network a 
non-trivial task. 

Two approximate solution methods for the 
state-dependent queueing network of Figure 2 are 
considered in this paper. The first approach, 
discussed in Section 2, is a manifold 
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application of equivalence and decomposition. 
The second approach, presented in Section 3, is 
a fast-converging iterative method. It is less 
accurate than the first method but its 
computational complexity grows only linearly 
with the numbers of job classes and jobs in a 
class. Numerical examples illustrate the 
accuracy of the two approaches. 

2.0 MANIFOLD EQUIVALENCE AND DECOMPOSITON 

Let us start with the simple case of only one 
class of jobs in the system, depicted in Figure 
3. Although this network can be solved directly 
for the total number of jobs in the system, it 
is generally advantageous to consider separately 
the distributions of the number of jobs in 
memory, and of the number awaiting admission, 
which we denote by p(m) and p(k), respectively. 

For the number in memory, the equivalent 
Markovian queue, shown in Figure 4, has a finite 
capacity of M, the maximum degree of 
multiprogramming. The arrival rate is (N-m)%, 
where N is the number of terminals, and I/% is 
the average think time of a user. The service 
rate is v(m) for m<M, and v(M)r for m=M, where 
v(m) is the service rate in the network of 
Figure 3, and r is the conditional probability 
that the admission qu4ue is empty given that 
there are M jobs in memory, i.e., 

r = Prob{ k=O [ M ) 

The computation of p(m) is straightforward [8], 
provided r is known. The latter is easily 
determined, since the conditional probability 
Prob{k I M} may be obtained as the distribution 
of the number of users, k, in the single-server 
system of Figure 5. The arrival rate is (N-M- 
k)%, and the constant service rate is v(M). 
p(k) is then simply 

p(k) = p(M)Prob{k I M} + 
M-1 

~] p (m), 
m=l 

k=O, 

p(k) = p(M)Prob{k I M} , for k>O 

The above approach is easily shown to be 
exact, and, by separating the two distributions 
p(k) and p(m), it alleviates in many cases 
under/overflow problems that may appear in a 
direct solution for the total number of jobs in 

the system (see Appendix). 

With multiple job classes, an approximate 
solution can be obtained by generalizing the 
two-class treatment of [9]. For simplicity, we 
use an example with three classes of jobs. Let 
p(m$,m2,mq) be the joint distribution for the 
numoers o9 jobs of each class in memory. The 
basis for our approach is the following identity 

P(ml,m2,m3) = P(m31m2,ml)P(m2Iml)P(m I) • 

The conditional probabilities in the righthand 
side of this identity are approximately 
evaluated by disregarding transitions which 
change the condition variable(s). In this way, 
only single-class models of the type of that of 
Figure 3 have to be solved to obtain 
approximations for P(m311m2,ml), P(m2 llm I ) and 

p(ml)- 
The solution proceeds as follows. For given 

m I, m o, the service rate for class 3 is 
v~(m~ ,~,m~), locally a function of m~ only. We 
t~us~co~pu~e p(m llm ,m ) and p(k ljm2,~ I) from a 2 1 3 
eigle-claes mode~ as considered above. We also 
compute 

M 3 

wi(ml,m 2) = ~ P(m31m2,ml)vi(ml,m2,m 3) , 
m3=O 

i = 1,2,3 . 

For given ml, the service rate for class 2 is 
then w 2(m l,m 2), locally a function of m 9 only. 
The single-class model yields p(m 2 i ml9 and 
p(k 21ml). We also compute 

M 2 

ui(ml) = ~ P(m21ml)wi(ml,m 2) , i = 1,2,3 ; 
m2=O 

and 

M 2 

P(m31m I) =. E P(m21ml)P(m31m2,m I) ; 
m2=O 

M 2 

P(k31m I) = E P(m21ml)P(k31m2,ml) . 
m2=O 

Finally, for class ~(ml) is the equivalent service rate 
• Hence we readily get P(ml) and 

P(kl). We also have 

142 



a n d  

M 1 

0 i = Z P(ml)ui(ml) , i = 1,2,3 ; 
ml=O 

M 1 

p(mj) = Z P(ml)P(m jlm I) ; 
ml=O 

M 1 

p(kj) = Z P(ml)P(k j Iml) , for j>l , 
ml=O 

where @i is the throughput for class i. 

The above approach transforms the solution of 
the network of Figure 2 with c classes into c- 
fold solution of the single-class system of 
Figure 3. The only approximations introduced 
are in the computation of conditional 
probabilities; all other transformations are 
exact. With an appropriate choice of the order 
in which states are considered, it is possible 
to make the storage required for the approach 
grow linearly with the number of job classes and 
jobs in a class. The execution time, however, 
increases at the pace of growth of the size of 
the state space in the network of Figure 2. 
This is because in the manifold equivalence and 
decomposition described, one actually enumerates 
all the states of that network. 

The next section is devoted to a faster, 
albeit generally less accurate, approach whose 
computational complexity grows near-linearly 
with the number of classes and the numbers of 
jobs per class. 

3.O ITERATIVE APPROACH 

Our second approach to the solution of the 
state-dependent queueing network of Figure 2 is 
inspired from the iterative approach of [3]. 
The premise for the method is the assumption 
that, for any given job class, the influence of 
other classes is adequately represented by their 
average multiprogramming degrees. Hence, for 
simplicity, the service rate for class i jobs is 
approximated by v (m*,...,m ,...,m*), where m~ 

" 1 -i is ~he closest integer to m., the ~verage numbe~ 
of class j users in memory. 3 For each class this 
results in the solution of the single-class 
system of Figure 3, Since the ~ (and hence, 
m~) are known when the corresponding p(m~) have 
b~en computed, an iterative scheme ~uggests 
itself. 

I. 

2. 

3. 

Choose initial values for m@, m~ ~ [O,Mj], 
for j=2,...,c. 3 ] 

For job classes i=1,...,c, solve single- 
class model, and let m~ be the closest 
integer to m. = Z P(mi)m ~. 

l m. 
1 

If maximum difference between old ~nd new 
values for m~ is less than, say, 10 -~, exit; 
otherwise re,eat step 2. 

It has been the author's experience that this 
scheme converges within a small number of 
iterations, without much sensitivity to the 
choice of the starting values. 

There are two potential sources of 
inaccuracies in the above approach. The first 
one is in the very premise of the method, which 
replaces the average of a function of a random 
variable with the function of the average of 
that variable. W~th strong non-linearit~es, 
this can result in large errors. The second 
source of inaccuracies is our use of the closest 
integer to avoid interpolation. This can induce 
errors even for linear functions if they are 
rapidly varying. In practice, however, the 
accuracy of the method is fair, as illustrated 
in the next section. 

4.0 NUMERICAL RESULTS 

In this section we present a few numerical 
results to illustrate the accuracy of the two 
approaches discussed in the preceding sections. 
Results of discrete-event simulations are used 
as reference values. Each simulation point 
corresponds to a total of 200,0OO job 
completions. CPU utilizations by job classes 
are reported in lieu of throughputs. For the 
iterative approach, the number of iterations is 
given in parentheses. 
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Example I: 2 classes of jobs 

method ~ ki mi CPU utilization 

simulation I 0.789 6.478 0.638 
2 11.671 11.995 0.325 

equivalence I 0.826 6.491 0.640 
decompositon 2 11.633 11.995 0.327 

iteration (3) I 0.827 6.493 0.640 
2 11.570 11.995 0.329 

The accuracy of the iterative method in this 
example seems representative of most cases. The 
accuracy of this approach in our second example, 

with a heavily loaded system, is among the worst 
observed. 

Example 2:3 classes of jobs 

method i k.  m. 
1 1 

simulation I 27.114 9.991 
2 3.461 9.270 
3 25.494 10.987 

equivalence I 27.559 9.947 
decomposition 2 3.570 9.325 

3 25.675 11.000 

iteration (2) I 29.841 10.000 
2 3.570 9.325 
3 37.695 11.000 

CPU utilization 

O.O4O 
0.932 
0.027 

• 0.037 
0.936 
0.027 

0.002 
0.936 
O.O03 

In this example, the iterative method 
underestimates the CPU utilizations for classes 
I and 3 by an order of magnitude. It may be 
noted, however, that the system is severely 
overloaded for these job classes, with an 
extremely poor response time. This is correctly 
identified by the method, even though the 
numerical values for the average response times 

would be considerably overestimated. 

It is interesting to note that, under some 
load conditions, the manifold equivalence and 
decomposition method can be sensitive to class 
numbering, i.e., to the order in which classes 
are considered ~n the state reduction process. 

Example 3:3 job classes 

method i k'l mi CPU utilization 

simulation I 1.959 3.072 0.671 
2 7.355 1.944 0.061 
3 0.009 0.654 0.146 

equivalence I 2.032 3.086 0.673 
& decomposition 2 7.558 1.946 0.061 
order I 3 0.009 0.658 0.147 
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equivalence I 3.768 3.055 0.648 
& decomposition 2 7.681 1.946 O.O61 
order 2 3 0.009 0.658 O.147 

iteration (3) I 3.463 3.419 0.647 
2 7.612 1.951 O.O61 
3 0.009 0.658 O.147 

Looking at the results of the equivalence and 
decomposition method we observe that, for class 
1, a 4% relative difference in CPU utilizations 
is accompanied by a 33% relative difference in 
the total numbers of users in the system. Upon 
closer inspection, it turns out that this is 
intrinsic to the system studied itself, rather 
than a property of the solution method. Indeed, 
from the operational identity [10] (N-n)~=O, 
where n---k+m, and 8 is the job throughput, we 
readily obtain 

A~ I A8 

n NA/e - 1 e 

Thus, any relative difference in throughputs 
will get "amplified" by a factor I/(NA/8-I). As 
NA/8 gets close to unity, the "amplification" 
factor grows. I_n~our example, for class I, we 
have N=50, I=3.10 -J, 8=O.673/500, which yields a 
difference amplification factor of 8.74. From 

Little's formula [8], we further obtain for the 
average response time 

= N An 

W N - n n 

It is easily seen that, as system load increases 
and n moves closer to N, any relative difference 
in n will be amplified by a large factor. Thus 
small relative differences in throughputs can 
result in huge differences in average response 
times. Since the above "amplification" formulas 
are derived from operational identities, we 
conclude that the system studied in Example 3 
operates in an unstable performance region for 
jobs of class I. 

Our next example illustrates the accuracy of 
the methods with 4 job classes and 2 CPUs. 

Example 4:4 job classes 

method i ~i mi CPU utilization 

simulation I 0.013 2.582 0.585 
2 0.002 2.719 0.093 
3 O.OOO 1.611 0.573 
4 25.127 0.999 0.367 

equivalence I O.O12 2.594 0.587 
& decomposition 2 0.003 2.783 0.094 

3 O.O00 1.621 0.576 
4 25.308 1.OOO 0.369 

iteration (3) I 0.O12 2.594 0.587 
2 0.003 2.779 0.094 
3 O.0OO 1.622 0.576 
4 25.308 1.OOO 0.369 

The following table gives the range for the 
relative difference in average response times 
between simulation and the two approximation 
methods for the set of examples presented. 

These values have been obtained using 
"amplification" formula for response times. 

t h e  
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Relative differences in average response times 

example I 2 3 4 

equivalence .5% - I% 2% - 8% I% - 40% .5% - 6% 
& decomposition 

iteration I% - 1.5% 6% - 130% I% - 40% .5% - 6% 

Finally, as an example, we show the 
distribution for the number of jobs in memory, 
p(m~ ), for class I of Example I. The maximum 

I 

multiprogramming degree for that class is 10. 

Example 5: distribution of number in memory 

p(O) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) P(9) p(10) 

simulation 
.022 .047 .065 .077 .084 .088 .089 .086 .081 .072 .290 

equivalence & decomposition 
.022 .048 .065 .077 .084 .088 .089 .086 .080 .072 .288 

iteration (2) 
.022 .048 .065 .077 .084 .088 .089 .086 .080 .072 .288 

As a whole, the accuracy of the manifold 
equivalence nad decomposition approach is good. 
The iterative approach is less accurate, but 
still produces fair results. 

5.0 CONCLUSION 

We have presented two methods for analyzing 
state-dependent networks that arise in the 
equivalence and decompostion approach to 
queueing network models of computer systems with 
multiprogramming constraints and multiple job 
classes. The first approach is a manifold 

application of equivalence and decomposition. 
It transforms the solution of a system with c 
classes into a c-fold solution of a single-class 
model. The storage requirements of the method 
are modest, but its execution time grows at the 
pace of the number of states in the state- 
dependent network being solved. The accuracy of 
its results Js good. The second approach is a 
fast-converging iteration. It is generally less 
accurate than the first method, but its 
computational complexity grows near-linearly 
with the number of classes and jobs per class in 
the system. These methods have been presented 
for models with only interactive users. They 
can be extended to other types of job classes. 
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Denote by n the total number of jobs in 
the system, i.e., n=k+m. The probability 
distribution for n, p(n), is given by (see 
[6]) 

n 
1 

(N-i+l)l/v(i), n = I,...,M ; 
p(n) = ~ i i 

n-M 
i 

p(n)= ~ p(M) H (N-M-j+I)%/v(M), n>M , 
j=l 

where G is a normalization constant. Hence, 
the probability Prob{ k Ir M} may be expressed 
as Prob(n=k+M}/Prob{n>=M}, i.e., 

k 
i 

Prob{k I M} = ~ II (N-M-j+I)X/v(M) , 
j=l 

where 

N-M k 
H = Z ]I (N-M-j+I)%/v(M) . 

k=O j=l 

This is identical to the distribution 
obtained from the analysis of the system of 
Figure 5. Hence, the conditional 
probability r, and, consequently, the 
distribution p(m) are also exact. 

The approach presented in Section 2 
separates the two distributions p(k) and 
p(m), effectively partitioning the values of 
n. Since, in the calculation of each p(k) 
and p(m) with their respective normalizing 
constants, there are fewer values to be 
considered than in the direct calculation of 
p(n), the possibility of under/overflow 
occuring is reduced. 
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Figure I: Model of an interactive system 
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Fisure 2: Equivalent queueing network 
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