
Fast Approximate Solution of Multiprogramm~ng Models

Alexandre Brandwajn

Amdahl Corporation

Sunnyvale, CA 94086

1.0 INTRODUCTION

ABSTRACT

Queueing network models of computer systems with
multiprogramming constraints generally do not
possess a product-form solution in the sense of
Jackson. Therefore, one is usually led to
consider approximation techniques when dealing
with such models. Equivalence and decomposition
is one way of approaching their solution. With
multiple job classes, the equivalent network may
be viewed as a set of interdependent queues. In
general, the state-dependence in this equivalent
network precludes a product-form solution, and
the size of its state space grows rapidly with
the number of classes and of jobs per class.
This paper presents two methods for approximate
solution of the equivalent state-dependent
queueing network. The first approach is a
manifold application of equivalence and
decomposition. The second approach, less
accurate than the first one~ is a fast-con-
verging iteration whose computational complexity
grows near-linearly with the number of job
classes and jobs in a class. Numerical examples
~llustrate the accuracy of the two methods.

Keywords and Phrases: queueing network models,
simultaneous resource possession, multiprogram-
ming, equivalence and decomposition, approximate
solutions.

Permission to copy without fee all or par t of this mater ia l is
granted provided tha t the copies a re not made or d i s t r ibu ted
for d i rect commercia l advantage, the ACM copyright notice and
the t i t le of the publication and its da te appear, and notice is
given tha t copying is by permiss ion of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires
a fee a n d / o r specific permission.

© 1982 ACM 0-89791-079-6/82/008/0141 $00.75

There has been recently an increased interest
in queueing network models with simultaneous
resource possession in general (e.g. [I]), and,

in particular, in models of computer systems
with multiprogramming constraints, such as the
one shown in Figure I, where memory and other
resources may be simultaneously held by a job
[2J. When the performance measures to be
obtained from the models are limited to
throughputs and averages, fast and efficient
iterative approaches exist (see, e.g. [3,4]).
These approaches are close in spirit to the mean
value analysis [5J, and are not sufficient if
one is also interested in distributions of, say,
numbers of jobs in memory. The equivalence and
decomposition method [6] seems a good candidate
in such cases.

We restrict our attention to memory admission
policies with a maximum multiprogramming degree
(i.e., number of jobs in memory) per class of
jobs. For such systems, a useful equivalence is
the one depicted in Figure 2. There is one
server per job class, and its service rate
depends, in general, on the current numbers of
jobs of each class in memory. These service
rates can usually be obtained by decomposition,
i.e., by analyzing a submodel of the
multiprogramming set. Here, we assume that the
service rates are given, and we concentrate on
the solution of the equivalent network. As
pointed out in [2], generally, such a network
does not possess a product-form solution [7S,
and the size of its state space increases
rapidly with the number od classes and the
maximum numbers of jobs in each class. This
renders the solution of the equivalent network a
non-trivial task.

Two approximate solution methods for the
state-dependent queueing network of Figure 2 are
considered in this paper. The first approach,
discussed in Section 2, is a manifold

141

application of equivalence and decomposition.
The second approach, presented in Section 3, is
a fast-converging iterative method. It is less
accurate than the first method but its
computational complexity grows only linearly
with the numbers of job classes and jobs in a
class. Numerical examples illustrate the
accuracy of the two approaches.

2.0 MANIFOLD EQUIVALENCE AND DECOMPOSITON

Let us start with the simple case of only one
class of jobs in the system, depicted in Figure
3. Although this network can be solved directly
for the total number of jobs in the system, it
is generally advantageous to consider separately
the distributions of the number of jobs in
memory, and of the number awaiting admission,
which we denote by p(m) and p(k), respectively.

For the number in memory, the equivalent
Markovian queue, shown in Figure 4, has a finite
capacity of M, the maximum degree of
multiprogramming. The arrival rate is (N-m)%,
where N is the number of terminals, and I/% is
the average think time of a user. The service
rate is v(m) for m<M, and v(M)r for m=M, where
v(m) is the service rate in the network of
Figure 3, and r is the conditional probability
that the admission qu4ue is empty given that
there are M jobs in memory, i.e.,

r = Prob{ k=O [M)

The computation of p(m) is straightforward [8],
provided r is known. The latter is easily
determined, since the conditional probability
Prob{k I M} may be obtained as the distribution
of the number of users, k, in the single-server
system of Figure 5. The arrival rate is (N-M-
k)%, and the constant service rate is v(M).
p(k) is then simply

p(k) = p(M)Prob{k I M} +
M-1

~] p (m),
m=l

k=O,

p(k) = p(M)Prob{k I M} , for k>O

The above approach is easily shown to be
exact, and, by separating the two distributions
p(k) and p(m), it alleviates in many cases
under/overflow problems that may appear in a
direct solution for the total number of jobs in

the system (see Appendix).

With multiple job classes, an approximate
solution can be obtained by generalizing the
two-class treatment of [9]. For simplicity, we
use an example with three classes of jobs. Let
p(m$,m2,mq) be the joint distribution for the
numoers o9 jobs of each class in memory. The
basis for our approach is the following identity

P(ml,m2,m3) = P(m31m2,ml)P(m2Iml)P(m I) •

The conditional probabilities in the righthand
side of this identity are approximately
evaluated by disregarding transitions which
change the condition variable(s). In this way,
only single-class models of the type of that of
Figure 3 have to be solved to obtain
approximations for P(m311m2,ml), P(m2 llm I) and

p(ml)-
The solution proceeds as follows. For given

m I, m o, the service rate for class 3 is
v~(m~ ,~,m~), locally a function of m~ only. We
t~us~co~pu~e p(m llm ,m) and p(k ljm2,~ I) from a 2 1 3
eigle-claes mode~ as considered above. We also
compute

M 3

wi(ml,m 2) = ~ P(m31m2,ml)vi(ml,m2,m 3) ,
m3=O

i = 1,2,3 .

For given ml, the service rate for class 2 is
then w 2(m l,m 2), locally a function of m 9 only.
The single-class model yields p(m 2 i ml9 and
p(k 21ml). We also compute

M 2

ui(ml) = ~ P(m21ml)wi(ml,m 2) , i = 1,2,3 ;
m2=O

and

M 2

P(m31m I) =. E P(m21ml)P(m31m2,m I) ;
m2=O

M 2

P(k31m I) = E P(m21ml)P(k31m2,ml) .
m2=O

Finally, for class ~(ml) is the equivalent service rate
• Hence we readily get P(ml) and

P(kl). We also have

142

a n d

M 1

0 i = Z P(ml)ui(ml) , i = 1,2,3 ;
ml=O

M 1

p(mj) = Z P(ml)P(m jlm I) ;
ml=O

M 1

p(kj) = Z P(ml)P(k j Iml) , for j>l ,
ml=O

where @i is the throughput for class i.

The above approach transforms the solution of
the network of Figure 2 with c classes into c-
fold solution of the single-class system of
Figure 3. The only approximations introduced
are in the computation of conditional
probabilities; all other transformations are
exact. With an appropriate choice of the order
in which states are considered, it is possible
to make the storage required for the approach
grow linearly with the number of job classes and
jobs in a class. The execution time, however,
increases at the pace of growth of the size of
the state space in the network of Figure 2.
This is because in the manifold equivalence and
decomposition described, one actually enumerates
all the states of that network.

The next section is devoted to a faster,
albeit generally less accurate, approach whose
computational complexity grows near-linearly
with the number of classes and the numbers of
jobs per class.

3.O ITERATIVE APPROACH

Our second approach to the solution of the
state-dependent queueing network of Figure 2 is
inspired from the iterative approach of [3].
The premise for the method is the assumption
that, for any given job class, the influence of
other classes is adequately represented by their
average multiprogramming degrees. Hence, for
simplicity, the service rate for class i jobs is
approximated by v (m*,...,m ,...,m*), where m~

" 1 -i is ~he closest integer to m., the ~verage numbe~
of class j users in memory. 3 For each class this
results in the solution of the single-class
system of Figure 3, Since the ~ (and hence,
m~) are known when the corresponding p(m~) have
b~en computed, an iterative scheme ~uggests
itself.

I.

2.

3.

Choose initial values for m@, m~ ~ [O,Mj],
for j=2,...,c. 3]

For job classes i=1,...,c, solve single-
class model, and let m~ be the closest
integer to m. = Z P(mi)m ~.

l m.
1

If maximum difference between old ~nd new
values for m~ is less than, say, 10 -~, exit;
otherwise re,eat step 2.

It has been the author's experience that this
scheme converges within a small number of
iterations, without much sensitivity to the
choice of the starting values.

There are two potential sources of
inaccuracies in the above approach. The first
one is in the very premise of the method, which
replaces the average of a function of a random
variable with the function of the average of
that variable. W~th strong non-linearit~es,
this can result in large errors. The second
source of inaccuracies is our use of the closest
integer to avoid interpolation. This can induce
errors even for linear functions if they are
rapidly varying. In practice, however, the
accuracy of the method is fair, as illustrated
in the next section.

4.0 NUMERICAL RESULTS

In this section we present a few numerical
results to illustrate the accuracy of the two
approaches discussed in the preceding sections.
Results of discrete-event simulations are used
as reference values. Each simulation point
corresponds to a total of 200,0OO job
completions. CPU utilizations by job classes
are reported in lieu of throughputs. For the
iterative approach, the number of iterations is
given in parentheses.

143

Example I: 2 classes of jobs

method ~ ki mi CPU utilization

simulation I 0.789 6.478 0.638
2 11.671 11.995 0.325

equivalence I 0.826 6.491 0.640
decompositon 2 11.633 11.995 0.327

iteration (3) I 0.827 6.493 0.640
2 11.570 11.995 0.329

The accuracy of the iterative method in this
example seems representative of most cases. The
accuracy of this approach in our second example,

with a heavily loaded system, is among the worst
observed.

Example 2:3 classes of jobs

method i k. m.
1 1

simulation I 27.114 9.991
2 3.461 9.270
3 25.494 10.987

equivalence I 27.559 9.947
decomposition 2 3.570 9.325

3 25.675 11.000

iteration (2) I 29.841 10.000
2 3.570 9.325
3 37.695 11.000

CPU utilization

O.O4O
0.932
0.027

• 0.037
0.936
0.027

0.002
0.936
O.O03

In this example, the iterative method
underestimates the CPU utilizations for classes
I and 3 by an order of magnitude. It may be
noted, however, that the system is severely
overloaded for these job classes, with an
extremely poor response time. This is correctly
identified by the method, even though the
numerical values for the average response times

would be considerably overestimated.

It is interesting to note that, under some
load conditions, the manifold equivalence and
decomposition method can be sensitive to class
numbering, i.e., to the order in which classes
are considered ~n the state reduction process.

Example 3:3 job classes

method i k'l mi CPU utilization

simulation I 1.959 3.072 0.671
2 7.355 1.944 0.061
3 0.009 0.654 0.146

equivalence I 2.032 3.086 0.673
& decomposition 2 7.558 1.946 0.061
order I 3 0.009 0.658 0.147

144

equivalence I 3.768 3.055 0.648
& decomposition 2 7.681 1.946 O.O61
order 2 3 0.009 0.658 O.147

iteration (3) I 3.463 3.419 0.647
2 7.612 1.951 O.O61
3 0.009 0.658 O.147

Looking at the results of the equivalence and
decomposition method we observe that, for class
1, a 4% relative difference in CPU utilizations
is accompanied by a 33% relative difference in
the total numbers of users in the system. Upon
closer inspection, it turns out that this is
intrinsic to the system studied itself, rather
than a property of the solution method. Indeed,
from the operational identity [10] (N-n)~=O,
where n---k+m, and 8 is the job throughput, we
readily obtain

A~ I A8

n NA/e - 1 e

Thus, any relative difference in throughputs
will get "amplified" by a factor I/(NA/8-I). As
NA/8 gets close to unity, the "amplification"
factor grows. I_n~our example, for class I, we
have N=50, I=3.10 -J, 8=O.673/500, which yields a
difference amplification factor of 8.74. From

Little's formula [8], we further obtain for the
average response time

= N An

W N - n n

It is easily seen that, as system load increases
and n moves closer to N, any relative difference
in n will be amplified by a large factor. Thus
small relative differences in throughputs can
result in huge differences in average response
times. Since the above "amplification" formulas
are derived from operational identities, we
conclude that the system studied in Example 3
operates in an unstable performance region for
jobs of class I.

Our next example illustrates the accuracy of
the methods with 4 job classes and 2 CPUs.

Example 4:4 job classes

method i ~i mi CPU utilization

simulation I 0.013 2.582 0.585
2 0.002 2.719 0.093
3 O.OOO 1.611 0.573
4 25.127 0.999 0.367

equivalence I O.O12 2.594 0.587
& decomposition 2 0.003 2.783 0.094

3 O.O00 1.621 0.576
4 25.308 1.OOO 0.369

iteration (3) I 0.O12 2.594 0.587
2 0.003 2.779 0.094
3 O.0OO 1.622 0.576
4 25.308 1.OOO 0.369

The following table gives the range for the
relative difference in average response times
between simulation and the two approximation
methods for the set of examples presented.

These values have been obtained using
"amplification" formula for response times.

t h e

145

Relative differences in average response times

example I 2 3 4

equivalence .5% - I% 2% - 8% I% - 40% .5% - 6%
& decomposition

iteration I% - 1.5% 6% - 130% I% - 40% .5% - 6%

Finally, as an example, we show the
distribution for the number of jobs in memory,
p(m~), for class I of Example I. The maximum

I

multiprogramming degree for that class is 10.

Example 5: distribution of number in memory

p(O) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) P(9) p(10)

simulation
.022 .047 .065 .077 .084 .088 .089 .086 .081 .072 .290

equivalence & decomposition
.022 .048 .065 .077 .084 .088 .089 .086 .080 .072 .288

iteration (2)
.022 .048 .065 .077 .084 .088 .089 .086 .080 .072 .288

As a whole, the accuracy of the manifold
equivalence nad decomposition approach is good.
The iterative approach is less accurate, but
still produces fair results.

5.0 CONCLUSION

We have presented two methods for analyzing
state-dependent networks that arise in the
equivalence and decompostion approach to
queueing network models of computer systems with
multiprogramming constraints and multiple job
classes. The first approach is a manifold

application of equivalence and decomposition.
It transforms the solution of a system with c
classes into a c-fold solution of a single-class
model. The storage requirements of the method
are modest, but its execution time grows at the
pace of the number of states in the state-
dependent network being solved. The accuracy of
its results Js good. The second approach is a
fast-converging iteration. It is generally less
accurate than the first method, but its
computational complexity grows near-linearly
with the number of classes and jobs per class in
the system. These methods have been presented
for models with only interactive users. They
can be extended to other types of job classes.

146

6.0 REFERENCES APPENDIX

I. P. Jacobson and E. W. Lazowska, The Method
of Surrogate Delays: Simultaneous Resource
Possession in Analytic Models of Computer
Systems, Performance Evaluation Review 10
(1981) 165-174.

C. Sauer, Approximate Solution of Queuelng
Networks with Simultaneous Resource
Possession, IBM J. Res. Develop. 25 (1981)
894-903.

Y. Bard, The Modeling of Some Scheduling
Strategies for an Interactive Computer
System, in: Computer Performance, K. M.
Chandy and M. Reiser (editors), 1977, North-
Holland Publ. Co., 113-137.

Y. Bard, A Simple Approach to System
Modeling, Performance Evaluation I (1981)
225-248.

M. Reiser and S. S. Lavenberg, Mean Value
Analysis of Closed Multichain Queueing
Networks, J. ACM 27 (1980) 313-322.

2.

3.

4.

5.

6. A. Brandwajn, A Model of a Time-Sharing
System Solved Using Equivalence and
Decomposition Methods, Acta Inf. 4 (1974)
11-47.

7. F. Baskett, K. M. Chandy, R. R. Muntz and
F. Palacios, Open, Closed, and Mixed
Networks of Queues with Different Classes of
Customers, J. ACM 22 (1975) 248-260.

8. L. Kleinrock, Queueing Systems, Voi. I:
Theory (John Wiley & Sons, New York, 1975).

9. A. Brandwajn, A Model of a Time-Sharing
System with Two Classes of Processes, in:
Lecture Notes in Computer Science 34, GI-5
Jahrestagung, Dortmund, October 1975,
Springer Verlag, Berlin 1975, 547-566.

10. P. J. Denning and J. P. Buzen, The
Operational Analysis of Queueing Network
Models, Computing Surveys 10 (1978) 225-241.

11. R. M. Brown, J. C. Browne, and K. M. Chandy,
Memory Management and Response Time, Comm.
ACM 20 (1977) 153-165.

12. R. M. Bryant, Maximum Processing Rates of
Memory Bound Systems, J. ACM 29 (1982)
461-477.

Denote by n the total number of jobs in
the system, i.e., n=k+m. The probability
distribution for n, p(n), is given by (see
[6])

n
1

(N-i+l)l/v(i), n = I,...,M ;
p(n) = ~ i i

n-M
i

p(n)= ~ p(M) H (N-M-j+I)%/v(M), n>M ,
j=l

where G is a normalization constant. Hence,
the probability Prob{ k Ir M} may be expressed
as Prob(n=k+M}/Prob{n>=M}, i.e.,

k
i

Prob{k I M} = ~ II (N-M-j+I)X/v(M) ,
j=l

where

N-M k
H = Z]I (N-M-j+I)%/v(M) .

k=O j=l

This is identical to the distribution
obtained from the analysis of the system of
Figure 5. Hence, the conditional
probability r, and, consequently, the
distribution p(m) are also exact.

The approach presented in Section 2
separates the two distributions p(k) and
p(m), effectively partitioning the values of
n. Since, in the calculation of each p(k)
and p(m) with their respective normalizing
constants, there are fewer values to be
considered than in the direct calculation of
p(n), the possibility of under/overflow
occuring is reduced.

147

?~

TERMINALS

MEMORY ADMISSION

QUEUE CONTROL SYSTEM

Figure I: Model of an interactive system

fo\
~6J

TERMINALS

k m I v l (m l , . , . ,m c'

~il 1 I ~--~ i L ~ ~ .
kc : m c ...

IIl~-~lll
ADM I S S I ON MULTI PROGRAMM I NG

QUEUE SET

Fisure 2: Equivalent queueing network

148

O" N

©

k m v(m)

m<M

Fisure 3: Equivalent network for a single-class system

v (m) , m<M
(N-m) m

m~M

(N-M-k)% k v(M)

Fisure 4: Equivalent system for p(m) Fisure 5: System for Prob{klM}

149

