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a b s t r a c t

In many real-life computer and networking applications, the distributions of service

times, or times between arrivals of requests, or both, can deviate significantly from the

memoryless negative exponential distribution that underpins the product-form solution

for queueing networks. Frequently, the coefficient of variation of the distributions

encountered is well in excess of one, which would be its value for the exponential. For

closed queueing networks with non-exponential servers there is no known general exact

solution, and most, if not all, approximation methods attempt to account for the general

service time distributions through their first two moments.

We consider two simple closed queueing networks which we solve exactly using semi-

numerical methods. These networks depart from the structure leading to a product-form

solution only to the extent that the service time at a single node is non-exponential.

We show that not only the coefficients of variation but also higher-order distributional

properties can have an important effect on such customary steady-state performance

measures as the mean number of customers at a resource or the resource utilization level

in a closed network.

Additionally, we examine the state that a request finds upon its arrival at a server,

which is directly tied to the resulting quality of service. Although the well-known Arrival

Theorem holds exactly only for product-form networks of queues, some approximation

methods assume that it can be applied to a reasonable degree also in other closed queueing

networks.We investigate the validity of this assumption in the two closed queueingmodels

considered. Our results show that, even in the case when there is a single non-exponential

server in the network, the state found upon arrival may be highly sensitive to higher-order

properties of the service time distribution, beyond its mean and coefficient of variation.

This dependence of mean numbers of customers at a server on higher-order

distributional properties is in stark contrast with the situation in the familiar openM/G/1
queue. Thus, our results put into question virtually all traditional approximate solutions,

which concentrate on the first two moments of service time distributions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The objective of this paper is to show that there can be big discrepancies between exact results and traditional

approximations due to the influence of distributional properties of inter-arrival and service times on the performance of

queueing networks. Here, we consider two very simple closed queueing networks which deviate from the product form

∗ Corresponding address: Laboratoire LIP6 - CNRS, Université Pierre et Marie Curie, 104 avenue du President Kennedy, 75016 Paris, France. Tel.: +33 (0)1

44 88 38; fax: +33 (0)1 44 27 74 95.

E-mail addresses: alexb@soe.ucsc.edu (A. Brandwajn), thomas.begin@lip6.fr (T. Begin).
1 Tel.: +1 831 459 4023.

0166-5316/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.peva.2009.05.002



Author's personal copy

608 A. Brandwajn, T. Begin / Performance Evaluation 66 (2009) 607–620

2aμ 2bμq2a

q2a

^

1aμ 1bμq1a

q1a

^

1μrate
coef.var. cv1

2μrate
coef.var. cv2

s servers

Node 1

Node 2

N requests

Fig. 1. Simple two-node network.

only in that a single node is non-exponential. We examine customary steady-state performance metrics (mean number of

requests at a server, server utilization), as well as the degree of departure from the Arrival Theorem.

Since inmany real-life situations the service and/or inter-arrival times tend to exhibit high variability (e.g. due to the use

of caching, or intrinsic nature of certain types of Internet traffic [1]), we focus on the casewhere the coefficient of variation of

the service time exceeds one. Using a recently-developed semi-numerical solutionmethod [2] and its generalization [3], we

show that the state found upon arrival and customary steady-state performancemetricsmay exhibit important dependence

on higher-order properties of the service time distribution. Such dependence casts a doubt over the value of approximations

traditionally limited to the first two moments of the distribution.

In a large number of real-life computer and networking applications, the state of a resource that a request finds upon its

arrival at the resource greatly impacts the resulting quality of service. To some extent, what an arriving request ‘‘sees’’ may

be viewed as more important than the customary steady-state performance metrics such as the mean number of requests

or server utilization. As an example, from the standpoint of an I/O request generated by the host the probability that the

requests find a free I/O path is a more critical performance measure than the overall path utilization.

The Arrival Theorem [4–6] for closed product-from networks states that the state found upon arrival is the same as the

steady state of the networkwithout the arriving request. This theorem is at the heart of theMean Value Analysis of queueing

networks [7–10]. The elegant simplicity of the Arrival Theorem makes it an attractive basis for approximations even when

the network does not posses a product-form solution [11–21].

To the best of our knowledge, there is a limited number of studies attempting to quantify the degree of applicability of

the Arrival Theorem in networks with non-exponential service times [22,23,19,24]. Possibly inspired by the distributional

dependence factor in the Pollaczek–Khintchine formula [25,26] for theM/G/1 queue, most existing studies seem to concen-

trate on the influence of the coefficient of variation of the service time distribution [22,23,19]. This appears to be the case as

well in some attempts to improve the approximation given by the ‘‘raw’’ Arrival Theorem by introducing corrective terms

related to the first two moments of the service time distribution [12,13,20,21]. The influence of properties of order higher

than two (such as skewness and kurtosis) of the service time distribution seems to have attracted little attention [27,28,22].

Our contribution is threefold. First, we show that, even for a very simple closed network with just a single non-

exponential server, the performance of the system may depend in an important way on higher-order properties, beyond

the first two moments, of the service time distribution. This provides evidence that many traditional approximations for

non-exponential closed queueing networks (e.g. [29–33,20]) need to be re-evaluated. Second, we examine the degree of

applicability of the Arrival Theorem as a function of both the distribution of the service times and the number of users in

the system. Our results provide some indication when the theorem can be expected to be a reasonable approximation, and

when the deviation from it can be almost arbitrarily large. Third, we show that the influence of higher-order properties is

not limited to the skewness of the service time distribution but includes properties of even higher order.

This paper is organized as follows. In Section 2 we describe the first queueing network considered and we present our

numerical results for this system. Section 3 is devoted to the second simple network and its numerical results. Section 4

concludes this paper.

2. Simple two-node network

We first consider the two-node closed queueing network represented in Fig. 1. This network consists of a multi-server

queue with s servers and a single-server queue, referred to as Nodes 1 and 2, respectively.

We start by examining the effect of a single non-exponential server in a two-node network where the other server has

exponentially distributed service times. In such a simple network one might think that the presence of an exponential

server would make it close to anM/G/1 queue where only the first two moments of the non-exponential server matter for

the computation of themean number of users. This case is studied in Section 2.1. Given the current tendency to usemultiple
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processors inmany real-life applications, it seems important to examine our networkwithmultiple non-exponential servers

at one of its nodes. Section 2.2 is devoted to such a case. In Section 2.3 we consider a similar network but with multiple

exponential servers at one of its nodes and a single non-exponential server at the other. This allows us to see howmuch the

performance of a memoryless multi-server is affected by high variability of service at the queue feeding the former.

We denote by N the total number of users (tokens, customers, requests) in this network. The service time at the multi-

server node is represented by a two-stage Coxiandistribution [34],withmean1/μ1.Wedenote byμ1a andμ1b the respective

service rates of the stages of this distribution, and by q̂1a = 1 − q1a the probability of moving from stage a to stage

b. To represent an exponential distribution, it suffices to set q̂1a = 0. The service time at the single-server node is also

represented by a two-stage Coxian distribution with mean 1/μ2. For the latter distribution, we denote by μ2a and μ2b the

respective service rates of this distribution, and by q2a the probability to complete the service process following the first

stage. q̂2a = 1−q2a denotes the probability that the customer arrival process proceeds to the second stage upon completion

of the first stage. We denote by cv1 and cv2 the coefficients of variation at Nodes 1 and 2, respectively.

We denote by n̄1(N) the steady-state mean number of requests at Node 1 in a network with a total of N users, and by

n̄A
1(N) the mean number of users found at Node 1 by a request arriving from Node 2. If the Arrival Theorem was to apply

in our network, the state of Node 1 found by a request leaving Node 2 would correspond to the steady state of Node 1 in

a network with the same service time distributions but N − 1 users. Therefore, we measure the deviation from the Arrival

Theorem by the quantity Δ(N) = ∣∣1− n̄1(N − 1)/n̄A
1(N)

∣∣, expressed in percent.

Additional quantities studied in this paper include the server utilization level for Node 1 defined as U1(N) = m̄1(N)/s,
where m̄1(N) is the steady-state expected number of busy servers at Node 1 in a network with a total of N customers.

We use a generalization to Ck/C2/c-type queues [3] of a recently published semi-numerical solutionmethod forM/Ck/1-
type queues [2] to obtain the above quantities. This method yields the steady-state probability p(j, l2, n) that the system is

in the state described by (j, l2, n) where n is the current total number of customers at Node 1, l2 is the number of Node

1 customers in the second stage of their Coxian service time, and j is the current service stage at Node 2. The solution

methods used rely on aMarkovianmodelwith standard balance equations. For single-server queues themethod [2] requires

no iteration and is thus exact. The solution for multi-server [3] queues requires a fixed-point iteration, and we used the

convergence criterion of relative difference of less than 10−9 between consecutive iterates.

Let PA
N(n) be the steady-state probability that a request arriving from Node 2 finds n users at Node 1 in a network with a

total of N customers. As we show in the Appendix, we have in general

PA
N(n) =

k∑
j=1

μ2jq2j

min(c,n)∑
l2=0

p(j, l2, n)

∑
l<N

k∑
j=1

μ2jq2j

min(c,l)∑
l2=0

p(j, l2, l)

for n = 0, 1, . . . ,N − 1.

n̄A
1(N) is then expressed as

∑N−1

n=0 nPA
N(n). In the particular case when the service time at Node 2 is exponentially

distributed, we get for the probability upon arrival

PA
N(n) =

min(c,n)∑
l2=0

p(l2, n)

∑
l<N

min(c,l)∑
l2=0

p(l2, l)

for n = 0, 1, . . . ,N − 1.

The set of Cox-2 distributions used throughout our paper is described in Table 1.

2.1. Single non-exponential server (Cox-2) at Node 1 and exponential server at Node 2

We start our study by assuming that the service time at Node 2 is exponentially distributed and that there is only one

non-exponential server at Node 1 (s = 1). Thus, in a sense, Node 1 may be viewed as an M/G/1-like queue in a closed

network.

Fig. 2a shows the deviation (expressed in percent) from the Arrival Theorem in a network with N = 10 users, for varying

server utilization levels and several Cox-2 distributions at Node 1 with a mean of 1 and coefficient of variation of 2, 4, 6,

8 and 10, respectively. The corresponding actual values of n̄A
1(N) are represented in Fig. 2b. The parameter values for the

Cox-2 distributions used in our examples are given in Table 1. The distributions are identified in our graphs by their index

in Table 1 and by their coefficient of variation denoted by cv in our figures.

We observe that, for the distributional parameters considered, the deviation from the Arrival Theorem seems to depend

on both the server utilization level and the coefficient of variation of the service time distribution at Node 1. In this particular

case, the deviation ranges from some 10% to around 70% and tends to peak for relatively small server utilization levels. These

observations seem to confirm the conclusions of previous research [19]. We also note that, for this particular example, the

expected number of users found by an arrival, n̄A
1(N), does not dependmuch on cv1, the coefficient of variation of the service
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Table 1
Cox-2 distributions used in numerical examples.

Distribution index Mean value cvi Skewness Kurtosis μia μib qia

D1 1.0 2.0 19.26 608.91 1.11 6.25E−02 9.938E−01

D2 1.0 2.0 3.07 12.77 1000.0 4.00E−01 6.010E−01

D3 1.0 4.0 54.10 4107.3 1.11 1.32E−02 9.987E−01

D4 1.0 4.0 6.01 48.28 1000.0 1.18E−01 8.830E−01

D5 1.0 6.0 86.00 10087.28 1.11 5.68E−03 9.994E−01

D6 1.0 6.0 9.01 108.30 1000.0 5.40E−02 9.460E−01

D7 1.0 8.0 116.99 18480.19 1.11 3.17E−03 9.997E−01

D8 1.0 8.0 12.01 192.43 1000.0 3.10E−02 9.690E−01

D9 1.0 10.0 147.58 29276.89 1.11 2.02E−03 9.998E−01

D10 1.0 10.0 15.02 300.63 1000.0 1.98E−02 9.802E−01

D11 0.67 6.0 86.04 10097.03 1.67 8.52E−03 9.994E−01

D12 0.67 6.0 9.01 111.30 1500.0 8.10E−02 9.461E−01

Fig. 2a. Relative deviation from the Arrival Theorem for a subset of distributions from Table 1 used for the service time at Node 1 with N = 10.

Fig. 2b. Mean number found on arrival for the same subset of distributions from Table 1 used for the service time at Node 1 with N = 10.

time distribution. To properly interpret these results it is important to note that the value of the service rate at Node 2 has

been adjusted for each value of cv1 so as to maintain the specified utilization levels.

In reality, things appearmore complicated than implied by the previous research. In Figs. 3a and 3b, we have represented

analogous results using a different set of Cox-2 distributions with the same mean and coefficients of variation as in

Figs. 2a and 2b but different higher-order properties. The parameter values for the Cox-2 distributions used in this example

correspond to another subset of distributions given in Table 1.

Quite unlikewhatwe sawbefore, the deviation from the Arrival Theorem in this example can exceed 800% and appears to

increase as the server utilization level increases. Additionally, Fig. 3b shows that, in this particular case, the expected number

of users found by an arrival n̄A
1(N) varies significantly as cv1, the coefficient of variation of the service time distribution at

Node 1, changes. Notice that here large deviations from the Arrival Theorem occur for relatively large values of the mean

number of users found upon arrival. Thus such deviations cannot be viewed as large relative errors limited to small mean

numbers of users. Again, note that the value of the service rate at Node 2 has been adjusted for each value of cv1 so as to

maintain the specified utilization levels.

Comparing the results of these two examples (Figs. 2b and 3b), it is clear that properties of order higher than two

(i.e., beyond themean and the coefficient of variation) of the service timedistributionmayhave a dramatic effect on themean

number of users found upon arrival. As it turns out, higher-order distributional properties influence not only the expected

state found upon arrival but also such customary steady-state performance measures as the mean number of customers at

a node or the node utilization level.
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Fig. 3a. Relative deviation from the Arrival Theorem for another subset of distributions from Table 1 used for the service time at Node 1 with N = 10.

Fig. 3b. Mean number found on arrival for the same subset of distributions from Table 1 used for the service time at Node 1 with N = 10.

Fig. 4a. Influence of higher-order moments of the service time distribution at Node 1 on the mean number of users n̄1(N).

Fig. 4b. Influence of higher-order moments of the service time distribution at Node 1 on the server utilization level U1(N).

Thus, Fig. 4a displays themean number of users at Node 1, n̄1(N), as a function of the total number of users in the network,

N , for the two sets of parameters given in Table 1 for cv1 = 6. Fig. 4b shows the corresponding server utilization levelsU1(N).
Figs. 4c and4ddisplay the values of n̄A

1(N) andofΔ(N), respectively, to illustrate how these quantities varywithN . Recall that
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Fig. 4c. Influence of higher-order moments of the service time distribution at Node 1 on the mean number of users found by an arriving request n̄A
1(N).

Fig. 4d. Relative deviation from the Arrival Theorem Δ(N) for two distributions of the service time at Node 1 with the same first two moments (on

logarithmic scale).

Fig. 5. Influence of higher-order moments of the service time distribution at Node 1 on pAN (N).

both Cox-2 distributions labeled D5 and D6 have the same mean and coefficient of variation but different higher-order

properties. The mean service time at Node 2 is 1/μ2 = 1.

We notice in Fig. 4a the important effect higher-order properties have on n̄1(N), the mean number of customers at Node

1. This is quite unlike what onewould expect in an openM/G/1 queuewhere only the first twomoments of the service time

distribution would matter.

Similar effects of the higher-order properties of the service distribution can be observed for the server utilization levels

and the mean number of users found by an arriving request in Figs. 4b and 4c, respectively. As illustrated in Fig. 4d, the

values of Δ(N), the deviation from the Arrival Theorem, also differ significantly for the two distribution types considered.

In general, although the deviation from the Arrival Theorem decreases as N increases, it remains non-negligible even for

higher numbers of users in the network (note the logarithmic y-axis scale in Fig. 4d). The amplitude of the deviation from

the Arrival Theorem varies with network parameters, and, as an example, is close to 50% forN = 100when themean service

time at Node 2 is 1/μ2 = 0.5.

With respect to the state ‘‘seen’’ by an arriving request, so far we have considered the mean number of users found

upon arrival at Node 1, and we found that it may depend on higher-order properties of the service time distribution. Fig. 5

illustrates the actual probability distribution of the number of users found by an arriving request at Node 1, for the two
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Fig. 6a. Relative deviation from the Arrival TheoremΔ(N) as a function of the number of users in the network N for varying number of servers s at Node 1.

Fig. 6b. Relative deviation from the Arrival Theorem Δ(16) as a function of the server utilization level for varying number of servers s at Node 1.

Cox-2 distributions given in Table 1 for cv1 = 4. As before, service at Node 2 is exponentially distributed. The value of the

mean service time for Node 2 is 1/μ2 = 1/3 in this example. Recall that we denote by pAN(n) the probability that an arrival

finds n requests at Node 1, where N is the total number of users in the network, and we have n = 0, 1, . . . ,N − 1. The

results in Fig. 5 have been obtained for a total of ten requests in the network (N = 10).

We observe how strikingly different the distributions pAN(n) can be for the same mean and coefficient of variation of the

service time at Node 1. In particular, if one considers pAN(0), the probability that the arriving request does not have to wait

before service, it varies from close to zero in one case to almost 40% in the other.

2.2. Multiple non-exponential (Cox-2) servers at Node 1 and exponential server at Node 2

We now turn our attention to the case where there are several servers at Node 1. As before, the service time at Node 2 is

exponentially distributed. Fig. 6a illustrates the deviation from the Arrival Theorem as a function of the number of users in

the network for 2, 4, and 8 servers. We use the set of parameter values corresponding to distribution labeled D4 in Table 1

(cv1 = 4) for the service time distribution at Node 1. The mean service time at Node 2 is 1/μ2 = 1. Here we observe that

Δ(N) peaks for lower values of N and then decreases as the number of users increases. In our example, with two servers at

Node 1 (s = 2) the deviation reaches almost 140% while the decrease with N tends to be slow, so that the deviation exceeds

30% with 30 users in the network. Perhaps not surprisingly, the deviation decreases as the number of servers increases, but,

even with 8 servers, it can exceed 40%.

In Fig. 6b we examine the deviation from the Arrival Theorem for a fixed population level (N = 16) as a function of the

server utilization level for different values of the number of servers s. The same Cox-2 distribution labeled D4 in Table 1 is

used as the service time distribution for the non-exponential servers at Node 1. Note that the value of the service rate at

Node 2 has been adjusted for each value of the number of servers s so as to maintain the specified server utilization levels.

From the results shown in Figs. 6a and 6b, it is apparent that for queues with multiple non-exponential servers, just like

in the case of a single server, one has to approach with caution approximations based on the Arrival Theorem.

The dependence on higher-order properties of the service time distribution in the openM/G/c queue has been suspected

and later shown empirically by some authors, e.g. [27,35,36,28,37]. Hence, it may not be surprising that this type of

dependence is also present in our network. Fig. 7a shows the steady-state mean number of users at Node 1 with 4 servers

(s = 4) for the two distributional parameters given in Table 1 in the case when the coefficient of variation of the service

time is 6 (cv1 = 6), labeled D5 and D6. The exponential service time distribution at Node 2 has a mean of 1/μ2 = 0.35. We

observe that the values for n̄1(N) differ by close to 100% (or 50%, depending on how you look at it) as N exceeds 50 users in

the system. The corresponding values of n̄A
1(N), the mean number found upon arrival, are shown in Fig. 7b. It is interesting
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Fig. 7a. Influence of higher-order moments of the service time distribution at Node 1 on the mean number of users n̄1(N).

Fig. 7b. Influence of higher-order moments of the service time distribution at Node 1 on the mean number of users found by an arriving request n̄A
1(N).

Fig. 8. Influence of higher-order moments of the service time distribution at Node 2 on the mean number of users found by an arriving request at Node 1

n̄A
1(N).

to note that, depending on the number of users in the network, one or the other of the distribution types can lead to a

larger value of n̄A
1(N). Again, we observe the important influence of higher-order properties of the service time distribution.

We also observe that this influence varies with the number of users in the network and persists as the latter increases.

This persistence is consistent with distributional dependencies inM/G/c queues [37,35]. Results not reported in this paper

indicate that, for a given server utilization level, distributional effects tend to decrease for larger numbers of servers.

2.3. Multiple exponential servers at Node 1 and single non-exponential (Cox-2) server at Node 2

In Sections 2.1 and2.2we looked at the effect of higher-order properties of the service timeon thenon-exponential server.

It is interesting to examine how a single non-exponential server with high service time variability affects the performance

of a multi-server node with memoryless service. Hence, we consider here the case where the service time at Node 1 is

exponentially distributed and Node 2 has a general service time distribution. As illustrated in Fig. 8, here again we observe

significant dependence on higher-order properties of the non-exponential service time distribution. Fig. 8 shows the values

of n̄A
1(N) for s = 2 servers at Node 1, mean service time at this node 1/μ1 = 1, and values 1/μ2 = 0.67 and cv2 = 6 for

the Cox-2 distribution of service time at Node 2. Distributions labeled D11 and D12 in this figure refer to parameter values
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N exponential
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Fig. 9. Machine repair model with multiple servers.

Fig. 10a. Relative deviation from the Arrival Theorem for a subset of distributions from Table 1 used for the service time at Node 1 with N = 20.

from Table 1.We note that the influence of higher-order properties persists as the number of users in the network increases.

This is consistent with the similar distributional dependencies in G/M/c queues [35].

Not surprisingly, additional results, not shown in this paper, indicate the importance of higher-order distributional

properties for performance metrics not displayed in our figure, as well as in the case where both Nodes 1 and 2 are non-

exponential.

3. Machine repair model

The second model considered in this study is the machine repairmen model shown in Fig. 9. Here we have a total of N

request sources or users, the time spent at a source (‘‘machine up time’’) is exponentially distributed, and there are s servers

(‘‘repairmen’’) at Node 1. As before, the service time at Node 1 (‘‘machine repair time’’) has a Cox-2 distribution with the

same notations as in Fig. 1. We denote by 1/λ the mean time a request remains at a source (‘‘mean machine up time’’).

Such a model corresponds in particular to a set of users with exponentially distributed idle times and a multiple-server

resource. We consider this system in the case when the service time distribution at the shared resource has a coefficient

of variation greater than one. As noted in the introduction, higher coefficients of variation may be encountered in many

systems, including in the presence of caching in I/O subsystems or Web servers. On the surface of things, one might think

that the memoryless sources might act as ‘‘buffers’’ to dampen distributional effects at the shared multi-server resource.

We study the behavior of this model with s = 4 servers at Node 1. Themean service time 1/μ1 is set to 1 and the number

of sources in the network at N = 20.

In Figs. 10a and 10b we show the deviation from the arrival theorem for the same two subsets of distributions of Table 1

used in Figs. 2a and 3a, respectively. Note that in these figures, analogously to what we did for the network considered in

Section 2.1, we adjust the value of 1/λ (‘‘the mean machine up time’’) for each distribution so as to maintain the specified

server utilization levels.

While the results shown in Fig. 10a may give the impression that the Arrival Theorem works very well for this network,

Fig. 10b shows that for a different set of distributions with the same first two moments deviations may exceed 30%. It is

thus clear from the results in Figs. 10a and 10b that the deviations from the Arrival Theoremmay bemore or less significant

depending on the specific distribution of the service time at the non-exponential servers and on the server utilization level.

With respect to Fig. 10a, it is interesting to note that the ratio n̄1(N−1)/n̄A
1(N) used tomeasure the deviation from the Arrival

Theorem starts out greater than one and then becomes less than one as the server utilization level increases. This accounts

for the dip in the amplitude of the deviation seen in Fig. 10a. We conclude that higher-order properties of the service time

distribution, beyond its mean and coefficient of variation, may significantly influence this deviation. When interpreting the

results of Figs. 10a and 10b one should keep in mind that the rate λ of the exponential sources has been adjusted for each

distribution so as to maintain the specified server utilization level.
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Fig. 10b. Relative deviation from the Arrival Theorem for another subset of distributions from Table 1 used for the service time at Node 1 with N = 20.

Fig. 11a. Relative deviation from the Arrival TheoremΔ(N) for two distributions of the service time at Node 1with the same first twomoments in amodel

with 4 repairmen.

Fig. 11b. Influence of higher-order moments of the service time distribution at Node 1 on the mean number found on arrival n̄A
1(N) with 4 repairmen.

As a final example, we now fix the value of the ‘‘mean machine up time’’ at 1/λ = 0.2 and we examine the influence of

higher-order distributional properties as the number of users increases. We show in Figs. 11a and 11b the values of Δ(N)
and n̄A

1(N), respectively, for the two distribution types of Table 1 with cv1 = 6, labeled D5 and D6.

It has been our experience that in general the amplitude of the departure from the Arrival Theorem, Δ(N), tends to

increase as the variability of the service time increases, however, the form of its evolutionwithN clearly depends on higher-

order properties of the service time distribution. Similarly, higher-order properties have an important effect on the number

of users found upon arrival (Fig. 11b), as well as the customary mean number of users at Node 1. Note that the effect of

higher-order distributional properties remains significant (especially for n̄A
1(N)) as the number of users in the system N

increases.

Overall, it is clear just from the two simple models considered in this paper that the performance of closed queueing

networks with non-exponential servers is sensitive not only to the first two moments of the service time distributions

but also, and in many cases to a large degree, to higher-order properties of those distributions. In general, the larger the

service time variability the more important the higher-order properties appear to be. The results presented so far, given the

particular form of the distribution used, viz. Cox-2, do not allow us to determine the individual importance of the skewness

and kurtosis. We briefly address this question in Appendix A.3.
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4. Conclusion

In this paper we have examined the influence of the service time distributions on the mean number of users at each

node and the server utilization levels, as well as the degree of departure from the Arrival Theorem for two simple closed

queueing networks. These networks depart only minimally from the product-form structure since only one node has non-

exponential service times. Our results indicate that higher-order properties of the service time distribution, beyond the first

two moments, may have an important effect on both steady-state properties and the state found upon arrival.

The observeddependence onhigher-order properties clearly shows that approximations limited to the first twomoments

of the service time distribution may be highly inaccurate. Our results suggest that the effect of higher-order properties of

the service distribution tends to increase as the service time variability increases. The amplitude of the departure from

the Arrival Theorem also tends to increase under similar conditions. As the number of users in the system increases, the

deviation from the Arrival Theorem tends to decrease although it can remain significant even for larger numbers of users.

The influence of higher-order distributional properties on the state found upon arrival (and on the mean number of users)

persists for larger values of the number of users in the system.

Results not shown in this paper confirm that the Arrival Theorem may be a good approximation when the service time

distributions have a coefficient of variation of less than one [13,19]. However, in closed networks of queues with high-

variability service time distributions, the Arrival Theoremmay be totally wrong. The degree of departure from the theorem

varies with the level of server utilization but there appears to be no obvious and simple relationship one can establish

between the two. For some distributions the discrepancy is most obvious in the middle range of server utilization, while for

others itmay increase as the server utilization increases.Moreover, the ratio n̄1(N−1)/n̄A
1(N)may be greater or smaller than

one depending on the distribution and the server utilization or the number of users, so that no systematic bias or correction

can be easily established. It appears that the relative deviation from the Arrival Theorem tends to be more important for

distributions with lower skewness values.

Our results show that, unlike what happens for the open M/G/1 queue, in a closed queueing network, the dependence

on higher-order properties may be important even for the mean queue length at a node with a single server (the fact that

higher-order properties matter in the open M/G/c queue is generally known). Mean queue lengths, server utilization, and

the state found upon arrival may be radically different for two service time distributionswith the samemean and coefficient

of variation but different higher-order moments. Since the state upon arrival has a direct influence on the quality of service,

our results have clear implications for performance studies in this domain.

One could argue that in real life it is difficult to know the coefficients of variation of many service time distributions,

much less higher-order properties, so that the fact that various performance metrics may exhibit strong dependence on

properties of higher order can be safely overlooked. We believe, however, that it is important to realize that, given the

influence of higher-order properties, traditional approximations for non-exponential queueing networks produce results

that cannot be viewed as trustworthy since it is impossible to say which one of the infinitely many distributions with the

given first two moments they might well correspond to. Results not reported in this paper seem to indicate that traditional

approximations fare better in cases when the coefficient of variation is below unity.

An interesting unanswered question is which higher-order properties (skewness, kurtosis or perhaps other properties)

of the distribution aremost important. This determination and a search for improved approximations is the subject of future

research.
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Appendix

A.1. Steady-state probability upon arrival at Node 1

To derive the steady-state probabilities ‘‘seen’’ by a request arriving from Node 2 to Node 1 in the network of Fig. 1, we

follow a reasoning similar to the one presented by Cooper [38]. The state of the system is described by (j, l2, n) where n is

the current total number of customers at Node 1, l2 is the number of Node 1 customers in the second stage of their Coxian

service time, and j is the current service stage at Node 2. The rate of request arrivals from Node 2 to Node 1 when this state

is in effect corresponds to the rate of departures from the server at Node 2, i.e. μ2jq2j. Hence, the rate of arrivals to Node 1

when there are n requests at this node can be expressed as

k∑

j=1

μ2jq2j

min(c,n)∑

l2=0

p(j, l2, n).

The overall rate of departures from Node 2, corresponding to all possible system states, can similarly be expressed as

∑

l<N

k∑

j=1

μ2jq2j

min(c,l)∑

l2=0

p(j, l2, l).
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1μ 2μ

q1

Fig. 12a. A Coxian distribution with two stages.

2μ1μ 3μ

q1 q2

Fig. 12b. A Coxian distribution with three stages.

Thus, the probability that a request leaving Node 2 finds n requests at Node 1 is seen to be

PA
N(n) =

k∑
j=1

μ2jq2j

min(c,n)∑
l2=0

p(j, l2, n)

∑
l<N

k∑
j=1

μ2jq2j

min(c,l)∑
l2=0

p(j, l2, l)

.

A.2. Selection of the parameters of a Cox-2 distribution given values for mean, coefficient of variation and skewness

Denote by (m, cv, skew) the vector of the desired values of mean, coefficient of variation and skewness for a Coxian

distribution.We describe a simplemethod to select the parameters of amatching Cox-2 distribution of the type represented

in Fig. 12a. Such a Cox-2 distribution has three parameters, i.e. μ1, μ2 and q1.

Let γ be a real-valued parameter between 0 and 1. For a given mean m and coefficient of variation cv, the parameters

μ1, μ2 and q1 of the Cox-2 distribution can be set as follows:

μ1 = 1/γm

q1 = 1− 2(1− γ )2/(cv2 + (1− γ )2 − γ 2)

μ2 = p2/m(1− γ ).

For different feasible values of γ , the resulting Cox-2 distribution will have a different skewness value. More precisely,

as γ increases, the skewness skew increases as well. Thus, within a certain range, a simple bisection technique allows us

to select the value of γ so that the resulting Cox-2 distribution has the desired skewness. As an example, the distributions

labeled D1 and D2 in Table 1 correspond to values of γ of 0.9 and 0.001, respectively.

However, while it is possible to find a Cox-2 distributionwhosemean and coefficient of variationmatch any given couple

of valuesm and cv (provided the latter is greater than 1/
√
2), the range of attainable values for the skewness is limited and

depends on the value of m and cv. For this reason, having obtained a value for γ , one has to ensure that the specified value

for skewness is feasible. For this, it suffices to check that the resulting value for q1 is indeed between 0 and 1.

For the case of two Cox-3 distributions with the same first three moments considered in Section 4, our procedure is

simply to choose a set of parameters (μ1, μ2, μ3, q1, q2) (see Fig. 12b), then to compute the values for its mean, coefficient

of variation, skewness and its kurtosis, and finally to select a Cox-2 distribution with the same first three moments as per

the previously described scheme.

A.3. Single non-exponential (Cox-3) server at Node 1 and exponential server at Node 2

The results presented in Sections 2 and 3were obtained for Cox-2 distributions, and thus do not allow us to determine the

individual importance of properties such as skewness and kurtosis. The Cox-2 distribution has three degrees of freedom, and

it is therefore impossible to have two Cox-2 distributions with different kurtosis but the same first three moments. Since

in the open M/G/1 queue only the first two moments matter in the determination of the mean number in the system, a

natural question is whether perhaps only the first three moments matter for a closed network or if other quantities come

into the picture. In order to provide an element of answer to this question, we studied a network akin to the one considered

in Section 2.1 but with a Cox-3 distribution at Node 1. As before, the service time at Node 2 is exponentially distributed. Thus

we were able to create two distributions with the samemean, coefficient variation and skewness but different kurtosis (see

Table 2). This network was solved using a semi-numeric recurrence method [2].

The values presented in Table 2 indicate that the dependence on higher-order properties is not limited to the first three

moments since distinctly different results are obtained for distributions with different kurtosis and properties of yet higher

order.
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Table 2
Cox-3 distributions.

First Cox-3 Second Cox-3 Relative differences

Mean 1.0 1.0

Coeff. var. 6.40 6.40

Skewness 2331.54 2331.54

Kurtosis 1.44E07 7.43E06

n̄1(15) 6.34 7.44 17.4%

n̄A
1(15) 5.28 6.93 31.1%
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