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Open tandem networks of queues with finite buffers are useful as models of communication and production systems. In this note, 
we propose a speed up technique for the approximate iterative solution of such networks. The technique relies on a back and forth 
sweep of the network at each iteration so as to accelerate the return of the blocking information to the beginning of the network. 
Experimental evidence shows that a considerable speed up can be achieved, especially for larger networks for which the execution 
time can be virtually cut in half. 

We also propose two variants of an iterative approach to the solution of the two-node cell used as the basic block in the tandem 
network solution. This approach uses directly conditional probability equations, and exploits the particular structure of a two-node 
tandem cell. Numerical results suggest that these two variants can be of particular value when dealing with cells with unbalanced 
buffer capacities. 
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1. Introduction 

Open tandem networks of queues with finite buffers are useful as models of communication and 
production systems, and thus have received wide attention e.g. [1-4, 7, 10]. Various types of blocking 
resulting from the finite buffer space have been considered in the literature; see e.g., [11] for a brief 
description, or [12] for a more in depth discussion. In this note, our emphasis will be on the communica-  
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tions type of blocking where start of service can only occur if and when there is space available in the 
downstream node buffer. In general, blocking precludes local balance properties, so that exact analysis of 
networks with blocking is unavailable except in a few special cases e.g. [3,9]. 

Several authors have proposed approximate solutions based on the idea to consider portions of the 
network at a time [4,7,13]. In particular, the iterative method described in [4] examines the system in pairs 
of neighboring nodes. At each iteration over the network, two-node cells of neighbors are considered, 
allowing to account precisely for potential blocking between the two neighbors. This leads to the generally 
high accuracy of this approximation method. Its computational complexity, although quite manageable, 
does deteriorate with the size of the network. Thus the goal of this note is twofold. Firstly, we propose a 
speed-up technique for the convergence of such an iterative scheme. Then, we discuss alternative 
techniques, based on the use of conditional probabilities, for the solution of the two-node cell invoked 
repeatedly in this iteration. 

Section 2 is devoted to the convergence speed-up technique. In Section 3, we outline the alternative 
solutions for the basic cell of two-nodes. Section 4 summarizes the results of this note. 

2. Speed-up of iteration convergence 

The iterative method proposed in [4] explores the open tandem network of queures with finite buffers in 
pairs of neighboring nodes (see Fig. 1). At each iteration, all pairs of nodes (i, i + 1) are solved (i = 1, 2, 
. . . .  K -  1, where K denotes the number of nodes in the network) (see Fig. 2). In general, the arrival rate 
to the first node in such a pair is taken from the analysis of the preceding pair (i - 1, i), and the service 
rate of the second node is kept from the analysis of the following pair (i, i + 1) performed at the previous 
iteration. The number of iterations required by this method depends on network parameters. It has been 
our experience that, in larger systems (say, of six or more nodes), this number can grow quite substantially 
with the size of the network. Observation of the convergence pattern of this iterative scheme seems to 
indicate that blocking properties of the more remote nodes tend to take a long time to propagate to the 
lower numbered nodes. This suggests that improvement in convergence speed might be achieved by 
altering the order in which the pairs of stations are explored so as to 'force' a faster return of the blocking 
information from the remote nodes. 

Based on this, we propose to modify the scheme as follows. At each iteration, we 'sweep the network 
back and forth ', i.e., we consider the pairs of stations (i, i + 1), for i = 1 . . . . .  K -  1 as previously, and then 
pairs ( j ,  j + 1) for j = K -  2, K -  3, . . . ,  2. In other words, once we have reached the last pair of nodes in 
our forward 'sweep', we reconsider inner pairs of nodes in the reverse 'sweep '. As an example, in a network 
with K = 5 nodes, at each iteration we would thus solve pairs of nodes (1,2), (2,3), (3,4), (4,5), and then 
again (3,4), and (2,3) (see Fig. 3). By doing so, in the solution of the pair (3,4) on the reverse 'sweep', the 
service rate of node 4 includes updated blocking information from the solution of (4,5). Similarly, the 
solution of (2,3) incorporates new information and also propagates it back in the form of the service rate 
that will be used for the pair (1,2) at the next iteration. As pointed out by a referee, a similar idea of 'back 
and forth sweep' has been independently used by Gershwin [8]. 

Clearly, the network must consist of more than 3 stations for this scheme to differ from that described 
in [4]. Also, in comparing the two schemes, we must keep in mind that the 'back and forth sweep' implies 

ni ]~i(ni) n i+l  ~i-I- 1 (hi-I- 1 ) 

Mi Mi+1 
Fig. 1. A basic cell of two nodes. 
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Fig. 2. Iteration of [4] in a network with 5 nodes. 

that a larger number of basic two-node cells are solved at each iteration. Therefore, we use the number  of 
basic cell solutions (and not the number of iterations) as a measure of actual convergence speed of the two 
schemes. We have studied a large number of examples of networks ranging from 4 to 20 nodes. The 
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Fig. 3. Iteration with back and forth sweep for a network with 5 nodes. 
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T a b l e  1 

Se lec ted  n e t w o r k  p a r a m e t e r s  

B l o c k i n g  L e v e l  K e y  N o .  o f  N o d e s  N o d e  C a p a c i t i e s  Se rv i ce  R a t e s  

L o w  1 4 M 1 = M 2 . . . . .  4 

2 8 M 1 = M  2 . . . . .  4 

3 12 M I = M  2 . . . . .  4 

4 16 M I = M  2 . . . . .  4 

5 20 m ~ = m  2 . . . . .  4 

M e d i u m  1 4 M I = M  3 = 4 ,  M 2 = M  4 = 2  

2 8 M I = M  3 . . . . .  4, M z = M  4 . . . . .  2 

3 12 M I = M  3 . . . . .  4, M 2 = M  4 . . . . .  2 

4 12 M I = M  3 . . . . .  4, M 2 = M  4 . . . . .  2 

5 20 M I = M  3 . . . . .  4, M 2 = M  4 . . . . .  2 

H i g h  1 4 M l = M 3 = Z ,  M z = M 4 = l  
2 8 M I = M  3 . . . . .  2, M z = M  4 . . . . .  1 

3 12 M i = M  3 . . . . .  2, M z = M  4 . . . . .  1 

4 16 M ~ = M  3 . . . . .  2, M 2 = M  a . . . . .  1 

5 20 M 1 = M  3 . . . . .  2, M 2 = M  4 . . . . .  1 

~tl = /~2  . . . . .  1.1 

#1 = ~ 2  . . . . .  1.1 

~1 =Jz2  . . . . .  1.1 

~h = /~2  . . . . .  1.1 
btl = /L  2 . . . . .  1.1 

btl = ]L 3 = 1.0, pt 2 = hi,4 = 0.8 

~1 = bt3 . . . . .  1.0, J.t 2 = ~4 . . . . .  0.8 

bta = #3 . . . . .  1.0, ~2  = 1 £ 4  . . . . .  0.8 

]L 1 = ~t 3 . . . . .  1 . 0 ,  ~ 2  = ]£4 . . . . .  0.8 

/~1 = /~3  . . . . .  1 .0 , /~2 = /L4  . . . . .  0.8 

/~1 = ~ 3  = 1 . 0 , / ~ 2  = P.4 = 0.2 

/ h  = / ~ 3  . . . . .  1 . 0 ,  ,tl, 2 = 111, 4 . . . . .  0.2 

/h  = /~3  . . . . .  1.0, }1,2 = ~ 4  . . . . .  0.2 

#1 = ]L3 . . . . .  1.0, bt2 = bt4 . . . . .  0 .2 

# 1 = # 3  . . . . .  1.0, #2  = bt4 . . . . .  0 .2 

network parameters used, as well as the level of blocking in the network, are described in Table 1. The 
parameters include the arrival rate to the network, and the capacities and service rates for each node. 
Table 2 compares the corresponding number of solutions of basic two-node cell required to achieve the 
same accuracy by each of the two iterative schemes considered. We observe that the proposed 'back and 
forth sweep' consistently outperforms the method of [4]. The performance advantage grows rather rapidly 
with the number of nodes in the network. For larger networks, the number of basic cell solutions can be 
reduced by a factor of two or three. As a final points in this section, note that the computer program 
implementation of the 'back and forth sweep" represents a minimal programming change as compared to 
the orginal scheme of iteration. 

T a b l e  2 

C o m p a r i s o n  o f  t w o  i t e r a t i ve  m e t h o d s  

B l o c k i n g  Leve l  K e y  I t e r a t i o n  o f  [4] I t e r a t i o n  u s i n g  ' b a c k  a n d  f o r t h '  s w e e p  

N u m b e r  o f  Ca l l s  a N u m b e r  o f  Ca l l s  a 

L o w  1 18 13 

2 105 61 

3 385 141 

4 735 253 

5 1349 397 

M e d i u m  1 15 13 

2 126 85 

3 341 201 

4 870 337 

5 1197 541 

H i g h  1 18 17 

2 91 61 

3 297 201 

4 540 337 

5 779 577 

" Ca l l s  to  s o l u t i o n  o f  ba s i c  t w o - n o d e  cells. 
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3. Alternative solutions for a two-node cell 

It is apparent from Table 2 that the iterative solution of a tandem network may involve a large number 
of solutions of a basic two-node cell. Since, the exact analytical solution of such a cell is not available in 
general, some type of numeric approach or approximation has to be used. It  has been our observation that 
for larger networks the accuracy of the solution of these two node cells can be of crucial importance in the 
overall interative scheme. In particular, an inaccurate basic cell solution can actually slow down, or even 
preclude overall convergence. This puts into question the suggested use of approximations for the solution 
of a basic cell (cf. [4]), and emphasizes the need for a numerically fast and accurate approach. 

[4] suggests the use of an iterative method developed for two-dimensional birth and death processes [5] 
to handle the solution of a basic cell. Our experience shows that this method tends to be slow when the 
queue capacities of a cell are strongly out of balance. It is possible to design a solution approach which 
works especially well in such cases. 

Note that, in the iterative solution of the tandem network, conditional probabilities of the state of a 
node given that of its neighbor are used to obtain the equivalent arrival and service rates (cf. [4]). The 
solution of cell (i, i + 1) must produce the equivalent arrival rate to node i + l ,  

x,+,(n,+,)= E (1) 
nt>0 

as well as the equivalent service rate for node i, 

E P { , , + , l , , }  (2) 
~li+l ~mt+l 

Hence, a solution that directly produces conditional probabilities is of interest. Note from the familiar 
balance equations for the basic two-node cell (cf. [4,6]), it is relatively simple to obtain equations for both 
conditional probability distributions. For P{ ni+ 1t ni } we get 

P(  n,+, [ni } = D.  X , (n , )  . P{ n,+, - I In, + I } / [ 1 -  P{  M,+ ' I n , +  1}] 

+ E .  P{ni+ , I n , -  1} . l~i(n,) • [1 - P(  M,+ 1 In,}]  

+ F .  P (  hi+ 1 q- l In i } .  u,+,(ni+ 1 + 1) (3) 

where A = B = C = D = E = F =  l / g "  with 'it' = [A • Xi(ni) + B-p.~(n~) + C-/~/+l(n~+ l)], except 

A = 0  f o r n  i = M  i, D = 0  f o r n  i = M , ,  and n i+ 1=0 ,  

B = 0  for hi=O, and ni+ 1 =Mi+l ,  E = 0  for ni=O,  

C = 0 for ni+ 1 = 0, F = 0 for rt 2 = M 2 .  

Considering these equations in the order of increasing n, for (n~ = 0, 1 . . . . .  M~), we can solve them 
iteratively as (Method I) 

P J{ ni+i[n , } = D.  ~.i(ni) .  p j - l {  n i + l  __ l [ n i  q- 1} / [1  -- p j - l {  Mi+, in i + 1 }] 

+ E . P J { n , + ,  In, - 1 } . / , , ( n , ) .  [1 - PJ{Mi+ 1 In,}] 

+ F .  P J{ ni+ , + l ln, }" u,+,(n,+~ + 1) (4) 

where the superscript j denotes the iteration number. Note that, for each n~, we view the equation as a 
simple one-step recurrence for P{n i+ l in i } .  When convergence has been attained, the other conditional 
P{ni ln i+ 1 } can be found using 

P { n , }  . P ( n , + l [ n , }  
P{' , l ' ,+ l}  = M, (5) 

E P{.,} I.,} 
hi=0 
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where P{ n~ } can be found using the standard relation implicit in the equivalence 

P { n , + l }  ~. i (n i )  M, 
with E P { n , }  = 1 (6) 

P { n i )  u i (n i  AV1) hi= 0 

where ui( ni) = izi( ni) . P{  ni+ 1 < Mi+ 1 I ni}.  
Alternatively, for P{ n~ln,+ 1 } we have the following set of equations 

P{ n, [ n i +  1 } = D .  P{ n, + l ln,+ 1 - 1}- /Li(n ~ + 1) .  Ui+l (n i+a) /~ . i+ l (n ,+ l  -- 1) 

+ E .  P {  n , -  1[ n,+l } + F .  P{  n, ] h i +  1 + 1}" X i + l ( n i + l )  (7) 

where A = B = C = D = E = F =  1/ko with ,/t = [A • ~.i(n,) + B .  l~,(ni) + C .  Ui+l(r t ,+ l ) ] ,  except 

A = 0  f o r n i = M i  D = 0  f o r n i = M , ,  and h i + l = 0 ,  

B = 0  forn  i = O ,  and n,+ 1=M,+1 ,  E = 0  f o r n , = 0 ,  

C = 0  for ni+ 1 = 0 ,  F = 0  for n 2 = M  r. 

Considering this set in the order of increasing n~+ 1, we can solve it iteratively as (Method II) 

PJ{n,  ln ,+ , }  = D . P J { n , +  l ln,+ 1 -  1 } . g i ( n , +  1 ) - u i + l ( n i + a ) / X i + l ( n i +  1 - 1) 

+ E .  PJ{ n i -  1In/+ a} + F .  p j - l {  n, ["i+1 + 1 } . ) t i + l ( , i + l )  (8) 

where the superscript j denotes the iteration number. Note that, here, we view the equations as a 
recurrence for P(  niln~+ 1 ), for each value of n,+l = 0 . . . . .  Mi + 1. 

Table 3 
Comparsion of alternative solutions of a two-node cell 

Blocking Level 2~ /& M1 #2 M2 GCM [4,5] Method I Method II 

Low 1.0 1.0 2 1.0 2 0.28 0.12 0.18 
1.0 1.0 2 1.0 5 1.48 1.18 0.34 
1.0 1.0 2 1.0 10 5.80 5.60 0.60 
1.0 1.0 2 1.0 20 18.60 18.40 1.40 
1.0 1.0 5 1.0 2 0.74 0.30 0.92 
1.0 1.0 10 1.0 2 3.60 0.60 3.80 
1.0 1.0 20 1.0 2 10.00 1.00 21.00 
1.0 1.0 5 1.0 5 2.72 2.64 2.64 
1.0 1.0 10 1.0 10 24.20 33.60 24.40 

Medium 1.0 1.0 2 0.8 2 0.24 0.16 0.18 
1.0 1.0 2 0.8 5 1.54 1.24 0.34 
1.0 1.0 2 0.8 10 8.00 7.40 0.80 
1.0 1.0 2 0.8 20 38.80 37.60 1.60 
1.0 1.0 5 0.8 2 0.62 0.32 0.92 
1.0 1.0 10 0.8 2 2.60 0.60 3.40 
1.0 1.0 20 0.8 2 5.80 1.20 18.80 
1.0 1.0 5 0.8 5 2.68 2.60 2.28 
1.0 1.0 10 0.8 10 23.20 28.80 17.40 

High 1.0 1.0 2 0.4 2 0.24 0.12 0.16 
1.0 1.0 2 0.4 5 1.26 1.12 0.34 
1.0 1.0 2 0.4 10 4.00 5.00 0.60 
1.0 1.0 2 0.4 20 8.60 15.60 1.20 
1.0 1.0 5 0.4 2 0.74 0.28 0.94 
1.0 1.0 10 0.4 2 1.20 0.60 2.40 
1.0 1.0 20 0.4 2 1.60 1.00 11.00 
1.0 1.0 5 0.4 5 1.80 2.12 1.64 
1.0 1.0 10 0.4 10 6.60 15.40 12.80 
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Fig 4 Comparing convergence times of methods I and I I  

[ I I I I 
2 4 6 8 10 

B u f f e r  S i z e  o f  S t a t i o n  1 

We have not succeeded in establishing theoretically the convergence properties of these two iterative 
solutions. In the many examples considered in practice, we have found that Method I works particularly 
well when the buffer size at the first node is larger than the buffer at the second node of the pair: the more 
unbalanced the buffer sizes, the faster the convergence• Method II tends to exhibit just the reverse 
properties. Its convergence is fastest when the second node buffer is larger than the first node buffer• 

Table 3 illustrates the convergence speed of both methods as measured by the execution time required 
to achieve a given equivalent level of accuracy. For comparison, we also report the time required to solve 
the same basic cell using the iterative method mentioned in [4] whose theoretical convergence is guaranteed 
(referred to as GCM). The results in Table 3 have been obtained using distributions with all states equally 
probable as the starting point for the iteration. Other starting points have been tried without major impact 
on convergence speed (cf. [6]). Fig. 4 shows graphically the convergence behavior of the methods 
considered as a function of the station buffer sizes for a set of parameters  corresponding to medium level 
of blocking. We observe that, for large and balanced cells, G C M  can be faster than Methods I or II. 
However, for unbalanced cells, Methods I or II  outperform GCM. The time required to solve a cell can 
actually be reduced by an order of magnitude• 
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4. Conclusions 

We have presented  a speed up technique for the i tera t ive  so lu t ion  of  open  t a n d e m  networks  of  queues. 
The  technique relies on a back  a n d  f o r t h  sweep  of the ne twork  at  each i te ra t ion  so as to f o rce  a faster  
re turn  of the b locking  informat ion .  Exper imenta l  evidence shows that  a cons iderab le  speed up can be 
achieved, especial ly for larger  ne tworks  for  which the n u m b e r  of bas ic  cell so lu t ions  can be v i r tua l ly  cut  in 
half. Al though  this speed up technique is ta rge ted  here for the i tera t ive  scheme of  [4], it  is qui te  l ikely that  
it is app l icab le  to other  similar  i terat ive solutions.  

We have also p roposed  two var iants  of  an i terat ive a p p r o a c h  to the so lu t ion  of  the two-node  cell used as 
the basic  b lock in the i te ra t ion  of  [4]. This a p p r o a c h  uses d i rec t ly  cond i t iona l  p robab i l i t y  equat ions,  and  
results in a relat ively s imple c o m p u t a t i o n  owing to the pa r t i cu la r  s t ructure  of  a two-node  t andem cell. 
Numer ica l  results suggest that  these two var iants  can be  of  pa r t i cu la r  value  when dea l ing  with cells with 
unba lanced  buffer  capacit ies .  

As suggested by  a referee, add i t iona l  improvemen t  in the convergence  speed of  the i terat ive solut ion of 
the whole t andem ne twork  can be  achieved by  re ta in ing  the p r o b a b i l i t y  d i s t r ibu t ion  c o m p u t e d  for each 
two-node  cell i terat ion,  and  using it as the s tar t ing po in t  for the i tera t ive  so lu t ion  of that  cell dur ing  the 
next  sweep.  The extent  of  the add i t iona l  improvemen t  can be  s ignif icant  (e.g., a fac tor  of two in the overal l  
compute  t ime to solve a network).  The  d rawback  of  this approach ,  however,  is the amoun t  of  s torage 
required to re ta in  the state p robab i l i t y  d i s t r ibu t ions  for  all pai rs  of  ne ighbor ing  nodes.  
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