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A Finite Difference Equations Approach to a 
Priority Queue 

ALEXANDRE BRANDWAJN 
Amdahl Corporation, Sunnyvale, California 

(Received March 1979; accepted September 1981) 

The main goal of this note is to demonstrate the use of a direct approach, as 
opposed to generating functions, for solving balance equations of a queueing 
system whose state is described by two independent variables. The basic 
idea is to consider a function of two variables as a set of functions of one 
independent variable. Hence the balance equations may be viewed as a set 
of simultaneous difference equations, and solved using the appropriate tech- 
niques. This method may allow the inclusion of queue-dependent service and 
arrival rates, and an easy treatment of finite queueing rooms. This is illustrated 
in the example of a two-level preemptive priority queue with exponentially 
distributed interarrival and service times. 

THE STATIONARY BEHAVIOR, with respect to the numbers of 
customers at service facilities, of many queueing systems may be 

mathematically described by a set of finite difference equations. This is 
the case not only for systems with exponentially distributed interarrival 
and service times, but also for systems with general distributions if such 
distributions are approximated (as may be done with arbitrary accuracy) 
by a finite number of exponential "stages" (Cox [1955]). For finite 
difference equations with more than one independent variable no general 
solution is known (Jordan [1965]), even when the coefficients in the 
equations are constant, i.e. when the instantaneous service and arrival 
rates do not depend on current system state. Therefore, unless such a 
queueing system belongs to the "product-form" (or "separable") class of 
systems (Baskett et al. [1975]), its solution must be sought on an individ- 
ual basis. The method that is used almost exclusively by researchers in 
such cases is the generating functions method (Jordan). This method, 
however, is but one of several possible approaches to the solution of finite 
difference equations (see Boole [1970], and Jordan), and despite its 
advantages, it has several drawbacks. Specifically, it is not well-suited to 
state-dependent systems (equations with variable coefficients); it is often 
more difficult to apply to finite population systems than to systems with 
infinite population; and, most importantly, the generating function, once 
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obtained, must be inverted. This last may turn out to be very difficult. 
To quote Boole (p. 277), "It must be borne in mind that the discovery of 
the generating function is but a step toward the solution of the difference- 
equation, and that the next step, viz. the discovery of the general term of 
its development by some independent process, is usually far more difficult 
than the direct solution of the original difference-equation would be." 

The main goal of this note is thus to demonstrate the use of an 
alternative approach whereby one attempts to solve the difference equa- 
tions directly. The queueing system considered is a two-level priority 
queue, level 1 customers having preemptive priority over level 2 cus- 
tomers. The interarrival and service times are assumed to be exponen- 
tially distributed random variables, the arrival and service rates for level 
2 customers depend upon that level's queue length. A preempted level 2 
customer resumes service only when the higher priority queue becomes 
empty, and the service discipline for each level is first-come-first-served. 
If the service and arrival rates are constant, the system described is 
classic (Saaty [1961], Jaiswal [1968]). The treatment of queue-dependent 
rates is a new result. 

Denote by ni and n2 the respective current numbers of level 1, and 
level 2 customers in the system. We denote by Xi and It the constant 
arrival and service rates for level 1 customers, and by X2(n2) and /2(f2) 

the queue-dependent arrival and service rates for customers of level 2. 
Let p(n1, n2) be the stationary joint probability distribution (if it exists) 
for the numbers of customers at each priority level. The system balance 
equations are readily obtained as: 

lip(ni + 1, 0) - [A1 + A2(0) + yti]p(n1, 0) + Aip(ni - 1, 0) = 0, (1) 

n = 1, 2, ... 

ttip(ni + 1, n2) - [Xi + X2(n2) + tii]p(ni, n2) + Xip(n, - 1, n2) (2) 

+A2(n2-1)p(nl,n2-1)=0, ni=1,2, *..; n2=1,2, 

111p(l, 0) - [Ai + A2(0)]p(O, 0) + tL2(1)p(O, 1) = 0; (3) 

Itp(l, n2) - [Xi + X2(n2) + L2(n2)]p(0, n2) + X2(n2 -1) (4) 

*p(O, n2-1) + X2(n2 +1)p(O, n2 + 1) = 0, n2 = 1, 2, 

These equations must be complemented by the normalizing condition 

Enln2 p(ni, n2) = 1. 

In the next section we present a direct solution method, and outline its 
application to the set of difference equations (1)-(4). We also consider 
the case where the queueing room is finite. 

Section 2 is devoted to a brief discussion of the classic system with 
constant arrival and service rates. We conclude by summarizing the 
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advantages and drawbacks of the direct solution method presented, and 
we indicate a few queueing problems to which it may be applied. 

1. THE SOLUTION METHOD 

The unknown probability distribution p(ni, n2) is a function of two 
independent variables: ni and n2. The basic idea of the direct solution 
method presented here is to consider such a function of two variables as 
a set of functions of one variable. In our case it is convienient, as will be 
seen shortly, to choose ni as this variable, and to use n2 as an index to 
identify the function. We thus consider instead of p(n1, n2) a set of 
functions Pn2(nli). We have, of course, 

Pn2(ni) = p(ni, n2), ni = 0, 1, ...; n2 = 0, 1, * . (5) 

Using (5) one may regard the difference equations for p(n1, n2) as a set 
of simultaneous difference equations for the functions of one variable 
Pn2(nli). Such simultaneous equations can often be solved by simply 
eliminating all the functions but one, and solving the resulting differences 
equation for that function (Jordan). In our case, things are even simpler. 
Equation 1 involves, without any elimination, only one function, viz. 
po(ni), and may easily be solved since with respect to our independent 
variable ni its coefficients are constant. Then, thepn2(n1) for consecutive 
values n2 = 1, 2, - * may be computed using (2) since it involves only the 
functions pn2(nli) and pn2-l(ni) which are already known. 

If you consider difference equations for a function of two variables as 
a set of simultaneous difference equations for a set of functions of only 
one variable, this results in an approach similar to Boole's symbolic 
method for solving partial difference equations. 

Let us now introduce the following operators, using the notations of 
Jordan. E, the operator of displacement Ef(x) = f(x + 1); A, the operator 
of difference Af(x) = f(x + 1) - f(x); and A', the operator of indefinite 
summation A14i(x) = f(x), if Af(x) = 4(x). Equations 1 and 2 may now be 
rewritten in the following form 

4o(E)po(n) = 0, n1 = 0, 1, ... (6) 

,(E)pn2(ni) = -A2(n2 - 1)Epn2-1(n1), (7) 

n =O,1, - , and n2 1,22 ... 

where 4Pn2(E) = -E2 _ [A1 + A2(f2) + [t1]E + Ai, for n2 = 0, 1, 
The general solution of a homogeneous difference equation with con- 

stant coefficients 

/n2(E)p,(ni) = 0, (8) 

may be expressed in terms of the roots of the characteristic equation 
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{n,(r) = 0. The roots of this quadratic equation are rl,2(n2) = (A1 + 
A2(n) + y1 ? F(n))/(2ttl), where 6(n2) = [A1 + A2(n2) + ii]2 - 4k1A1. The 
general solution of (8) is of the form 2=I diri", where the di are arbitrary 
constants. Since po(n1) must tend to zero as nli -> oo, we reject the root 
r1(O) which is greater than unity, i.e. we set d1 to zero. When the remaining 
root, r2(0), is less than unity, i.e. 

(A1 + A2(0) + ti - + A2(O) + 0j2-4,1AP/(2tt1) < 1, 

the solution of (6) may be expressed as 

po(ni) = Co[r2(O)]n', ni = 0, 1, *. . (9) 

Co is an "arbitrary" constant, to be determined from the left-out equations 
(Eqs. 3 and 4, and the normalizing condition). 

The solution of (7) is obtained as a sum of the general solution of a 
homogeneous equation (Eq. 8) and a particular solution of the whole Eq. 
7 (see Jordan). Such a particular solution may be obtained as a result of 
the operation (see Jordan, p. 558) 

-((X2(n2 -I)E)/(4' 2(E)))pn2_i(n). (10) 

When the function 
pn2_I(ni) 

is of the form >j 
gja',' 

where gj and aj are 
constants, (10) yields >j gj[-((A2(n2 - 1)aj)/6(P2(aj)))a7'] (see Jordan). 
Given (9) and the general solution of (8) it is clear that Pn2l(nli) is of 
the form considered. 

Using the fact that 4k(r2(k)) = 0, and hence 

2(r2(k)) = r2(k)[A2(k) -A2(n2)], (11) 

we obtain as a particular solution for n2 =1 

A2(0)/(A2(1) - A2(0))CO[r2(0)]n'. 

Leaving out again the root ri(1) we have the following general solution 

p1(n1) = C1[r2(1)]p' + (A2(0)/(A2(1) -2(0MCo[r2(0)]n, 

where Ci is an "arbitrary constant," and r2(1) must be less than unity. 
It is not difficult to see that in general we have 

Pn,(n1) - O2= CQr2(i)]n' fJ=i1 (A2(j)/(A2(j + 1) - A2(i)), (12) 

ni =0, 1, *,n2 = 0 1, * 

This solution exists only if 

r2(n2) < 1, for all n2. (13) 

It is easy to show that (13) is equivalent to the simple condition Xi < [ti. 
This is in accordance with the preemptive priority of level 1 customers. 
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The constants C,12, n2 = 0, 1, *.. , have to be determined using Eqs. 3 
and 4 and the normalization condition which may impose yet other 
conditions for the existence of the steady-state probabilities. 

In our case the following approach to the determination of the C.2 
seems attractive. From the system balance equations the stationary 
marginal probability of the number of level 2 customers may be expressed 
as p(n2) = H _ll2 X2(k - 1)/u(k), where u(n2)) = A2(n2)p(nl = 01n2). 
For each value of n2 the conditional probabilities p(n, j n2) must sum to 
unity. Define a set of new constants G,2 with CG2 = p(n2)Gn2. From (9) we 
obtain Go = 1 - r2(0). In general, using (12), we get Gn2 = fn2(l- 

r2(n2)), where f,% is determined from the following recurrence rela- 
tions fk = (1 + gk(1 - r2(k))/hk) withgk = EJo tkm hk = 1 - iO' (1 - 

r2(i))tk,i and tki given by tk,i = fi fjL ((A2(I + 1))/(X2(j + 1) - 

X2(i))) HjAtg2 p(n, = 0 11+ 1). We have p(n, = 01k) = Gk/hk and fo = 1. 
The remaining constant H may be expressed as H = {1 + 

Zn2 =1 f[k-l X2(k - 1)/u(k)}1. 
Let us now consider the case when there is a finite queueing room of, 

say, N2(N2 - 1) positions for customers of level 2. This may be accounted 
for by simply setting X2(n2) = 0 for n2 = N2 in (7). With this convention 
(12) remains valid for all n2 = 0, 1, . .. , N2. 

In the case when there is a finite queueing room N1 for customers of 
level 1, Eqs. 6 and 7 are valid only up to ni = A1 - 1. For ni = N1 a 
boundary equation must be added: 

-[X2(0) + A1]po(N1) + Xipo(N1 - 1) = 0, for n2 = 0, (14) 

and 

-[R2(n2) + ttl]p%2(N1) + X1pn2(N1 - 1) (15) 

-X2(n2 - 1)p%2_(N1), for n2 = 1, 2, . 

Since the maximum value of ni is now finite, both roots of the 
characteristic equation, r1(n2) and r2(n2), have to be present in the general 
solution of the homogeneous equation (8). This yields for n2 = 0, 

po(ni) = Bo[ri(O)]nl + Co[r2(O)]nl, ni = 0, 1, ** , N1, and in general 
po(ni) = X f2O {Bir1(i)]n' + Ci[(i)i)fl} JJ=fl ((X2(j))/(X2(j+ 1) -A2(i))) 

The new "arbitrary" constants BA are disposed of so as to satisfy the 
boundary equations (14 and 15), and the remaining Ci's are determined, 
as previously, from Eqs. 3 and 4 and the normalization condition. 

As a final point, note that the solution (12) can only be used directly if 
no two arrival rates to level 2, X2(n2), are identical. (This is evident from 
the very form of (12) and also from (10) with (11).) 

In the next section we briefly discuss the application of the solution 
method presented to the case where X2(n2) is a constant. 
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2. SOLUTION WITH CONSTANT ARRIVAL RATES 

When the arrival rate to level 2 is constant (A2) Eqs. 6 and 7 become 
4'(E)po(ni) = 0, n1 = 0, 1, 

* ; and 

4'(E)p,9(ni) =-A2Epn,2-(ni), ni = O 1, --, (16) 

where AP(E) = uE_- (,1 + A2 + ,a) E + A1. 
The corresponding characteristic equation A(r) = 0 has two roots ri 

and r2. po(ni) is obtained in the same manner as in Section 2 (rejecting 
r1), po(ni) = Cor2 , ni = 0, 1, ... The following pn2(nli) have the form 
(from 16)) 

Pn2(fli) = Cn2r 
n 

+ un2(1), nli = 0, 1, n , *X2 = 1, 2, ., 

where un2(ni) is a particular solution of the nonhomogeneous equation 
(16). 

As previously, the C. have to be determined from the boundary 
equations and the normalization condition. 

However, unlike in Section 2, formula (10) cannot be used directly to 
determine a particular solution un2(n1) of (16) since its denominator 
vanishes (41(r2) = 0). Instead of (10) we may use a partial fraction 
decomposition derived from it (see Jordan, p. 565) 

un (n ) I, birnl-' A-1[r' pn2i(f)] 

where the rid's are the roots of A(r) = 0, and 

bi= 1/[d 4(r)/dr]r=r,. (17) 

Equation 17 yields b1,2 = [(X1 + A2 + UL)2 - 4Xli]'1/2 = ?b, and 
we obtain for n2 = 1, pi(n) - Cir2 + A2bCon1r2 . Denoting by ni(m) - 

ni(n - 1) (n1 - m + 1) the factorial of degree m of n1, with n? - 

1, and n(l) n_, and using the fact that l\-n(1M) = n(M+1)'/(m + 1), and 

A1-l[anln(m)] = afnl/(a-1) >m o (a/(a - 1))k (m!/(m - 
k)!)ni (mk) 

one can derive the pn,(ni) for following values of n2. 

p2(nl) = r ntC2 + Ci(A2/b)n '} + CO(A2/b)2[(ni + 1)(')/(ri/r2 - 1) 

+ (n + 1)(2)/2]), 

p3(nl) = r2n{C3 + C2(G2/b)ni(l) + Cl(A2/b)2[(ni + 1)(')/(rl/r2 - 1) 

+ (ni + 1)(2)/2] + C2(A2/b)3[(ni + 2) 2)/(rl/r2 - 1) 

+ (ni + 2)(3)/(2*3)]}, etc. 

It is interesting to note that Pn2(nli) has the form of a polynomial of 
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degree n2 in ni, multiplied by the exponential factor r n, and that, 
curiously enough, the solution turns out to be more complex when the 
arrival rate A2 is constant than when it is variable. 

It is clear that finite queueing rooms may be taken into account in a 
manner similar to that of Section 2, and do not constitute a particular 
problem for the method employed. 

As a final point, let us note that the generating function for po(ni) is 
>Y =o po(nfl)znl = Co(1 - r2z)-' and is thus consistent with formula (11- 
37) of Saaty which gives the generating function of steady-state proba- 
bilities. 

3. CONCLUSION 

Using the example of a two-level preemptive priority queue we have 
presented a method which allows a direct solution of the system balance 
equations. In this way the often difficult problem of "inverting" the 
generating function is avoided. The method, close to Boole's symbolical 
method, is mainly suited to difference equations with two independent 
variables. It is based on the idea to consider a function of two (in principle, 
also more) independent variables as a set of functions of one variable, 
and hence to consider the given partial difference equations as a set of 
simultaneous equations for this set of functions. The method often allows 
the inclusion of queue-dependent service (and/or arrival) rates, and an 
easy inclusion of finite queueing rooms. (The treatment of a priority 
queue with queue-dependent arrival and service rates for lower priority 
customers presented in this note is a new result.) 

However, the method presented also has drawbacks. Since it yields the 
state probabilities, and these may have complex expressions, the deter- 
mination of expected values for the numbers of customers may be more 
complex than the generating functions approach where differentiation is 
involved. A similar remark holds with respect to the normalizing constant. 
Also, as the reader has probably noticed, the explicit determination of 
the "arbitrary" constants introduced in the process of solution may not 
be easy. Therefore, it may be a good idea in some cases to use this 
method and the generating functions method conjunctly. For instance, 
when the arrival and departure rates for level 2 customers are constant, 
the method of generating functions readily yields the normalizing con- 
stant Co but not the form of the state probabilities. The method discussed 
herein, on the other hand, yields the general form of the latter but the 
determination of Co is much more involved. 

Nonetheless, the method presented is, in the author's opinion, worth- 
while, as it allows an easy, elementary attack of otherwise difficult 
problems. These include, for instance, the G/M/1 and M/G/1 queues 
with correlated arrival and service processes. The basic underlying idea 
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is to use the Coxian representation of a general (well, almost) distribution 
by a finite number of exponential "stages" (Cox). The couple composed 
of the number of the current stage and of the total number of customers 
in the system is then an adequate description of the state of the queue. 
The correlation between arrival and service processes is simply expressed 
by letting the instantaneous rate of the exponential process depend on 
the current stage in the general process. The balance equations for the 
state description defined above are then treated as a finite set (as many 
as there are stages) of simultaneous difference equations with one vari- 
able, viz. the total number of customers in the system. The interested 
reader will find in Brandwajn [1979] a discussion of the application of 
this method to the G/M/1 and M/G/1 queues with both finite and 
infinite queueing rooms. 
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