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An Iterative Solution of Two-Dimensional Birth 
and Death Processes 

ALEXANDRE BRANDWAJN 
Ecole Nationale Sup&rieure des Th1Wcommunications, Paris, France 

(Received October 1976; accepted October 1978) 

This paper presents an iterative, seminumerical method for solving the balance 
equations of finite two-dimensional birth and death processes. The method is 
seminumerical in that it uses the formal knowledge of the stationary probability 
distribution of one variable, and the iteration is applied to the conditional 
probabilities of the second variable given the first one. Sufficient convergence 
conditions for this approach are discussed. An always convergent entirely 
numerical alternative solution is also presented. Empirical results indicate that 
both methods perform, in many cases, several times better (in terms of time 
required) than the commonly used Gauss-Seidel method. Possible generali- 
zations to processes of more than two dimensions are also indicated. 

IN THIS PAPER, we present a seminumerical iterative approach to 
the solution of the balance equations of a finite two-dimensional birth 

and ,death process (in the case of an infinite process, an approximate 
solution can be obtained by truncating at some upper values of the state 
variables). The method (believed to be novel) is based on using the notion 
of equivalence which yields a formal explicit solution for the stationary 
probability distribution of one of the state variables. An iterative tech- 
nique is then used to obtain the probability distribution of the second 
state variable conditioned on the first one. In Section 2 we discuss 
sufficient conditions under which our method converges. These condi- 
tions do not guarantee that the method always converges. Therefore, in 
Section 3 an always convergent, entirely numerical approach is also 
presented. Both methods require roughly the same storage-that for 
storing the vector of probabilities of the state variables. With regard to 
the speed of convergence, the seminumerical method is very fast in many 
cases, while the always convergent method requires a significantly greater 
number of iterations with, however, lower computational complexity. 

The last section is devoted to the results of an empirical study of the 
performances of our methods. In many cases these results indicate 
execution times several times better than those of the commonly used 
Gauss-Seidel iteration. An additional advantage of the methods proposed 
is that at no time can an element of the approximate solution computed 

Operations Research 
Vol. 27, No. 3, May-June 1979 

0030-364X/79/2703-0595 $01.25 
C 1979 Operations Research Society of America 

595 



596 A. Brandwajn 

at an iteration become negative, as may be the case, for example, in the 
over-relaxation method. 

Let us now define the birth and death process considered. We assume 
a process with two variables: ni and n2, taking on the values 0, 1, . .. , N1 
and 0, 1, *.. , N2, respectively. The birth rates are Al (ni, n2) for ni, where 
Xi(N1, n2) = 0, Vn2, and X2(ni, n2) for n2, where X2(n1, N2)- = 0, Vn1, and the 
death rates are pi(ni, n2), where PJ(0, n2) = 0, Vn2, and t2(nl, n2), where 
I2(nl, 0) = 0, Vn1, respectively. 

The balance equations for our process can be written as 

-[A(l(ni, n2) + A2(ni, n2) + IL1(ni, n2) + 102(ni, n2)]p(ni, n2) 

+ X2(ni, n2 - 1)p(ni, n2 - 1) + j2(fln, n2 + 1)p(ni, n2 + 1) 

+ Ai(ni - 1, n2)p(ni - 1, n2) + Pj(ni, n2)p(ni + 1, n2) = 0, 

ni = 0, .O., Ni; n2 =0, ***,& 

where p(n1, n2) denotes the stationary probability of ni and n2, and it is 
assumed that p(ni, n2) = 0 if any of ni or n2 is negative or greater than its 
corresponding maximum value. We assume that such a stationary prob- 
ability distribution exists for our process (see [1] for instance), so that (1) 
has a unique solution which satisfies the normalization condition 

Xn,-o EX=op(ni, n2) = 1. (2) 

In the next section we present a method for obtaining p(ni, n2), which, 
unlike some other numerical methods, does not attempt to solve (1) 
directly, but rather a system derived from (1). 

1. THE METHOD 

We start by noticing that it is easy to obtain, formally, the stationary 
probability distribution for one of the state variables, say ni. This distri- 
bution will be noted p(ni). Indeed, letPpnl(n) be the stationary conditional 
probability of n2 given nl, Pn, (n2) = Prob {n2l ni). It is not difficult to show 
that, at the stationary state, our process has the same probability distri- 
bution p(ni) (i.e., that the process is equivalent with respect to ni ... ) as 
a one-dimensional birth and death process with birth rate 

l(ni) = En'=OPnj(nl2)Xi(ni, n2), n1 = 0, * , N, - 1; (3) 

and death rate 

m(ni) = EN= OPnj(n2)IL1(nl, n2), ni = 1, *.. , N2. (4) 

We shall assume henceforth that these rates are non null (the influence 
of this assumption will be discussed later on). p(ni) is then given by 

p(ni) = 1/G 1nIi l(i - 1)/m(i), n1 = 0, * **, N1; (5) 
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where an empty product is assigned the value + 1, and G is a normali- 
zation constant. 

Now, p(n1, n2) can be expressed as 

p(nli, n2) = p(nfl)Pni(n2). (6) 

Using (6) together with the distribution p(ni) (5) in the balance equations 
of our process (1) we obtain the following equations for the conditional 
probabilities Pnl (n2): 

-[Ai(nli, n2) + A2(nl, n2) + iu(nli, n2) + L2(nli, n2)]pnl(n2) 

+ X2(nl, n2 - 1)pnl(n2 - 1) + u2(nli, n2 + 1)pnl(n2 + 1) 

+ m(nj)X(n - 1, n2)pnj-1(n2)/l(nl - 1) (7) 

+ l(nj)4aj(nj + 1, n2)pnj+l(n2)/m(nl + 1) = 0, 

n1=O, A.Ni; n2=O,@,.. , 

where it is assumed that Pnl(n2) = 0 if any of nli, n2 is negative or greater 
than its corresponding maximum value. 

Equation (7) involves only the birth and death rates of our process and 
the conditional probabilities pnpl(n2). It results from the assumption on 
the uniqueness of the solution of (1) that (7) has a unique solution 
satisfying the probability condition ENZo pn1 (n2) = 1, for all ni = 0, **, 
N1. 

In order to obtain p(ni, n2), the stationary state distribution for our 
process, it suffices, given (6) and (5) with (3) and (4), to compute 
pnl(n2). We thus propose the following iterative scheme for solving 
equation (7). (We use a superscript to indicate the iteration number.) 
Choose initial distributions p?1(n2) so that neither m0(n1) nor 1M(n1) are 
zero (m1(n1) and 11(ni), i = 0, 1, *., are given by (3) and (4) with 
pn (n2) instead of pnl(n2)). 

Starting from ni = 0, solve at iteration i, i = 1, 2, * , 

-[A(nli, n2) + A2(ln, n2) + i(l(ni, n2) + 1t2(ni, n2)]pn1(n2) 

+ X2(nl, n2 - 1)p'1(n2 - 1) + tL2(nl, n2 + l)p'1(n2 + 1) 

(8) 
+ m1(nj)Aj(nj - 1, n2)pn',_l(n2)/l1(nl - 1) 

+ l1(nj)tij(ni + 1, n2)pnil+(n2)/mi-l(n + 1) = 0, 

n2 = 0, ... , N2 - 1; EX=o p', (n2) = 1; (9) 

for consecutive values of nli. 
Note that, for each nli, (8) constitutes a relatively simple recurrence 

relation for the corresponding ptn (n2). In practice, the latter can be 
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computed by letting pX, (n2) = a(n2)pn, (o) + b(n2)m'(n1) + c(n2)l'(nj), 
with a(O) = 1, and b(O) = c(O) = 0. The remaining a(n2), b(n2) and C(n2) 
are determined recurrently from (8), and the three unknowns p'(0), 
m'(nD), and l'(ni) are computed using the normalization condition (9), 
and the definitions for mt(ni) and l'(ni) (i.e., (3) and (4)). Note also that 
(8), (9) guarantee that all thepX,(n2) will be non-negative if this is the 
case for the pn'1(n2). 

It is clear that if our scheme converges, i.e., if limi-,pX,(n2) exists for 
all ni, n2, we have limi pi,(n2) =Pn(l(n2). 

Before giving, in the next section, sufficient conditions for our scheme 
to converge, let us return briefly to the assumption that m(n1) # 0 for nli 
= 1, . .. , N and l(ni) $ 0 for ni = 0, * * *, N1 - 1. This assumption merely 
ensures that p(ni) has the form given by (5). Relaxing this assumption 
would simply modify p(n1) so that equations (8) would have to be 
modified correspondingly. This would not invalidate, however, the basic 
idea of our method-that of computing the pX, (n2) from a simple recur- 
rence relation independently for each n1. 

Finally, note that the storage requirement for our method is quite 
moderate. We essentially need arrays to store the birth and death rates, 
a single array for storing the pX, (n2) computed at each iteration, and also 
some storage for the recurrent computation of pn,(n2), reused for each nli 
(arrays a(n2), b(n2) and c(n2)). The latter storage could be reduced by 
one third if we use m'-'(n1) and l'-'(ni) instead of m'(ni) and l'(ni) in 
(8). The p,(nO), for each nli, can then be expressed as pj(nO) = a(n2) 
pnl(O) + d(n2), with a(O) = 1 and d(O) = 0. Once a(n2) and d(n2) computed 
for all values of n2, pnl(() is determined using (9). In practice, for some 
cases, one may also find convenient to store the m(ni) and l(ni) rather 
than to recompute them using the pn, (n2). 

2. SUFFICIENT CONVERGENCE CONDITIONS 

It is well known from the theory of iterative numerical methods (see 
[2] for example), that a necessary and sufficient convergence condition 
for an iterative scheme of the form 

Xi = f(X-), (10) 

to solve the set of equations: X = f(X) (X is a vector of unknowns), is that 
f(X) satisfies a Lipschitz condition lIf(X') - f(X") 11 C LIIX' -X" 11 with L 
< 1 for every X', X" in the domain where (10) is to converge. 

An upper bound for L may be obtained by considering the norm of the 
Jacobi matrix for f, i.e., the matrix 

Afi/l *OX .... vv fl /aXk 

amk/kleXI *... * afk/lXk 
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where Xi, *.., Xk are the elements of X, and fi, *.., fk denote the 
corresponding equations in f. In our case the functions f are defined 
implicitly by (8), and, as a consequence, the Jacobi matrix, J, whose 
elements are the partial derivatives ap', (n2)/plaP (m2), is the solution of 
the matrix equation 

AJ = B. (11) 

Denote by '5l the Kronecker delta. aS,j an element of the matrix A, 
where s corresponds to (n1, n2) (we shall write symbolically s = (nli, n2)), 
is given by 

[Xdni - 1, N2) - Xi(n, - 1, k2)]mt(nj)Xi(n, - 1, n2) 

- )2 .PP1-l(n2)/[1'(nj - 1)]2 

+ 6k2,n2m1(nl)Xl(n, - 1, n2)/l (n, - 1), 

for t= (ni-1, k2), k2 = O, 1, *.,N2-1; 

[Xi(ni, k2) - Xi(ni, N2)]ll(n, + 1, n2)pnl + 1 (n2)/m -'(ni + 1) 
as,t = + [jjl(ni, k2) - i(ni, N2)]Xl(n1 - 1, n2) (12) 

*p' (n2)/l'(n, - 1) 

- Sn2,N2-_1L2(nl, N2) + h(k2, nl2), 

for t= (n1, k2), k2 =O, 1, .*,N2-1; 

0, otherwise; 

wheren1i=0, . ..,Nl;n2=O, ., N2- 1; 

-[Ai(ni, n2) + X2(ni, n2) + ii(nli, n2) 

+ 12(fn, n2)], if k2= n2; 

h(k2, n2)= X2(nl, n2 - 1), if k2 = n2 - 1; 

1i2(n1, n2 + 1), if k2= n2 +1 and n2 N2-1; 

0, otherwise. 

bs,r, an element of the matrix B, where s = (n1, n2) and r (Ml, m2), ni, 
ml =0, ... N1;n2,m2 =O, , N2-1, isgivenby 

lN(ni)ui(ni + 1, n2) bs,r = Sn +i,m1 min -(n,+1) (13) 

rP nl + 1 (n2) [/Ll(Mi, M2) - IA(m1, N2)] [Pni+1(n2 
MII(2Ml + 1)n,M 
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A sufficient convergence condition is IIJII < 1, i.e., IIA-'BII<`, and, hence, 
a stronger condition 

IIA-'II < IIIJBIJ. (14) 

Equation (14) is of more theoretical than practical interest, since it does 
not seem easy to determine which matrix norm (induced by a vector 
norm) will yield the closest bound for the Lipschitz constant, nor does it 
seem easy to obtain nontrivial bounds on I1A `II without inverting A. We 
note, however, that, in order for (14) to be satisfied, we must have 

JIBIJ < IJAII, (15) 

and this is readily checked if we use, for example, the matrix norm 11 II, 
i.e., the largest sum of the absolute values of the elements of a column. A 
closer look at the elements of A and B indicates also that if AX (n1, n2) and 
yl(n1, n2) are much smaller than X2(nl, n2) and /2(n1, n2), the elements of 
the Jacobi matrix will be close to zero. This means that our scheme will 
converge rapidly if the transition rates which change the condition 
variable are small compared to other transition rates. Our method ac- 
tually exploits this kind of ill-conditioning which is often a difficulty for 
other numerical methods. In practice, the method exhibits a reasonably 
fast convergence also when Al(ni, n2) and p1(n1, n2) are of the same order 
of magnitude as X2(n1, n2) and p2(nf, n2) (see Section 4). 

The choice of the initial set of conditional probabilitiesp?n, (n2) clearly 
affects the number of iterations needed to reach a given accuracy. There 
is a close relation between our iterative scheme and the equivalence and 
decomposition approximation for queueing networks [3, 4]. This is of 
interest for us here for it implies that the approximate solution obtained 
by decomposition is often a good starting point for the iterative procedure. 
In the case of the birth and death process considered in this paper, the 
decomposition yields 

p01(n2) = g(n1) F2i A2(nl, j -1)/t2(n1, j), 

n2=0, ...,N2; ni = 0, ...,N1; (16) 

where g(n1) is a normalization constant. It is intuitively clear that the 
smaller the Al, It, as compared to 2, /i2, the closer (16) to the conditional 
probability distribution Pn, (n2), although it can be shown that this is not 
the only factor (see [4] for example). 

Finally, before closing this section, let us note that the applicability of 
our method is not restricted to the kind of two-dimensional birth and 
death processes considered in the introduction. The method applies 
equally well to processes involving transitions of the form (n1, n2) -* (ni 
+ 1, n2 ? 1). Denote by a2(nl, n2) and a, (n1, n2) the corresponding 
transition rates. Equations (3) and (4) have to be modified as follows: 
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l(n) = n2=o pn, (n2)Xl(nl, n2) + a2(nl, n2), and m(ni) = X=OPn, (f2)u1(n1, 
n2) + adl(n, n2), and the term -[al(ni, n2) + a2(nl, n2)]p n (n2) + m"(n1) 
a2(nl - 1, n2 + 1)piX_1(n2 + 1)/l'(n - 1) + 1U(nl)ai(n, + 1, n2- 1) 
pn74j (n2 -1)/ml-(ni + 1), added to (8). More generally, the method can 
be applied to processes of any finite number of dimensions. This point 
will be developed in a subsequent paper. 

In the next section we present an alternative iterative scheme which is 
applied directly to (1), and whose convergence is always guaranteed. 

3. AN ALWAYS CONVERGING ALTERNATIVE SCHEME 

Let us consider the initial system of balance equations for our process 
(1), and let us note that one of the problems which arise when one wants 
to apply classical iterative schemes, such as the Gauss-Seidel iteration, or 
over-relaxation, is the normalization of the solution. Two main ap- 
proaches seem to be used. In the first one, all the equations of 
(1) are used in the iteration process to compute a set of values, 
say fi(n i, n2), and the new approximation pt(n1, n2) is obtained as 
fi (n i, n2) /> fi5(n1, n2). This has a negative effect on the computation time 
and, especially when the size of the state space is important, on the 
accuracy, since some of the fit(ni, n2) may be very small with respect to 
the sum. In the second approach, one of the equations in (1) is replaced 
by the normalization condition (2). The latter may either be used directly 
as another linear equation of the system to be solved, or used to reduce 
the number of equations by one by setting one of the p(ni, n2) to unity 
minus the sum of all the other probabilities. This does not have the 
negative effect on computation time of the first approach, but it does 
have a negative effect on accuracy, since errors tend to accumulate on 
the eliminated element. 

Recently, Gaver and Humfeld proposed [5] to use a modified Gauss- 
Seidel iteration, and to normalize only when convergence is attained. 
This, however, has the drawback that the usual convergence test-the 
largest absolute value of the difference between consecutive iterates 
smaller than a given value-cannot be used since the normalization 
affects the tested value. (Incidentally, note that the use of conditional 
probabilities, by dividing the state space into many independently nor- 
malized "subspaces," considerably reduces accuracy problems due to 
normalization in the method of Section 1.) 

We now propose an iterative scheme which uses only the equation (1), 
and which does not require any of the normalization approaches discussed 
above. The scheme is as follows. Choose an order of considering the 
states such that it corresponds to a steady increase or decrease of the 
variables. As an example, we shall choose the order of increasing n1, n2, 

i.e., first all the p(O, n2), n2 = 0, . , N2, then all p(l, n2), etc. Set any 
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initial probability distribution po(ni, n2). At iteration i, i = 1, 2, ***, 

compute 

p'(ni, n2) = 1/{1 + p[Xi(ni, n2) + X2(nl, n2)]} 

*{p-l(ni, n2)[1 - p[Ai(ni, n2) + A2(n1, n2)]] 

+ p[Xi(ni - 1, n2)p (ni - 1, n2) 

+ X2(nl, n2 -1)p'(ni, n2 - 1) (17) 

+ i(l(ni + 1, n2)p'-1(n, + 1, n2) 

+ /L2(nl, n2 + 1)pi-l(ni, n2 + 1)]}, 

nli = 0, ., IN2; n2 = 0, *y,N2, 

where p is a positive real number. 
We start by noting the low computational complexity of the iteration, 

and the low storage requirements, lower than for the method of Section 
1, since no extra storage is needed for the computation. 

Let us now restrict our attention to values of p in the interval (0, 
1/maxln1f2[1(nl,n2) + /A2(nl, n2)]. With these limits for p, it is clear that 
pt(ni, n2) may never become negative. Moreover, the p'(ni, n2) are 
automatically normalized with respect to unity. Indeed, (17) may be 
rewritten as 

p'(n1, n2) = pl-l(n1, n2) + pt-[Xi(ni, n2) + X2(nli, n2)]p1(ni, n2) 

[y(nli, n2) + /L2(nl, n2)p 11(ni, n2) + Xi(ni - 1, n2)p1(nl - 1, n2) 

+ X2(n1, n2 -I)p1(ni, n2 -1) + i(l(ni + 1, n2)p'-1(nl + 1, n2) (18) 

+ /L2(nl, n2 + l)p'-1(ni, n2 + 1)}, 

ni = 0, ... , Ni; n2 = 0, * , N2. 

Summing (18) over all the states we easily obtain Enl,n pt(n1, n2) = 

Enl,n2 p-1 (n1, n2), because of the very nature of the balance equations of 
a Markovian system. From (18) it is also clear that, if this scheme 
converges, we have lim" p'(n1, n2) = p(ni, n2). 

It is not difficult to show that our scheme always converges, for any 
initial probability distribution. Let d'(n1, n2) = p+l(ni ln2) - pt(ni, n2). 
Using (18) we obtain 

t1 + p[RO(n1, n2) + X2(nl, n2)]) I dt(n1, n2) 1 

' {1 - p[Ai(ni, n2) + jk2(n1, n2)]} Id- 1(ni, n2) 1 

+ p {Xi(n1 - 1, n2)I d(ni - 1, n2)1 

+ X2(nl, n2 - 1)Idl(ni, n2 - 1)1 (19) 

+ i(l(ni + 1, n2) Id-1(ni + 1, n2)1 
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+ 12(nli, n2 + 1)Id1l1(ni, n2 + 1)1), 

ni = O, *., N1; n2 = 0, ...,N2; i = 1, 2,.. 

Due to the fact that both pt(ni, n2) and pL+l(?li, n2) are normalized, we 
have Enl,2 dt(n1, n2) = 0, i = 0, 1, * . . This means that for at least one 
couple (nli, n2) the inequality in (19) must be strict. Hence, summing over 
all the states we obtain Znin% I dt(ni, n2)1 < EX"n2 I d-1(n1, n2) j, and the 
unconditional convergence of our scheme follows readily. 

It is clear from (18) that the choice of p is of importance for the speed 
of convergence. The latter will be low if p is close to zero, and will thus 
increase as p increases, at least up to certain limit. We did not succeed in 
determining theoretically an optimum value (in terms of asymptotic 
convergence speed) for p. In practice, however, p = 1/maxn 1,2 (i(nli, n2) 

+ /2(ni, n2)) is apparently a good choice. 
Finally, note that there is no difficulty in extending the applicability of 

this iterative scheme to the solution of the balance equations of any 
Markovian system. Orderings of system states other than the one used 
throughout this section may in some cases be preferable with respect to 
the speed of convergence. The iterative procedure has then to be arranged 
according to the ordering chosen. 

In the next section we present the results of an empirical study of the 
performances of the methods proposed in this paper. 

4. EMPIRICAL RESULTS ON PERFORMANCE 

We have tested the methods of Section 1 and 3 (which will be called 
henceforth Method 1 and 2, respectively) for a number of values of the 
birth and death rates of the process considered. At the same time, an 
over-relaxation iteration with the parameter set to (1) (i.e., an iteration 
very close to the Gauss-Seidel method) was run, so as to compare the 
performances of our method with that of a commonly used procedure. 
The normalization condition was explicitly used as an equation of the 
system to be solved. All the methods were programmed in Algol and run 
on a CII IRIS 80 computer using double precision (64 bits) floating 
arithmetic. The same convergence test, corresponding to a difference 
between two consecutive iterates of pn1 (n2) less than 10-4, was used 
throughout the experiments. In all cases, the initial distribution corre- 
sponded topXl(n2) = 1/(N2 + 1), n1-O, = *, N1. 

Below are some results which seem to be significant of the behavior of 
the methods considered. (M1: Method 1; M2: Method 2; Mo: over-relaxa- 
tion). 

I. N1 = 10, N2 = 10, birth and death rates constant, 
A, =1, yj = 2 
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M1 M2 Mo 

1. X2 = 100 ,u2 = 200 No. of iterations 4 41 00* 

Time in mn 0.01 0.03 

* No convergence after 1000 iterations. 

M1 M2 Mo 

2. X2 = 10 [L2 = 20 No. of iterations 8 45 168 

Time in mn 0.02 0.03 0.11 
M1 M2 Mo 

3. X2 = 1 L2 = 2 No. of iterations 31 82 355 

Time 0.05 0.06 0.22 

II. N1 = 10, N2 = 15, birth and death rates constant, 
M1 M2 Mo 

1. Xi =1, il = 2, No. of iterations 9 62 169 
X2 = 10, L2 = 20 

Time 0.03 0.06 0.16 

ITI. N1 = 25, N2 = 10, birth and death rates constant, 
X =1, It, = 2 

Ml M2 Mo 
1. X2 = 10 /k2 = 20. No. of iterations 8 45 400 

Time 0.04 0.08 0.60 

M1 M2 Mo 

2. X2 = 1 [L2 = 2 No. of iterations 31 82 461 

Time [0.11 0.13 0.72 

IV. N1 = 10, N2 = 10, birth rates constant, 
t,(nl, n2) = 2, if n2 = 0, 1, if n2 #0. 

Ml M2 Mo 
1. b2(nli, n2) = 20, if nli = 0, No. of iterations 8 62 205 

10, if ni 34 0. 
Time 0.02 0.04 0.13 

Ml M2 Mo 

2. A2(n1, n2) = 2, if nli = 0, No. of iterations 37 127 66 
1, if ni =# 0. 

Time 0.05 0.09 0.05 
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We observe that, in most cases, the methods proposed are considerably 
superior to the commonly used iterative scheme. Method 1, despite its 
higher computational complexity, tends to outperform Method 2, as long 
as the transition rates which change the condition variable (nli, in our 
case) are not greater than other transition rates. The influence of the size 
of the problem is illustrated in points II and III. We note that both 
methods behave reasonably as the dimensions of the problem increase; 
Method 1 seems less sensitive to the increase of N1 than Method 2 with 
the ordering of states chosen. As a whole the results favor the use of 
Method 1. It should be noted, however, that the difference in time 
between Methods 1 and 2 is not, in many cases, very important, and 
Method 2 does have some advantages over Method 1: it uses almost 
directly the familiar balance equations of the process, the computation at 
each iteration is much simpler and requires less storage, and, finally, but 
importantly, its convergence is guaranteed. 
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